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a b s t r a c t 

Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation 

of four physical parameters (longitudinal and effective transverse relaxation rates 𝑅 1 and 𝑅 ∗ 2 , proton density 𝑃 𝐷, 

and magnetization transfer saturation 𝑀𝑇 sat ) that are sensitive to microstructural tissue properties such as iron 

and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to 

controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method 

to estimate the local error of 𝑃 𝐷, 𝑅 1 , and 𝑀𝑇 sat maps that captures both noise and artefacts on a routine basis 

without requiring additional data. To investigate the method’s sensitivity to random noise, we calculated the 

model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly 

with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic 

field strength (3T vs. 7T) and MPM parameters: it halved from 𝑃 𝐷 to 𝑅 1 and decreased from 𝑃 𝐷 to 𝑀𝑇 sat by 

a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using 

two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. 

The resulting robust MPM parameters showed reduced variability at the group level as compared to their single- 

repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting 

for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined 

MPM maps is available in the open-source hMRI toolbox. 
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. Introduction 

Quantitative magnetic resonance imaging (qMRI) can be more repro-
ucible than conventional MRI (e.g. T1-weighted MRI typically used for
orphometric analysis Paus et al., 1999 ), especially between sites, as it

ims to remove the impact of hardware variations on measured maps
 Weiskopf et al., 2013 ; Cercignani and Bouyagoub, 2018 ). Quantifica-
ion is typically achieved by acquiring multiple MRI contrasts to disen-
angle the mixture of different physical MR parameters present in con-
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entional MRI, and correcting for instrumental variation through the ac-
uisition of additional calibration measurements ( Weiskopf et al., 2021 ).
ulti-parameter mapping (MPM) provides a comprehensive approach

o quantify multiple markers (such as longitudinal relaxation rate 𝑅 1 ,
roton density 𝑃 𝐷, effective transverse relaxation rate 𝑅 

∗ 
2 , and mag-

etization transfer saturation 𝑀𝑇 sat ) in a time-efficient MRI protocol
omposed of three multi-echo SPoiled Gradient Recalled echoes (SPGR)
ith PD-, T1-, and MT-weighting and additional calibration measure-
ents ( Helms et al., 2008a ; Weiskopf et al., 2013 ) ( Fig. 1 ). 
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General 

hMRI In vivo histology using MRI 
MPM Multi-parameter mapping 
SPGR SPoiled Gradient Recalled echoes 
qMRI Quantitative MRI 
VBM Voxel-based morphometry 
WM White matter 
GM Grey matter 

MPM derivatives 

SNR Signal-to-noise ratio 
mSNR Model-based signal-to-noise ratio 
𝑆𝑁𝑅 

PDw 
raw Raw image-based SNR, see Eq. (1) 

PD Proton density 
𝑅 1 ( 𝑇 1 ) Longitudinal relaxation rate (time) 
𝑅 

∗ 
2 Effective transverse relation rate 

𝑀𝑇 sat Magnetisation transfer saturation rate 
𝑑𝑃 𝐷 Error of 𝑃 𝐷
𝑑𝑅 1 Error of 𝑅 1 
𝑑𝑀𝑇 Error of 𝑀𝑇 sat 
𝑅 

RO 
1 ( 𝑃 𝐷 

RO , 𝑀𝑇 RO sat ) Robustly combined 𝑅 1 ( 𝑃 𝐷 and 𝑀𝑇 sat ) 
values from two-repeat acquisition, see 
Eq. (7) 

𝑅 

AM 

1 ( 𝑃 𝐷 

AM , 𝑀𝑇 AM 

sat ) Arithmetic-mean combined 𝑅 1 ( 𝑃 𝐷 and 
𝑀𝑇 sat ) values from two-repeat acquisition 

SEM Standard-error-of-the-mean 
rSEM Relative SEM 

Measurement and simulations 

𝑆 0 PDw ( 𝑆 
0 
T1w , 𝑆 

0 
M; Tw 

) PD-weighted SPGR signal fitted at zero echo 
time. In brackets: the same for the T1- and 
MT-weighted SPGR signal 

𝐵 + 1 Transmit field 
M 0 Equilibrium magnetization 
𝛼nom PD ( 𝛼nom T1 ) Nominal flip angle for PD (T1)-weighted sig- 

nal 
𝜎 Standard deviation of noise 
𝑁( 0 , 𝜎2 ) Zero-mean, additive Gaussian noise with 

variance 𝜎2 

TE Echo time 
TR Repetition time 
TA Total acquisition time 

MPM parameters are sensitive to key biological microstructure fea-
ures, e.g., myelin density and iron content ( Kirilina et al., 2020 ),
s well as volumetric changes. For example, the MPM parame-
ers 𝑅 1 , 𝑃 𝐷, and 𝑀𝑇 sat have demonstrated utility in revealing ag-
ng processes ( Callaghan et al., 2014 ), assessing clinical pathology
 Freund et al., 2013 ; David et al., 2019 ) and illuminating behaviourally-
elevant brain microstructure ( Whitaker et al., 2016 ; Ziegler et al.,
019 ), and are known to be sensitive to macromolecular content and
hus correlate with myelin density ( West et al., 2018 ; Mohammadi and
allaghan, 2021 ). This sensitivity to microstructural tissue proper-
ies can be expected to vary between quantitative metrics depend-
ng on the underlying MR contrast mechanisms ( Edwards et al., 2018 ;

eiskopf et al., 2021 ). 
The comprehensive acquisition providing the four aforementioned

uantitative parameters makes the MPM protocol particularly at-
ractive for large-scale neuroimaging studies ( Whitaker et al., 2016 ;
aubert et al., 2020 ; Clark et al., 2021 ) and clinical trials ( Leutritz et al.,
020 ). When planning these kind of studies, a key question is whether
e can objectively determine which metric will have the greater statis-

ical sensitivity to the effect of interest under the influence of noise and
rtefacts (e.g. due to subject movement). In particular, clinical studies or
2 
hose recruiting special populations depend on reliable power estimates
o assess feasibility and efficiency. Power estimates and heuristics from
raditional structural MRI techniques such as voxel-based morphome-
ry (VBM) or other anatomical shape analyses cannot be translated to
he analysis of quantitative MPMs, since they target largely different
echanisms (cluster of neighbouring voxels via the Jacobi-determinant
odulation in VBM vs. single-voxel quantification in MPMs) and result

n different characteristics for metrics such as scan-rescan reproducibil-
ty ( Schnack et al., 2010 ). The sensitivity of the MPM parameters under
he influence of random noise is often determined by the signal-to-noise
atio (SNR) of the underlying weighted volumes. Since we combine mul-
iple weighted volumes with different SNRs to compute MPM parame-
ers, the noise propagation into the MPM parameter estimates plays an
mportant role for power estimation in MPM-based studies. 

While sensitivity to microstructural brain differences promises the
etection of more subtle anatomical effects than accessible by VBM
 Weiskopf et al., 2015 ), quantitative MRI maps are expected to be
ore susceptible to image artefacts than the constituent images. Mod-

rate artefacts in the constituent images of quantitative MRI parame-
ers can be amplified after nonlinear combination, e.g. when calculat-
ng the quantitative 𝑃 𝐷, 𝑅 1 and 𝑀𝑇 sat maps from the MPM raw data
 Fig. 1 ). As a consequence, the variability of quantitative MRI param-
ters across a cohort is usually a composition of the true anatomical
ariability and variability due to biases caused by instrumental, physio-
ogical, and movement related outliers and noise ( Weiskopf et al., 2014 ;
astella et al., 2018 ; Lutti et al., 2022 ). The outliers can significantly re-
uce the effective SNR of the data at the group level and thereby the
ensitivity to microstructural changes. Thus, the MPM approach would
reatly benefit from the quantification of parameter-specific errors that
an routinely identify outliers on a voxel-wise basis. 

In this study, we introduce a new method to estimate error maps
or each of the three quantitative MPM parameters 𝑅 1 , 𝑃 𝐷, and 𝑀T sat 
n a routine basis without the acquisition of any additional data (the
rror in R2 ∗ has been investigated elsewhere Weiskopf et al., 2014 ).
he error maps are sensitive to two different types of variation: random
oise, on the one side, and artefactual variation (e.g. due to imaging
r subject motion), on the other. As a measure of the influence of ran-
om noise, we introduce the so-called model-based signal-to-noise ratio
mSNR) that is defined in analogy to the standard SNR, i.e. as the ra-
io between the MPM parameter and its error. First, we illustrate how
he sensitivity to the two types of variation (random noise and arte-
acts) manifest themselves in the error and the mSNR maps. In two
ollow-up analyses, we investigate each of the two types of variation
n more detail. The random-noise sensitivity is evaluated by quantify-
ng the relation between the mSNR and the standard raw-image based
NR using both simulations and measurements. The artefact sensitivity
s used to robustly combine MPM estimates from two successively ac-
uired sets of MPM raw data (i.e. multi-echo SPGR images with PD-,
1-, and MT-weighting), where the acquisition-specific error maps are
sed to down-weight erroneous MPM parameters on a voxel-wise ba-
is. We test the hypothesis that the robustly combined MPM estimates
ave lower image-artefact-related variability at the group level than the
PM estimates obtained from the arithmetic mean across acquisitions,

r those obtained from a single MPM acquisition. 

. Background 

This section contains terminology and background information
bout the measurement of the signal-to-noise ratio (SNR) from raw data,
he MPM estimation framework, and how the error (and by extension
he model-based SNR) can be estimated within this framework. The raw-
ata SNR ( Eq. (1) ) is used as a reference to validate the utility of the
SNR and its capacity to estimate the per-acquisition SNR in the MPM
arameters. 
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Fig. 1. From raw data to parameter maps. 

