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UNIVERSAL K-MATRICES FOR QUANTUM KAC-MOODY

ALGEBRAS

ANDREA APPEL AND BART VLAAR

Abstract. We introduce the notion of a cylindrical bialgebra, which is a qua-
sitriangular bialgebra H endowed with a universal K-matrix, i.e., a universal
solution of a generalized reflection equation, yielding an action of cylindrical
braid groups on tensor products of its representations. We prove that new
examples of such universal K-matrices arise from quantum symmetric pairs
of Kac-Moody type and depend upon the choice of a pair of generalized Sa-
take diagrams. In finite type, this yields a refinement of a result obtained by
Balagović and Kolb, producing a family of non-equivalent solutions interpo-

lating between the quasi-K-matrix originally due to Bao and Wang and the
full universal K-matrix. Finally, we prove that this construction yields formal
solutions of the generalized reflection equation with a spectral parameter in
the case of finite-dimensional representations over the quantum affine algebra
UqLsl2.
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1. Introduction

1.1. In this paper, we provide a general construction of universal K-matrices for
quantum groups corresponding to arbitrary symmetrizable Kac-Moody algebras.
Our approach relies on the notion of a cylindrical bialgebra. Informally, this is a
bialgebra endowed with a distinguished solution of a generalized reflection equation,
which yields a natural action of cylindrical braid groups on the tensor products
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of its representations and generalizes the notion of cylinder twist introduced by
tom Dieck and Häring-Oldenburg [tDHO98] and later used by Balagović and Kolb
[BK19] in the construction of the universal K-matrix for quantum groups of finite
type. Our construction bears a simple, yet crucial, difference with the latter in that
the relevant reflection equation is twisted by an algebra automorphism which does
not necessarily preserve the coproduct. However, its defect in being a morphism of
quasitriangular bialgebras is controlled by a Drinfeld twist.

This more general framework allows us to construct new examples of universal
K-matrices in the context of quantum Kac-Moody algebras. More specifically, given
a symmetrizable Kac-Moody algebra g and an additional combinatorial datum (a
pair of generalized Satake diagrams), we construct an algebra automorphism ψ of
Uqg and an operator K satisfying the generalized reflection equation

(ψ ⊗ ψ)(R21)·(1⊗K) · (ψ ⊗ id)(R) · (K ⊗ 1) =

(K ⊗ 1) · (id⊗ ψ)(R21) · (1⊗K) ·R ,
(1.1)

where R is the universal R-matrix of Uqg. In finite type, our construction leads
to new examples of non-equivalent universal K-matrices, where the Balagović-Kolb
universal K-matrix is recovered as a special case.

1.2. Reflection equations received much attention in the mathematical physics lit-
erature from the 1980s onwards, in particular in relation to quantum integrability,
see e.g., [Ch84,Sk88,KS92,GZ94]. In this case, the reflection equation depends on
an additional parameter, referred to as the spectral parameter. In the most general
case, it takes the following form:

R−−
21 (wz )· id⊗K(w)·R−+(zw)·K(z)⊗ id = K(z)⊗ id·R−+

21 (zw)· id⊗K(w)·R++(wz ) ,

where R++(z), R−+(z), and R−−(z) are three, possibly distinct, solutions of a
system of Yang-Baxter type equations with a spectral parameter, see [Ch92, Eqs.
(4.12)–(4.14)].

Examples of matrix solutions of the reflection equation have been constructed
in the context of finite-dimensional representations of quantum affine algebras and
quantum affine symmetric pairs. In this case, the operators R±±(z) = R(z) are
often assumed to be equal and determined by the action of the universal R-matrix
[Dr86], thus yielding the standard reflection equation. Moreover, K(z) is generally
obtained as an intertwiner of the form

K(z) : V (z) → V ( 1z )

with respect to a distinguished coideal subalgebra, see e.g., [DG02,DM03, RV16,
BTs18]. Our construction is tailored to provide a universal solution to this problem
in greater generality. Namely, in the case of quantum affine algebras, the universal
K-matrix converges on a finite-dimensional representation V to a formal intertwiner
KV (z) : V (z) → V ψ( 1z ) and yields a solution of Cherednik’s generalized reflection
equation. A major advantage of our approach is that, by carefully choosing the
automorphism ψ, the latter reduces to the standard case and our construction
recovers many of the previously known solutions. In the last section of this paper,
we consider the case of quantum affine sl2, while the general (untwisted) case is
discussed in [AV22].

In the rest of this section, we review the problem in more detail and outline our
main results.
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1.3. Let g be a symmetrizable Kac-Moody algebra and Uqg the corresponding
Drinfeld-Jimbo quantum group [Dr85, Ji86, Lus94]. It is well-known that Uqg is
a non-commutative Hopf algebra, which, up to completion, is equipped with a qua-
sitriangular structure given by the universal R-matrix R. The use of completion
is made necessary by the fact that R is defined only on certain tensor products of
Uqg-modules, e.g., category O modules.

The quantum group Uqg is naturally endowed with a family of distinguished sub-
algebras, which are not Hopf subalgebras, but only (one-sided) coideal subalgebras.
Let k := gθ the fixed-point subalgebra of a Lie algebra involution θ. In finite type,
building on work by Gavrilik and Klimyk [GK91] and Koornwinder [K93] in special
cases, Noumi, Sugitani, and Dijkhuizen [NS95,NDS97] and, independently, Letzter
[Le99,Le02,Le03] proved that the Hopf subalgebra Uk ⊆ Ug is naturally deformed
into a coideal subalgebra Uqk ⊆ Uqg, which we refer to as a quantum fixed-point
coideal subalgebra. For symmetrizable Kac-Moody algebras, the construction of
Uqk was obtained by Kolb in [Ko14], in the case of θ being an automorphism of the
second kind.1

1.4. Bao and Wang [BW18] developed a quantum symmetric pair analogue of the
theory of canonical bases (see also the work of Ehrig and Stroppel [ES18]). Central
in their results is the use of a coideal version of Lusztig’s bar involution on Uqg,
i.e., a bar involution on Uqk, which we simply refer to as the internal bar involu-
tion. This yields a canonical element, which is known as the quasi-K-matrix, which
intertwines between Lusztig’s bar involution and the internal bar involution on Uqk

(see in particular [BW18, Sec. 2.5]). In [BK19], Balagović and Kolb extended the
construction of the quasi-K-matrix to every quantized fixed-point subalgebra Uqk of
the symmetrizable Kac-Moody algebra Uqg. In particular, in finite type, this led to
the construction of a universal K-matrix as a coideal intertwiner in [BW18, Thm.
2.18] and [BK19, Cor. 7.7].

1.5. The main goal of the present paper is to extend the construction of the uni-
versal K-matrix to the case of a symmetrizable Kac-Moody algebra. Note that the
formula of the full universal K-matrix in [BK19] is not valid for infinite-dimensional
Kac-Moody algebras, since it relies on the quantum Weyl group operator corre-
sponding to longest element of the Weyl group, which only exists if g is finite-
dimensional. The main property of this operator is to provide a description of the
quasi-R-matrix as a multiplicative coboundary (cf. [KR90] and equation (5.6)), i.e.,
it is essentially a half-balance on Uqg [KT09, ST09], and it is crucial in the con-
struction of universal solutions of the reflection equation. There have been various
attempts to define this operator for infinite-dimensional Kac-Moody algebras (e.g.,
[Ti10]), but none is suited to our purposes. More importantly, we aim to construct
universal K-matrices which specialize to finite-dimensional representations of quan-
tum affine algebras and yield solutions of generalized reflection equations with a
spectral parameter. In particular, by restriction, the automorphism ψ should in-
duce the inversion of the spectral parameter on finite-dimensional representations.
This cannot be achieved within the existing framework of cylinder braided subalge-
bras used in [BK19], where ψ is required to be an automorphism of quasitriangular
bialgebras.

1An automorphism θ : g → g is of the second kind if θ(b+) ∩ b+ is finite-dimensional, where
b+ ⊂ g denotes the positive Borel subalgebra, see e.g., [KW92, 4.6].
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1.6. Our proposal is to bypass these obstructions altogether by adopting a new
framework, which does not require the use of a global half-balance, while providing
a generalization of the notion of cylinder twist. This prompts the definition of cylin-
drical bialgebras (cf. Definition 2.3). Roughly, this is the datum (H,R, ψ, J,K),
where (H,R) is a quasitriangular bialgebra, ψ : H → H is an algebra automor-
phism, J ∈ H ⊗H a Drinfeld twist such that Hcop,ψ = HJ , and finally K ∈ H is
an invertible element satisfying the coproduct identity

Δ(K) = J−1 · (1⊗K) · (ψ ⊗ id)(R) · (K ⊗ 1) .

In particular, the datum (ψ, J), which we refer to as a twist pair, is a twisted homo-
morphism Hcop → H in the terminology of [Dav07]. It follows from the coproduct
identity that K is indeed a universal K-matrix, as it satisfies the generalized reflec-
tion equation (1.1). In particular, it yields an action of cylindrical braid groups on
tensor products of its representations (cf. Proposition 2.4).

Any automorphism of quasitriangular bialgebras ϕ : (H,R) → (H,R) automat-
ically gives rise to the twist pair (ϕ,R−1

21 ). Therefore, our definition recovers as
a special case the notion of cylinder twists from [tD98, tDHO98,BK19]. We shall
refer to this case as a strongly cylindrical bialgebra. Note that, choosing the twist
pair (ϕ,R), we recover the analogue notion with the opposite convention used e.g.,
in [BZBJ18]. More generally, in this framework, we are able to describe a larger
pool of operators which naturally appear in representation theory. For instance,
the notion of a balance is one of the simplest cases of a cylinder twist, studied in
detail in [DKM03]. In contrast, a half-balance is not a cylinder twist. However,
both balances and half-balances are obtained as examples of solutions of generalized
reflection equations in the context of cylindrical bialgebras.

1.7. Our main result is the construction of a family of cylindrical structures on
Uqg arising from quantum fixed-point coideal subalgebras. In fact, we prove that,
given a quantum fixed-point coideal subalgebra Uqk with generalized Satake dia-
gram (X, τ ), there is a natural family of twist pairs (ψY,η,RY,η), indexed by an
auxiliary generalized Satake diagram (Y, η). The Drinfeld twist J = RY,η is ob-
tained by a suitable Cartan modification of the parabolic R-matrix corresponding
to the subdiagram of finite type Y and allows us to avoid the first obstruction
due to the non-existence of a global half-balance in general. We then adapt the
approach of [BK19] to this new setting, constructing an operator KY,η, which acts
on integrable category O Uqg-modules as a ψ-twisted Uqk-intertwiner and yields a
(topological) cylindrical structure on Uqg (cf. Proposition 8.7 and Theorem 8.8).

In finite type, we obtain a refinement of [BK19]. Suppose Uqg is a quantum
group of finite type with Dynkin diagram I and opposition involution oiI (i.e.,
diagram automorphism corresponding to the longest element of the Weyl group).
Then (Y, η) = (I, oiI) is a Satake diagram. In this case, we recover the universal
K-matrix KI,oiI obtained by Balagović and Kolb (up to conventions). On the other
hand, if (Y, η) = (X, τ ), then KX,τ coincides with quasi-K-matrix (up to a Cartan
factor). Therefore, we obtain a discrete family of universal K-matrices interpolating
between the Balagović-Kolb universal K-matrix and the quasi-K-matrix.

1.8. The construction of universal K-matrices for Kac-Moody algebras involves a
number of additional generalizations and simplifications with respect to the con-
struction given in [BK19], which we briefly summarize below. The first two describe
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the more general setting in which the main results are valid (Proposition 8.7 and
Theorem 8.8).

1.8.1. Quantized pseudo-fixed-point subalgebras. The K-matrix construction of
[BK19] applies to coideal subalgebras Uqk which are q-deformed enveloping alge-
bras of fixed-point subalgebras with respect to an involutive automorphism of g.
In [RV20] this construction was extended to more general subalgebras of g, called
pseudo-fixed-point subalgebras and defined in terms of generalized Satake diagrams
(see also [RV21]). Note that in this setting the description of the automorphism of
g and its quantization is somewhat simpler, as one no longer needs to keep track
of the correction given by a multiplicative character of the root lattice with values
in {±1} (see Section 6.3). Our construction of universal K-matrices is presented in
this more general setting.

1.8.2. The quasi-K-matrix and parameter constraints. In [BK19], the parameters
involved in the definition of Uqk are assumed to be invariant under a particular
diagram automorphism (cf. [BK19, Eq. (7.4)-(7.5)]). In our approach we do not
need this assumption. Additional constraints on the parameters are imposed in
[BK19, Sec. 5.4] in order to guarantee the existence of an internal bar involution
on Uqg. The latter is indeed a crucial ingredient in the construction of the quasi-
K-matrix given in [BK19]. In this paper, we provide a construction of the quasi-
K-matrix, which does not rely on the internal bar involution and therefore applies
to a larger class of coideal subalgebras. Moreover, as later observed by Kolb in
[Ko21], this construction of the quasi-K-matrix can be used to define the internal
bar involution. We obtain this generalization by directly extending the arguments
in [BK19, Sec. 6], making use of the fundamental lemma of quantum symmetric
pairs [BW21, Thm. 4.1] and of the simplification discussed in [DK19, Sec. 3.5].
Note that in the quasi-split case an alternative construction of a (weakly) universal
K-matrix without parameter constraints was given in [KY20].

1.8.3. Coproduct identity. Beyond the quasi-K-matrix, the formula for the universal
K-matrix given by Balagović and Kolb involves the quantum Weyl group operators2

and a correcting factor in a completion of the quantum deformed Cartan subalge-
bra, see [BK19, Eq. (8.1)]. This makes the computation of the coproduct identity of
the universal K-matrix rather complicated, see [BK19, Sec. 8-9, Thm. 9.5]. Follow-
ing [KT09], we introduce Cartan-modified quantum Weyl group operators, whose
Cartan correction depends upon the choice of a generalized Satake diagram. These
can be thought of as modified diagrammatic half-balances (see Section 5.5) and
yield universal K-matrices whose coproduct identity is easier to compute.

1.8.4. Intertwining equation. The quasi-K-matrix constructed in Section 7 is re-
lated to the original one via Lusztig’s bar involution. This simple, and yet subtle,
difference allows us to straightforwardly derive the intertwining equation of the
standard K-matrix from those of its factors. Note that this is in contrast with the
proof of the intertwining equation in [BK19, Thm. 7.5], which does not directly use
the intertwining equation of the quasi-K-matrix [BK19, Prop. 6.1]. Moreover, if k
is a fixed-point subalgebra, it becomes clear that at q = 1 the standard K-matrix
reduces to an element of the centralizer of Uk in a completion of Ug.

2That is, the braid group operators constructed in e.g., [Lus94, Ch. 5] and given in terms of
q-deformed triple exponentials.
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1.9. Outline. In Section 2, we introduce the notions of twist pair and cylindrical
bialgebra (Definition 2.3). This more general framework is first described in purely
algebraic terms. We then rely on the usual Tannakian formalism to extend it to
topological bialgebras. In Section 3, we recall several facts about symmetrizable
Kac-Moody algebras and their automorphism groups. In particular, we recall the
definition of framed realizations compatible with a diagram automorphism and we
prove that such realizations do not always exist, providing a necessary and suffi-
cient condition in the corank one case (Proposition 3.2). In Section 4, we review
the basic theory of Drinfeld-Jimbo quantum groups, their category O representa-
tions, and the universal R-matrix. In particular, we describe a factorization of
the quasi-R-matrix with respect to a subdiagram of arbitrary type (Proposition
4.3). In Section 5, we recall the definition of the quantum Weyl group operators
on integrable representations and their basic properties. In Section 6, we consider
classical and quantum pseudo-fixed-point subalgebras, combinatorially described in
terms of generalized Satake diagrams (Definition 6.11). The corresponding quan-
tum pseudo-involutions are defined in terms of modified diagrammatic half-balances
(cf. Section 6.5). In Section 7, we revisit and generalize the construction of the
quasi-K-matrix (Theorem 7.3). In Section 8 we modify the quasi-K-matrix with the
multiplicative difference of two modified diagrammatic half-balances corresponding
to a pair of generalized Satake diagrams. This leads to a family of solutions of
the generalized reflection equation, inducing on Uqg a cylindrical structure with
respect to which Uqk is a cylindrically invariant coideal subalgebra (Theorems 8.5
and 8.8). In Section 9, we briefly discuss the application of our constructions to the
case of quantum symmetric pairs for the quantum loop algebra UqLsl2, showing
that universal K-matrices constructed in Section 8 give rise to formal solutions of
a generalized reflection equation with a spectral parameter.

2. Cylindrical bialgebras

In this section, we introduce the notion of a cylindrical bialgebra, which is
roughly a quasitriangular bialgebra H together with an action of the cylindrical
braid group on its representations. The main ingredient is a distinguished solution
of a generalized reflection equation which depends upon the choice of an algebra
automorphism ψ : H → H (a twisting operator) whose defect in being a mor-
phism from H to Hcop is controlled by a Drinfeld twist. As a special case, we
recover the notion of balanced and half-balanced bialgebras [KT09,ST09], and that
of cylinder-braided bialgebras as they appeared in [tD98, tDHO98,BK19] (see also
[DKM03,Enr04,Bro12]). This more general framework shall be used in Section 8
to describe the representations of the cylindrical braid group arising from quantum
Kac-Moody algebras.

2.1. Quasitriangular bialgebras. Recall that by [Dr90a] a quasitriangular bial-
gebra is a pair (H,R) whereH is a bialgebra (over a base field F) and R is an element
of (H ⊗H)×, called universal R-matrix, satisfying the intertwining identity

R ·Δ(x) = Δop(x) ·R ,(2.1)

for any x ∈ H, and the coproduct identities

(Δ⊗ id)(R) = R13 ·R23 and (id⊗Δ)(R) = R13 ·R12 ,(2.2)
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where Δ denotes the coproduct and Δop = (12) ◦Δ the opposite coproduct. Note
that, if (H,R) is a quasitriangular bialgebra and ε is the counit of H, then

(2.3) (ε⊗ id)(R) = 1 = (id⊗ ε)(R).

Moreover, (H,R−1
21 ) and (Hcop, R21) are also quasitriangular bialgebras, where Hcop

denotes the co-opposite bialgebra, obtained from H by replacing Δ by Δop and
leaving the other structure maps as they are. From (2.1) and either coproduct
formula in (2.2) it follows that R is a solution of the Yang-Baxter equation

R12 ·R13 ·R23 = R12 · (Δ⊗ id)(R) = (Δop ⊗ id) · (R) ·R12 = R23 ·R13 ·R12

and thus it induces a representation of the standard braid groups on the tensor
powers of H. Namely, let Δ(n) : H → H⊗n for n ∈ Z≥1 be the iterated coproducts
defined by setting

Δ(1) := idH and Δ(n) := (Δ⊗ id⊗(n−2)) ◦Δ(n−1) (n > 1).

In particular, Δ(2) = Δ. Note that Δ(n) yields a natural action of H on H⊗n given
by

x · (h1 ⊗ · · · ⊗ hn) = Δ(n)(x)(h1 ⊗ · · · ⊗ hn).

Let Bn be the braid group of n strands in the plane, presented on the generators
S1, . . . , Sn−1 subject to the Artin relations

(2.4) Si · Si+1 · Si = Si+1 · Si · Si+1 and Si · Sj = Sj · Si

for any i = 1, . . . , n−2 and |i−j| > 1, respectively. For any n ∈ Z�2, the assignment

μn
R(Si) = (i i+ 1) ◦Ri,i+1

for any 1 � i � n − 1, where Ri,i+1 is shorthand for left multiplication by Ri,i+1,
defines a morphism of groups μn

R : Bn → AutH(H⊗n), i.e., an action of Bn on H⊗n

which commutes with the action of H.