Bottom row: the multi-parameter mapping 

(MPM) raw data as well as the receive ( 𝐵 − 1 ) 

and transmit ( 𝐵 + 1 ) field maps acquired via ded- 

icated calibration measurements. Middle row: 

the spoiled gradient-recall echo (SPGR) im- 

ages with different contrasts at echo time (TE) 

zero ( 𝑆 PDw ( 𝑇 𝐸 = 0 ) ≡ 𝑆 0 PDw , 𝑆 T1w ( 𝑇 𝐸 = 0 ) ≡
𝑆 0 T1w , 𝑆 MTw ( 𝑇 𝐸 = 0 ) ≡ 𝑆 0 MTw , middle row) as 

well as the three contrast-specific uncertainties 

( ∈PDw , ∈T1w , ∈MTw , red box, middle row), each 

of which summarizes the root-mean-square dif- 

ference between modelled and measured sig- 

nal per contrast ( Background, Section 2 ). Top 

row: proton density ( 𝑃 𝐷), longitudinal relax- 

ation rate ( 𝑅 1 ), magnetization transfer satu- 

ration ( 𝑀𝑇 sat ), and effective transverse relax- 

ation rate ( 𝑅 ∗ 2 ), which is not considered here 

and thus greyed out. In the MPM framework 

( Tabelow et al., 2019 ), the three quantitative 

parameters 𝑃 𝐷, 𝑅 1 , and 𝑀𝑇 sat are calculated 

from 𝑆 0 PDw , 𝑆 
0 
T1w , 𝑆 

0 
MTw after correction for 𝐵 − 1 

and 𝐵 + 1 fields. 
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.1. Conventional SNR estimates of raw images 

As a reference method to estimate SNR, we use the difference-image
ased SNR estimated from the raw multi-echo SPGR images with PD-
eighting of a two-repeat measurement ( Price et al., 1990 ; Reeder et al.,
005 ) or in short raw-image based SNR. For a twice repeated MPM mea-
urement, the raw-image based SNR is estimated for the SPGR image
ith PD-weighting ( 𝑆𝑁𝑅 

PDw 
raw ) at the shortest echo time. The estimate

f the mean signal is obtained from a small ROI by taking the mean of
he signals from repeat 1 and 2, i.e. 1 2 ⟨𝑆 (1) PDw + 𝑆 

(2) 
PDw ⟩, and this value is

ivided by the standard deviation of the difference of the signals from
epeat 1 and 2 across the ROI, i.e. 1 √

2 
std ( 𝑆 (1) 

PDw 

− 𝑆 
(2) 
PDw 

) , giving: 

N 𝑅 

PDw 

raw 

= 

1 √
2 

⟨𝑆 ( 1 ) 
PDw 

+ 𝑆 
( 2 ) 
PDw 

⟩
std 

(
𝑆 
( 1 ) 
PDw 

− 𝑆 
( 2 ) 
PDw 

) . (1) 

This method has been demonstrated to be a robust estimate of
he SNR across different acceleration factors ( Reeder et al., 2005 ;
ietrich et al., 2007 ). Note, that an equivalent metric to that in
q. (1) can also be calculated for the other two contrasts (MTw and
1w) and other echo times. Without loss of generality we focused on
𝑁𝑅 

PDw 
raw in this study. 

.2. Error in MPM parameters 

The noise level in the multi-echo SPGR images with PD-, T1-,
nd MT-weighting is estimated from the contrast-specific uncertainties
 ∈PDw , ∈T1w , ∈MTw in Fig. 1 ) derived from the root-mean-square (rms)
ifference of the predicted and measured signal decay across echo times.
he errors in the MPM parameters differ from the associated contrast-
pecific uncertainties of the PD-, T1-, and MT-weighted SPGR signal as
llustrated in Fig. 2 . This section summarizes how these metrics are re-
ated. 

Error propagation: To estimate the error of each quantitative map,
e calculated the first order propagation of error in 𝑅 1 , 𝑃 𝐷, and 𝑀𝑇 sat 
nder the assumption of uncorrelated errors between the SPGR and cal-
bration measurements. For example, the error of 𝑅 1 was derived to be:

 𝑅 1 
(
𝑆 T1w , 𝑆 PDw , 𝐵 

+ 
1 

)
= 

√ √ √ √ √ 

( 
𝑑 𝑅 1 
𝑑 𝑆 T1w 

𝑑 𝑆 T1w 

) 2 
+ 
( 
𝑑 𝑅 1 
𝑑 𝑆 PDw 

𝑑 𝑆 PDw 

) 2 
+ 

( 

𝑑 𝑅 1 

𝑑 𝐵 + 1 
𝑑 𝐵 + 1 

) 2 

(2)
3 
ith 𝑅 1 ≈
𝑆 0 PDw 𝛼PD ∕ 𝑇𝑅 PD − 𝑆 

0 
T1w 𝛼T1 ∕ 𝑇𝑅 T1 

2( 𝑆 0 T1w ∕ 𝛼T1 − 𝑆 
0 
PDw ∕ 𝛼PD ) 

. 

Local variations in the transmit field 𝐵 + 1 are incorporated into the
ip angles via 𝛼PD = 𝐵 + 1 𝛼

nom 
PD ( 𝛼T1 = 𝐵 + 1 𝛼

nom 
T1 ) with 𝛼nom PD ( 𝛼nom T1 ) being the

ominal flip angles ( Helms et al., 2008a ; Lee et al., 2017 ; Tabelow et al.,
019 ), 𝑆 0 PDw ( 𝑆 0 T1w ) being the signal approximated at zero echo time
 PDw ( 𝑇 𝐸 = 0 ) ( 𝑆 T1w ( 𝑇 𝐸 = 0 ) ) using the linearized SPGR signal fit (see
ext paragraph), and 𝑑𝑆 R1 and 𝑑𝑆 PD being the contrast-specific uncer-
ainties. 

Linearized SPGR signal: To estimate the signal variation for each
ontrast, we first solved the joint model of the SPGR signals with PD-,
1-, and MT-weighting using the linearized exponential signal decay as

ntroduced in the ESTATICS model ( Weiskopf et al., 2014 ): 

⃗ = 𝑋 𝛽 + ⃗e (3)

ith 𝑦 = 

⎛ ⎜ ⎜ ⎝ 
𝑦 PDw 
𝑦 T1w 
𝑦 MTw 

⎞ ⎟ ⎟ ⎠ and 𝑦 𝑚 = ln 
⎛ ⎜ ⎜ ⎝ 
𝑆 𝑚 ( 𝑇 𝐸 1 ) 

⋮ 
𝑆 𝑚 ( 𝑇 𝐸 𝑁 𝑚 

) 

⎞ ⎟ ⎟ ⎠ , X being an 𝑁 × 4 design ma-

rix with rows 𝑋 𝑘,𝑖 = [ δPDw ,𝑖 , δT1w ,𝑖 , δMTw ,𝑖 , − 𝑇 𝐸 𝑘 ] , 𝑁 𝑚 is the number

f echoes for each contrast 𝑚 ∈ { PDw , T1w , MTw } , δ𝑗,𝑖 
{ 

1 𝑖 = 𝑗 

0 𝑖 ≠ 𝑗 
is

he Kronecker delta, ⃖⃖⃗𝛽 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
ln ( 𝑆 0 PDw ) 
ln ( 𝑆 0 T1w ) 
ln ( 𝑆 0 MTw ) 
𝑅 

∗ 
2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
are regression coefficients, and the

odel-fit residual vector ⃗e is composed of elements e 𝑘 that are equal to
he difference between predicted and measured logarithmic signal for
he k-th MPM volume 𝑘 ∈ { 1 , … , 𝑁 PDw + 𝑁 T1w + 𝑁 MTw } . While it has
een previously shown that the elements of e⃗ can be used to down-
eight outliers for robust estimation of 𝑅 

∗ 
2 ( Weiskopf et al., 2014 ), here,

e use the rms difference of the predicted and measured signal as an
stimate for the variation in the signal per contrast: 

PDw ≡

√ √ √ √ √ 

1 
𝑁 PDw 

𝑁 PDw ∑
𝑗=1 

(
𝑆 PDw 

(
𝑇 𝐸 𝑗 

)
− exp 

(
𝑋 𝑗, ∶ ⋅ 𝛽

))2 
, (4a) 

T1w ≡

√ √ √ √ √ 

1 
𝑁 T1w 

𝑁 T1w ∑
𝑗=1 

(
𝑆 T1w 

(
𝑇 𝐸 𝑗 

)
− exp 

(
𝑋 𝑁 PDw + 𝑗, ∶ ⋅ 𝛽

))2 
, (4b) 
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Fig. 2. Error maps, their dependencies on MPM data and sensitivity to artefacts. Left column: the offset ( 𝑆 0 MTw , 𝑆 
0 
PDw , and 𝑆 0 T1w ) and contrast-specific un- 

certainties ( ∈MTw , ∈PDw , and ∈T1w ) of the SPGR signal as described in Fig. 1 . Middle column: the error maps and their dependencies (coloured lines) on offset and 

contrast-specific uncertainties. Right column: the MPM maps. The 𝑀𝑇 -error map (top-middle) depends on all offsets and contrast-specific uncertainties. In contrast, 

the 𝑅 1 - (bottom row) and 𝑃 𝐷- (middle row) error maps ( 𝑑𝑅 1 and 𝑑𝑃 𝐷), depend only on 𝑆 0 T1w and 𝑆 0 PDw as well as on the corresponding contrast-specific uncertainties 

∈T1w and ∈PDw . The red circles highlight regions with higher error or higher contrast-specific uncertainties and the corresponding region in the MPM parameters. 

Higher values in contrast-specific uncertainties are often smeared out (e.g. in ∈T1w ) and localized increases are not necessarily accompanied by a biased MPM pa- 

rameter (e.g. red circle in bottom row), whereas higher values in the error maps circle top row are co-localized with biased MPM parameters (e.g. circle in top 

row). 
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MTw ≡

√ √ √ √ √ 

1 
𝑁 MTw 

𝑁 MTw ∑
𝑗=1 

(
𝑆 MTw 

(
𝑇 𝐸 𝑗 

)
− exp 

(
𝑋 𝑁 PDw + 𝑁 T1w + 𝑗, ∶ ⋅ 𝛽

))2 
. (4c)

In the following, the measures in Eq. (4) are denoted as contrast-
pecific uncertainties ( Fig. 1 ). 