2.2. Artin-Tits groups. The braid group Bn is the Artin-Tits group correspond-
ing to the Coxeter group Sn. It is well-known that Artin-Tits groups have a combi-
natorial description in terms of labelled diagrams, where a diagram is an undirected
graph D with no multiple edges or loops and a labelling m on D is the assignment
of an integer mij ∈ {2, 3, . . . ,∞} to any pair i, j of distinct vertices of D such
that mij = mji and mij = 2 if and only if there is no edge between i and j. By
[BS72,Del72], the Artin-Tits group corresponding to a diagram D with labelling m
is the group BD,m with generators Si, where i runs through the vertices of D, and
relations

Si · Sj · Si · · ·︸ ︷︷ ︸
mij

= Sj · Si · Sj · · ·︸ ︷︷ ︸
mij

.(2.5)

For n ∈ Z�2, consider the Coxeter-Dynkin diagram D = An−1 with the following
(standard) labelling: the vertex set is {1, 2, . . . , n − 1} with mij = 3 if |i − j| = 1
and mij = 2 otherwise. The corresponding braid group BD,m coincides with Bn,
see (2.4). The diagram D = Bn arises as an extension of An−1 by including a vertex
0 with additional labelling datum m01 = m10 = 4 and m0i = mi0 = 0 if i > 0.
The corresponding braid group BD,m is presented on the generators S0, S1, . . . , Sn−1

subject to the relations (2.4) and

(2.6) S0 · S1 · S0 · S1 = S1 · S0 · S1 · S0 .
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Moreover, it contains an isomorphic copy of BAn−1
and identifies with the group

Bcyl
n of cylindrical braids (such topological interpretations of Artin-Tits groups of

finite type were given in general in [Bri71]). We are interested in producing rep-
resentations of cylindrical braid groups Bcyl

n in terms of suitable bialgebras as in
Section 2.1.

2.3. Drinfeld twists. A Drinfeld twist of a bialgebra H is an element J ∈ (H ⊗
H)× satisfying the normalization (ε ⊗ id)(J) = 1 = (id ⊗ ε)(J) and the cocycle
identity

(J ⊗ 1) · (Δ⊗ id)(J) = (1⊗ J) · (id⊗Δ)(J) .

Drinfeld twists allow us to modify the quasitriangular structure of (H,R). Indeed,
given a Drinfeld twist J , one obtains a new quasitriangular bialgebra (HJ , RJ )
where HJ is the twisted bialgebra with coproduct ΔJ defined by

ΔJ (x) = J ·Δ(x) · J−1

for any x ∈ H. The twisted R-matrix is RJ := J21 ·R · J−1.
If J ′ is a Drinfeld twist for H and J is a Drinfeld twist for HJ′ , then J · J ′ is

a Drinfeld twist for H satisfying HJ·J′ = (HJ′)J and RJ·J′ = (RJ′)J . In general,
H and HJ are not isomorphic bialgebras. However, they give rise to isomorphic
braid group representations as μn

HJ ,RJ
= Ad(J (n)) ◦ μn

H,R. Here Ad(X) denotes the

conjugation by an invertible element X and J (n) is defined recursively by J (2) := J
and

J (n) := (J (n−1) ⊗ 1) · (Δ(n−1) ⊗ id)(J) (n > 2).

New Drinfeld twists can be obtained by gauging (see e.g., [ATL19a]).

Remark 2.1. One checks immediately that the Yang-Baxter equation for a quasi-
triangular bialgebra (H,R) coincides with the cocycle identity for the R-matrix.
Thus, the R-matrix R ∈ H ⊗ H is a Drinfeld twist and (HR, RR) = (Hcop, R21).
Hence (HR21R, RR21R) = (H,R), that is, R21R ∈ H ⊗ H is an (H,R)-invariant
Drinfeld twist.

2.4. Twist pairs. Let (H,R) be a quasitriangular bialgebra and ψ : H → H an
algebra automorphism. The ψ-twisting of (H,R) is the quasitriangular bialgebra
(Hψ, Rψψ) obtained from (H,R) by pullback through ψ, i.e., Hψ is the bialgebra
with modified coproduct and counit:

Δψ := (ψ ⊗ ψ) ◦Δ ◦ ψ−1, εψ := ε ◦ ψ−1

and the modified universal R-matrix given by Rψψ := (ψ⊗ψ)(R). Note that, by con-
struction, ψ is an isomorphism of quasitriangular bialgebras (H,R) → (Hψ, Rψψ).

Definition 2.2. Let (H,R) be a quasitriangular bialgebra. A twist pair (ψ, J) is
the datum of an algebra automorphism ψ : H → H and a Drinfeld twist J ∈ H⊗H
such that Hcop,ψ = HJ , i.e.,

Δop,ψ = Ad(J) ◦Δ , εψ = ε , and Rψψ
21 = J21 ·R · J−1 .

Note that, in the terminology of [Dav07, Sec. 2.1], (ψ, J) is a twisted homomor-
phism of bialgebras Hcop → H.
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2.5. Cylindrical bialgebras. We now introduce a class of bialgebras which nat-
urally give rise to representations of cylindrical braid groups, in analogy with the
case of quasitriangular bialgebras and braid groups of type A.

Definition 2.3. Let (H,R) be a quasitriangular bialgebra.

(i) We say that (H,R) is cylindrical if there exists a twist pair (ψ, J) and an
element K ∈ H×, called a universal K-matrix, such that the following co-
product identity holds

(2.7) Δ(K) = J−1 · (1⊗K) · (ψ ⊗ id)(R) · (K ⊗ 1) .

(ii) A subalgebra B ⊆ H is said to be cylindrically invariant if

K · b = ψ(b) ·K(2.8)

for all b ∈ B.

We shall prove that any cylindrical bialgebra H gives rise to a representation of
the cylindrical braid group Bcyl

n on H⊗n. More precisely, the action of Bcyl
n extends

the action of Bn given by the R-matrix and it is therefore determined by the K-
matrix. Whenever the subalgebra B is a right coideal, i.e.

Δ(B) ⊆ B ⊗H,

it allows us to describe this action internally, that is, in terms of B-intertwiners.

Proposition 2.4. Let (H,R, ψ, J,K) be a cylindrical bialgebra.

(i) The (ψ, J)-twisted K-matrix K ∈ H satisfies the generalized reflection equa-
tion

(2.9) (K ⊗ 1) · (Rψ)21 · (1⊗K) ·R = Rψψ
21 · (1⊗K) ·Rψ · (K ⊗ 1),

where Rψ := (ψ ⊗ id)(R).
(ii) Let B ⊆ H be a cylindrically invariant coideal subalgebra. There is a canon-

ical morphism of groups μn
R,K : Bcyl

n → AutB(H
⊗n) given by the assignment

μn
R,K(S0) = (ψ−1 ⊗ idn−1

H ) ◦ (K ⊗ 1⊗n−1) and μn
R,K(Si) = (i i+ 1) ◦Ri,i+1.

Proof. (i) It is enough to observe that, since R ·Δ(K) ·R−1 = Δop(K), one has

R · J−1 · (1⊗K) ·Rψ · (K ⊗ 1) = J−1
21 · (K ⊗ 1) · (Rψ)21 · (1⊗K) ·R.

Then (2.9) follows from (ψ ⊗ ψ)(R21) = J21 ·R · J−1.
(ii) We have to show that μn

R,K preserves the four–term relation (2.6). We may

assume n = 2. Set μR,K := μ2
R,K . Then, we have

μR,K(S0) ◦ μR,K(S1) ◦ μR,K(S0) ◦ μR,K(S1)

= (ψ ⊗ ψ)−1 ◦
(
(K ⊗ 1) · (Rψ)21 · (1⊗K) ·R

)
= (ψ ⊗ ψ)−1 ◦

(
Rψψ

21 · (1⊗K) ·Rψ · (K ⊗ 1)
)

= μR,K(S1) ◦ μR,K(S0) ◦ μR,K(S1) ◦ μR,K(S0),

where the second identity is the generalized reflection equation (2.9). The result
follows. �
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2.6. The trivial example. It is important to observe that the representations of
Bcyl
n arising from cylindrical bialgebras are in general genuinely cylindrical in that

they cannot be recovered by the inclusion Bcyl
n ⊂ Bn+1. Indeed, Bcyl

n identifies with
the subgroup of braids on n+ 1 strands which fix a distinguished strand, mapping
Si 	→ Si+1 if i 
= 0 and S0 	→ S2

1 . Therefore, if (H,R) is a quasitriangular bialgebra,
we obtain an H-invariant action of Bcyl

n on H⊗(n+1)

μ̃n+1
R : Bcyl

n → AutH(H⊗(n+1))

which is the restriction of μn+1
R and therefore it is given by μ̃n+1

R (S0) = R21R.

Clearly, this can be further restricted to an action μn+1
R on the subspace H⊗n =

1 ⊗ H⊗n ⊂ H⊗(n+1), relying on the projection ε ⊗ id⊗n : H⊗(n+1) → H⊗n given
by the counit. By (2.3) the result is quite uninteresting as one gets μn+1

R (S0) =
(ε⊗id)(R21R) = 1. This shows that any quasitriangular bialgebra (H,R) is endowed
with a trivial cylindrical structure given by ψ = idH , J = R, and K = 1. There
are on the other hand many non-trivial examples as we describe below.

2.7. Balanced and half-balanced bialgebras. By [KT09, ST09], a quasitrian-
gular bialgebra (H,R) is

(i) balanced if there exists an element b ∈ H×, called balance, such that b ∈ Z(H)
and Δ(b) = (b⊗ b)R21R;

(ii) half-balanced if there exists an element h ∈ H× called half-balance, such that
h2 ∈ Z(H) and Δ(h) = (h⊗ h)R.

Note that, if h is a half-balance, then h2 is a balance, since RΔ(h)R−1 = Δop(h)
and R(h⊗ h) = (h⊗ h)R21. Balances and half-balances are examples of universal
K-matrices.

Proposition 2.5.

(i) Let (H,R) be a quasitriangular bialgebra with balance b. Then H is cylin-
drical with ψ = id, J = R−1

21 , and K = b. Moreover, H is cylindrically
invariant.

(ii) Let (H,R) be a quasitriangular bialgebra with half-balance h. Then H is
cylindrical with ψ = Ad(h), J = 1⊗ 1, and K = h. Moreover, H is cylindri-
cally invariant.

Proof.

(i) It is clear that Hcop = HR−1
21
, so that (id, R−1

21 ) is a twist pair. Assuming that

K is central, the coproduct identity (2.7) becomes

Δ(K) = R21 · (1⊗K) ·R · (K ⊗ 1) = (K ⊗K) ·R21 ·R
so that K = b is an admissible solution, which clearly commutes with every
element in H.

(ii) Note that a half-balance h ∈ H is a gauge transformation which trivializes the
R-matrix, i.e., we have (h⊗h)Δ(h)−1 = R−1

21 and (h−1⊗h−1)Δ(h) = R. Note
that Ad(h)2 = id and indeed

HAd(h) = HR−1
21

= Hcop = HR = HAd(h)−1

.

In particular, (Ad(h), 1 ⊗ 1) is a twist pair and the coproduct identity (2.7)
becomes

Δ(K) = (1⊗K) · (Ad(h)⊗ id)(R) · (K ⊗ 1).
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Thus, K = h is a solution. Finally, note that the intertwining equation (2.8)
becomes trivial, since K · x = Ad(h)(x) · h = ψ(x) ·K for any x ∈ H. �

Remark 2.6. Recall that a quasitriangular Hopf algebra is ribbon if it admits a
balance b fixed by the antipode, in which case it is called a ribbon element. The
interplay between ribbon elements and the reflection equation was first observed
by Donin, Kulish and Mudrov [DKM03]. The notion of half-balance is due to
Kamnitzer–Tingley, Snyder–Tingley [KT09,ST09] and Enriquez [Enr10]. It would
be interesting to see if the approach in [DKM03] extends to half-balances.

2.8. Strongly cylindrical bialgebras. We describe now a special case of cylindri-
cal bialgebras, which first appeared in the work of tom Dieck and Häring-Oldenburg
[tD98, tDHO98] and later in the work of Balagović-Kolb [BK19], under the name
bialgebras with a (twisted) cylinder twist. It corresponds to setting J = R−1

21 in
Definition 2.3; equally we may set J = R which corresponds to the convention used
in [BZBJ18].

Definition 2.7. We call a quasitriangular bialgebra (H,R) strongly cylindrical if
there exists a bialgebra automorphism ϕ of (H,R) and an element K ∈ H× such
that

Δ(K) = R21 · (1⊗K) ·Rϕ · (K ⊗ 1),(2.10)

where Rϕ := ϕ⊗ id(R).

The following motivates our choice of terminology in Definition 2.3.

Proposition 2.8. Let (H,R, ϕ,K) be a strongly cylindrical bialgebra. Then,
(ϕ,R−1

21 ,K) is a cylindrical structure on (H,R), i.e. (H,R) is a cylindrical bialgebra
with twist pair (ϕ,R−1

21 ) and universal K-matrix K.

Proof. Since ϕ is a quasitriangular bialgebra automorphism, Hϕ = H and Rϕϕ =
R. Thus, Hcop,ϕ = HR−1

21
and (ϕ,R−1

21 ) is a twist pair. The coproduct identity (2.7)

then reduces to (2.10). �

Remark 2.9. Note that, for any quasitriangular bialgebra automorphism ϕ, (ϕ,R)
and (ϕ,R−1

21 ) are always twist pairs and represent two standard choices. Our more
general notion of cylindrical bialgebra aims to relax this condition on ϕ by allow-
ing less obvious twist pairs (ψ, J) and new examples of universal K-matrices. For
instance, note that, while balances define strongly cylindrical structures on quasi-
triangular bialgebras, half-balances in general do not. However, they arise from the
more general notion of cylindrical structure under consideration here.

2.9. Tannakian formalism and completions. It is well–known that the purely
algebraic setting we described above is in general too restrictive to describe inter-
esting solutions of the Yang-Baxter and the reflection equations. Indeed, in the
cases of our interest, we should rather consider pseudo structures (cf. [Dr86]) in
that the defining operators, e.g., R-matrices and K-matrices, are not algebraic but

rather topological, i.e., they correspond to elements in a suitable completion Ĥ of

the bialgebra H. In general Ĥ is only a topological bialgebra, whose structure
involves completed tensor products.

Our approach to describe such topological bialgebras is based on the well–known

Tannakian formalism [Del90]. We implicitly describe the completion Ĥ in terms
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of operators acting on a distinguished subcategory of H-modules and commuting

with every H-intertwiner. This approach yields a canonical morphism H → Ĥ.
Namely, let H be an algebra, C ⊆ Mod(H) a distinguished full subcategory and
F : C → Vect the forgetful functor. Let HC := End(F ) be the algebra of natural
transformations of F . Recall that, by definition, an element ξ ∈ HC is a collection
of operators ξV : F (V ) → F (V ), indexed by V ∈ C, such that the diagram

F (V ) F (V )

F (W ) F (W )

ξV

F (f) F (f)

ξW

commutes for any V,W ∈ C and f : V → W in C. The product on HC is given by
the composition of natural transformations. There is a canonical map ι : H → HC

given by the assignment u 	→ uV := πV (u). A subcategory C ⊂ Mod(H) separates
points if ι is injective or, equivalently, if an element in H is uniquely determined
by its action on the objects in C. Intuitively, this condition forbids the category C
from being too small. The existence of a canonical embedding H → HC yields a
natural interpretation of HC as a completion of H.

Remark 2.10. Every algebraic structure described in this section admits a categor-
ical counterpart (e.g., tensor categories with a cylinder twists or, more generally,
braided module categories, cf. [tD98,Ko20] and references therein). We will avoid
to describe such categorical structures in details. Instead, we shall fix a monoidal
subcategory of representations C and consider distinguished operators in the corre-
sponding completion HC . It is worth noting that HC in general is not a bialgebra,
but rather a cosimplicial algebra, see e.g. [ATL19b, Sec. 8.8].

3. Kac-Moody algebras

In this section, we recall several facts about symmetrizable Kac-Moody algebras
and their group of automorphisms, following mainly [Kac90,KW92]. Moreover, we
recall the definition of framed realizations compatible with a diagram automorphism
from [Ko14, Sec. 2.6]. We show that, in the case of generalized Cartan matrices of
indefinite type and corank one, such realizations do not always exist.

3.1. Realizations and lattices. From now on we will work over3 C (and, later
on, also over formal extensions of C). Let I be a finite set with a strict total
order <, A = (aij)i,j∈I a matrix with entries in C and (h,Π,Π∨) a realization
of A, i.e., h is a C-vector space, Π := {αi}i∈I ⊂ h∗ and Π∨ := {hi}i∈I ⊂ h are
linearly independent subsets such that αi(hj) = aji. It is well–known that for any
N � 2|I| − rk(A) = |I| + cork(A) there exists a realization with dim(h) = N . This
is said to be minimal precisely when dim(h) = |I| + cork(A). Attached to any
realization one has the following (co)root subspaces and lattices

Q∨ :=spanZ(Π
∨)⊂spanC(Π

∨)=:h′ and Q :=spanZ(Π)⊂spanC(Π)=:(h∗)′.

Note that these do not depend on the dimension of h. Recall that the height
functions are the group homomorphisms Q,Q∨ → Z given by xi 	→ 1 for all i ∈ I

3In fact, C may be replaced throughout by any algebraically closed field of characteristic 0.
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with xi = αi, hi, respectively. Similarly, the support functions supp : Q,Q∨ →
Pow(I) are given by

supp

(∑
i∈I

mixi

)
:= {i ∈ I |mi 
= 0}

with xi = αi, hi, respectively. The weight lattice is P := {λ ∈ h∗ | λ(Q∨) ⊆ Z} ⊂ h∗.
Finally, we set z := {h ∈ h | αi(h) = 0 for all i ∈ I}. The essential Cartan is the
|I|-dimensional space h/z, which naturally identifies with the dual of the root lattice
Q∗ through the projection

(3.1) h � (h∗)∗ → Q∗.

Henceforth, we fix a minimal realization (h,Π,Π∨).

3.2. Diagram automorphisms. A diagram automorphism of A is a permutation
τ : I → I such that aτ(i) τ(j) = aij for all i, j ∈ I. Diagram automorphisms form
a group denoted Aut(A), whose action on I naturally extends to the subspaces h′

and (h∗)′ if we set τ (hi) := hτ(i) and τ (αi) := ατ(i) for τ ∈ Aut(A) and i ∈ I.
By [KW92, 4.19], any diagram automorphism can be lifted to an element in GL(h)
as follows. The identification Q∗ � h/z given by the projection (3.1) allows us to
extend the action of Aut(A) on Q to h/z in such a way that αi(τ (h)) = ατ(i)(h) for
any i ∈ I. Since the subspace h′/z ⊆ h/z is preserved by any element in the finite
group Aut(A), then there exists a complement h′′ ⊆ h such that h′ ⊕ h′′ = h and
(h′′ + z)/z is Aut(A)-stable. Then the action of τ on h/z is lifted by pullback to an
action on h.

3.3. Generalized Cartan matrices and Kac-Moody algebras. The matrix A
is a generalized Cartan matrix if aii = 2 and, for i 
= j, aij ∈ Z�0, and aij = 0
implies aji = 0. We say that A is of finite type if all the principal minors of A
are positive; of affine type if det(A) = 0 and all proper principal minors of A are
positive; of indefinite type if it is neither of finite nor of affine type.

Let g̃ be the Lie algebra generated by h and {ei, fi}i∈I with relations

[h, h′] = 0 [h, ei] = αi(h)ei [h, fi] = −αi(h)fi [ei, fj ] = δijhi

for all h, h′ ∈ h and i, j ∈ I. The Kac-Moody algebra corresponding to A is the
Lie algebra g = g̃/r, where r is the sum of all two–sided ideals in g̃ having trivial
intersection with h ⊂ g̃. If A is a generalized Cartan matrix, the ideal r contains
ad(ei)

1−aij (ej) and ad(fi)
1−aij (fj) for any i 
= j. The center of g coincides with

the subspace z ⊆ h. Set Q+ :=
⊕

i∈I Z�0αi ⊆ h∗. Then, g admits a triangular
decomposition g = n− ⊕ h⊕ n+, where

n± :=
⊕

α∈Q+\{0}
g±α and gα := {x ∈ g | [h, x] = α(h)x, ∀h ∈ h}.

Then, Φ+ := {α ∈ Q+ | gα 
= 0} is the set of positive roots of g and Φ := Φ+�(−Φ+)
is the root system of g. We have dim(g) < ∞ (and thus Φ is finite) if and only if A
is of finite type.
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3.4. The derived subalgebra g′. The derived subalgebra g′ ⊆ g is independent
of the choice of the realization. As a vector space, g′ = n− ⊕ h′ ⊕ n+ and admits
a presentation similar to that of g. Namely, let g̃′ be the Lie algebra generated by
elements {ei, fi, hi}i∈I with relations

[hi, hj ] = 0 [hi, ej ] = aijej [hi, fj ] = −aijfj [ei, fj ] = δijhi

for all i, j ∈ I. The Lie algebra g̃′ is graded by Q, with g̃′0 = h′. The quotient of
g̃′ by the sum r′ of its graded ideals with trivial intersection with g̃′0 is canonically
isomorphic to g′. Moreover, z ⊆ h′ and the center of g′ is z.

3.5. Symmetrizable Kac-Moody algebras. Assume that the matrix A is sym-
metrizable and choose a tuple (εi)i∈I ∈ ZI

>0 of coprime positive integers such that
εiaij = εjaji for all i, j ∈ I. Note that generalized Cartan matrices of finite or
affine type are always symmetrizable. Let h′′ ⊂ h be a complementary subspace to
h′. By [Kac90], the choice of h′′ induces a symmetric, non–degenerate bilinear form
(·, ·) on h given by

(3.2) (hi, ·) = ε−1
i αi(·) and (h′′, h′′) = 0 .

In particular, (hi, hj) = ajiε
−1
i = aijε

−1
j . Let ν : h → h∗ be the linear isomor-

phism given by ν(h)(h′) := (h, h′) for any h, h′ ∈ h. Note that ν restricts to an
isomorphism h′ � (h∗)′, but it does not preserve the lattices unless A is symmet-
ric and defined over Z. We also denote by (·, ·) the induced bilinear form on h∗.
The latter uniquely extends to an invariant symmetric bilinear form on g̃ such that
(ei, fj) = δijε

−1
i . The kernel of this form is precisely r, and therefore (·, ·) descends

to a non-degenerate form on g. Set b± := h ⊕
⊕

α∈Φ+
g±α ⊂ g. The bilinear

form induces a canonical isomorphism of graded vector spaces b+ � (b−)	, where
(b−)	 := h∗ ⊕

⊕
α∈Φ+

g∗−α denotes the graded dual. If A is a symmetrizable gen-

eralized Cartan matrix, it is well-known that the ideal r is generated by the Serre
relations and g is completely presented by generators and relations.

3.6. Weyl groups. The matrix A = (aij)i,j∈I indecomposable if for all X ⊆ I
there exists (i, j) ∈ X × I\X such that aij 
= 0. Henceforth we assume that A
is an indecomposable symmetrizable generalized Cartan matrix. The Weyl group
associated to the realization of A is the subgroup W ⊆ GL(h) generated by the
fundamental reflections si : h → h, i ∈ I, given by

si(h) = h− αi(h)hi

with h ∈ h. As an abstract group,

W � 〈si | s2i = 1, (sisj)
mij = 1, i, j ∈ I, i 
= j〉

where mij = π/Re
(
cos−1( 12

√
aijaji)

)
, given explicitly by the following table:

aijaji 0 1 2 3 � 4
mij 2 3 4 6 ∞

The Weyl group naturally acts on h∗ through the dual fundamental reflections
si : h

∗ → h∗, which we denote by the same symbol, given by

si(λ) = λ− λ(hi)αi

with λ ∈ h∗. One verifies that, for any w ∈ W , h ∈ h, λ ∈ h∗, (wλ)(h) = λ(w−1h).
Moreover, the bilinear forms on h and h∗ are W -invariant and ν : h → h∗ is an
intertwiner. The Weyl group action on h∗ preserves the weight lattice and the root
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system h∗ ⊃ Q ⊃ Φ. A root α ∈ Φ is real if α ∈ W (Π) (moreover, in this case,
dim(gα) = 1) and imaginary otherwise.

3.7. Braid groups and integrable modules. The braid group associated to the
Weyl group W is the Artin–Tits group BW , generated by the elements Si, i ∈ I,
with relations

Si · Sj · Si · · ·︸ ︷︷ ︸
mij

= Sj · Si · Sj · · ·︸ ︷︷ ︸
mij

.

Let D be the diagram associated to the matrix A is the (unoriented) diagram D

with vertices I, no loops, and an edge between i and j whenever aij 
= 0. Then,
(D,m) is the Coxeter–Dynkin diagram of W and BW = BD,m in terms of the
notation introduced in Section 2.2.

Recall that an integrable g-module M is an h-diagonalizable module, i.e., M =⊕
λ∈h∗ Mλ with

Mλ := {m ∈ M | ∀h ∈ h, h ·m = λ(h)m},

such that the action of ei and fi, i ∈ I, on M is locally nilpotent. It is useful to
observe that the latter condition is equivalent to the local finiteness of the action
of the fundamental Lie subalgebras g{i} := 〈ei, fi〉 ∼= sl2, i.e., dim(g{i} ·m) < ∞ for
all m ∈ M and i ∈ I, cf. [Kac90, Ex. 3.16-3.19]. We denote by Wint the category
of integrable g-modules.

For any i ∈ I and x ∈ g{i}, the operator exp(x) :=
∑

n�0 x
n/n! is well-defined on

everyM ∈ Wint and can be regarded as an element of the algebra of endomorphisms
of the forgetful functor Wint → VectC. For any i ∈ I, set

s̃i := exp(ei)exp(−fi)exp(ei) = exp(−fi)exp(ei)exp(−fi).

It is well–known that the assignment Si 	→ s̃i|M defines a representation of the
braid group BW on M ∈ Wint [Ti66]. Moreover, s̃i(Mλ) = Msi(λ) for any λ ∈ h∗.

3.8. Kac-Moody group. Associated to g′ there is a Kac-Moody group G, see
e.g. [KW92, 1.3]. Roughly, this can be thought of as (a central extension of) a
group generated by exp(g±αi

), i ∈ I. Moreover, G naturally acts on any integrable
g-module and thus on g itself. For any real root α ∈ Φ, one has a group embedding
exp : gα → G and a group homomorphism Ad : G → Aut(g) such that, for any
real root α ∈ Φ and x ∈ gα, Ad(exp(x)) = exp(ad(x)). In the following, we shall
consider the subgroup Ad(G) < Aut(g). Finally, note that the triple exponentials
s̃i, i ∈ I, are elements of G and determine a morphism of groups BW → G such
that Ad(s̃i)(gα) = gsi(α) and Ad(s̃i)|h = si for all i ∈ I and α ∈ Φ. In particular,
we obtain the action of BW on integrable g-modules

3.9. Automorphisms of g. We briefly recall the structure of the group Aut(g)

as given by Kac-Wang in [KW92]. Let H̃ = Homgrp(Q,C
×). There is a group

homomorphism Ad : H̃ → Aut(g) given by Ad(χ)(ei) = χ(αi)ei, Ad(χ)(fi) =

χ(−αi)fi and Ad(χ)(h) = h for i ∈ I, h ∈ h and χ ∈ H̃ . Following [KW92, 1.10 and

4.23], we may consider the normal subgroup Ad(H̃ �G) < Aut(g). We also denote
by Aut(g; g′) the subgroup of Aut(g) of all automorphisms which fix g′ pointwise,
see [KW92, 4.20]. The action of Aut(A) on h can be further extended to a Lie



UNIVERSAL K-MATRICES FOR QUANTUM KAC-MOODY ALGEBRAS 779

algebra automorphism of g by the assignments τ (ei) = eτ(i) and τ (fi) = fτ(i) for
all i ∈ I. We denote by ω ∈ Aut(g) the Chevalley involution defined by

ω(ei) = −fi, ω(fi) = −ei, ω(h) = −h

for i ∈ I and h ∈ h. We denote Out(A) = Aut(A) if A is of finite type and
Out(A) = {id, ω}×Aut(A) otherwise. By [KW92, 4.23] we have the decomposition

Aut(g) = Out(A)� (Aut(g; g′)× Ad(H̃ �G)).

3.10. Automorphisms of the first and second kinds. Let θ be an automor-
phism of g. Following [KW92, 4.6], we say that θ is of the first kind if there
exists g ∈ G such that θ(b+) = Ad(g)(b+) or, equivalently, θ(b+) ∩ b− is finite-
dimensional. We say that θ is of the second kind if there exists g ∈ G such that
θ(b+) = Ad(g)(b−) or, equivalently, θ(b+)∩ b+ is finite-dimensional. The set of all
automorphisms of the first kind AutI(g) is a subgroup of Aut(g) and the set AutII(g)
of all automorphisms of the second kind is the corresponding coset ωAutI(g). If g is
of finite type then AutI(g) = AutII(g) = Aut(g) and otherwise Aut(g) is the disjoint
union of AutI(g) and AutII(g). In [KW92, 4.38-4.39] a combinatorial factorization
is given for semisimple automorphisms of g of the second kind; in addition to a
diagram automorphism, this requires as input a subdiagram of finite type of I.
We will come back to this in Section 6.2 but for now review some basic concepts
associated to such subdiagrams.

3.11. Subdiagrams of finite type. If A is a symmetrizable generalized Cartan
matrix and X ⊆ I then the principal submatrix AX := (aij)i,j∈X is also a sym-
metrizable generalized Cartan matrix. Throughout this section we let X be a
subdiagram of finite type, i.e. a subset X ⊆ I such that AX of finite type. The
subalgebra gX = 〈{ei, fi}i∈X〉 of g is a finite-dimensional semisimple Lie algebra. In
particular, hX := h∩gX ⊆ h′ is the C-span of Π∨

X = {hi | i ∈ X} and n
±
X := n±∩gX

are the Lie subalgebras generated by {ei | i ∈ X} and {fi | i ∈ X}, respectively. We
set ΠX := {αi | i ∈ X}, h∗X := spanC(ΠX), and

QX = Q ∩ h∗X , Q+
X = Q+ ∩ h∗X , ΦX = Φ ∩ h∗X , Φ+

X = Φ+ ∩ h∗X .

Similarly, we have the coroot system Φ∨
X ⊂ hX associated to the Cartan matrix At

X

and the positive subsystem Φ∨,+
X . The root systems ΦX and Φ∨

X are finite and the
sum of the corresponding fundamental weights and coweights are given by

ρX = 1
2

∑
α∈Φ+

X

α, ρ∨X = 1
2

∑
h∈Φ∨,+

X

h.

In particular, ρX(hi) = 1 if i ∈ X.
We denote by AutX(A) the subgroup of all diagram automorphisms τ such that

X is τ -stable: τ (X) = X. Note that restriction to X induces a group homomor-
phism AutX(A) → Aut(AX) for all X ⊆ I which is in general neither injective nor
surjective. The Weyl group WX is the subgroup of W generated by {si}i∈X . The
group WX is finite and has a unique longest element wX which is hence involutive.
There exists a (necessarily unique and involutive) oiX ∈ Aut(AX), called the oppo-
sition involution of X, such that wX(αi) = −αoiX(i) for all i ∈ X. It is well-known
that the element w̃X := s̃i1 · · · s̃i� ∈ G, where si1 · · · si� is a reduced expression
of the longest element wX ∈ WX , does not depend on the choice of the reduced
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expression. By [BBBR95, Lem. 4.9 and Corollary 4.10.3], the corresponding Lie
algebra automorphism of g satisfies

Ad(w̃X)|gX
= oiX ◦ ω|gX

,(3.3)

Ad(w̃2
X)(x) = (−1)2λ(ρ

∨
X)x(3.4)

for all x ∈ gλ and λ ∈ Φ.

3.12. Dynkin diagrams. Recall that a generalized Cartan matrix A can be fully
represented by its Dynkin diagram, a partially oriented multi–edge diagram defined
as follows.4 For simplicity, we assume that A is of finite or affine type so that
aijaji ∈ {0, 1, 2, 3, 4} for all i, j ∈ I. Given two nodes i 
= j, there is no edge if
aijaji = 0; there is a single or double undirected edge if εi = εj and aijaji equals 1
or 4, respectively; there is a double, triple, or quadruple edge directed from i to j
if εi > εj and aijaji equals 2, 3 or 4, respectively.

3.13. Framed realizations. Motivated by the theory of quantum Kac-Moody al-
gebras (cf. Section 4), we are interested in larger (co)weights and (co)root lattices,
capturing information about the full Cartan subalgebra h. To this end, given a
minimal realization (h,Π,Π∨) of A, we extend Π∨ to a basis Π∨

ext of h by adjoining

a tuple (dr)
cork(A)
r=1 such that αi(dr) ∈ Z for all i ∈ I, r ∈ {1, 2, . . . , cork(A)}; we

call Π∨
ext an extended basis and the triple (h,Π,Π∨

ext) a framed (minimal) realization
of A. The dr are called scaling elements ; whenever cork(A) = 1 we have a single
scaling element which we simply denote d. Setting h′′ = spanC{dr}1≤r≤cork(A), from
(3.2) we obtain that (dr, ds) = 0 for all 1 ≤ r, s ≤ cork(A). In analogy with Section
3.1, we obtain the extended coroot lattice and extended weight lattice, respectively
given by

Q∨
ext = spanZ(Π

∨
ext) and Pext = {λ ∈ h∗ |λ(Q∨

ext) ⊆ Z}.
Let ρ ∈ Pext be defined by ρ(hi) = 1 for all i ∈ I and ρ(dr) = 0 for all r ∈
{1, 2, . . . , cork(A)}. Given X ⊆ I of finite type, if i ∈ X then (ρ− ρX)(hi) = 0 and
hence ρ− ρX is fixed by si. Therefore we have

(3.5) wX(ρ− ρX) = ρ− ρX .

3.14. Framed extensions of diagram automorphisms. Let τ ∈ Aut(A). The
construction of a framed realization and the lift of τ to Aut(h) (cf. Section 3.2) both
depend upon the choice of a complementary subspace h′′ ⊂ h such that h′⊕h′′ = h.
Therefore, it is not surprising that, in general, τ does not necessarily preserve Π∨

ext

or Q∨
ext or, by duality, Pext.

Remark 3.1. If τ preserves Q∨
ext, it can be extended to an algebra automorphism

of the quantum group Uqg (cf. Section 4). More importantly, in order to construct
solutions of the generalized reflection equation (2.9) for Uqg we shall need the
automorphism τ to extend to Pext and Uqg.

Following [Ko14], we say that a framed realization (h,Π,Π∨
ext), the set of scal-

ing elements, Q∨
ext, and Pext are τ -compatible if there exists a permutation τ̂ of

{1, 2, . . . , cork(A)} such that

(3.6) ατ(i)(dτ̂(r)) = αi(dr) for all r ∈ {1, 2, . . . , cork(A)}.

4Note that this is different from the Coxeter diagram mentioned in Section 2.2, which does not
allow multi–edges, but rather labelled edges.
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In this case, τ extends to an automorphism of Q∨
ext by setting τ (dr) = dτ̂(r) and the

corresponding dual map on h∗, denoted by the same symbol, preserves Pext.
A framed realization (h,Π,Π∨

ext), the set of scaling elements, Q∨
ext, and Pext is

τ -minimal if it is τ -compatible and each function j 	→ αj(dr) is the characteristic
function of a τ -orbit (possibly depending on r), i.e., if

∀r ∈ {1, 2, . . . , cork(A)} ∃{i, τ (i)} ⊆ I such that αj(dr) =

{
1 if j ∈ {i, τ (i)},
0 otherwise.

(3.7)

Clearly, any scaling element in a τ -compatible set is a Z-linear combination of
scaling elements in a τ -minimal set.

3.15. Existence of τ -compatible realizations in corank one. If A is invertible
or τ = id, any framed realization is clearly τ -compatible. By [Ko14, Prop. 2.12], if
A is a generalized Cartan matrix of affine type, a τ -compatible framed realization
always exists. The problem is open for A of indefinite type with cork(A) 
= 0 and
τ 
= id [Ko14, Rmk. 2.13]. In the following, we consider the case cork(A) = 1,
where the problem reduces to the existence of a single scaling element d such that
τ (d) = d. More precisely, we provide a criterion for arbitrary matrices with integer
entries A such that cork(A) = 1.

Proposition 3.2. Let A = (aij)i,j∈I be a matrix with integer entries such that
cork(A) = 1 and τ ∈ Aut(A). Then, τ |Ker(A) = ±id. Moreover, a τ -compatible
scaling element exists if and only if τ |Ker(A) = id.

Proof. We note that Ker(A) is of the form C(ai)i∈I for some rational numbers ai, not
all zero. By clearing denominators we may assume that the ai are coprime integers;
this determines them uniquely up to an overall sign. Consider the basic imaginary
root δ =

∑
j∈I ajαj ∈ Q. Note that the natural C-linear left Aut(A)-action on CI ,

defined by (τ (x))i = xτ−1(i) for all x = (xi)i∈I ∈ CI , i ∈ I, τ ∈ Aut(A), stabilizes

the one-dimensional space Ker(A). Thus, there exists ζ ∈ C× such that aτ(j) = ζaj
for all j ∈ I. Since τ is of finite order, ζ must be a root of unity. On the other
hand, since both aj and aτ(j) are integers for all j ∈ I, it follows that ζ ∈ Q. Thus,
τ |Ker(A) = ±id.

Suppose that τ |Ker(A) = id. We show that there exists a τ -compatible scaling
element, by a direct generalization of the proof given in [Ko14, Prop. 2.12]. Assume
that we have a finite-dimensional vector space h and a basis Π∨

ext = Π∨ ∩ {d} of h
where Π∨ = {hi}i∈I and ατ(i)(d) = αi(d) for all i ∈ I. Now fix i ∈ I so that ai 
= 0
(such i exist since Ker(A) is one-dimensional) and define αj ∈ h∗ for j ∈ I by:

αj(hi) = aij for all i ∈ I, αj(d) =

{
1 if j ∈ {i, τ (i)},
0 otherwise.

We claim that (h,Π,Π∨
ext) with Π = {αi}i∈I is a τ -compatible framed minimal

realization of A. Note that if the set Π = {αi}i∈I is linearly independent then
(h,Π,Π∨) is a minimal realization by definition. Moreover, by setting τ (d) = d we
can check that (3.6) is true, thus obtaining the τ -compatibility. Suppose therefore
that

∑
j∈I mjαj = 0 for some (mj)j∈I ∈ CI ; it suffices to show that mj = 0 for all

j ∈ I. By applying to hi for arbitrary i ∈ I we deduce that (mj)j∈I ∈ Ker(A). It
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follows that
∑

j∈I mjαj = mδ for some m ∈ C. Since ζ = 1 we have

0 =
∑
j∈I

mjαj(d) = m
∑

j∈{i,τ(i)}
aj = m|{i, τ (i)}|ai

and we deduce that m = 0 as required.
Suppose that τ |Ker(A) = −id. We show that there exists no τ -compatible set {d}.