Error maps: Using the contrast-specific uncertainties ( Eq. (4) ) to
haracterise the noise within a given MPM acquisition, the error maps
an now be estimated using the concept of error propagation. For the
xample of the error of R 1 ( Eq. (2) ), the following is obtained: 

 𝑅 1 ≈

√ ( 

𝑑 𝑅 1 
𝑑 𝑆 T1w 

∈T1w 

) 2 
+ 

( 

𝑑 𝑅 1 
𝑑 𝑆 PDw 

∈PDw 

) 2 
, (5)

here, the error in the transmit field is assumed to be negligible 𝑑𝐵 + 1 ≈
 . The same approach can be used to generate error maps for the 𝑃 𝐷
nd 𝑀𝑇 sat estimates. Details of the derivation and the formulae of the er-
ors for each parameter ( 𝑑 𝑅 1 , 𝑑 𝑃 𝐷, 𝑑 𝑀𝑇 ) can be found in Background
upplementary Materials B1–B3 and their implementation in the hMRI
oolbox can be found here: www.hMRI.info . 

Sensitivity of error maps to imaging artefacts: The relation between
he error maps, the intercept of the linearized SPGR-signals which enters
he error maps via the derivative of the MPM contrasts (e.g. for 𝑑𝑅 1 see
he formulae for 

𝑑𝑅 1 
𝑑𝑆 T1w 

and 
𝑑𝑅 1 
𝑑𝑆 PDw 

in the Background Supplementary Ma-

erial B1–B3, Eqs. (B3) and (B4)) and the contrast-specific uncertainties
s illustrated in Fig. 2 . We hypothesize that the error maps are sensi-
ive to the factors that contribute to image degradation captured by the
ontrast-specific uncertainties ( Eq. (4) ), such as head motion during the
cquisition of each image volume ( Weiskopf et al., 2014 ; Castella et al.,
018 ), physiological artefacts, or sequence-specific artefacts (e.g. noise-
nhancement due to parallel-imaging). Our hypothesis is motivated by
he observation that artefacts in the contrast-specific uncertainty maps
re often smeared out across the whole brain (e.g. in ∈ , Fig. 2 ) and
T1w 

4 
ocalized increases are not necessarily accompanied by a biased MPM
arameter. High values in the error maps, however, are localized and co-
ncide with noticeable variation in the associated MPM parameter maps
red circles in top row, Fig. 2 ). 

.3. Model-based SNR (mSNR) 

Following the definition of SNR, we introduce here the model-based
NR maps (in short mSNR maps) for each MPM parameter map. This
s defined as the ratio between a quantitative MPM map and its corre-
ponding error map. For example, the mSNR map for the 𝑅 1 parameter
as calculated as follows: 

𝑆𝑁𝑅 

R1 = 

𝑅 1 
𝑑𝑅 1 

. (6)

To avoid divergence for very small error values, a threshold was
sed to set the mSNR map to zero when dR1 < 10 −4 (the same was
one for 𝑚𝑆𝑁𝑅 

MT and 𝑚𝑆𝑁𝑅 

PD , with dMT < 10 –4 and dPD < 10 −2 ,
espectively). These thresholds were chosen heuristically. Note that the
PM-specific mSNRs are estimated per MPM acquisition Eqs. (5) and

6) . 

.4. Robust combination of MPM parameters 

When multiple MPM datasets are available, the resulting parame-
ers can be combined by a simple arithmetic mean. Here we propose an
lternative robust combination, of potentially erroneous MPM param-
ters, by exploiting their empirical error maps. The idea is formulated
or the case of two distinct imaging repeats but can be generalized to
ultiple repeats. 

To generate robust MPM parameters (denoted by superscript “RO ”)
rom a two-repeat protocol a function of the error maps is used to weight
ach repeat according to their voxel-wise error. For the example of 𝑅 ,
1 

http://www.hMRI.info


S. Mohammadi, T. Streubel, L. Klock et al. NeuroImage 262 (2022) 119529 

t  

𝑅  

w  

t  

t  

𝑚  

T  

r  

w  

a  

a  

p  

o  

(  

f

3

3

 

m  

t  

f  

m  

r  

y  

r  

N  

e  

i  

c  

a  

(
 

m
 

(  

3  

t  

6  

t  

i  

i  

e  

(  

e  

𝐵  

i  

(  

a  

i  

e  

a  

w  

o
 

T
 

e  

(  

t  

r

 

f  

8
 

p  

U  

i  

i  

a  

P  

f
 

a  

2  

W  

s  

M  

t  

r  

i  

f  

p  

p

3

 

i  

h  

h  

o  

(  

w  

l  

f  

e  

p  

p
 

w  

i  

m  

a  

𝑀  

i  

o  

v  

p  

b  

w  

o  

p  

s  

t  

a  

t
 

g  

i  

(  

t  

h  

a  

a  

s

he robust-combination was defined as follows on a voxel-by-voxel basis:

 

RO 
1 = 𝑤 

𝑅 1 𝑅 

( 1 ) 
1 + 

(
1 − 𝑤 

𝑅 1 
)
𝑅 

( 2 ) 
1 , (7)

here, 𝑤 

𝑅 1 = 

1 
𝑚𝑤 𝑅 1 

𝑓 ( 
𝑑𝑅 

(1) 
1 

𝑑𝑅 
(2) 
1 
) ; 𝑓 ( 𝑥 ) = 

1 
exp ( 100 ( 𝑥 −1 )∕ 𝑘 )+1 is the Fermi func-

ion; 𝑅 

( 1 , 2 ) 
1 ; 𝑑𝑅 

( 1 , 2 ) 
1 are the longitudinal relaxation rates and their respec-

ive errors from repeats (1) and (2), all defined on a per voxel basis; and
𝑤 𝑅 1 = max 

𝑟 
( 𝑓 ( ⃗𝑟 ) ) is defined as the maximum weight across voxels 𝑟 .

he parameter 𝑘 tunes the sensitivity of the weights with respect to the
atio of errors: small 𝑘 leads to high sensitivity. The parameter ( 𝑘 = 10% )
as heuristically optimized for one subject that showed strong motion
rtefacts in the scan-rescan measurements (see Supplementary Materi-
ls S1, “Robust combination and two-repeat multi-parameter mapping
rotocol ”) and applied to the rest of the subjects. The robust combine
ption can to be enabled via the local default file of the hMRI toolbox
hmri_def.wcomb), where also the k parameter can be adjusted for dif-
erent protocols (e.g., hmri_def.wcombparams.kt = 10). 

. Materials and methods 

.1. Subjects and MRI 

Subjects: 20 healthy volunteers participated in this study. 18 were
easured with protocol 1, one with protocol 2 at 3T, and one with pro-

ocol 3 at 7T. We excluded two participants measured with protocol 1
rom the analysis: one due to excessive, unsalvageable levels of move-
ent and one due to image reconstruction problems. We included the

emaining 16 participants in the reported group analysis (age: 20–54
ears; 𝑚𝑒𝑎𝑛 ( 𝑆𝐷 ) = 32 . 63( 8 . 55 ) years; 7 female, 9 male). Exclusion crite-
ia were any psychiatric disorders, assessed via the Mini-International
europsychiatric Interview ( Ackenheil et al., 1999 ), neurological dis-
ases, head trauma or metallic implants. Participants provided written
nformed consent and were compensated for their participation. The lo-
al ethics committees at University Medical Center Hamburg-Eppendorf
nd Medical Faculty of the University of Leipzig approved the study
PV5141; LPEK_006_Kühn; Reg.-No. 273-14-25082014; WF-74/16). 

Post mortem validation: Whole brains were obtained via the Depart-
ent of Legal Medicine, Medical Centre Hamburg-Eppendorf. 

MRI protocol: Scans were performed on three MRI systems
Siemens Healthineers, Erlangen, Germany): 3T PRISMA (protocol 1),
T PRISMA-fit (protocol 2), and Magnetom 7T (protocol 3). For pro-
ocols 1 and 2, the body coil was used for transmission (Tx) and the
4-channel receiver head-coil for reception (Rx). For protocol 3, an in-
egrated 1-channel Tx/32-channel Rx head coil (Nova Medical, Wilm-
ngton, MA, USA) was used. Whole brain MR images were acquired us-
ng the MPM ( Weiskopf et al., 2013 ) protocol, including three differ-
ntly weighted (MT-, PD- and 𝑇 1 -weightings) multi-echo SPGR contrasts
protocol 3 only acquired two weightings, PD- and 𝑇 1 -weighting). The
ffect of spatial inhomogeneities of the radio-frequency transmit field
 

+ 
1 on the quantitative MRI maps (Lutti et al., 2014) was corrected us-

ng specially-dedicated data acquired using the 3D echo-planar imaging
EPI) spin-echo and stimulated echo method ( Lutti et al., 2010 ; 2012 ),
vailable in the hMRI toolbox ( Tabelow et al., 2019 ). Image distortions
n the EPI data were corrected using B0-field mapping data (2D double-
cho FLASH sequence). For protocols 1 and 2, the automatic transmit
djust procedure was used, whereas for protocol 3, the transmit voltage
as calibrated using an initial low-resolution transmit field map to be
ptimal over the occipital lobe. 

The sequence parameters for protocols 1-3 are summarized in
able 1 . 

The acquisition of all multi-echo SPGR contrasts was repeated for
ach individual. This was done within a single imaging session at 3T
i.e. protocols 1 and 2 contained two “runs ” of each contrast) and in
wo separate imaging sessions at 7T (i.e. protocol 3 contained only one
un). 
5 
The total scan time of both runs was about 28 min ( = 2 × 11 + 6)
or protocol 1, about 33 min ( = 2 × 13.5 + 6) for protocol 2, and about
4 min ( = 2x(36 + 6)) min for protocol 3. 

For protocol 3, participant motion was monitored and corrected
rospectively by an optical tracking system (Kineticor, Honolulu, HI,
SA) ( Callaghan et al., 2015 ). Each volunteer was scanned while wear-

ng a mouth guard with a passive Moiré pattern marker used for track-
ng (manufactured by the Department of Cardiology, Endodontology
nd Periodontology, University Medical Center Leipzig; comparable to
apoutsi et al., 2020 ). The dataset acquired with protocol 3 was taken
rom the study by ( McColgan et al., 2021 ). 

In all protocols, parallel imaging was performed using generalised
utocalibrating partial parallel acquisition (GRAPPA) ( Griswold et al.,
002 ) with acceleration factors of 3 (protocol 1) or 4 (protocols 2 and 3).
e used a range of protocols which have been designed for neuroscience

tudies (protocol 2, e.g.: Ellerbrock and Mohammadi, 2018 ; protocol 3:
cColgan et al., 2021 ; protocol 1 is used in a running study), to assess

he utility of the proposed error and mSNR maps. These spanned spatial
esolution and static magnetic field strength (protocols 1 and 2: 1 mm
sotropic at 3T vs. protocol 3: 0.5 mm isotropic at 7T) as well as dif-
erent acceleration strategies to reduce scan time (2 × 2 acceleration in
rotocols 2 and 3 vs. 3 × 1 acceleration plus partial Fourier sampling in
rotocol 1) while keeping field strength and spatial resolution fixed. 

.2. Map creation and spatial processing 

Map creation and spatial processing was performed using modules
n SPM12 version v7771 ( Friston et al., 2006 ) and a branch of the
MRI toolbox ( Tabelow et al., 2019 ) available here: https://github.com/
MRI- group/hMRI- toolbox/releases/tag/errormaps . For 𝐵 + 1 correction
f the 𝑀𝑇 sat maps, we used a heuristic correction factor as detailed in
 Helms, 2015 ; Helms et al., 2021 ). Note, that the error and mSNR maps
ill be part of the official hMRI toolbox ( www.hMRI.info ) upon pub-

ication. To be generated, they need to be enabled in the local default
older (hmri_def.errormaps = true). An instruction of where to find the
rror maps and how to generate the robust combination is given in Sup-
lementary Materials S2 and will become available on the hMRI wiki
age ( https://github.com/hMRI- group/hMRI- toolbox/wiki ). 

Rigid-body registration: To ensure that the data from both repeats
ere in the same space, the second dataset was registered to the first us-

ng a rigid-body transformation (spm_coreg). To this end, first the MPM
aps were aligned to the MNI-space template ( “avg152T1 ”) with the

uto-align module in the hMRI toolbox ( Tabelow et al., 2019 ) using the
𝑇 sat map as “source image ” (i.e. the image that was used for estimat-

ng the transformation parameters). Then, the 𝑀𝑇 sat maps were thresh-
lded ( 𝑀𝑇 sat > 0 and 𝑀𝑇 sat < 5 p.u.) to remove unreasonable or extreme
alues and segmented (spm_segment) into grey and white matter tissue
robability maps (TPMs). These grey and white matter TPMs were com-
ined and used as source and target images for inter-repeat registration,
ith the TPMs from the second repeat being the source and the TPMs
f the first repeat being the target image. The estimated transformation
arameters were applied to all maps from the second repeat. The rea-
on for using the grey and white matter TPMs for registration instead of
he original maps was to reduce potential confounding effects of motion
rtefacts in the individual MPM images on the accuracy of the registra-
ion. 

Non-linear spatial registration and spatial smoothing in common

roup space: First the MPM maps of each subject were transformed
nto MNI space using the geodesic shooting nonlinear registration tools
spm_shoot, Ashburner and Friston, 2011 ). To estimate the nonlinear
ransformation that maps each individual brain into common space,
igh-quality grey and white matter tissue probability maps were gener-
ted per subject by segmenting the arithmetic mean of the 𝑀𝑇 sat maps
cross both repeats. Then, the hMRI toolbox was used for tissue-specific
moothing ( Tabelow et al., 2019 ). 

https://github.com/hMRI-group/hMRI-toolbox/releases/tag/errormaps
http://www.hMRI.info
https://github.com/hMRI-group/hMRI-toolbox/wiki
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Table 1 

MRI parameters. 

Acquisition parameters Protocol 1 Protocol 2 Protocol 3 

Field strength 3T 3T 7T 

PDw & T1w min. TE : ΔTE : max. TE | # of echoes 2.3:2.3:18.4 [ms] | 8 2.3:2.3:18.4 [ms] | 8 2.8: 2.8:16 [ms] | 6 

MTw min. TE : ΔTE : max. TE | # of echoes 2.3: 2.3:13.8 [ms] | 6 2.3: 2.3:13.8 [ms] | 6 None 

Repetition time (TR) 25.0 [ms] 25.0 [ms] 25.0 [ms] 

Acquisition resolution 1 × 1 × 1 [mm 

3 ] 1 × 1 × 1 [mm 

3 ] 0.5 × 0.5 × 0.5 [mm 

3 ] 

Acceleration factor in phase and partition directions 3 × 1 2 × 2 2 × 2 

Partial Fourier in phase | partition directions 6/8 | 6/8 OFF | OFF OFF | OFF 

Flip angle PDw, MTw 6° 6° 5°

Flip angle T1w 21° 21° 24°

MT pulse angle 220 o 220° None 

MT pulse length 4 [ms] 4 [ms] None 

MT pulse off res. freq. 2 [kHz] 2 [kHz] None 

MT pulse shape Gaussian Gaussian None 

ApS 3:46 [min] 4:42 [min] 18 [min] 

Different sequence parameters for protocols 1–3. Note that protocol 3 does not include an MTsat map. Abbreviations: 

FoV, field of view, MT(w), magnetization transfer (weighted), PD(w), proton density (weighted), T1w, T1 weighted, T1, 

longitudinal relaxation time, TE, echo time, ApS, acquisition time per set of multi-echo SPGR images, SPGR, spoiled 

gradient-recall echo. 

3
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Table 2 

Simulation parameters. 

𝑀 

GT 
0 [ p . u . ] 𝑅 GT 1 [ 𝑠 

−1 ] 𝑅 ∗ 𝐺𝑇 2 [ 𝑠 −1 ] 𝑀𝑇 GT sat [ p . u . ] 

White matter 69 . 8 0.94 22 1.59 

Grey matter 77 . 6 0.70 15 1.04 

The ground truth parameters (with superscript GT) that were 

used to simulate the signal in Eq. (9) for grey and white mat- 

ter. The other parameters (repetition time: 𝑇 𝑅 , echo time: 𝑇 𝐸) 

were as in protocol 1. Finally, the zero-mean, additive Gaus- 

sian noise 𝑁( 0 , 𝜎2 ) with varying standard deviation was added 

( 𝜎 ∈ { 0 . 002 , … , 0 . 1 }) , each time with 5000 noise realisations. This 

resulted in 𝑆𝑁𝑅 PDw raw values between 62 and 2. 
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.3. Analysis 

Three analyses were performed, which we describe in detail below.
n the first analysis, we assessed two different features of the error and
SNR maps: their sensitivity to the image SNR and to image artefacts.

econd, the relation between mSNR and the image noise of SPGR raw
mages was quantitatively investigated. Third, the artefact-associated
ariability of MPM parameters at the group level was investigated for
ifferent combinations of a two repeat MPM protocol. 

Analysis I: Illustration of error and mSNR maps: On the single-
ubject level, we investigated how the mSNR varied for different MPM
rotocols and how imaging artefacts in the MPM parameter maps ap-
eared in the error and the mSNR maps. For the same subject, we
sed two repeats with varying artefact levels. Local artefacts were vi-
ually identified as biases in the respective MPM parameter maps. The
orrespondence between error and respective MPM parameter maps in
rroneous regions was depicted. Further, it was investigated whether
 robust combination of the MPM parameter values per repeat, i.e. a
eighted-average towards the less erroneous repeat, was less biased

han the arithmetic mean average of both repeats. 
Analysis II: Quantifying the relation between raw-image-based and

odel based SNR : The propagation of SNR into mSNR was character-
zed by simulations and in vivo measurements. Hereby, we used the raw-
mage-based SNR of the PD-weighted image ( 𝑆𝑁𝑅 

PDw 
raw , see Eq. (1) ) as

 proxy for the image SNR, both in the simulations and measurements.
o assess the dependence between 𝑆𝑁𝑅 

PDw and 𝑚𝑆𝑁𝑅 

𝑚 for varying
NRs, a linear model was fit to the data: 

𝑆 𝑁𝑅 

𝑚 
𝑗 = 𝐴 

𝑚 
𝑗 𝑆 𝑁𝑅 

PDw 
𝑗 + 𝐵 𝑚 𝑗 , (8)

ith 𝐴 

𝑚 
𝑗 

and 𝐵 𝑚 
𝑗 

being the fitted parameters, 𝑚 ∈ { PD , R1 , MT } and 𝑗
eing the index that specifies whether simulated or measured data was
sed ( 𝑗 ∈ { sim , meas } ). 

Simulated 𝑺 𝑵 𝑹 

𝐏𝐃𝐰 
𝐬𝐢𝐦 

and 𝒎 𝑺 𝑵 𝑹 

𝒎 

𝐬𝐢𝐦 

: To simulate the noisy SPGR
ignal, we added complex-valued Gaussian noise to the rational
pproximation of the Ernst equation ( Ernst and Anderson, 1966 ;
elms et al., 2008a ) with heuristic approximation of the MT-pulse effect
 Helms et al., 2008b ). Then, the absolute value of the noisy signal was
alculated as follows: 

𝑆 
(
𝑇 𝑅, 𝑇 𝐸, 𝑅 1 , 𝑅 

∗ 
2 , 𝑀 0 , 𝛼, 𝑀𝑇 sat , 𝜎

)
= M 0 

‖‖‖‖‖‖𝛼
𝑇 𝑅 𝑅 1 

𝛼2 

2 + 𝑀𝑇 sat + 𝑇 𝑅 𝑅 1 

exp 
(
− 𝑇 𝐸 𝑅 

∗ 
2 
)
+ 

1 √
2 
( 𝑥 + 𝑖𝑦 ) 

‖‖‖‖‖‖ with 𝑥, 𝑦 ∼ 𝑁 

(
0 , 𝜎2 

)
(9) 
c  

6 
The multi-echo SPGR signals were simulated using Eq. (9) and the
arameters in Table 2 . To achieve PD- and T1-weighting we use the re-
pective flip angles for protocol 1 (see Table 1 ) and 𝑀𝑇 sat = 0 in Eq. (9) .
he MT-weighted multi-echo SPGR signal was simulated using the same
arameters as for the PD-weighted signal only with the difference that
he 𝑀𝑇 sat value in Table 2 was used. Then, 𝑚𝑆𝑁𝑅 

PD , 𝑚𝑆𝑁𝑅 

R1 , and
𝑆𝑁𝑅 

MT were calculated from the simulated SPGR signals using the
roposed approach (see Background and Supplementary Materials B1–
3). Additionally, 𝑆𝑁𝑅 

PDw 
sim was calculated from the simulated signal

sing Eq. (1) . Note that the simulation was performed separately for
hite matter and grey matter ground truth parameters ( Table 2 ) to in-
estigate the influence of tissue type on the relation between 𝑆𝑁𝑅 

PDw 
sim 

nd 𝑚𝑆𝑁𝑅 

𝑚 . Also note, that the same simulation was used to inves-
igate the relation between 𝑚𝑆𝑁𝑅 

𝑚 and the experimental SNR of the
PM parameters (see Supplementary Materials S3). 