This follows from the claim that the existence of such a set implies Ker(δ) = h, so
that δ is the zero element of h∗, contradicting the linear independence of Π. To this
end, note that the definition of δ directly implies that δ(hi) = 0 for all i ∈ I. It
remains to show that δ(d) = 0. We denote the τ -orbits in I by I1, I2, . . . , I� for some
� ∈ Z>0. For each k ∈ {1, 2, . . . , �} choose a representative ik ∈ Ik; then αi(d) =
αik(d) for all i ∈ Ik as a consequence of τ -compatibility and Ik = {τ e(ik) | 0 ≤ e <
|Ik|}. Furthermore, for each such k we have αik = τ |Ik|(αik) = (−1)|Ik|αik , so that

|Ik| is even and hence
∑|Ik|−1

e=0 (−1)e = 0. Finally, we conclude that

δ(d) =
∑
j∈I

ajαj(d) =
�∑

k=1

∑
j∈Ik

ajαj(d) =
�∑

k=1

|Ik|−1∑
e=0

(−1)eaikαik(d) = 0.

The result follows. �

If A is a generalized Cartan matrix of affine type, the ai can be chosen to
be positive integers. Therefore, we automatically get τ |Ker(A) = id and recover
[Ko14, Prop. 2.12].

Example 3.3. There are examples of non–invertible indecomposable symmetriz-
able generalized Cartan matrices A of indefinite type with non-trivial diagram au-
tomorphisms, both with and without a τ -compatible weight lattice. For instance,
in the case of the corank one generalized Cartan matrices

A1 =

⎛⎜⎜⎝
2 −1 0 −3
−1 2 −3 0
0 −3 2 −1
−3 0 −1 2

⎞⎟⎟⎠ and A2 =

⎛⎜⎜⎝
2 −1 0 −1
−9 2 −1 0
0 −1 2 −9
−1 0 −1 2

⎞⎟⎟⎠ ,

we have that A1 has a τ -compatible weight lattice whereas A2 does not.

4. Drinfeld-Jimbo quantum groups

In this section we review the basic theory of Drinfeld-Jimbo quantum groups
[Dr85,Dr86,Dr90a,Ji86,Lus94]. In particular, we discuss the factorization proper-
ties of the universal R-matrix and we define (highest and lowest weight) category
O representations.

4.1. Quantum Kac-Moody algebras. Let q be an indeterminate and denote
by F the algebraic closure of C(q). We shall use the fact that the multiplicative
group F× is a divisible abelian group.5 Let A be a generalized Cartan matrix and
(h,Π,Π∨

ext) a framed realization. Following [Dr85,Dr86, Ji86, Lus94] we denote by

5While it is possible to use only a finite extension of C(q) (cf. [BK19, Rmk. 2.3]), the latter
depends on the generalized Cartan matrix A. Therefore, we prefer to work with the algebraic
closure of C(q).
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Uqg the unital associative F-algebra with generators Ei, Fi (i ∈ I) and th (h ∈ Q∨
ext)

subject to the following relations for h, h′ ∈ Q∨
ext, i, j ∈ I:

t0 = 1, thth′ = th+h′ ,

thEi = qαi(h)Eith, thFi = q−αi(h)Fith, [Ei, Fj ] = δij
ti − t−1

i

qi − q−1
i

,

Serreij(Ei, Ej) = 0 = Serreij(Fi, Fj) (i 
= j),

where ti = tεihi
, qi := qεi and Serre denotes the q-deformed Serre relations (e.g.,

[Lus94, 3.1.1 (e)]). We endow Uqg with the bialgebra structure determined by the
coproduct

Δ(Ei) = Ei ⊗ 1 + ti ⊗ Ei, Δ(Fi) = Fi ⊗ t−1
i + 1⊗ Fi, Δ(th) = th ⊗ th .

4.2. Triangular decomposition and diagrammatic subalgebras. We con-
sider the standard subalgebras

Uqn
+ = 〈Ei | i ∈ I〉, Uqn

− = 〈Fi | i ∈ I〉, , Uqh = 〈th |h ∈ Q∨
ext〉

so that Uqg = Uqn
+UqhUqn

−. We set Uqb
± = Uqn

±Uqh and consider the following
quantum analogue of the derived subalgebra g′ ⊆ g

Uqg
′ = 〈Ei, Fi, t

±1
i |, i ∈ I〉 and Uqh

′ = 〈t±1
i | i ∈ I〉.

For any subset X ⊆ I, the derived quantum Kac-Moody algebra corresponding
to AX embeds in Uqg

′, yielding the diagrammatic subalgebras

UqgX = 〈Ei, Fi, t
±1
i | i ∈ X〉, UqhX = UqgX ∩ Uqh, Uqn

±
X = UqgX ∩ Uqn

±.

Note that, for any i ∈ I, Uqg{i} � Uqisl2. The assignment αi 	→ ti yields an algebra

isomorphism FQ → Uqh
′ and, for λ ∈ Q, we set tλ =

∏
i∈I t

�i
i if λ =

∑
i∈I �iαi.

These elements satisfy

tλEi = q(λ,αi)Eitλ, tλFi = q−(λ,αi)Fitλ for all λ ∈ Q, i ∈ I.

In terms of the linear isomorphism ν from Section 3.5 we have tλ = tν−1(λ) for all
λ ∈ Q.

4.3. Root space decomposition. Let M be a Uqh-module. For any μ ∈ Pext, we
set

Mμ = {m ∈ M | ∀h ∈ Q∨
ext : th ·m = qμ(h)m}.

Note that, for all λ ∈ Q and μ ∈ Pext, tλ acts on Mμ as multiplication by q(λ,μ). By
considering the action of Uqh on Uqg and Uqg

′ by conjugation, we obtain the root
space decomposition

Uqg =
⊕
λ∈Q

(Uqg)λ, Uqg
′ =

⊕
λ∈Q

(Uqg
′)λ

as Q-graded algebras. Note that Uqn
± are graded by ±Q+ and one has Uqn

± =⊕
λ∈Q+(Uqn

±)±λ.
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4.4. Automorphisms. We briefly review several distinguished algebra automor-
phisms of Uqg. An algebra automorphism is assumed to be F-linear unless otherwise
stated. Any diagram automorphism τ ∈ Aut(A) (cf. Section 3) acts as a bialgebra
automorphism on Uqg

′ by

τ (Ei) = Eτ(i) , τ (Fi) = Fτ(i) , τ (ti) = tτ(i) ,

for any i ∈ I. If the framed realization is τ -compatible, then this action extends
automatically to a bialgebra automorphism of Uqg by setting τ (th) = tτ(h) for all
h ∈ Q∨

ext. The Chevalley involution ω lifts to an involutive algebra automorphism
of Uqg, denoted by the same symbol, determined by

ω(Ei) = −Fi , ω(Fi) = −Ei , ω(th) = t−h ,

for any i ∈ I and h ∈ Q∨
ext. Note that ω is a bialgebra isomorphism from Uqg to

Uqg
cop, i.e.,

Δ ◦ ω = (ω ⊗ ω) ◦Δop, ε ◦ ω = ε.

Finally, we discuss the bar involution, which is not F-linear (cf. [Lus94]). Note
that the algebraic closure of the field of formal Laurent series C((q)) is given by

C((q)) =
⋃

n≥1 C((q
1/n)), on which we define a field automorphism by the rule

q1/n = q−1/n. The field F arises as the set of algebraic elements in C((q)) over C(q)

and note that stabilizes C(q) ⊂ C((q)). By considering minimal polynomials of
elements of F in C(q)[x] we obtain that stabilizes F. We extend it to an algebra
automorphism of Uqg by setting

Ei = Ei , Fi = Fi , th = t−h ,

for any i ∈ I and h ∈ Q∨
ext. We use the same notation to denote the corresponding

algebra automorphism of Uqg⊗Uqg, defined by u⊗ u′ := u⊗u′ for any u, u′ ∈ Uqg.

4.5. The Drinfeld-Lusztig pairing. Given a bilinear pairing 〈 , 〉 : A−×A+ →
F between algebras A− and A+ over a field F, it extends to an F-valued bilinear
pairing between (A−)⊗n and (A+)⊗n for all n ∈ Z�1 by

〈a−1 ⊗ · · · ⊗ a−n , a
+
1 ⊗ · · · ⊗ a+n 〉 =

n∏
m=1

〈a−m, a+m〉

for all a−1 , . . . , a
−
n ∈ A− and a+1 , . . . , a

+
n ∈ A+. We recall that, by [Dr90a, Lus94],

there exists a unique F-bilinear pairing 〈 , 〉 : Uqb
− × Uqb

+ → F such that

(4.1) 〈y, xx′〉 = 〈Δ(y), x′ ⊗ x〉, 〈yy′, x〉 = 〈y ⊗ y′,Δ(x)〉
for any x, x′ ∈ Uqb

+, y, y′ ∈ Uqb
−, and

(4.2)
〈th, th′〉 = q−(h,h′), 〈Fi, Ej〉 = δij

1

q−1
i − qi

,

〈th, Ej〉 = 0, 〈Fi, th′〉 = 0,

for any i, j ∈ I, h, h′ ∈ Q∨
ext. In particular, for any e ∈ Uqn

+, f ∈ Uqn
−, h, h′ ∈ Q∨

ext,
one obtains

(4.3) 〈fth, eth′〉 = q−(h,h′)〈f, e〉
so that 〈f, xth〉 = 〈f, x〉, for all x ∈ Uqb

+, f ∈ Uqn
− and h ∈ Q∨

ext.
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4.6. The categories Oε. It is well–known that the Drinfeld-Lusztig pairing allows
for the realization of Uqg as (a quotient of) a quantum double [Dr86]. Thus, the
canonical element of 〈·, ·〉, which belongs to a suitable completion of the tensor
product Uqb

−⊗Uqb
+, is a topological R-matrix inducing a quasitriangular structure

on Uqg. This is more conveniently described in terms of categories of representations
as we explained in Section 2.9.

Let W ⊂ Mod(Uqg) be the full subcategory of Uqg-modules M endowed with a
weight space decomposition, i.e.,

M =
⊕

μ∈Pext

Mμ .

Then, for any λ ∈ Q, the action of (Uqg)λ maps Mμ into Mμ+λ. For ε ∈ {±},
let Oε denote the full subcategory consisting of objects in W with a locally finite
Uqn

ε-action and finite-dimensional weight spaces (see e.g., [Kac90, Ch. 9] or [Lus94,
Ch. 3]). Note that Oε is closed under tensor products.

We denote by (Uqg)
Oε

the completion of Uqg with respect to the category Oε

(cf. Section 2.9). Recall that, by construction, (Uqg)
Oε

is the algebra of operators
defined on categoryOε modules, which are natural with respect to Uqg-intertwiners.

Similarly, we denote by (Uqg
⊗n)O

ε

the algebra of operators defined on tensor prod-

ucts of n modules in Oε. For any n ∈ Z>0, Uqg
⊗n embeds in (Uqg

⊗n)O
ε

and
therefore Oε separates points [Dr90b, Question 8.2].

Note that (Uqg)
Oε

contains the subalgebra (Uqn
ε)O

ε

:=
∏

μ∈εQ+(Uqn
ε)μ, that

is the completion of Uqn
ε with respect to its natural εQ+-grading. Indeed, ev-

ery element in (Uqn
ε)O

ε

is convergent on category Oε and commutes with every
intertwiner. Similarly, we have that

(Uqn
∓ ⊗ Uqn

±)O
ε

:=
∏

μ∈±Q+

(Uqn
∓)−μ ⊗ (Uqn

±)μ

are subalgebras in (Uqg
⊗2)O

ε

. Finally, note that (Uqn
±)0 = F.

4.7. Quasi-R-matrices. We recall below the construction of the so-called quasi-
R-matrix due to Lusztig [Lus94]. For any μ ∈ Q+, let (b−μ,r)r be an ordered basis for

(Uqn
−)−μ and let (b+μ,r)r be the corresponding dual basis for (Uqn

+)μ with respect
to the pairing 〈 , 〉 defined by (4.1)–(4.2). Lusztig’s quasi-R-matrix is the element

(4.4)

Θ =
∑
μ∈Q+

Θμ ∈ (Uqn
− ⊗ Uqn

+)O
ε

where Θμ =
∑
r

b−μ,r ⊗ b+μ,r ∈ (Uqn
−)−μ ⊗ (Uqn

+)μ.

The element Θμ is independent of the choice of basis. The quasi-R-matrix is deeply
related with the bar involution [Lus94, Thm. 4.1.2]. Namely, Θ is the unique
element of the form Θ =

∑
μ∈Q+ Θμ with Θμ ∈ (Uqn

−)−μ ⊗ (Uqn
+)μ such that

Θ0 = 1⊗ 1 and

(4.5) ΘΔ(u) = Δ(u)Θ

for any u ∈ Uqg. Moreover, by a standard argument, the normalization Θ0 = 1
guarantees that Θ is invertible and moreover, by uniqueness, one has

Θ−1 = Θ.
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It is clear that Θ is not the full R-matrix of Uqg. As Θ is the canonical element
of the pairing between Uqn

+ and Uqn
−, the missing factor is a weight zero operator,

computed in terms of Cartan elements.

4.8. A completion of the quantum Cartan subalgebra. We shall describe
several weight zero operators. For convenience, we think of such elements as be-
longing to the completion (Uqg)

W . In particular, they act on category Oε modules.
Let Fun(A,B) denote the functions from a set A to a set B. Any β ∈ Fun(Pext,F)
induces an element of (Uqg)

W , also denoted β, whose action on M ∈ W , is given
by

β ·m = β(μ)m

for any μ ∈ Pext and m ∈ Mμ. The subspace of (Uqg)
W spanned by such β is a

commutative subalgebra, which we denote by (Uqh)
W . Indeed, note that the Cartan

subalgebra Uqh naturally embeds in (Uqh)
W . The group (Uqh)

W,× of invertible
elements is given by Fun(Pext,F

×). Similarly, any κ ∈ Fun(Pext ×Pext,F) defines an
element of (Uqg⊗Uqg)

W , also denoted κ, whose action on M ⊗N , for M,N ∈ W ,
is given by

κ ·m⊗ n = κ(μ, ν)m⊗ n

for any μ, ν ∈ Pext, m ∈ Mμ, and n ∈ Nν . In particular, for any g ∈ EndZ(Pext), we
denote by κg the function from Pext × Pext → F× given by

κg(μ, ν) := q(g(μ),ν).

Remark 4.1. Let ψq be an algebra endomorphism of Uqg, whose restriction functor,
which we refer to as the pullback of ψq, gives an endofunctor ψ∗

q : W → W .

Then, ψq extends to an endomorphism of (Uqg)
W , given by ψq(ϕ)|M := ϕ|ψ∗

q (M)

for any ϕ ∈ (Uqg)
W and M ∈ W . Suppose that ψq is invertible and ψ∗

q acts by
permuting the weight spaces, i.e., there exists ψ ∈ EndZ(Pext) such that, for any
M ∈ W and μ ∈ Pext, ψ

∗
q (M)μ = Mψ(μ). Then, for any g ∈ EndZ(Pext), we have

(ψq ⊗ id)(κg) = κg◦ψ.

4.9. A distinguished subgroup of (Uqh)
W,×. For any ζ ∈ EndZ(Pext) and λ ∈

Pext, we define Gζ,λ ∈ Fun(Pext,F
×) by

(4.6) Gζ,λ(μ) := q(ζ(μ),μ)/2+(λ,μ)

for any μ ∈ Pext. For example, for λ ∈ Q, we have G0,λ = tλ . Note that the set
of functions Gζ,λ with ζ ∈ EndZ(Pext) and λ ∈ Pext form a subgroup of (Uqh)

W,×,
since Gζ1,λ1

Gζ2,λ2
= Gζ1+ζ2,λ1+λ2

. We restrict to the case of ζ ∈ EndZ(Pext) which
are self-adjoint with respect to ( , ).

Lemma 4.2. Let ζ ∈ EndZ(Pext) be self-adjoint and λ ∈ Pext.

(i) The functional equation

(4.7) Gζ,λ(μ+ ν) = Gζ,λ(μ)Gζ,λ(ν)q
(ζ(μ),ν)

holds for any μ, ν ∈ Pext.
(ii) In (Uqg⊗ Uqg)

W , it holds

(4.8) Δ(Gζ,λ) = Gζ,λ ⊗Gζ,λ κζ ,

where Δ denotes the coproduct (Uqg)
W → (Uqg⊗ Uqg)

W .
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(iii) If ζ(Q) ⊆ Q, the automorphism Ad(Gζ,λ) preserves Uqg in (Uqg)
W . More

precisely, it holds

(4.9) Ad(Gζ,λ)(u) = Gζ,λ(μ)utζ(μ) = G−ζ,λ(μ)tζ(μ)u ,

for any μ ∈ Q and u ∈ (Uqg)μ.

Proof.

(i) This follows immediately from the self-adjointness of ζ.
(ii) Let M,N ∈ W and let m ∈ M , n ∈ N such that m ∈ Mμ and n ∈ Nν for some

μ, ν ∈ Pext. Then m⊗ n ∈ (M ⊗N)μ+ν and one has

Δ(Gζ,λ)(m⊗ n) =Gζ,λ(μ+ ν)m⊗ n

=Gζ,λ(μ)Gζ,λ(ν)κζ(μ, ν)m⊗ n

=
(
Gζ,λ ⊗Gζ,λ κζ

)
(m⊗ n),

where the second equality follows from (4.7).
(iii) Let N ∈ W , ν ∈ Pext, μ ∈ Q and u ∈ (Uqg)μ. Then we have

Ad(Gζ,λ)(u)|Nν
=

Gζ,λ(μ+ ν)

Gζ,λ(ν)
u|Nν

= Gζ,λ(μ)q
(ζ(μ),ν)u|Nν

= Gζ,λ(μ)utζ(μ)|Nν

and note that tζ(μ)u = q(ζ(μ),μ)utζ(μ). It follows that Ad(Gζ,λ)(u) preserves
Uqg. �

We shall consider also the subgroup of group homomorphisms Homgrp(Pext,F
×),

i.e., β : Pext → F× such that β(μ + ν) = β(μ)β(ν) for μ, ν ∈ Pext. For any
β ∈ Homgrp(Pext,F

×), we have Δ(β) = β ⊗ β and Ad(β)(u) = β(μ)u for any μ ∈ Q
and u ∈ (Uqg)μ.

4.10. The universal R-matrix. We review the construction of the full universal
R-matrix of Uqg. For our choice of conventions, it is preferable to work with the

operator Ξ := Θ−1 = Θ, which satisfies

(4.10) Ξ ·Δ(u) = Δ(u) · Ξ

for any u ∈ Uqg. One has Ad(κid) ◦Δ( ) = Δop. Therefore, by (4.5), the universal

R-matrix given by R := κid · Ξ ∈ (Uqg
⊗2)O

ε

(see e.g. [Dr85,Ji86]) satisfies

(4.11) RΔ(u) = Δop(u)R

for any u ∈ Uqg. Moreover, the following coproduct identities hold:

(Δ⊗ id)(R) = R13R23 and (id⊗Δ)(R) = R13R12.

Finally, one has

(4.12) (ω ⊗ ω)(R) = R21 and (τ ⊗ τ )(R) = R

for any τ ∈ Aut(A).
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4.11. Diagrammatic factorizations. The factorization of R has the following
interpretation. As a bialgebra, Uqb

− projects onto Uqh. By a theorem of Radford
[Rad92], the Borel bialgebra Uqb

− can be realized as the so-called Radford biprod-
uct of Uqh and Uqn

−, where the latter should be regarded as a Yetter-Drinfeld
Uqh-module (see e.g., [ATL18, Sec. 2.17]). As the bialgebra structure on Uqb

− is
recovered by those on Uqh and Uqn

−, in the same way the R-matrix of (the quantum
double of) Uqb

− is realized as the product of those of Uqh and Uqn
−, represented

respectively by κid and Ξ. A similar phenomenon can be described more generally,
when Uqh is replaced by a diagrammatic subalgebra Uqb

−
X , X ⊆ I.

Let X ⊆ I be arbitrary (in particular, not necessarily of finite type). There is a
unique diagrammatic quasi-R-matrix

ΘX ∈
∏

λ∈Q+
X

(Uqn
−)−λ ⊗ (Uqn

+)λ

such that ΘX,0 = 1⊗ 1 and

(4.13) ΘXΔ(u) = Δ(u)ΘX

for any u ∈ UqgX . Moreover, for any κ ∈ Fun(Pext×Pext,F) such that κ(μ+ν, μ′) =
κ(μ, μ′ + ν) for ν ∈ QX and μ, μ′ ∈ Pext, we have

(4.14) [κ,ΘX ] = 0.

In particular, for any μ ∈ Q, we have

[tμ ⊗ tμ,ΘX ] = 0(4.15)

and, for any β ∈ FunX(Pext,F) where

FunX(Pext,F) := {β ∈ Fun(Pext,F) | β(μ+ ν) = β(ν) for all μ ∈ QX , ν ∈ Pext} ,
we have

[β ⊗ 1,ΘX ] = 0 .(4.16)

We shall need the following result.

Proposition 4.3. We have

ΘΘ−1
X ∈

∏
λ∈Q+\Q+

X

(Uqn
−)−λ ⊗ (Uqn

+)λ.

Proof. Set ΞX := Θ−1
X = ΘX , so that ΞXΔ(u) = Δ(u) · ΞX for all u ∈ UqgX . Note

that Uqb
− projects, as a bialgebra, onto the quantum Levi subalgebra Uqn

−
XUqh.

Similarly, the latter projects on Uqh. Thus, by a double application of Radford’s
theorem and [ATL18, Prop. 4.8], we obtain a refined factorization

R = κid · ΞX ·R,

where R ∈
∏

λ∈Q+\Q+
X
(Uqn

−)−λ ⊗ (Uqn
+)λ. The result follows. �

Remark 4.4. When I is of finite type, the result is an obvious consequence of the
so-called Kirillov–Reshetikhin factorization of the quasi-R-matrix [KR90].

5. Quantum Weyl groups and integrable representations

We review the basic properties of the category of integrable Uqg-modules, in-
cluding the action of the quantum Weyl group and the associated diagrammatic
half-balances, which will be used in Section 6.
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5.1. Integrable Uqg-modules. Recall that a Uqg-module is integrable if it has a
locally finite Uqg{i}-action for all i ∈ I. We denote6 by Wint the full subcategory of
integrable objects in W , cf. Section 4.6. For ε ∈ {±}, let Oε

int := Oε ∩Wint denote
the category of integrable category Oε modules. This is a semisimple category
whose simple objects are given by highest-weight (if ε = +) or lowest-weight (if
ε = −) modules. Moreover, Oε

int is a braided tensor subcategory of Oε with braiding
induced by the action of the R-matrix.

Remark 5.1. The pullback of the Chevalley involution defines a braided tensor
equivalence O+

int → O−,op
int , where the latter category is endowed with the opposite

tensor product and braiding, cf. Section 4.12. Note that, if g is of finite type,
O+

int = O−
int and ω∗ is an autoequivalence at the level of abelian categories. However,

if dim(g) = ∞, then every non-trivial module in Oε
int is infinite-dimensional and

O+
int ∩O−

int consists only of trivial representations.

Let (Uqg)
Oε

int be the completion of Uqg with respect to category Oε
int. By restric-

tion, one gets a canonical morphism (Uqg)
Oε → (Uqg)

Oε
int . By [Lus94, Prop. 3.5.4],

the category Wint separates points. By [ATL22, E22], the same result holds for

category Oε
int, thus Uqg embeds into (Uqg)

Oε
int through (Uqg)

Oε

. In (Uqg)
O+

int , we
shall consider elements of the form

u =
∑

μ∈εQ+

cμuμ

with uμ ∈ (Uqn
ε)μ and cμ ∈ Uqb

−ε (cf. [Dr90b, Question 8.2]).

5.2. Quantum Weyl group operators. Let M ∈ Wint. For j ∈ I, we denote by

T̃j Lusztig’s operator T ′′
j,1 from [Lus94, 5.2.1] (see also [KR90,LS90]). Recall that

this is the element of (Uqg)
Wint defined on M ∈ Wint by

T̃j |Mμ
:=

∑
a,b,c∈Z≥0

a−b+c=−μ(hj)

(−1)bqb−ac
j E

(a)
j F

(b)
j E

(c)
j |Mμ

for any μ ∈ Pext. We have T̃j(Mμ) ⊆ Mμ−(a−b+c)αj
= Msj(μ) for any μ ∈ Pext.

By [Lus94, 5.2.3] T̃j is invertible. It is well-known that the operators T̃j satisfy
the generalized braid relations (2.5) and thus induce an action of BW on any inte-
grable representation [Lus94, 39.4.3]. At q = 1, this reduces to the action by triple
exponentials described in Section 3.7.

For j ∈ I, let Ad(T̃j) be the algebra automorphism of (Uqg)
Wint given by conju-

gation by T̃j . By [Lus94, 37.1], Ad(T̃j) preserves Uqg and Uqg
′. Thus, it restricts to

an automorphism of Uqg and satisfies T̃j(x ·m) = Ad(T̃j)(x) · T̃j(m) for any x ∈ Uqg

and m ∈ M ∈ Wint. Also, by [Lus94, 5.2.3 and 37.2.4] we have

(5.1) Ad(T̃j)(u) = (−1)μ(hj)q−(αj ,μ)Ad(T̃−1
j )(u) ,

for any μ ∈ Q and u ∈ (Uqg)μ.

6We used the same symbol for the analogue category of g-modules. From now on we only
consider Uqg-modules.
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5.3. Diagrammatic operators. We shall be interested in distinguished operators
arising from finite type subdiagrams X ⊆ I. In this case, there is a well-defined
element

T̃X := T̃j1 · · · T̃j� ∈ Uqg
Wint ,

where wX = sj1 · · · sj� is any reduced expression of the longest element in WX .

Note that T̃X is invertible and maps Mμ to MwX(μ), for all M ∈ Wint and μ ∈ Pext.

By the explicit formulae in [Lus94, 37.1.3], it follows that Ad(T̃X)(Ei) ∈ Uqn
+

for all i 
∈ X. Moreover, if τ ∈ AutX(A), then, by the uniqueness of the longest

element, we have τ ◦ Ad(T̃X) = Ad(T̃X) ◦ τ . Note also that

(5.2) Ad(T̃X)(Uqgμ) ⊆ UqgwX(μ)

for any μ ∈ Q. Define the algebra automorphism

ω̃ := ω ◦ Ad(Gid,ρ) = Ad(Gid,−ρ) ◦ ω,
where Ad(Gid,ρ) is given by (4.9). Note that ω̃ coincides with the automorphism tw
from [BK19, Sec. 7.1]. By [Jan96, Prop. 8.20], one gets

(5.3) Ad(T̃X)|UqgX
= ω̃−1 ◦ oiX |UqgX

,

where oiX is the opposition involution from Section 3.11. By [BK19, Lem. 7.1], ω̃

commutes with Ad(T̃i) for any i ∈ I and hence

(5.4) ω̃ ◦ Ad(T̃X) = Ad(T̃X) ◦ ω̃.
Recall that if sj1 · · · sj� = wX is a reduced decomposition, then the positive roots
in ΦX are explicitly given by

Φ+
X = {αj1 , sj1(αj2), . . . , (sj1 · · · sj�−1

)(αj�)}.
Hence, (5.2) implies

(5.5) Ad(T̃X)(u) = (−1)μ(2ρ
∨
X)q−(2ρX ,μ)Ad(T̃−1

X )(u),

for any μ ∈ Q and u ∈ (Uqg)μ. Note that this is the key property used in [BK19]
to relate intertwiners for the subalgebra Uqk to the bar involution.

5.4. Pullback of integrable modules. As mentioned above, for any j ∈ I,

Ad(T̃j) preserves Uqg and therefore it gives rise to a restriction functor on Uqg-
modules, which we refer to as its pullback. We shall need the following.

Lemma 5.2. For all j ∈ I, the pullback Ad(T̃j)
∗ preserves integrable (resp. cate-

gory Oε integrable) Uqg-modules.

Proof. Let M ∈ Wint. For any μ ∈ Pext, we have Ad(T̃j)
∗(M)μ = Msjμ, there-

fore Ad(T̃j)
∗(M) decomposes into weight spaces. We shall prove that the action

of Ad(T̃j)(Uqg{i}) is locally finite for all i ∈ I. Since the module M is inte-
grable, the subspace Uqg{i} · m is finite-dimensional for all m ∈ M . Therefore,

T̃j(Uqg{i} · T̃−1
j (m)) is finite-dimensional and Ad(T̃j)(Uqg{i}) = T̃jUqg{i}T̃

−1
j acts

locally finitely on Ad(T̃j)
∗(M). Similarly, since in this case the weight spaces are

finite-dimensional, in order to show that Ad(T̃j)
∗ maps Oε

int into Oε
int, it suffices to

prove that Uqn
ε act locally finitely on Ad(T̃j)

∗(M) for all M ∈ Oε
int, which follows

as before. �
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5.5. Diagrammatic half-balances. As mentioned in Remark 4.4, one of the main

applications of the diagrammatic operators T̃X is to provide an alternative descrip-
tion of the quasi-R-matrix ΘX . Indeed, by [KR90, Thm. 3] and [LS90] (see also
[BK19, Lem. 3.8]), we have the following coproduct formula:

ΘX = Δ(T̃−1
X ) · (T̃X ⊗ T̃X),(5.6)

and therefore

ΞX = (T̃−1
X ⊗ T̃−1

X ) ·Δ(T̃X).(5.7)

By (5.3), the square of the operator T̃X is almost central in UqgX . Thus, for fi-

nite type subdiagrams, T̃X is essentially a half-balance for UqgX up to a Cartan

correction. This is particularly simple in the formal setting, i.e., q = e�/2 ∈ C[[�]].

In this case, the operator qhi(hi+1)/2T̃si is a half-balance for the quantum sl2 sub-
algebra corresponding to αi. This is a key property, in particular in relation to
the rigidity of the representations of BW given by the quantum Weyl group op-
erators cf. [ATL15]. More generally, Kamnitzer and Tingley in [KT09] (see also
[ST09, Definition 3.9]) proved that the modified operator

(5.8) TX := Gid,ρX
· T̃X = T̃X ·Gid,−ρX

satisfies

(5.9) RX = (T−1
X ⊗ T−1

X ) ·Δ(TX),

where RX is the universal R-matrix of UqgX . Furthermore, T 2
X is central and

therefore TX is a half-balance for the diagrammatic subalgebra UqgX , cf. Section
2.7.

In the next section, we shall discuss a modification of such diagrammatic half-
balances, which depends on the choice of a generalized Satake diagram (cf. Section
6.5).

6. Classical and quantum pseudo-fixed-point subalgebras

In this section we define the notions of (classical and quantum) pseudo-fixed-
point subalgebras of Kac-Moody type, following [RV21, Sections 2 and 3]. Their
combinatorial datum is given in terms of a generalized Satake diagram, whose
definition is a generalization of the finite type theory from [RV20]. As a special
case, one recovers the fixed-point subalgebras of involutions and their quantizations,
whose theory for Kac-Moody type is developed in [KW92, BBBR95] and [Ko14],
for the classical and quantum case, respectively.

Along the way, we introduce a modification, depending upon a generalized Satake
diagram, of the diagrammatic R-matrix and longest quantum Weyl group operator.
These can be interpreted as modified diagrammatic half-balances.

6.1. Generalized Satake diagrams. Just as Kac-Moody algebras g and their
quantizations Uqg are defined in terms of the combinatorial datum (I, A), we will
define certain subalgebras of g and Uqg by adjoining some combinatorial datum
which can be seen as a decoration of the Dynkin diagram. We assume that A is a
symmetrizable indecomposable generalized Cartan matrix.
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Definition 6.1. Let X ⊆ I be of finite type and τ ∈ AutX(A) such that τ2 = idI
and τ |X = oiX . We call a node i ∈ I unsuitable for (X, τ ) if i /∈ X, τ (i) = i and
the connected component of X ∪ {i} containing i is of type A2, or, equivalently,
θ(αi) = −αi−αj and aji = −1 for some j ∈ X. We call (X, τ ) a generalized Satake
diagram if I has no unsuitable nodes for (X, τ ) and write GSat(A) for the set of
generalized Satake diagrams.

This notion arose in [He84] for g of finite type in the study of root system
involutions and associated restricted Weyl groups. In [RV20] this generalization
was found to describe coideal subalgebras of Uqg possessing a universal K-matrix
for g of finite type (for suitable parameters).

6.2. Pseudo-involutions. From now on fix (X, τ ) ∈ GSat(A) and assume that the
extended weight lattice Pext is τ -compatible. We consider the pseudo-involution

(6.1) θ = θ(X, τ ) := Ad(w̃X) ◦ ω ◦ τ ∈ Aut(g),

cf. [KW92, 4.38-4.39] and [RV21, (2.26)]. From the fact that θ stabilizes h it
follows that the dual map of θ, θ∗ ∈ GL(h∗) permutes root spaces: θ(gα) = gθ∗(α).
Therefore θ∗ preserves Φ and hence also Q. Since Pext is τ -compatible, θ∗ also
preserves Pext.

The terminology “pseudo-involution” is motivated by the fact that θ has proper-
ties similar to an honest Lie algebra involution. Namely, θ2(gα) = gα for all α ∈ Φ
and θ restricts to h and h′ as an involution, namely −wX ◦ τ . The dual map θ∗ is
also given by the formula −wX ◦ τ and therefore we also denote it by θ henceforth.
Because the three automorphisms Ad(w̃X), ω and τ commute, see [Ko14, Prop. 2.2
(3)], it follows from (3.4) that

θ2|gα
= (−1)α(2ρ

∨
X)idgα

for all α ∈ Φ.

The above statements are satisfied for any pair (X, τ ) with X of finite type
and τ ∈ AutX(A) involutive. For the following property of θ we also require the
condition τ |X = oiX . Combining (3.3) and (6.1) we obtain

(6.2) θ|〈gX ,hθ〉 = id〈gX ,hθ〉

and hence

(6.3) (τ − id) ◦ (θ − id) = 0

as an identity in EndC(h) or EndC(h
∗), see [Ko14, Equation (5.7)]. From (6.2)–(6.3)

it follows that

(h′)θ = hX ⊕
⊕
i�∈X

i<τ(i)

C(hi − hτ(i)) and (h′)−θ =
⊕
i�∈X

i≤τ(i)

C(hi + hτ(i)),

so that the number of τ -orbits in I\X equals dim
(
(h′)−θ

)
, which we refer to as

restricted rank of (X, τ ). Note that hθ ⊆ h′ if cork(A) � 1, in particular if A is of
finite or affine type.

6.3. Comparison with standard Satake diagrams. One can always choose a
group homomorphism s ∈ Homgrp(Q, {1,−1}) such that

s(αi) = 1 if i ∈ X or τ (i) = i,

s(ατ(i)) = (−1)αi(2ρ
∨
X)s(αi) otherwise

(6.4)
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(see e.g., [BK19, Eqns. (5.1) and (5.2)]) and consider with the modified automor-
phism θ = Ad(s) ◦ θ. By (3.4), for any i ∈ I, one has

θ
2|gαi

= s(αi)s(θ(αi))Ad(w̃X)2|gαi
=

s(αi)

s(ατ(i))
(−1)αi(2ρ

∨
X)idgαi

.

It follows that θ is an involution if (X, τ ) is a Satake diagram, i.e., if, in addition to
the conditions in Definition 6.1, it holds αi(ρ

∨
X) ∈ Z for any i 
∈ X such that τ (i) = i

(cf. [Ko14, Definition 2.3]). One checks that if i ∈ I is an unsuitable node for (X, τ ),
then i 
∈ X, τ (i) = i, and αi(ρ

∨
X) = − 1

2 . Thus, in the case of Satake diagrams,
there are no unsuitable nodes and every Satake diagram is a generalized Satake
diagram. Satake diagrams are known to describe and, up to a natural equivalence,
classify involutive automorphisms of g of the second kind, see [Ko14, App. A] and
cf. [KW92, 5.33] and [BBBR95, 4.4-4.5].

6.4. Pseudo-fixed-point subalgebras. The introduction of unsuitable nodes in
Definition 6.1 is motivated by the following generalization of fixed-point subalgebras
with respect to an involutive Lie algebra automorphism. For i ∈ I�, � ∈ Z>0, set

fi :=
(
ad(fi1) ◦ · · · ◦ ad(fi�−1

)
)
(fi�)

and consider the vector space gi,θ = spanC
{
fi, θ(fi)

}
. Choose a subset J ⊂

∪�∈Z>0
I� such that the set {fi | i ∈ J } is a basis of n−. Note that, for all i ∈ J , we

have θ(fi) = fi, if i ∈ X� for some � > 0, and θ(fi) ∈ n+ otherwise. Hence gi,θ is
one-dimensional if i ∈ X� for some � > 0 and two-dimensional otherwise. We have
the following decomposition of g as an ad(hθ)-module:

(6.5) g = n
+
X ⊕ hθ ⊕

⊕
i∈J

gi,θ ⊕ h−θ.

Let γ = (γi)i∈I ∈ (C×)I such that γi = 1 if i ∈ X. We denote by the same symbol
γ the element of Homgrp(Q,C

×) given by γ(αi) = γi. Set

θγ := Ad(γ) ◦ θ ∈ Aut(g).

Then θγ |h = θ|h = −wX ◦τ , θγ(gα) = gθ(α) and θγ |〈gX ,hθ〉 = id〈gX ,hθ〉 for all α ∈ Φ.

If θγ is indeed involutive, the decomposition of the fixed-point subalgebra gθγ will
be supported in the first three components of (6.5) and its projection onto g{i},θ is

C(fi + θγ(fi)) = C(fi + γiθ(fi)).

Definition 6.2 naturally generalizes fixed-point subalgebras of involutive algebra
automorphisms of the second kind, cf. [RV20, Definition 2 and Rmk. 3 (i)].

Definition 6.2. Suppose that X ⊆ I is of finite type and that τ ∈ AutX(A) is
an involution satisfying τ |X = oiX ; furthermore suppose that γ ∈ (C×)I such that
γi = 1 for all i ∈ X. In terms of (6.1), we define the pseudo-fixed-point subalgebra

k = kγ(X, τ ) = 〈gX , hθ, {bi | i 
∈ X}〉 = 〈n+X , hθ, {bi | i ∈ I}〉,

where

bi = bi;γi
:=

{
fi if i ∈ X,

fi + γiθ(fi) otherwise.
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The subalgebra k is closely related to the fixed-point subalgebra gθ as we explain
in the following. Note that k ∩ gθ contains 〈gX , hθ〉 and bi ∈ g{i},θ. It is natural to
require k to be supported in the first three components of (6.5) and to be such that
the projection on g{i},θ is Cbi. Consider

Ieq := {i ∈ I | i < τ (i), (θ(αi), αi) = 0}
= {i 
∈ X | i < τ (i), ∀j ∈ X ∪ {τ (i)} aij = 0},

Γ := {γ ∈ (C×)I | ∀i ∈ X γi = 1 and ∀i ∈ Ieq γi = γτ(i)}.
(6.6)

The following key result motivates the definition of a generalized Satake diagram.
Set bi :=

(
ad(bi1) ◦ · · · ◦ ad(bi�−1

)
)
(bi�) for i ∈ I�.