Measured 𝑺 𝑵 𝑹 

𝐏𝐃𝐰 
𝐫𝐚𝐰 and 𝒎 𝑺 𝑵 𝑹 

𝒎 : To partition the MRI brain vol-
mes into regions of interest (ROIs) with varying SNR, we used the
xford-Harvard atlas for grey and white matter ( Frazier et al., 2005 ;
esikan et al., 2006 ; Makris et al., 2006 ; Goldstein et al., 2007 ). Hereby,

t was assumed that regions closer to the skull have higher SNR because
hey are closer to the head coil than regions within the centre of the
rain. Note that this analysis assumes that the proposed SNR measures
re independent of the tissue type (i.e. whether it is grey or white mat-
er) but solely depend on their distance to the head coil. 

The SNR measures were estimated for each subject in individual
pace, to prevent interpolation artefacts associated with the spatially
on-linear registration into common space affecting the estimation of
𝑁𝑅 

PDw 
raw . To this end, ROIs were projected into individual space using

he inverse of the spatial transformations estimated in the “spatial pro-
essing section ”. Then, the individual tissue probability maps for white
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Fig. 3. Variation of mSNR maps across the brain for different MPM protocols. (a): mSNR maps for three MPM protocols (P1-P3) are depicted (1 st row: P1, 2 nd 

row: P2, and 3 rd row: P3): 𝑚𝑆 𝑁𝑅 PD (1 st column), 𝑚𝑆 𝑁𝑅 R1 (2 nd column), 𝑚𝑆 𝑁𝑅 MT (3 rd column). Fourth column: the averaged across contrast-specific uncertainties 

is depicted ( ∈rms = 
√ 

1 
3 
( ∈2 

PDw + ∈
2 
T1w + ∈

2 
MTw ) , 4 

th column). (b) The mSNR parameters averaged across the brain for protocols P1 (circle), P2 (cross), and P3 (triangle) 

for the three MPM parameters ( 𝑃 𝐷: blue, 𝑅 1 : black, 𝑀𝑇 sat : green). Note that P1 was calculated across a group of healthy subjects (standard deviation across group 

in black) whereas P2 and P3 were calculated only for a single subject (no standard deviation). 𝑚𝑆𝑁𝑅 𝑚 and ∈rms in arbitrary units. The values in the mSNR maps 

decrease towards the centre of the brain accompanied by an increase in the ∈rms values. While the mSNR map measured with protocol 1 showed a strong left-right 

gradient (middle row, left: ellipse with large eccentricity), the mSNR maps measured with protocols 2 (and two out of three mSNR maps measured with protocol 3) 

showed a circular shaped area of decreased values (middle row: middle and right). Note that, since no MT measurement was available for protocol 3, ∈rms was the 

mean of the remaining two residuals. 
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nd grey matter were multiplied with each individual ROI and thresh-
lded at 90%. Only ROIs containing more than 100 voxels were used for
he analysis. Then, SNR 

PDw 
raw and mSNR 

m were estimated within each ROI
or each subject. This experiment was performed for the data acquired
ith protocol 1. 

Additionally, the subject-averaged 𝑆𝑁𝑅 

PDw 
raw per ROI was projected

nto a template image in group space for visualization purposes only.
he spatial dependence of mSNR maps was qualitatively compared for
wo different protocols at 3T (protocol 1 and 2) and one at 7T (protocol
). Then, the average mSNR value across the brain was quantified per
PM parameter and protocol (averaged across subjects for protocol 1).

Analysis III: Artefactual variation at the group level: The variability
f MPM parameters across a group of healthy subjects is expected to be
 combination of the true anatomical variability in the cohort and arte-
actual variability caused by instrumental, physiological, and subject-
ovement related noise. While the latter can be reduced by averaging,

he former cannot. To assess the variability across the group, we cal-
ulated the standard-error-of-the-mean (SEM) for four sets of MPM pa-
ameters in MNI space after tissue-specific hMRI smoothing (see section
spatial processing ”). The four sets of MPM parameters were generated
ither from repeats (1) and (2) separately, or from the arithmetic mean
 AM ) across repeats or their robust combination (RO in Eq. (7) ). 

To assess the effect of instrumental, physiological, and subject-
ovement on the variability, the SEM of the arithmetic-mean com-

ined MPM parameters ( 𝑆𝐸𝑀 

𝑚 
AM 

) were used as reference (with 𝑚 ∈
 MT , PD , 𝑅 1 } ) and compared to the SEM of the other sets of MPM

arameters via their relative difference: 𝑟𝑆𝐸𝑀 

𝑚 
𝑖 
= ( 𝑆𝐸𝑀 

𝑚 
𝑖 

𝑆𝐸𝑀 

𝑚 
AM 

− 1 ) × 100

ith 𝑖 ∈ { 1 , 2 , RO } . Hereby, a negative (positive) 𝑟𝑆𝐸𝑀 

𝑚 
𝑖 

would indi-
ate that the variability in the 𝑖 dataset is smaller (larger) than in the
eference AM dataset. Since it is expected that instrumental, physio-
ogical, and subject-movement artefacts increase the variability of the
 u  

7 
stimated parameters, negative 𝑟𝑆𝐸𝑀 

𝑚 
𝑖 

values in each dataset were in-
erpreted as a reduction of artefactual variability and thus an increase
f sensitivity towards group differences whereas positive 𝑟𝑆𝐸𝑀 

𝑚 
𝑖 

val-
es were interpreted as a decline of sensitivity. Note that the scan time
f the two-repeat measurement (28 min = 2 × 11 min+ 6 min) was
nly 65% longer than the scan time of the one-repeat measurements
17 min = 1 × 11 min + 6 min) because the calibration measurements
 ∼ 6 min) were not repeated. 

. Results 

.1. Analysis I: Illustration of error and mSNR maps 

This analysis illustrates how variations due to image SNR and arte-
acts manifest themselves in the mSNR and error maps for different MPM
rotocols and at different field strengths. The different protocols showed
 decrease of mSNR towards the centre of the brain. The variation of
SNR as a function of coil configuration and head positioning is illus-

rated in Figs. S4.1 and S4.2 (see Supplementary Materials S4). Although
rotocols 1 and 2 were measured with similar parameters (e.g. spatial
esolution, TE, TR) and instruments (e.g. at 3T and with a 64ch head-
oil), the decrease towards the centre of the brain was differently shaped
ithin the respective mSNR maps: the mSNR maps measured with pro-

ocol 1 had an elliptical pattern of lower mSNR centrally, the long axis of
hich ran anterior-posterior whereas the central region of lower mSNR
as circular for protocol 2, but decreased less rapidly than protocol 1

dashed lines in Fig. 3a ). The decline of mSNR was accompanied by an
ncrease in the error map values (see Supplementary Materials, S5). In-
erestingly, the shape of mSNR decline in protocol 1 was not only visible
n the error maps (see Supplementary Materials, S5) but also in the av-
rage contrast-specific uncertainty maps for protocol 1 (1 st row, 4 th col-
mn, Fig. 3a ), indicating that the noise or artefact-level is higher in the
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Fig. 4. Artefacts in the MPM, error, and mSNR maps. Depicted are the quantitative MPM parameters (left column), the error maps (middle column), and 

corresponding mSNR maps (right column) for a subject, measured in two repeats with varying artefacts using protocol 1. The mSNR maps have the same contrast, 

even though the contrast of the associated MPM map varies (top: 𝑃 𝐷, top: 𝑅 1 , bottom: 𝑀𝑇 sat ). The artefacts in the parameter maps (highlighted by dashed circles) 

manifest themselves as increased error-map values and reduced mSNR-map values. Three artefacts were identified with potentially different origin: physiological 

noise that remained almost the same between repeats at the superior sagittal sinus (top row), aliasing artefacts that varied between repeats (middle row), and 

voluntary subject motion artefacts that strongly varied between repeats (bottom row). Note that intensity ranges for the three mSNR maps differ. 
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reas of decreased mSNR and varies with protocol. Although 𝑚𝑆𝑁𝑅 

PD 

nd 𝑚𝑆𝑁𝑅 

R1 maps measured with protocol 3 showed smaller gradi-
nts towards the centre of the brain as compared to their counterparts
easured with protocols 1 and 2, they revealed the same trend (higher
SNR values towards the cortex and lower towards the centre of the

rain). On average, across the brain, we found that the mSNR values
ecreased from protocol 1 to 3 ( Fig. 3b ): the mSNR of protocol 1 was
bout 1.2 times larger than the mSNR of protocol 2, whereas the ratio
etween the mSNR values of protocols 1 and 3 was about 1.6 for 𝑃 𝐷
nd 𝑅 1 . The ratio of 𝑚𝑆𝑁𝑅 

PD to 𝑚𝑆𝑁𝑅 

R1 was similar across protocols:
 . 79 for protocol 1, 1 . 80 for protocol 2, and 1 . 82 for protocol 3. 

Fig. 4 shows the relation between each MPM parameter, the asso-
iated error and mSNR maps. The mSNR maps had the same contrast
or all MPM parameters, while the contrast in the error maps reflects
he MPM parameter contrast ( 𝑃 𝐷: high in grey matter and low in white
atter, 𝑀𝑇 sat and 𝑅 1 : low in grey matter and high in white matter). 