Theorem 6.3 ([RV21, Thm. 3.8]). Let X ⊆ I be of finite type, τ ∈ AutX(A) an
involution satisfying τ |X = oiX , and γ ∈ (C×)I such that γi = 1 for all i ∈ X. The
following statements are equivalent:

(i) (X, τ ) ∈ GSat(A) and γ ∈ Γ;
(ii) k = n

+
X ⊕ hθ ⊕

⊕
i∈J Cbi as ad(hθ)-modules;

(iii) k ∩ h = hθ.

Note that from (ii) we deduce that k projects onto the first three summands in
the decomposition (6.5). Moreover, if cork(A) � 1, then k ⊆ g′, since in this case
hθ ⊆ h′.

As in [Ko14, Cor. 2.9], the generators of the universal enveloping algebra
U(kγ(X, τ )) corresponding to the bi can be further modified by adding a scalar
term, yielding an additional tuple of parameters. A similar phenomenon occurs in
the q-deformed case discussed in [Le99, Rmk. 5.10] and [Ko14], yielding however a
non-trivial deformation.

6.5. Modified diagrammatic half-balances. As before, let A be a symmetriz-
able indecomposable generalized Cartan matrix, (X, τ ) ∈ GSat(A), and Pext a τ -
compatible extended weight lattice.

Note that Ad(w̃X) and ω commute as elements of Aut(g) and Aut(Ug). By

(5.4), the quantum analogues Ad(T̃X) and ω̃ also commute. However, ω̃ is not an

involution and the interaction of Ad(T̃X) and ω̃ with the quasitriangular bialgebra
structure of Uqg is not optimal. On the other hand, the involution ω ∈ Autalg(Uqg)
is a coalgebra antiautomorphism and does interact nicely with the quasitriangular
bialgebra structure. Similarly, one can use instead the element TX as in (5.8),
which commutes with the undeformed ω and resolves the diagrammatic universal
R-matrix (5.9).

Modifying the definition of TX , we introduce another correction of the element

T̃X which enjoys similar properties and is explicitly tailored around Uqkγ,σ .

Definition 6.4. The modified diagrammatic half-balance associated to the gener-
alized Satake diagram (X, τ ) is the operator on integrable UqgX -modules

TX,τ := Gθ(X,τ),ρX
T̃X = T̃XGθ(X,τ),−ρX

∈ (UqgX)Wint ,

where θ(X, τ ) is the pseudo-involution associated to (X, τ ) and the function
Gθ(X,τ),ρX

on Pext is defined in (4.6).
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Note that TX,τ is an invertible element in (Uqg)
Wint and TX,τ (Mλ) ⊆ MwX (λ) for

any M ∈ Wint and λ ∈ Pext.

Remark 6.5. If I is of finite type and X = I, this coincides with the diagrammatic

half-balance (5.8) from [KT09] (cf. Section 5.5). Similar modifications of T̃X also
appeared in [Ko14, Sec. 4.4] and [CM18, Sec. 4.2 and App. A].

The algebra automorphism Ad(TX,τ ) ∈ Autalg(Uqg) satisfies several useful prop-
erties, which motivate the definition of TX,τ .

Lemma 6.6.

(i) The analogue of (5.2) holds:

Ad(TX,τ )(Uqgλ) ⊆ UqgwX(λ) ,(6.7)

for any λ ∈ Q .
(ii) The analogue of (5.3) holds:

Ad(TX,τ )|UqgX
= Ad(Gθ−id,ρX−ρ) ◦ ω ◦ oiX |UqgX

= ω ◦ oiX |UqgX
.(6.8)

(iii) The analogue of (5.4) holds:

ω ◦ Ad(TX,τ ) = Ad(Gθ−id,ρ−ρX
T̃X) ◦ ω̃ = Ad(TX,τ ) ◦ ω .(6.9)

(iv) The analogue of (5.5) holds:

Ad(TX,τ )(u) = (−1)λ(2ρ
∨
X)Ad(T−1

X,τ )(u) ,(6.10)

for any λ ∈ Q and u ∈ (Uqg)λ.

Proof. We note that (6.7) and (6.8) follow, respectively, from (5.2) and (5.3). The
properties (3.5) and (5.4) imply that ω and Ad(TX,τ ) commute, yielding (6.9).
Finally, (6.10) follows from (5.5). �

6.6. Modified diagrammatic R-matrices. In analogy with Section 5.5, the el-
ement TX,τ can be thought of as a half-balance resolving a modified diagrammatic
universal R-matrix (cf. Section 2.7). Note that, since Pext is τ -compatible, the map
θ = θ(X, τ ) = −wX ◦ τ ∈ End(h∗) restricts to Pext and is self-adjoint.

Definition 6.7. The modified diagrammatic R-matrix corresponding to (X, τ ) is
the operator

RX,τ := κθ(X,τ)ΞX ,

where κθ(X,τ) is defined as in (4.6).

The definition is motivated by the following result.

Lemma 6.8.

(i) The intertwining identity holds:

RX,τΔ(u) = Δop(u)RX,τ(6.11)

for any u ∈ UqgX .
(ii) The following coproduct identities hold:

RX,τ = (T−1
X,τ ⊗ T−1

X,τ ) ·Δ(TX,τ ) ,(6.12)

and

(RX,τ )21 = Δ(TX,τ ) · (T−1
X,τ ⊗ T−1

X,τ ) .(6.13)
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Proof. We first prove (6.12). Since θ(X, τ ) and wX commute, as a consequence of
(4.8) and (5.7) we have, as required,

RX,τ = κθ(X,τ) · (T̃−1
X ⊗ T̃−1

X ) ·Δ(T̃X)

= (T̃−1
X ⊗ T̃−1

X ) · κθ(X,τ) ·Δ(T̃X)

=
(
(Gθ(X,τ),ρX

T̃X)−1 ⊗ (Gθ(X,τ),ρX
T̃X)−1

)
·Δ(Gθ(X,τ),ρX

T̃X)

= (T−1
X,τ ⊗ T−1

X,τ ) ·Δ(TX,τ ).

Observing that θ(X, τ ) fixes h∗X pointwise and recalling that θ(X, τ ) preserves roots,
we obtain θ(X, τ )|QX

= idQX
, so that

κθ(X,τ)Δ(u) = Δop(u)κθ(X,τ)

for all u ∈ UqgX . Finally, (6.11) follows from (4.10). Combining (6.12) and (6.11),
we obtain (6.13). �

6.7. Quantum pseudo-involutions. We have two triples of commuting algebra

automorphisms, i.e., (Ad(T̃X), ω̃, τ ) and (Ad(TX,τ ), ω, τ ), both of which specialize to
the triple (Ad(w̃X), ω, τ ) of algebra automorphisms of Ug providing a factorization
of the pseudo-involution θ. Therefore, we obtain two distinct quantum analogues
of θ (see also Remark 6.13):

(6.14) θ̃q = θ̃q(X, τ ) := Ad(T̃X)◦ω̃◦τ and θq = θq(X, τ ) := Ad(TX,τ )◦ω◦τ.

By [Ko14, Thm. 4.4 (1-2)], the map θ̃q preserves certain nice properties of θ, listed
in Lemma 6.9. The same properties remain for θq, thanks to the relation

(6.15) θ̃q = Ad(Gid−θ,ρX−ρ) ◦ θq = θq ◦ Ad(Gid−θ,ρ−ρX
).

Note that (6.15) follows from (6.9) and the observation that Ad(Gid−θ,ρX−ρ) fixes
UqgX pointwise (a consequence of the invariance ofGid−θ,ρX−ρ under the translation
action of QX on Pext). Therefore, we have the following

Lemma 6.9.

(i) For any λ ∈ Q, θ̃q((Uqg)λ) = θq((Uqg)λ) = (Uqg)θ(λ).

(ii) For any h ∈ Q∨
ext, θ̃q(th) = θq(th) = tθ(h).

(iii) For any λ ∈ Q, θ̃q(tλ) = θq(tλ) = tθ(λ) .

In particular, Uqh and Uqg
′ are both θ̃q-stable and θq-stable and

(6.16) θ̃q(u) = u = θq(u) ,

for any u ∈ UqgXUqh
θ.

Note that (6.16) follows immediately from (5.3) and (6.8), since τ |X = oiX .

Remark 6.10. In summary, we have introduced in parallel two series of data(
ω̃, T̃X ,ΞX , θ̃q(X, τ )

)
←→

(
ω, TX,τ , RX,τ , θq(X, τ )

)
.

The data on the left are predominant in [BK19] and are crucial in the construction
of the quasi-K-matrix. However, once the quasi-K-matrix has been constructed, we
will mainly work with their counterparts on the right, which enjoy more convenient
relations with the coproduct structure.
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6.8. Quantum pseudo-fixed-point subalgebras. Together with the subset Ieq
of I\X defined in (6.6), we also consider

Ins := {i ∈ I | θ(αi) = −αi} = {i 
∈ X | τ (i) = i, ∀j ∈ X aij = 0}.
Accordingly, we consider the following sets of parameter tuples:

Γq = Γq(X, τ ) := {γ ∈ (F×)I | ∀i ∈ X γi = 1 and ∀i ∈ Ieq γi = γτ(i)},
Σq = Σq(X, τ ) :=

{
σ ∈ FI

∣∣ ∀i ∈ I\Ins σi = 0 and ∀(i, j) ∈ I2ns aij ∈ 2Z or σj = 0
}
.

Definition 6.11. Let (X, τ ) ∈ GSat(A) and (γ,σ) ∈ Γq × Σq. For i ∈ I we set

(6.17) Bi = Bi;γi,σi
(X, τ ) :=

{
Fi if i ∈ X,

Fi + γiθq(X, τ )(Fi) + σit
−1
i otherwise.

The quantum pseudo-fixed-point subalgebra corresponding to (X, τ,γ,σ) is the sub-
algebra of Uqg given by

Uqk = Uqkγ,σ(X, τ ) = 〈UqgX , Uqh
θ, {Bi | i 
∈ X}〉 = 〈Uqn

+
X , Uqh

θ, {Bi | i ∈ I}〉.

The main result of the present paper is that, up to completion, Uqk is equipped
with a universal K-matrix. Lemma 6.12 compares our expression of the generators
with that used in [Ko14] and [BK19].

Lemma 6.12. Let i 
∈ X. Then

(6.18) Bi = Fi +Gθ,−ρX
(αi)γiθ̃q(X, τ )(Fiti)t

−1
i + σit

−1
i .

Proof. In the proof we write θ instead of θ(X, τ ) for simplicity, and similarly for θ̃q
and θq. We have

θq(Fi) = −Ad(Gθ,ρX
T̃X)(Eτ(i))

= −Gθ,ρX
(wX(ατ(i)))Ad(T̃X)(Eτ(i))tθ(wX(ατ(i)))

= Gθ,−ρX
(αi)θ̃q(Fiti)t

−1
i

by virtue of Lemma 4.2(iii) and the definitions (6.7). Now (6.18) follows as an
immediate consequence. �

Remark 6.13. Note that the map θ(X, τ ) as defined in [Ko14,BK19] differs from
ours by having an extra factor Ad(s). This guarantees that θ(X, τ ) is an involutive
automorphism of g. Nevertheless, its quantum analogue θq(X, τ ) is not an involutive
automorphism of Uqg. Moreover, it follows from (6.18) that, if (X, τ ) is a Satake
diagram, our expression for Bi corresponds precisely to that used in [BK19, (5.8)]
upon identifying, for any i ∈ I\X,

γi = s(ατ(i))G−θ(X,τ),ρX
(αi)ci,

where s ∈ Homgrp(Q, {1,−1}) is constrained by (6.4).

6.9. Structure of Uqk. By [Ko14, Prop. 5.2], Uqk is a right coideal of Uqg; the
proof of this statement requires τ |X = oiX but not the condition that (X, τ ) has
no unsuitable nodes, or anything stronger. More precisely, by [Ko14, Eq. (5.5)], we
have

(6.19) Δ(Bi)−Bi ⊗ t−1
i ∈ UqgXUqh

θ ⊗ Uqg.
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Furthermore, it follows from [Ko14, Prop. 6.2] that

(6.20) Uqk ∩ Uqh = Uqh
θ,

providing a quantum analogue of the identity k ∩ h = hθ. If cork(A) � 1 (in
particular if A is of affine type), then Uqh

θ ⊆ Uqh
′. Combining with (6.20), we

obtain Uqk ⊆ Uqg
′. These statements follow from the analysis of the expressions

Serij(Bi, Bj) in [Ko14, Sec. 5.3] for (γ,σ) ∈ Γq × Σq. This analysis remains valid
for any generalized Satake diagram.

7. The quasi-K-matrix

In this section, we review the construction of the so-called quasi -K-matrix, which
is the essential ingredient in the construction of universal K-matrices for quantum
groups. We present a more general and simpler construction as we explain below.

In [BW18,ES18,BK15,BK19], the existence of the internal bar involution on the
coideal subalgebra Uqk relies on certain constraints on the parameters γ and σ (see
e.g [BK19, (5.16)-(5.17)]). These constraints carry over to the quasi-K-matrix in
[BW18,BK19], since its definition relies on the internal bar involution. In this sec-
tion we provide a generalized construction of the quasi-K-matrix, valid for quantum
symmetric pairs of Kac-Moody type, which does not rely on the existence of the
internal bar involution and does not require special constraints on the parameters
(Theorem 7.3). In fact, as shown by Kolb in [Ko21], this in turn can be used to
define the internal bar involution for Uqk.

7.1. Locally inner automorphisms. We recalled in Section 4 that the construc-
tion of the quasi-R-matrix due to Lusztig essentially amounts to producing a solu-
tion to the following problem: find an element X in Uqg

⊗2 (or rather in a suitable

completion) such that the subalgebras Δ
(
Uqg

)
, Δ(Uqg) ⊂ Uqg

⊗2 are pointwise re-
lated by conjugation by X. Note that the two subalgebras do not coincide. There-
fore, if the solution X exists, it is certainly non-trivial. This is indeed the defining
intertwining equation satisfied by X = Ξ (4.10).

This suggests the notion of locally inner automorphisms, that is, global auto-
morphisms of algebras, which become inner (or rather topologically inner) when
restricted to a distinguished subalgebra. We shall consider the following situation.
Let A ⊆ B ⊆ C be a tower of (unital associative) algebras over a field F. Let A0

be a given generating set for A. Suppose we have a function f : A0 → B and an
element c ∈ C× such that f(a0) = Ad(c)(a0) for all a0 ∈ A0. We extend f to an
algebra embedding A → C by setting f(a) = Ad(c)(a). Since every element of A
can be written as a linear combination of products of the elements of A0, it follows
that f maps A into B. Finally, restricting the codomain of f to the subalgebra
f(A), we obtain an algebra isomorphism between A and f(A). Furthermore the set
f(A0) = {Ad(c)(a0) | a0 ∈ A0} is clearly a generating set of f(A).

7.2. The case of the bar involution. Proving that the bar involution is a locally
inner automorphism is the problem at the origin of the quasi-K-matrix. We shall
consider the situation described above with A = Uqkγ,σ(X, τ ), B = Uqg and C =

(Uqg)
O+

for (X, τ ) ∈ GSat(A) and (γ,σ) ∈ Γq ×Σq. The set A0 will simply be the
canonical set of generators UqgXUqh

θ∪{Bi;γi,σi
| i 
∈ X} of Uqkγ,σ. We choose f |A0

as follows:

f |UqgXUqh
θ = idUqgXUqh

θ , and f(Bi;γi,σi
) = Bi;γ′

i,σ
′
i

(i 
∈ X),
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where in addition to the parameter tuples γ = (γi)i∈I ∈ Γq, σ = (σi)i∈I ∈ Σq, we
have chosen alternative tuples γ′ = (γ′

i)i∈I ∈ Γq, σ
′ = (σ′

i)i∈I ∈ Σq, to be specified
later, see (7.3). The element c will be given by an element

Υ = Υγ,σ(X, τ ) ∈ (Uqn
+)O

+ ⊂ (Uqg)
O+

which we will construct in the following.
The condition Ad(Υ)(u) = f(u) for all u ∈ UqgXUqh

θ ∪ {Bi;γi,σi
| i 
∈ X} is

equivalent to requiring

ΥBi;γi,σi
= Bi;γ′

i,σ
′
i
Υ and Υu = uΥ(7.1)

for i ∈ I\X and u ∈ UqgXUqh
θ. By the above discussion, we obtain that f(Uqkγ,σ)

is an algebra isomorphic to Uqkγ,σ, generated by UqgXUqh
θ and {Bi;γ′

i,σ
′
i
| i 
∈ X}.

Since the bar involution is an algebra automorphism of Uqg preserving UqgXUqh
θ,

we have f(Uqkγ,σ) = Uqkγ′,σ′ .

Remark 7.1. Similarly to the case of the quasi-R-matrix, we shall see in the following
sections that f(Uqk) = Ad(Υ)(Uqk) and Uqk are different subalgebras of Uqg, for
generic values of (γ,σ). Define the internal bar involution of Uqkγ,σ to be the
composition

(7.2) · B
:= · ◦ f.

On the subbialgebra UqgXUqh
θ this coincides with the usual bar involution (note

that this map preserves UqgXUqh
θ). The condition (γ′,σ′) = (γ,σ) imposed in

[BK15, BK19] implies that the internal bar involution fixes Bi;γi,σi
for all i 
∈ X.

Note that ibid. it is furthermore assumed that · B preserves Uqkγ,σ. Detailed
information on the presentation of Uqkγ,σ, in particular the quantum Serre relations

satisfied by the generators Bi, is then necessary to deduce that · B is indeed an
algebra automorphism of Uqkγ,σ, cf. [BK19, Thm. 5.6 (1)].

Our approach allows instead to completely avoid the use of the internal bar
involution, and hence does not require detailed results on the presentation of Uqkγ,σ.
Indeed, we show below that the proofs in [BK19, Sections 6 and 9.2] are independent
of the condition (γ′,σ′) = (γ,σ). Thus, we obtain a quasi-K-matrix in a more
general setting. In [Ko21] this observation is further exploited to prove the existence
a fortiori of the internal bar involution in the case (γ′,σ′) = (γ,σ).

7.3. The involution on the set of parameters. Define a map ′ on FI via

(7.3) (x′)i = x′
i := (−1)αi(2ρ

∨
X)xτ(i)

for x ∈ FI and i ∈ I.

Lemma 7.2. The map ′ defined by (7.3) is an involution which preserves Γq and
Σq. Moreover, for the latter, it maps σ to σ.

Proof. Note that ′ restricts to (F×)I\X . From τ ∈ AutX(A) it follows that (γ′′)i =
γi and that γ′

i = γ′
τ(i) if and only if γi = γτ(i), for all i 
∈ X, which proves the claim

for Γq. The claim for Σq follows immediately from the fact that σi = 0 if τ (i) 
= i
or αi(ρ

∨
X) 
= 0. �
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7.4. Parameters as elements in (Uqh)
O+

int . By a mild abuse of notation, given
x ∈ (F×)I , we shall denote by the same symbol the corresponding character of
the root lattice x ∈ Homgrp(Q,F

×) given by x(αi) = xi for i ∈ I. By further
abuse of notation, by the same symbol we shall denote an arbitrary extension to a
group homomorphism of Pext. Note that such extensions exist since Q ⊂ Pext is an
embedding of abelian groups and F× is a divisible abelian group. Finally, we will

denote by x also the corresponding element of (Uqh)
O+

int defined as in Section 4.8.

In the following, we shall consider the tuples γ′, γ, and γ−1 = (γ−1
i )i∈I as elements

in (Uqh)
O+

int .

7.5. The quasi-K-matrix. We state the main result of this section. It is conve-
nient to rewrite the system (7.1). In order to be able to apply Lusztig’s theory of
skew derivations directly, we write

Υγ,σ = Xγ,σ

for some X = Xγ,σ ∈ (Uqn
+)O

+

. We note that the system (7.1) is equivalent to

XBi;γi,σi
= Bi;γ′

i,σ
′
i
X and Xu = uX(7.4)

for i 
∈ X and u ∈ UqgXUqh
θ (note that the bar involution preserves UqgXUqh

θ).
The rest of the section is devoted to the construction of the quasi-K-matrix X

based on its intertwining properties and the computation of its coproduct.

Theorem 7.3. For all (γ,σ) ∈ Γq × Σq we have the following two results:

(i) There is a unique operator X = Xγ,σ ∈ (Uqn
+)O

+

of the form

X =
∑

λ∈(Q+)−θ

Xγ,σ;λ

such that Xγ,σ;0 = 1, Xγ,σ;λ ∈ (Uqn
+)λ and the system (7.4) is satisfied.

(ii) The following coproduct identity holds:

Δ(X) = (X⊗ 1) · (Ad(γ′) ◦ θ−1
q ⊗ id)(Θ) · Ad(κid)(1⊗ X) ·Θ−1

X .

This is a generalization of analogue results from [BK19]. The proof of (i) (The-
orem 7.14) is carried out in Sections 7.6–7.10. The proof of (ii) (Theorem 7.17) is
carried out in Sections 7.11–7.14.

Remark 7.4. We follow the same approach used in [BK19, Sec. 6]. The results for
arbitrary values of σ ∈ Σq are obtained from the special case σ = 0 (Theorem
7.10). This relies on the arguments given in [DK19, Sec. 3.5] and simplifies the
computations significantly.

7.6. The intertwining property. The key ingredient to prove the existence of
the intertwiner is the use of the so-called Lusztig skew derivations. To this end, we
shall first find an equivalent formulation of the intertwining system.

Lemma 7.5. For all i 
∈ X,

Ad(TX,τ )(Eτ(i)) = (−1)αi(2ρ
∨
X)Ad(T−1

X,τ )(Eτ(i)),(7.5)

Ad(tiTX,τ )(Eτ(i)) = q−(θ(αi),αi)Ad(TX,τ )(Eτ(i)).
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Moreover,

Bi;γi,σi
= Fi −

(
ζi Ad(T̃

−1
X )(Eτ(i))− σi

)
ti,

Bi;γ′
i,σ

′
i
= Fi − t−1

i

(
ζτ(i) Ad(T̃X)(Eτ(i))− σi

)
,(7.6)

where

ζi :=

{
(−1)αi(2ρ

∨
X)G−θ,−ρX

(αi)γi = G−θ,−ρX
(αi)γ

′
τ(i) if i 
∈ X,

0 if i ∈ X.

Proof. It is enough to observe that (7.5) follows from (6.10) and the defining rela-
tions of Uqg. Then, the explicit formula (6.17) implies (7.5). �

It follows that (7.4) together with the condition XFi = FiX (i ∈ X) is equivalent
to the condition[

X, Fi

]
= X

(
ζi Ad(T̃

−1
X )(Eτ(i))− σi

)
ti − t−1

i

(
ζτ(i) Ad(T̃X)(Eτ(i))− σi

)
X,

for any i ∈ X.

7.7. Skew derivations. We recall some basic facts from [Lus94] and [Jan96]. Let
i ∈ I and note that Ad(ti) is an algebra automorphism of Uqn

+. Following [Lus94,

1.2.13], let D
(�)
i , D

(r)
i ∈ EndF(Uqn

+) be the unique linear maps (denoted ri and ir

in ibid.) such that D
(�)
i (Ej) = δij = D

(r)
i (Ej) for any j ∈ I and

(7.7)

D
(r)
i (uu′)=D

(r)
i (u)Ad(ti)(u

′)+uD
(r)
i (u′), D

(�)
i (uu′)=D

(�)
i (u)u′+Ad(ti)(u)D

(�)
i (u′)

for any u, u′ ∈ Uqn
+. They satisfy D

(�)
i ((Uqn

+)λ) ⊆ (Uqn
+)λ−αi

⊇ D
(r)
i ((Uqn

+)λ)
for all λ ∈ Q+ and

(7.8) op ◦D(r)
i = D

(�)
i ◦ op,

where op is the unique algebra antiautomorphism of Uqg which fixes each Ei and
Fi (i ∈ I) and inverts each th (h ∈ Q∨

ext). Recall that the following properties hold.

(i) By [Lus94, Prop. 3.1.6],

(7.9) [u, Fi] =
D

(r)
i (u)ti − t−1

i D
(�)
i (u)

qi − q−1
i

for any u ∈ Uqn
+.

(ii) By [Lus94, Lem. 1.2.15 (a)],

u = 0 ⇔ ∀i ∈ I D
(r)
i (u) = 0 ⇔ ∀i ∈ I D

(�)
i (u) = 0

for any u ∈ Uqn
+
λ with λ ∈ Q+\{0}.

(iii) By [Jan96, Lem. 10.1],

D
(r)
i ◦D(�)

j = D
(�)
j ◦D(r)

i

for any i, j ∈ I.
(iv) By [Lus94, 1.2.13],

(7.10) 〈Fiv, u〉 =
1

q−1
i − qi

〈v,D(�)
i (u)〉 and 〈vFi, u〉 =

1

q−1
i − qi

〈v,D(r)
i (u)〉

for any u ∈ Uqn
+ and v ∈ Uqn

−.
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Note that the maps D
(�)
i , D

(r)
i naturally extend to (Uqn

+)O
+

(roughly, the latter
consists of formal series in Uqn

+ converging on category O+ modules, cf. Sec-
tion 4.6).

7.8. The intertwining property in terms of skew derivations. We shall use
the skew derivations to provide an equivalent description of the system (7.4). By

(7.9) and the linear independence of ti and t−1
i over (Uqn

+)O
+

, X is a solution of

(7.4) if and only if it is a solution of the following system in (Uqn
+)O

+

:

D
(r)
i (X) = (qi − q−1

i )X
(
ζi Ad(T̃

−1
X )(Eτ(i))− σi

)
,(7.11)

D
(�)
i (X) = (qi − q−1

i )
(
ζτ(i) Ad(T̃X)(Eτ(i))− σi

)
X,

for any i ∈ I. For λ ∈ Q, let Xλ be the projection of X on the root space (Uqn
+)λ

with respect to the root space decomposition Uqn
+ =

⊕
λ∈Q(Uqn

+)λ. Then, Xλ = 0

if λ 
∈ Q+ and we get the following result.

Lemma 7.6. Let X ∈ (Uqn
+)O

+

be an invertible element. Then, X is a solution
of (7.4) if and only if

D
(r)
i (Xλ) = (qi − q−1

i )
(
ζi Xλ−αi+θ(αi)Ad(T̃

−1
X )(Eτ(i))− σiXλ−αi

)
,(7.12)

D
(�)
i (Xλ) = (qi − q−1

i )
(
ζτ(i) Ad(T̃X)(Eτ(i))Xλ−αi+θ(αi) − σi Xλ−αi

)
(7.13)

for any λ ∈ Q+ and i ∈ I.

We normalize X by setting X0 = 1. In order to show that the system (7.12)–
(7.13) has a solution, we rely on [BK19, Prop. 6.3].

Proposition 7.7. Let μ ∈ Q+ be a positive weight of height � 2 and A
(r)
i , A

(�)
i ∈

(Uqn
+)μ−αi

, for i ∈ I, a collection of given elements.

(i) There exists u ∈ (Uqn
+)μ such that, for any i ∈ I,

(7.14) D
(r)
i (u) = A

(r)
i and D

(�)
i (u) = A

(�)
i

if and only if, for any i, j ∈ I, we have

(7.15) D
(r)
i (A

(�)
j ) = D

(�)
j (A

(r)
i )

and, for i 
= j,

(7.16)
q−1
j − qj

qi − q−1
i

1−aij∑
s=1

(−1)s
(
1− aij

s

)
qi

〈
F

1−aij−s
i FjF

s−1
i , A

(r)
i

〉
=

〈
F

1−aij

i , A
(r)
j

〉
.

(ii) If the system (7.14) has a solution, it is unique.

Remark 7.8. If X =
∑

λ∈Q Xλ with X0 = 1 is a solution of the system (7.12)–(7.13),
then so is op(X)|γi↔γτ(i)

. Therefore, by uniqueness, op(X)|γi↔γτ(i)
= X.

Finally, proceeding exactly as in [BK19, case (3) ⇒ (4) of the proof of Prop.
6.1], we get the following result.

Proposition 7.9. Let X ∈ (Uqn
+)O

+

be an invertible solution of (7.12). Then,
Xλ = 0 unless λ ∈ (Q+)−θ, i.e., X has the form

X =
∑

λ∈(Q+)−θ

Xγ,σ;λ

with Xγ,σ;λ ∈ (Uqn
+)λ. Moreover, [X, u] = 0 for any u ∈ Uqn

+
XUqh

θ.
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7.9. The case σ = 0. We prove the result in the case σ = 0. Namely, we have
the following.

Theorem 7.10. For any γ ∈ Γq and σ = 0, there exists a unique solution X of
the system (7.4) of the form X =

∑
μ∈(Q+)−θ Xμ with X0 = 1 and Xμ ∈ (Uqn

+)μ.

Note that, by uniqueness, X = X−1|γ �→γ′ . The proof is carried out in Sections
7.9.1–7.9.2.

7.9.1. The recursive construction of X through Proposition 7.7(i) relies on the fol-
lowing technical result.

Lemma 7.11.

(i) For any i 
∈ X,
(
D

(r)
i ◦ Ad(T̃X)

)
(Ei) is fixed by op ◦ τ .

(ii) Let i, j ∈ I such that i 
= j and consider λij := (1 − aij)αi + αj ∈ Q+. If
θ(λij) = −λij, then either τ (j) = i ∈ Ieq ∪ τ (Ieq) or i, j ∈ Ins.

(iii) Let i, j ∈ I such that i 
= j and consider λij := (1 − aij)αi + αj ∈ Q+. If
θ(λij) = −λij, then either τ (j) = i ∈ Ieq ∪ τ (Ieq) or i, j ∈ Ins.

Proof. (i) The statement that it is fixed by op◦τ is [BW21, Thm. 4.1], the proof
of which does not use the condition αi(ρ

∨
X) ∈ Z, so that it holds for all pairs (X, τ )

such that X ⊆ I of finite type, τ ∈ AutX(A) is involutive and τ |X = oiX .
(ii) This is [BK19, Lem. 6.4]. Note that in the proof nothing stronger than

the defining condition of GSat(A) is used, namely that there exists no pair (i, j) 
∈
X×X such that τ (i) = i, the connected component of X neighbouring i is {j} and
aij = −1 = aji.

(iii) This is [BK19, Lem. 6.5]. Recall that we assumed σj = 0 at the start of
this section.

�

7.9.2. We fix μ ∈ Q+ and assume that for all λ < μ we have constructed elements
Xλ ∈ (Uqn

+)λ satisfying X0 = 1 and, for all i ∈ I, (7.12)–(7.13). Define, for all
i ∈ I, the following elements in (Uqn

+)μ−αi
:

A
(r)
i := (qi − q−1

i )ζiXμ−αi+θ(αi)Ad(T̃
−1
X )(Eτ(i)),(7.17)

A
(�)
i := (qi − q−1

i )ζτ(i) Ad(T̃X)(Eτ(i))Xμ−αi+θ(αi).(7.18)

We will now prove (7.15)–(7.16) for the above choices of A
(�)
i , A

(r)
i .

Proposition 7.12. With A
(�)
i , A

(r)
i as in (7.17)–(7.18), the condition (7.15) is

satisfied.

Proof. We follow the proof of [BK19, Lem. 6.7]. The crucial observation is that,

for all i, j ∈ I, D
(r)
j (Ad(T̃X)(Eτ(i))) = 0 unless j = i, see [BK19, Equation (5.10)],

which goes back to [Ko14, Lem. 7.2]. As a consequence, by the defining property of

D
(r)
i and the induction hypothesis most terms in D

(r)
i (A

(�)
j ) and D

(�)
j (A

(r)
i ) match

pairwise. We have D
(r)
i (A

(�)
j ) − D

(�)
j (A

(r)
i ) = 0 if i or j lies in X or if τ (i) 
= j.
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Without loss of generality we may assume j = τ (i) 
∈ X. In this case

D
(r)
i (A

(�)
j )−D

(�)
j (A

(r)
i )

= (qj − q−1
j )q(μ−αj+θ(αj),αi) ζi

(
D

(r)
i ◦ Ad(T̃X)

)
(Eτ(j))Xμ−αj+θ(αj)

− (qi − q−1
i )q(αj ,μ−αi+θ(αi)) ζi Xμ−αi+θ(αi)

(
D

(�)
j ◦ Ad(T̃−1

X )
)
(Eτ(i)).

In this case qi = qj and q(−αj+θ(αj),αi) = q(αj ,−αi+θ(αi)) so that

D
(r)
i (A

(�)
j )−D

(�)
j (A

(r)
i )

= (qj − q−1
j )q(αj ,θ(αi)−αi+μ) ζi

(
q(μ,αi−αj)

(
D

(r)
i ◦ Ad(T̃X)

)
(Ei)Xμ−αj+θ(αj)

− Xμ−αi+θ(αi)

(
D

(�)
j ◦ Ad(T̃−1

X )
)
(Ej)

)
.

Recall (6.3). Also, note that
(
D

(�)
j ◦Ad(T̃−1

X )
)
(Ej) lies in Uqn

+
X and hence commutes

with Xμ−αi+θ(αi). We obtain

D
(r)
i (A

(�)
j )−D

(�)
j (A

(r)
i )

= (qj − q−1
j )q(αj ,θ(αi)−αi+μ) ζi Xμ−αi+θ(αi)

·
(
q(μ,αi−αj)

(
D

(r)
i ◦ Ad(T̃X)

)
(Ei)−

(
D

(�)
j ◦ Ad(T̃−1

X )
)
(Ej)

)
.

If Xμ−αi+θ(αi) = 0 we obtain the desired statement; hence we may assume that it
is non-zero. By Proposition 7.9 we have θ(μ) = −μ. Applying (6.3) again, we have

(μ, αi−αj) = 0. By [Lus94, 37.2.4] we have op◦Ad(T̃X)◦op = Ad(T̃−1
X ). Recalling

(7.8), we obtain

D
(r)
i (A

(�)
j )−D

(�)
j (A

(r)
i ) = (qj − q−1

j )q(αj ,θ(αi)−αi+μ) ζiXμ−αi+θ(αi)

·
((

D
(r)
i ◦ Ad(T̃X)

)
(Ei)−

(
op ◦D(r)

j ◦ Ad(T̃X)
)
(Ej)

)
.

Finally, Lemma 7.11(i) implies D
(r)
i (A

(�)
j )−D

(�)
j (A

(r)
i ) = 0, as required. �

Proposition 7.13. With A
(r)
i given by (7.17), (7.16) is satisfied for all i, j ∈ I

such that i 
= j.

Proof. We may follow the proof of [BK19, Lem. 6.8]. Note that F
1−aij−s
i FjF

s−1
i ∈

(Uqn
−)λij−αi

and F
1−aij

i ∈ (Uqn
−)λij−αj

. By the non–degeneracy of the bilinear
pairing, we only need to consider the case that μ = λij . By Proposition 7.9, we
may assume θ(μ) = −μ and by Lemma 7.11(ii) we are in one of two possible cases:
τ (j) = i ∈ Ieq∩ τ (Ieq) or i, j ∈ Ins. In the former case, we have μ = αi+αj , γi = γj

and qi = qj . It follows that A
(r)
i = (qi − q−1

i )γiEj and A
(r)
j = (qi − q−1

i )γiEi, so

that (7.16) is an immediate consequence of 〈Fj , Ej〉 = 〈Fi, Ei〉.
It remains to consider the case i, j ∈ Ins, for which we can now follow the first

part of [BK19, Proof of Lemma 6.8, Case 2]. Namely, we invoke Lemma 7.11(iii)
and deduce that

(1− aij)αi + αj ∈ Z≥0(αj − θ(αj)) + Q+
I\{j} = 2Z≥0αj + Q+

I\{j},

which is a contradiction. Hence this case does not occur and there is nothing left
to prove. �



UNIVERSAL K-MATRICES FOR QUANTUM KAC-MOODY ALGEBRAS 805

Finally, relying on the previous results, the proof of [BK19, Thm. 6.10] applies
to this case. The result follows.

7.10. The intertwining property of X for general σ. Theorem 7.10 generalizes
as follows.

Theorem 7.14. For any (γ,σ) ∈ Γq × Σq, there is a unique X = Xγ,σ =∑
λ∈(Q+)−θ Xγ,σ;λ ∈ (Uqn

+)O
+

such that Xγ,σ;0 = 1, Xγ,σ;λ ∈ (Uqn
+)λ and the

system (7.4) is satisfied.

The proof relies on a generalization of the arguments made in [DK19, Sec. 3.5]
to the case (γ′,σ′) 
= (γ,σ) and is carried out in Sections 7.10.1–7.10.2.

7.10.1. By [Ko14, Thm. 7.1], the algebra Uqkγ,σ has a presentation in terms of
generators and relations, which are independent of σ. That is, the assignments

φσ(Bi;γi,0) = Bi;γi,σi
and φσ(u) = u

for i 
∈ X and u ∈ UqgXUqh
θ define an algebra isomorphism

φσ : Uqkγ,0 → Uqkγ,σ.

Hence, χσ := ε ◦ φσ : Uqkγ,0 → F is a one-dimensional representation. Note that
χσ(Bi;γi,0) = σi for i 
∈ X.

Lemma 7.15. We have the following identities of morphisms of algebras Uqkγ,0 →
Uqg:

φσ = (χσ ⊗ id) ◦Δ,(7.19)

φσ = · ◦ (χσ′ ⊗ id) ◦ ( · B ⊗ · ) ◦Δ,(7.20)

where the map · B
: Uqkγ,0 → Uqkγ′,0 is defined by (7.2).

Proof. The relations (7.19)–(7.20) can be verified by checking on generators. Apply-
ing both sides of (7.19) to u ∈ UqgXUqh

θ we obtain u for either side. Furthermore,
applying φσ ⊗ id to (6.19) implies(

(φσ ⊗ id) ◦Δ
)
(Bi;γi,0)−Bi;γi,σi

⊗ t−1
i = Δ(Bi;γi,0)−Bi;γi,0 ⊗ t−1

i .

To this we apply ε⊗id and deduce, using ε(Bi;γi,σi
)=σi, that (χσ⊗id)

(
Δ(Bi;γi,0)

)
=

Bi;γi,σi
. This completes the proof of (7.19).

As for (7.20), one can check that the right-hand side fixes Ei and Fi for i ∈ X
and th for h ∈ (Q∨

ext)
θ pointwise, so that (7.20) is true when restricted to UqgXUqh

θ.
It remains to prove that

(7.21)
(
χσ′ ◦ · B ⊗ ·

)
(Δ(Bi;γi,0)) = Bi;γi,σi

for i 
∈ X. If i /∈ Ins, then σi = σ′
i = 0. Thus, from the identity(

χσ′ ◦ · B ⊗ ·
)
(Bi;γi,0 ⊗ t−1

i ) = χσ′(Bi;γi,0)⊗ ti = 0 ,

(6.19), and ε(u) = ε(u)|q→q−1 , we deduce that(
χσ′ ◦ · B ⊗ ·

)
(Δ(Bi;γi,0)) =

(
ε ◦ · ⊗ ·

)
(Δ(Bi;γi,0))

=
(
ε⊗ id

)
(Δ(Bi;γi,0)) = Bi;γi,0 .
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Therefore, (7.21) is satisfied in this case. On the other hand, if i ∈ Ins, then by
(6.18) we have

Bi;γi,σi
= Fi−q−1

i γiEit
−1
i +σit

−1
i and Δ(Bi;γi,0) = Bi;γi,0⊗t−1

i +1⊗Bi;γi,0.