As expected, artefacts in the MPM maps (highlighted by dashed cir-
les) manifested differently in the error and mSNR maps: while the er-
or in regions affected by artefacts was increased, the mSNR value was
ecreased because the latter depends reciprocally on the error. Three
rtefactual regions with potentially different artefact-causes were iden-
ified. The artefact in the top row may be caused by physiological noise
ue to flow artefacts because it was located in the superior sagittal si-
us and did not vary between repeats. In the middle row, an aliasing
rtefact was identified which varied between repeats and thus might
e enhanced by involuntary subject motion. The artefact highlighted in
he bottom row was most likely a result of involuntary subject motion
ecause it varied between the two repeats. 

Fig. 5 illustrates regionally localized artefacts in the MPM parame-
ers that were captured by the error maps, became less pronounced in
he arithmetic mean, and could be partly removed in the robust combi-
ation ( Fig. 5 for 𝑅 1 , the corresponding figures for 𝑃 𝐷 and 𝑀𝑇 sat can
e found in Supplementary Materials S6). In the Supplementary Mate-
ials (S6, Fig. S6.3), we demonstrated that these artefacts were related
o involuntary subject-motion, appeared as an increased error, and that
he errors could be used in a two-repeat combination to reduce the bias
n the MPM parameters. 
e

8 
.2. Analysis II: quantifying relation between raw-image and model based 

NR 

Here, we quantify a linear relation between image SNR and mSNR
t the group level and in simulations. Fig. 6 depicts the linear rela-
ion between 𝑆𝑁𝑅 

PDw 
raw and the 𝑚𝑆𝑁𝑅 

m of the three MPM parame-
ers ( 𝑚 ∈ { PD , R1 , MT } ) in simulation ( Fig. 6a –c ) and in measurements
 Fig. 6d –f ) with slopes and intercepts reported in Table 3 . For the mea-
urement, variation in 𝑆𝑁𝑅 

PDw 
raw and 𝑚𝑆𝑁𝑅 

m was achieved by measur-
ng the respective metrics within 111 regions of interest (ROIs) averaged
cross 16 healthy subjects using protocol 1 ( Fig. 7 ). 

The range of each SNR measure was as follows: 18-54 for 𝑆𝑁𝑅 

PDw 
raw ,

1-54 for 𝑚𝑆𝑁𝑅 

PD , 6-30 for 𝑚𝑆𝑁𝑅 

R1 , and 4-18 for 𝑚𝑆𝑁𝑅 

MT . We ob-
erved a linear relation between 𝑆𝑁𝑅 

PDw 
raw and the mSNRs with highly

ignificant p-values for the slopes but non-significant p-values for the
ntercept in the simulated data (significance level: p < 0.05 with the
ull hypothesis in each case being that the parameter is zero). The
lope of the mSNR parameter curve was steepest for 𝑚𝑆𝑁𝑅 

PD , fol-
owed by 𝑚𝑆𝑁𝑅 

R1 , and was smallest for 𝑚𝑆𝑁𝑅 

MT . The simulations
evealed that the slope of the mSNR parameter curve was systemati-
ally smaller for WM than for GM (2% for 𝑚𝑆𝑁𝑅 

R1 , 6% for 𝑚𝑆𝑁𝑅 

PD ,
nd 14% for 𝑚𝑆𝑁𝑅 

MT ). We found a similar trend for the ratio of the
lopes between measurements and simulations when taking the fitted
𝑆𝑁𝑅 

PD -parameter as reference: the slope of 𝑚𝑆𝑁𝑅 

PD was 1.8 to 2
imes higher than the slope of 𝑚𝑆𝑁𝑅 

R1 , whereas it was 3.2 to 4.5 times
igher for 𝑚𝑆𝑁𝑅 

MT , indicating that MTsat requires a much bigger gain
n 𝑆𝑁𝑅 

PDw 
raw for them to translate into gains in 𝑚𝑆𝑁𝑅 

MT as compared to
D. Moreover, we found that the fitted intercept differed substantially
etween measurements and simulations ( Table 3 ). 

.3. Analysis III: reducing artefactual variation at the group level 

In this analysis, we show how artefactual variations at the group
evel vary for different combinations of a two-repeat MPM acquisition.
ariability at the group level was assessed by the standard-error-of-the-
ean (SEM). For WM, the SEM of the arithmetic mean (AM) of the MPM
arameters showed opposite variability between 𝑆𝐸𝑀 

PD and 𝑆𝐸𝑀 

MT ,
.g.: 𝑆𝐸𝑀 

PD was high in the cortical spinal tracts whereas 𝑆𝐸𝑀 

MT 
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Fig. 5. Reduced artefacts in robustly- 

combined longitudinal relaxation rate 

( 𝑅 1 ) parameter. Depicted are: two succes- 

sive repeats of the 𝑅 1 map using protocol 

1 with superscript (1) and (2) (top row), 

the associated error maps for each repeat 

(middle row), and their arithmetic mean 

and robustly combined average with super- 

script AM and RO (bottom row). An area is 

magnified (red box, left column), where the 

error maps were sensitive to artefacts (hy- 

per intensities) and the robust combined 𝑅 1 
contained fewer artificially increased val- 

ues than the arithmetic mean (circle) and 

single-repeat 𝑅 1 maps. 

Fig. 6. Relating mSNR to the image 

SNR of the PD-weighted acquisition. De- 

picted is mSNR as a function of 𝑆𝑁𝑅 PDw raw 
( Eq. (1) ) using simulations (a–c) and mea- 

surements across a group of healthy sub- 

jects (d–f). (a–c): The simulated mSNR is 

depicted as a function of 𝑆𝑁𝑅 𝑃𝐷𝑤 raw with 

mean (circle) and standard deviation (er- 

rorbar) across 5000 noise realisations for 

the 𝑃 𝐷 (a), 𝑅 1 (b), and 𝑀𝑇 sat (c) param- 

eters ( Eq. (9) ). (c–e): For the ROIs depicted 

in Fig. 7 the mSNR parameters (crosses in 

a: 𝑚𝑆𝑁𝑅 MT , b: 𝑚𝑆𝑁𝑅 R1 , c: 𝑚𝑆𝑁𝑅 PD ) are 

plotted against the corresponding 𝑆𝑁𝑅 PDw raw 
value. A heuristic linear relation is fit- 

ted between the mSNR and 𝑆𝑁𝑅 PDw raw data 

( Eq. (8) ), both for simulated and measured 

data. The dashed line in magenta is the 

unity line. 

9 
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Table 3 

Simulated and measured relation between model-based and raw image-based SNR. 

Slope parameter 𝐴 𝑀𝑃𝑀 (p-value) Offset parameter 𝐵 𝑀𝑃𝑀 (p-value) Ratio slopes ( 𝐴 
PD 

𝐴 𝑚 
) 

𝑚𝑆𝑁𝑅 PD meas 1.28 (2.19 × 10 –8 ) -13.45 (2.19 × 10 –8 ) 1 

𝑚𝑆𝑁𝑅 R1 meas 0.71 (1.88 × 10 –41 ) -7.07 (1.06 × 10 –8 ) 1.80 

𝑚𝑆𝑁𝑅 MT 
meas 0.40 (3.52 × 10 –44 ) -3.43 (1.28 × 10 –7 ) 3.20 

𝑚𝑆𝑁𝑅 PD sim in GM 1.03 (2.05 × –73 ) -0.28 (0.13) 1 

𝑚𝑆𝑁𝑅 PD sim in WM 0.97 (1.31 × 10 –76 ) -0.16 (0.26) 1 

𝑚𝑆𝑁𝑅 R1 sim in GM 0.52 (2.20 × 10 –73 ) -0.15 (0.12) 1.97 

𝑚𝑆𝑁𝑅 R1 sim in WM 0.52 (1.08 × 10 –76 ) -0.10 (0.17) 1.88 

𝑚𝑆𝑁𝑅 MT 
sim in GM 0.24 (4.33 × 10 –72 ) -0.14 (0.004) 4.26 

𝑚𝑆𝑁𝑅 MT 
sim in WM 0.22 (1.15 × 10 –74 ) -0.11 (0.002) 4.53 

The coefficients of the heuristic linear models ( Eq. (8) ) that relate the 𝑆𝑁𝑅 PDw raw to the simulated ( 𝑚𝑆𝑁𝑅 𝑚 sim ) 

and measured ( 𝑚𝑆𝑁𝑅 𝑚 meas ) mSNR, summarizing the slopes and intercepts of the curves in Fig. 6 , with 𝐴 𝑚 

being the slope and 𝐵 𝑚 being the intercept, and the ratio between 𝐴 PD and 𝐴 𝑚 ( 𝑚 ∈ { 𝑃 𝐷, R1 , MT } ). 
The subscript “sim ” refers to the simulated data in Fig. 6 a–c and “meas ” to the measured data in Fig. 6 e 

and f (for details see methods section “Analysis II ”). Note that for the measured mSNR the average across 

repeats was used. 

Fig. 7. mSNR and 𝑺 𝑵 𝑹 

𝑷 𝑫 𝒘 

𝐫𝐚𝐰 maps averaged within regions-of-interest (ROIs) across the brain. Depicted are the following maps for protocol 1: (a) 𝑆𝑁𝑅 PDw raw , (b) 

𝑚𝑆 𝑁𝑅 PD , (c) 𝑚𝑆 𝑁𝑅 R1 , and (d) 𝑚𝑆 𝑁𝑅 MT . While the 𝑆 𝑁𝑅 PDw raw was calculated within each ROI using Eq. (1) per subject, the mSNRs were spatially averaged within 

each ROI per subject. Then, each of the four different SNR metrics was additionally averaged across the group of healthy subjects on a voxel-by-voxel level. The ROIs 

were selected using the Oxford-Harvard atlas ( Frazier et al., 2005 ; Desikan et al., 2006 ; Makris et al., 2006 ; Goldstein et al., 2007 ). The 111 ROIs out of 117 were 

used in which the number of voxels was larger than 100. 

Table 4 

The average relative standard error of the mean (rSEM). 

Repeat 1 Repeat 2 Robust (RO) 

𝑟𝑆𝐸𝑀 

MT 
𝑖 

in WM 7 . 1 ± 15 . 0 % 11 . 1 ± 14 . 7 % −0 . 8 ± 4 . 6 % 

𝑟𝑆𝐸𝑀 

PD 
𝑖 

in WM 14 . 4 ± 19 .4 % 9 . 1 ± 19 . 5 % −2 . 9 ± 9 . 1 % 

𝑟𝑆𝐸𝑀 

R1 
𝑖 

in WM 14 . 4 ± 19 .3 % 9 . 1 ± 17 . 5 % −2 . 9 ± 8 . 0 % 

𝑟𝑆𝐸𝑀 

MT 
𝑖 

in GM 10 . 5 ± 18 . 6 % 12 . 6 ± 17 . 1 % −0 . 7 ± 6 . 7 % 

𝑟𝑆𝐸𝑀 

PD 
𝑖 

in GM 9 . 0 ± 15 .8 % 6 . 1 ± 14 . 6 % −1 . 0 ± 8 . 3 % 

𝑟𝑆𝐸𝑀 

R1 
𝑖 

in GM 18 . 7 ± 21 .0 % 5 . 3 ± 16 . 7 % −4 . 7 ± 10 . 6 % 

The rSEM is estimated with respect to the SEM of the 

arithmetic-mean (AM) combined MPM parameters ( 𝑃 𝐷, 𝑅 1 , and 

𝑀 𝑇 sat ): 𝑟𝑆𝐸𝑀 

𝑚 
𝑖 
= ( 𝑆𝐸𝑀 

𝑚 
𝑖 

𝑆𝐸𝑀 𝑚 AM 
− 1 ) × 100 with 𝑚 ∈ { PD , R1 , MT } and 

𝑖 ∈ { 1 , 2 , RO } , where (1) and (2) are the respective repeats of the 

acquisition and RO is the robustly combined parameters. Rows 1–

3 show the rSEM in white matter (WM) and rows 4–6 show the 

rSEM in grey matter (GM). 
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𝑀  
as low (arrow in Fig. 8a ). For GM, the SEM showed higher values to-
ard the outer edge (Supplementary Materials S7, Fig. S7.1), potentially

aused by residual inaccuracies in spatial registration. 
All three MPM parameters showed, on average across the brain, a

igher variability if the SEM was estimated on the basis of a single
epeat as compared to the AM combined MPM parameters ( Table 4 ):
cross contrasts the relative SEM for repeat 1 and 2 was between 5.3%
 𝑟𝑆𝐸𝑀 

R1 
(1) in GM) and 18.7% ( 𝑟𝑆𝐸𝑀 

R1 
(2) in GM). In some specific regions,

owever, one of the two repeats showed smaller SEM (blue areas in Figs.
b and S7.1b, first and second column). Across the brain, the robust
ombination (RO) based MPM parameters showed a lower variability
s compared to the AM combined MPM parameters: across contrasts
10 
he relative SEM was between -0.7 ( 𝑟𝑆𝐸𝑀 

MT 
( RO ) ) and -4.7% ( 𝑟𝑆𝐸𝑀 

R1 
( RO ) ).

gain, in some localized regions the corresponding 𝑟𝑆𝐸𝑀 maps were
lso positive, indicating a higher variability after robust combination in
pecific regions ( Figs. 8 b and S7.1b, third column). 

. Discussion 

For three quantitative MPM parameters ( 𝑅 1 , 𝑃 𝐷, 𝑀𝑇 sat ) we intro-
uced a method to estimate the associated error and model-based signal-
o-noise ratio (mSNR) maps without the need to acquire additional data.
irst, we illustrated that the error and mSNR maps capture the random
oise variations associated with instrumental features (e.g. head coil
onfiguration), different protocols (e.g. acceleration factors), as well as
oise sources related to artefacts (e.g. subject motion). Second, we used
easurements across a group of healthy subjects together with simula-

ions to show that mSNRs also reflect SNR. We found that they were
inearly related to raw-image-based SNR and that their slopes varied
etween MPM parameters: the slope was highest for 𝑃 𝐷, lower for 𝑅 1 
nd lowest for 𝑀T sat . Third, we exploited the artefact-sensitivity of the
rror maps to generate robust MPM parameters from a two-repeat MPM
rotocol. We showed that artefactual group variability was reduced in
he two-repeat MPM acquisition as compared to the single-repeat MPMs.
mportantly, the variability was lowest when using the robust MPM pa-
ameters as compared to the arithmetic-mean combination of MPM pa-
ameters. 

.1. Error and mSNR 

To efficiently capture the errors in the MPM parameters ( 𝑅 1 , 𝑃 𝐷, and
T ) for each individual MPM experiment, we proposed using error
sat 



S. Mohammadi, T. Streubel, L. Klock et al. NeuroImage 262 (2022) 119529 

Fig. 8. Group variability across subjects for white matter. The group variability was assessed by the standard-error-of-the-mean ( 𝑆𝐸𝑀 

𝑚 ) for the quantitative 

MPM maps 𝑀𝑇 sat (top row), 𝑃 𝐷 (middle row) and 𝑅 1 (bottom row) and is illustrated for white matter ( 𝑚 ∈ { 𝑀𝑇 , 𝑃 𝐷, 𝑅 1 } ). Depicted are (a): 𝑆𝐸𝑀 

𝑚 maps generated 

from the arithmetic mean (AM) of the two-repeat datasets; (b, from left to right): the relative change of 𝑆𝐸𝑀 

𝑚 (denoted as 𝑟𝑆𝐸𝑀) for the 1 st and 2 nd repeat dataset, 

and their robust combination (RO) using 𝑆𝐸𝑀 𝐴𝑀 as reference; (c): the group-averaged MPM maps. Regions showing reduced SEM are blue and regions showing 

increased SEM are red. Note that the 𝑆𝐸𝑀 

𝑚 values are not directly comparable, since the scaling of the associated parameters is very different. Note also that the 

data in (b) might locally exceed the map limits. 
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i  
ropagation of uncorrelated uncertainties and to approximate the noise
ariance via the contrast-specific uncertainties of the transverse decay
or the PD-, T1-, and MT-weighted SGPR signals ( Eq. (4) ). The error
aps capture noise variation due to random noise and noise associated
ith artefacts such as subject motion. 

The random noise sensitivity is best revealed when using the mSNR
hich is calculated, in analogy to the SNR, as the ratio between the pa-

ameter and its error. While the mSNR decreased towards the centre of
he brain ( Fig. 3a ), which is in accordance with the expected decrease
n SNR due to the receive field of the head coil (64 ch coil in protocol
 and 2 and 32 ch coil in protocol 3), it also varied with coil configura-
ions (Fig. S4.1: 32 ch vs. 64 ch) and head position (Fig. S4.2: rotation
f a post mortem brain by ∼180°). We found that the change of the
SNR from the brain periphery to the centre was different for proto-

ols 1 and 2 although they were using equivalent MR systems (3T and
4 ch head-coil). The most apparent difference in those protocols was
he acceleration and the Partial-Fourier (PF) factors: a 3 × 1 acceleration
ogether with a PF of 6/8 was used in protocol 1 whereas in protocol 2
 2 × 2 acceleration and no PF was used. The direction of acceleration
n protocol 1 coincided with the direction in which the steeper decline
f mSNR values was observed in the respective mSNR maps (left-right
irection) as compared to the mSNR acquired with protocol 2. More-
ver, the local decrease in mSNR was accompanied by an increase of
he contrast-specific uncertainties and errors, meaning that the lower
SNR is driven by a higher noise or artefact level in those regions. One
otential reason for the protocol-specific noise-pattern could be an in-
eraction between the g-factor-induced SNR loss ( Robson et al., 2008 )
nd Partial Fourier imaging effects. Additionally, the changes in spatial
esolution and field strength not only changed the decline of mSNR to-
ards the centre of the brain (protocol 2 showed a steeper decline than
rotocol 3) but also the averaged mSNR value across the brain. 

Noise variations due to artefacts such as subject motion, were well
isualized by the error maps but also present in the mSNR. We demon-
trated that this second source of variance typically appeared as a lo-
al increase in error (and decrease in mSNR) and was in parts ac-
 s  

11 
ompanied by a bias in the MPM parameters ( Figs. 5 , S6.1, S6.2, and
6.3). The error depends on the contrast-specific uncertainty, which
n turn is estimated per MPM contrast based on the assumption that
he measured signal can be explained by a mono-exponential signal
ecay with TE (see Eq. (4a) –(4c) ). Violation of this assumption, e.g.,
ue to a sinc-modulated signal decay caused by susceptibility-related
ntravoxel dephasing ( Hernando et al., 2012 ) or other deviation from a
ono-exponential signal decay due to subject motion ( Magerkurth et al.,
011 ), can increase the uncertainty and lead to a higher error. The latter
ype of error will most probably vary between repeats whereas the first
ill not (see examples in Fig. 4 ). The proposed robust combination of
 two-repeat MPM acquisition can only reduce the bias in the MPM pa-
ameters for the type of error that varies between repeats ( Fig. 5 , S6.1,
6.2, and S6.3). It is particularly efficient if, e.g., subject motion is only
resent in one of the two repeats (Fig. S6.3). 

.2. Raw-image vs. model-based SNR 

We found that the mSNR is linearly related to the image-based SNR
 Fig. 6 ) and to the experimental SNR of the MPM parameters (Fig. S3.1).
hese linear relations confirm that the mSNR is a genuine measure of
NR. Interestingly, the relative slopes between mSNR and image-based
NR showed a similar trend between simulations and measurements: the
lope of 𝑚𝑆𝑁𝑅 

PD was 1.8 to 2 times higher than the slope of 𝑚𝑆𝑁𝑅 

R1 ,
hereas it was 3.2 to 4.5 times higher than for 𝑚𝑆𝑁𝑅 

MT . The rela-
ion between 𝑚𝑆𝑁𝑅 

PD and 𝑚𝑆𝑁𝑅 

R1 will depend on the chosen flip
ngles and TRs as has previously been shown for SNR in R1 and PD
 Helms et al., 2011 ). A similar argument can be used to understand that
𝑆𝑁𝑅 

MT will also be flip angle dependent. 
The following application exemplifies how this information can

e relevant for large-scale neuroimaging studies, fundamental neuro-
cience or clinical research studies. If we assume that two groups of
ubjects possess different myelin densities in the brain (e.g. due to ag-
ng Callaghan et al., 2014 ) and that this difference has the same effect
ize in 𝑃 𝐷 (via 𝑀𝑇 𝑉 = 1 − 𝑃 𝐷∕100 , Mezer et al., 2013 ) and 𝑀𝑇 we
sat 
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ould need 3.2–4.5 times higher image SNR to observe the same effect
nder the influence of noise when using 𝑀𝑇 sat as a biomarker for myelin
nstead of 𝑃 𝐷. Only considering noise, this provides a good argument
o skip the MT-weighted contrast and thus to further reduce scan time
n time-critical studies. 

In contrast to the slope of 𝑚𝑆𝑁𝑅 

𝑚 , its offset strongly differed be-
ween simulations (almost zero) and measurements (-13 for 𝑚𝑆𝑁𝑅 

PD 

o -3 for 𝑚𝑆𝑁𝑅 

MT ). One reason for this deviation could be that the
SNR in the experiment was compared between different brain re-

ions with different relaxation rates, proton densities, and MTsat val-
es, each of which might possess a slightly different linear dependency
etween 𝑚𝑆𝑁𝑅 

𝑚 and 𝑆𝑁𝑅 

PDw 
raw ( 𝑚 ∈ { PD , R1 , MT } ). Our simulations re-

ealed that the slope was consistently smaller in WM than in GM (2%
or 𝑅 1 , 6% for 𝑃 𝐷 and 14% for 𝑀𝑇 sat ). Another reason for the deviation
ould be the fact that the measured mSNR map is sensitive to both ran-
om noise and spatially varying artefacts, e.g., due to parallel imaging,
hereas simulations included only random noise. 

.3. Reducing artefactual variation at the group level 

The variability at the group level is composed of the true anatomi-
al variability and the artefactual variability induced by different noise
ources (e.g. thermal noise, physiological noise, or subject motion). In
ontrast to the former, the latter type of variability can be reduced by
epeated measurements. In accordance with this knowledge, we found
hat an arithmetic-mean combination of the two repeats reduced the
roup variability of the MPM parameters (variability reduction: 10.9%
n WM and 10.4% in GM) but even more so if the robust combination
as used (additional reduction of 2.2% in WM and 2.1% in GM). The
dditional improvement using robust combination confirms that the re-
iability of MPM parameters can be further improved when the error
ap information is exploited to down-weight erroneous MPM values on
 per-repeat basis. Overall, we found that the artefactual group variabil-
ty was more efficiently reduced for the robustly combined 𝑅 1 and 𝑃 𝐷
aps than for the robustly combined 𝑀𝑇 sat maps ( Table 4 , last column).
his observation could be explained by the fact that the mSNR is lowest

n 𝑀𝑇 sat and thus the efficient noise-reduction of the arithmetic-mean
ombination is almost as relevant as the suppression of outliers in the
obust combination. Here, a larger k -parameter could help to further
mprove the rSEM of 𝑀𝑇 sat (see Supplementary Materials S1 for depen-
ence of k -parameter on outlier suppression and noise reduction). 

Note, that we focussed here on the direct effects of the two-repeat
rotocol on the MPM parameters by using the same transformation and
issue segments for all datasets. However, we believe that the higher
rtefact level in the single-repeat MPM parameter maps will also de-
rade the segmentation and by consequence the spatial registration,
hich, in turn, will further degrade the sensitivity to any true group
ifferences. 

.4. Considerations 

The two-repeat protocols are longer in scan time than their one-
epeat counterparts (e.g. for protocol 1 it is: 17 min vs. 28 min). Since
can time is often the limiting factor, it is important to consider scan
ime when comparing variability. To do so, here we translate the reduc-
ion in variability into an effective increase in sample size, assessed via
he standard-error-of-the-mean (SEM). Under the assumption of Gaus-
ian distributed independent data the SEM directly dictates statistical
ensitivity (t-score ∝ 1/SEM) and scales with one-over the square-root
f the sample size N. With these relations in mind, a 13% reduction of
𝐸𝑀 

RO relative to the SEM of a standard MPM acquisition ( 𝑆𝐸𝑀 

stand )
ould translate to an effective increase of the sample size of 28%. This
umber is directly proportional to the gain in effective scan time, i.e.
umulative scan-time across all subjects. Since a two-repeat acquisition
s required for the robust combination, it comes at the price of an ex-
ended MPM protocol that was about 65% longer than the correspond-
12 
ng one-repeat acquisition of protocol 1 (total scan time about: 17 min).
n total, the effective scan time of the proposed protocol is about 37%
onger than the one-repeat protocol, even if accounting for the improved
ariability due to robust combination. Thus, the proposed protocol and
obust combination might be more useful for specific studies, where a
mall group of subjects, e.g., patients with a rare disease, are investi-
ated and high-quality data of each subject is of higher priority than
can time, but not for studies where a large number of subjects can be
fforded (and poor datasets excluded). 

In some regions, we found that the proposed robustly combined MPM
arameters showed a higher SEM than the arithmetic mean combina-
ion, indicating that the error maps do not always correctly capture
rroneous regions. One reason might be that the propagation of un-
orrelated errors that was used to generate the error maps relied on
he assumption that imaging artefacts were adequately captured by the
ontrast-specific uncertainties estimated from the linearized SPGR fit.
his, however, might not always be valid. For example, the contribu-
ion from uncertainties in the B1 + estimate is neglected (i.e. we assume
𝑑𝑅 1 
𝑑𝐵 + 1 

𝑑𝐵 + 1 ≈ 0 ), but may play an important role as a source of variance in

he MPM parameters ( Lee et al., 2017 ), especially for applications at 7T.
nother reason for the locally higher rSEM of the robust combination
ould be the mono-exponential signal model assumption underlying the
stimation of the contrast-specific uncertainties in the error maps. Vi-
lation of this assumption, e.g. because the signal is better described
y a multi-exponential decay associated with multiple compartments,
ip-angle dependent 𝑅 

∗ 
2 Milotta et al. (2021) , or by a sinc-modulated

ignal decay due to susceptibility-related intravoxel dephasing, can lead
o a bias in the variance estimation and thus in the error. In those vox-
ls, a repeat-dependent motion artefact could manifest in such a way as
o reduce the error, e.g., due to interference between a sinc-modulated
ignal decay and motion artefacts, leading to incorrect up-weighting of
he motion-corrupted repeat in the robust combination, which would
herefore bias the MPM parameters. Finally, in regions without repeat-
ependent motion artefacts, robustly combined MPM parameters will be
ore noisy, though less biased, than MPM parameters combined with

he arithmetic mean approach (see Fig. S1.1c). For those regions, higher
SEM is expected when using the robustly combined MPM parameters
han the arithmetic mean combined MPM parameters. 

.5. Generalizability and potential applications 

The proposed idea to estimate error maps can in principle be gen-
ralised to any quantitative MRI computation method that accom-
odates multi-echo data. Possibilities include multi-echo MP2RAGE

 Metere et al., 2017 ; Sun et al., 2020 ) or multi-echo DWI ( Eichner et al.,
020 ). 

The knowledge that the mSNR is a genuine measure of SNR can be
seful for global and local power analyses. On a local level the mSNR
aps might inform studies interested in specific regions regarding which
rotocol settings, e.g. parallel imaging acceleration or RF head coil,
ould be optimal. For example, in studies focussing on the hippocam-
us a less steep decay of mSNR towards the centre of the brain would
e preferred, whereas maximal peripheral sensitivity may be preferable
or a study interested in the neocortex. 

Analysis of the standard deviation of the error maps across the group
an reveal additional information about spatially localised artefacts that
an potentially alter sensitivity at the group level. For protocol 1, we
ound a higher standard deviation across the group in the cerebellum
or all three MPM parameters and in the posterior region of the brain
nly for the 𝑅 1 parameter (Fig. S8.1 in Supplementary Materials S8). 

The error and/or mSNR maps can be directly used for statistical com-
arisons as confidence measures reflecting variation in SNR and erro-
eous MPM values due to artefact. This allows use of the error maps to
mprove the robustness of statistical analyses at the group level without
eeding a two-repeat MPM acquisition. Further research is necessary
o find the best statistical neuroimaging framework (e.g. a linear mixed
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odel) that allows integration of confidence maps at the individual sub-
ect level (here the error or mSNR maps) with variability measures at
he group level (typically standard-error-of-the mean across subjects). 

Alternatively, error and mSNR maps can be used as additional infor-
ation in group statistics to assess the reliability of observed differences.

or example, if statistical significance in voxel-based statistics between
wo groups is driven by a few outliers, these might be accompanied
y particularly high error values. Thus, the error maps can be used to
emove or down-weight erroneous regions in group statistics. This ap-
lication has been shown to improve statistical significance to detect
roup differences ( David et al., 2017 ). 

. Conclusion 

We have introduced a new method to estimate parameter-wise error
nd model-based SNR (mSNR) maps for three MPM parameters (proton
ensity, PD , longitudinal relaxation rate, 𝑅 1 , and magnetization trans-
er saturation, 𝑀𝑇 sat ) on a routine basis without requiring additional
ata. These new measures can be used to estimate the noise sensitivity
f MPM parameters and, if two or more MPM measurements are avail-
ble, improve their robustness to artefacts such as involuntary subject
ovement on a per-subject level. The sensitivity to noise might be use-

ul for power-calculations and to compare the suitability of the differ-
nt MPM parameters as biomarkers in neuroscience or clinical research
tudies. The improved robustness of MPM parameters might be particu-
arly important in clinical studies where patients with a rare disease are
nvestigated and high data quality is more crucial than high throughput
f data. All three advances, the error maps, the mSNR maps, and the
obustly combined MPM maps, are available in the open-source hMRI
oolbox. 
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