Therefore,(
χσ′ ◦ · B ⊗ ·

)
(Δ(Bi;γi,0)) = σ′

iti +Bi;γi,0 = Bi;γi,0 + σit
−1
i = Bi;γi,σi

.

The result follows. �

7.10.2. Following [BW18, 3.1] and [Ko20, Sec. 3.3], we consider the 2-tensor quasi-

K-matrix for Uqkγ,σ(X, τ ), i.e., the operator in (Uqg
⊗2)O

+

given by

Θγ,σ := Δ(Xγ,σ) ·Θ · X−1
γ,σ ⊗ 1 .

By [BW18, Prop. 3.2] and [Ko20, Prop. 3.9], it satisfies

(7.22) Θγ,σ

((
· B ⊗ ·

)
◦Δ

)
(b) = Δ

(
b
B
)
Θγ,σ

for b ∈ Uqkγ,σ. By [Ko20, Prop. 3.10, cf. Rmk. 3.11] (see also [BW18, Prop. 3.5]),
the operator Θγ,σ is given by a series

(7.23) Θγ,σ =
∑
λ∈Q+

Θγ,σ;λ where Θγ,σ;λ ∈ Uqkγ,σ ⊗ Uqn
+
λ .

We then obtain the following generalization of [DK19, Prop. 3.26].

Proposition 7.16. For any (γ,σ) ∈ Γq × Σq, the operator in (Uqn
+)O

+

given by

X
′
γ,σ := (χσ′ ⊗ id)(Θγ,0)

satisfies the system (7.4).

Proof. Applying χσ′ ⊗ id to (7.22) in the special case σ = 0, we deduce

X′
γ,σ

((
χσ′ ⊗ id

)
◦
(

· B ⊗ ·
)
◦Δ

)
(b) =

(
χσ′ ⊗ id

)
Δ
(
b
B)

X′
γ,σ

for b ∈ Uqkγ,0. By (7.19)–(7.20), we obtain

X
′
γ,σ φσ(b) = φσ′

(
b
B)

X
′
γ,σ

for any b ∈ Uqkγ,0. The result follows. �

By (7.23), we have

X
′
γ,σ =

∑
λ∈Q+

X
′
γ,σ;λ where X

′
γ,σ;λ ∈ (Uqn

+)λ ,

with X′
γ,σ;0 = 1. By Proposition 7.7(ii), we deduce that Xγ,σ = X′

γ,σ . Finally,
Theorem 7.14 follows. This concludes the proof of part (i) of Theorem 7.3.
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7.11. The coproduct formula for X. We now address the proof of part (ii) of
Theorem 7.3. In order to establish a factorization of the coproduct of X, we use
the bilinear pairing again. We consider the subalgebra

(Uqb
+ ⊗ Uqn

+)O
+

Δ :=
∏

λ∈Q+

Uqn
+tλ ⊗ (Uqn

+)λ ⊂ (Uqb
+ ⊗ Uqn

+)O
+

.

Note that Δ((Uqn
+)O

+

) ⊂ (Uqb
+⊗Uqn

+)O
+

Δ . By [BK19, Lem. 2.4] we have, for all

X ∈ (Uqb
+ ⊗ Uqn

+)O
+

Δ ,

(7.24) ∀y, z ∈ Uqn
− 〈y ⊗ z,X〉 = 0 =⇒ X = 0.

The following result is the direct generalization of [BK19, Theorem 9.4] to the case
of unrestricted parameters.

Theorem 7.17. We have

(7.25) Δ(X) = (X⊗ 1) · (Ad(γ′) ◦ θ−1
q ⊗ id)(Θ) · Ad(κid)(1⊗ X) ·Θ−1

X .

The proof, given in Section 7.14, relies on the properties of the auxiliary element
Ψ, which we discuss in Sections 7.12–7.13.

7.12. The auxiliary element Ψ. In [BK19, Secs. 8 and 9] the coproduct of X is
computed for the special case that I is of finite type, γ = γ′ and σ = σ′. We will
now generalize this.

For X ⊆ I, recall Lusztig’s quasi-R-matrix ΘX ∈ (Uqn
−
X ⊗ Uqn

+
X)O

+

. The key
ingredient for the coproduct of X is the element

Ψ :=
(
Ad(γ′) ◦ θ−1

q ⊗ id
)
(ΘΘ−1

X ) ∈ (Uqg⊗ Uqg)
O+

.

Note that we proved in Proposition 4.3 that the element ΘΘ−1
X is supported on

Q+ \ Q+
X . More precisely,

ΘΘ−1
X ∈

∏
λ∈Q+\Q+

X

(Uqn
−)λ ⊗ (Uqn

+)λ.

We shall use this result in Lemma 7.19.

Remark 7.18. Let I be of finite type and assume γ′
i = γi for all i 
∈ X; note that for

i ∈ X we automatically have γ′
i = γi(= 1). We observe that the function ξ : Pext →

F× defined by [BK19, Equation (8.1)] is of the form ξ(μ) = G−id−θ,0(μ)ξgrp(μ)
with ξgrp ∈ Homgrp(Pext,F

×) such that ξgrp = G0,ρ−ρX
γ′ for some extension γ′ ∈

Homgrp(Pext,F
×) of the group homomorphism: Q → F× defined by αi 	→ γ′

i. It

follows that ξ = G−id−θ,ρ−ρX
γ′. Also, we have Ad(T̃−1

I ) = ω̃ ◦ oiI . By inspecting
the list of generalized Satake diagrams [He84, Table I] we see that oiI preserves X,

so commutes with Ad(T̃−1
X ), and commutes with τ . Hence

Ad(T̃−1
I T̃−1

X ) ◦ τ ◦ oiI = ω̃ ◦ oiI ◦Ad(T̃−1
X ) ◦ τ ◦ oiI = ω̃2 ◦ θ̃−1

q = Ad(Gid+θ,ρX−ρ) ◦ θ−1
q

so that Ad(ξT̃−1
I T̃−1

X )◦τ ◦oiI = Ad(γ′)◦θ−1
q and hence Ψ coincides with the element

defined by [BK19, Equation (9.1)].
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7.13. Properties of Ψ. The element Ψ satisfies the following properties, which
generalize [BK19, Lem. 9.1-9.2-9.3].

Lemma 7.19. We have

Ψ ∈
∏

λ∈Q+\Q+
X

(Uqn
+)−θ(λ)tλ ⊗ (Uqn

+)λ,(7.26)

(id⊗D
(r)
i )(Ψ) = (qi − q−1

i ) ζiΨAd
(
ΘX T̃−1

X ⊗ 1
)
(Eτ(i) ⊗ 1) · (ti ⊗ 1).(7.27)

Proof. We have

θ−1
q ((Uqn

−)−λ) = Ad(G−θ,ρX
T̃−1
X )((Uqn

+)τ(λ))

= Ad(G−θ,ρX
)((Uqn

+)−θ(λ))

= (Uqn
+)−θ(λ)tλ.

Therefore, (7.26) follows from Proposition 4.3. From (4.5) and (4.13), for i ∈ X,
Δ(Fi) commutes with ΘΘ−1

X . Combined with (7.9) and the linear independence of

ti and t−1
i over Uqn

+, this yields (7.27) for i ∈ X. We need to prove the case i 
∈ X.
As before, we obtain

(7.28) (id⊗D
(r)
i )(Θ) = (q−1

i − qi)ΘFi ⊗ 1

for any i ∈ I. Since for i 
∈ X, we have (id ⊗ D
(r)
i )(ΘX) = 0, the identities (7.7)

and (7.28) yield

(id⊗D
(r)
i )(ΘΘ−1

X ) = (id⊗D
(r)
i )(Θ) Ad(1⊗ ti)

(
Θ−1

X

)
= (q−1

i − qi) Θ Fi ⊗ ti Θ
−1
X 1⊗ t−1

i .
(7.29)

Since ΘX ∈ (Uqn
−
X⊗Uqn

+
X)O

+

, it is fixed by both Ad(γ′)⊗1 and θ−1
q ⊗1. Moreover,(

Ad(γ′) ◦ θ−1
q

)
(Fi) = −Ad(γ′G−θ,ρX

T̃−1
X )(Eτ(i))

= −G−θ,ρX
(−θ(αi))γ

′
τ(i)Ad(T̃

−1
X )(Eτ(i))ti

= −ζiAd(T̃
−1
X )(Eτ(i))ti.

Applying Ad(γ′) ◦ θ−1
q ⊗ id to (7.29), we get

(id⊗D
(r)
i )(Ψ)=(qi−q−1

i )γi (Ad(γ
′)◦θ−1

q ⊗id)(Θ) Ad(T̃−1
X )(Eτ(i))ti⊗ti Θ

−1
X 1⊗ t−1

i

= (qi − q−1
i )ζi Ψ Ad(ΘX)

(
Ad(T̃−1

X )(Eτ(i))ti ⊗ ti
)
1⊗ t−1

i .

Thus, by (4.15), we obtain (7.27) in the case i 
∈ X. �

Note that

Ad(κid)(1⊗ Xλ)|Mμ⊗Nν
= q(λ,μ)1⊗ Xλ|Mμ⊗Nν

= tλ ⊗ Xλ|Mμ⊗Nν

for λ ∈ Q+, μ, ν ∈ Pext and M,N ∈ O+. Hence,

(7.30) Ad(κid)(1⊗ X) =
∑
λ∈Q+

tλ ⊗ Xλ

and Ad(κid)(1⊗ X) coincides with the element defined by [BK19, Equation (9.6)].
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Lemma 7.20. We have

(id⊗D
(r)
i )

(
Ad(κid)(1⊗ X)

)
=(qi − q−1

i )Ad(κid)(1⊗ X)
(
ζi t−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i))− σi 1⊗ 1
)
ti ⊗ 1.

(7.31)

Moreover,

[Ad(κid)(1⊗ X),ΘX ] = 0 = [Ad(κid)(1⊗ X),Ad(T̃−1
X )(Eτ(i))ti ⊗ ti] .(7.32)

Proof. Note that (7.32) follows immediately from (7.30) and Proposition 7.9. In-
stead, by (7.30), we have

(id⊗D
(r)
i )

(
Ad(κid)(1⊗ X)

)
=

∑
λ∈Q+

tλ ⊗D
(r)
i (Xλ).

Thus, by (7.12), it follows

(id⊗D
(r)
i )

(
Ad(κid)(1⊗ X)

)
= (qi − q−1

i )
∑
λ∈Q+

tλ ⊗
(
ζiXλ−αi+θ(αi) Ad(T̃

−1
X )(Eτ(i))− σi Xλ−αi

)
= (qi − q−1

i )

(
ζi

( ∑
λ∈Q+

tλ−αi+θ(αi) ⊗ Xλ−αi+θ(αi)

)
tαi−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i))

− σi

( ∑
λ∈Q+

tλ−αi
⊗ Xλ−αi

)
ti ⊗ 1

)

= (qi − q−1
i )Ad(κid)(1⊗ X)

(
ζi tαi−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i))− σi ti ⊗ 1
)
.

The result follows. �

7.14. Proof of Theorem 7.17. By (4.16) and (7.32), the coproduct identity (7.25)
is equivalent to

(7.33) Δ(X) = (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X).

By (7.26) and (7.30), the right-hand side of (7.33) belongs to (Uqb
+ ⊗ Uqn

+)O
+

Δ .

Since also Δ(X) ∈ (Uqb
+ ⊗ Uqn

+)O
+

Δ , by (7.24), the coproduct identity (7.33) is
equivalent to

(7.34) 〈y ⊗ z,Δ(X)〉 = 〈y ⊗ z, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)〉
for y, z ∈ Uqn

−. By linearity it suffices to consider the case z = Fi1Fi2 · · ·Fi� for
all (i1, . . . , i�) ∈ I�, � ∈ Z�0. We do this by induction on �.

Consider the case � = 0. Denote by P+
0 the projection from (Uqb

+⊗Uqn
−)O

+

Δ to

the direct summand Uqn
+⊗F. By (7.26), Ad(γ′)◦θ−1

q ⊗idmaps
∑

λ∈Q,μ∈QX
λ+μ=ν

ΘI,λΘX,μ

into (Uqn
+)−θ(ν)tν ⊗ (Uqn

+)ν for ν ∈ Q+, so that P+
0 (Ψ) = 1⊗ 1. Also, by (7.30)

we have

P+
0

(
Ad(κid)(1⊗ X)

)
=

∑
λ∈Q+

P+
0

(
tλ ⊗ Xλ

)
= 1⊗ 1.

Therefore, we obtain

〈y ⊗ 1, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)〉 = 〈y ⊗ 1,X⊗ 1〉 = 〈y,X〉 = 〈y ⊗ 1,Δ(X)〉 .
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Assume (7.34) is satisfied for all y ∈ Uqn
+ and all monomials z = Fi1Fi2 · · ·Fi�

with � � 0. It remains to prove that

(7.35) 〈y ⊗ zFi,Δ(X)〉 = 〈y ⊗ zFi, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)〉

for any i ∈ I. By (4.1) and (7.10), we have

〈y ⊗ zFi,Δ(X)〉 = 〈yzFi,X〉 = (q−1
i − qi)

−1〈yz,D(r)
i (X)〉.

Thus, by (7.11), we get

〈y ⊗ zFi,Δ(X)〉 =
〈
yz,X

(
σi − ζiAd(T̃

−1
X )(Eτ(i))

)〉
=

〈
y ⊗ z,Δ(X)

(
σi1⊗ 1− ζiΔ

(
Ad(T̃−1

X )(Eτ(i))
))〉

.

By induction, the LHS of (7.35) gives

〈y⊗zFi,Δ(X)〉 =
〈
y⊗z, (X⊗1)·Ψ·Ad(κid)(1⊗X)

(
σi1⊗1−ζiΔ

(
Ad(T̃−1

X )(Eτ(i))
))〉

,

while the RHS of (7.35), by (4.3), (7.10), and (7.7), gives

〈y ⊗ zFi, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)〉
= 〈y ⊗ zFi, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)t−1

i ⊗ 1〉

= (q−1
i − qi)

−1
〈
y ⊗ z, (id⊗D

(r)
i )

(
X⊗ 1 Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1

〉
= (q−1

i − qi)
−1

〈
y ⊗ z, (X⊗ 1) (id⊗D

(r)
i )

(
Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1

〉
.

Therefore, the desired identity (7.35) reduces to

(7.36)
Ψ Ad(κid)(1⊗ X)

(
σi1⊗ 1− ζiΔ

(
Ad(T̃−1

X )(Eτ(i))
)

= (q−1
i − qi)

−1(id⊗D
(r)
i )

(
Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1.

By (7.27) and (7.31), if i ∈ X, then (7.36) is satisfied since ζi = 0 = σi. If i 
∈ X,
then by (7.32), we have

(q−1
i − qi)

−1(id⊗D
(r)
i )(Ψ)Ad((1⊗ ti)κid)(1⊗ X) t−1

i ⊗ 1

= −ζiΨ Ad
(
ΘX(T̃−1

X ⊗ 1)
)
(Eτ(i) ⊗ 1)Ad((ti ⊗ ti)κid)(1⊗ X)

= −ζiΨ ΘX Ad(T̃−1
X )(Eτ(i))⊗ 1 Ad((ti ⊗ ti)κid)(1⊗ X)Θ−1

X

= −ζiΨ ΘXAd(κid)(1⊗ X)
(
Ad(T̃−1

X )(Eτ(i))⊗ 1
)
Θ−1

X

= −ζiΨ Ad(κid)(1⊗ X)Ad
(
ΘX(T̃−1

X ⊗ 1)
)
(Eτ(i) ⊗ 1).

Hence, (7.7) implies

(qi − q−1
i )−1(id⊗D

(r)
i )

(
Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1

= Ψ Ad(κid)(1⊗ X)
(
ζiAd

(
ΘX(T̃−1

X ⊗ 1)
)
(Eτ(i) ⊗ 1)

+ ζit−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i))− σi1⊗ 1

)
.

Therefore, (7.36) further reduces to

Δ
(
Ad(T̃−1

X )(Eτ(i)) = Ad
(
ΘX(T̃−1

X ⊗ 1)
)
(Eτ(i) ⊗ 1) + t−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i)).
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Let j ∈ X. Applying Ad(T̃−1
X ) ◦ τ to EiFjtj = q−(αi,αj)FjtjEi, we have

Ad(T̃−1
X )(Eτ(i))Ej = q−(αi,αj)EjAd(T̃

−1
X )(Eτ(i))

and

(t−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i))) (Fj ⊗ Ej) = q(θ(αi)−αi,αj)(Fj ⊗ Ej) (t−θ(αi)

⊗ Ad(T̃−1
X )(Eτ(i)))

= (Fj ⊗ Ej) (t−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i))).

Hence, t−θ(αi)⊗Ad(T̃−1
X )(Eτ(i)) commutes with ΘX and, by (5.6), we conclude that

Δ
(
Ad(T̃−1

X )(Eτ(i))
)
= Ad(ΘX(T̃−1

X ⊗ T̃−1
X ))(Eτ(i) ⊗ 1 + tτ(i) ⊗ Eτ(i))

= Ad(ΘX)
(
Ad(T̃−1

X )(Eτ(i))⊗ 1 + t−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i))

)
= Ad

(
ΘX(T̃−1

X ⊗ 1)
)
(Eτ(i) ⊗ 1) + t−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i)) .

The result follows.

8. Universal K-matrices

In this section, we introduce the standard universal K-matrix and derive its key
properties. A further modification in terms of a multiplicative difference of two
modified diagrammatic half-balances, corresponding to a pair of generalized Satake
diagrams, yields a rich theory of new modified universal K-matrices. Among those,
in special cases, certain choices are more convenient or natural than others. In
particular, when the two diagrams coincide, this yields a natural interpretation
of the quasi-K-matrix as a universal K-matrix. For quantum groups of finite type,
this recovers the Balagović-Kolb universal K-matrix and their formalism (cf. Section
8.10). In Section 9, we shall outline the applications of this approach in the theory
of quantum affine algebras.

Throughout the section, we fix (X, τ ) ∈ GSat(A), (γ,σ) ∈ Γq × Σq, we assume
that Pext is τ -compatible, and we consider the associated quantum pseudo-fixed-
point subalgebra Uqkγ,σ ⊂ Uqg.

8.1. The inverse of the quasi-K-matrix. It is convenient for us to work with the
inverse of the quasi-K-matrix constructed in Section 7 (cf. Theorem 7.14). Thus,
we set

(8.1) Υ = Υγ,σ := Xγ,σ = X
−1
γ′,σ′ ,

where the parameters (γ′,σ′) are defined in (7.3). Recall the injective algebra
homomorphism f : Uqkγ,σ → Uqg defined by f(u) = u if u ∈ UqgXUqh

θ and

f(Bi;γi,σi
) = Bi;γ′

i,σ
′
i
for all i 
∈ X. We have the following

Lemma 8.1. The operator Υ ∈ (Uqn
+)O

+

is the unique element with Υ0 = 1
satisfying the intertwining equation

(8.2) Υu = f(u)Υ

for any u ∈ Uqkγ,σ. Moreover, it satisfies the coproduct identity

(8.3) Δ(Υ) = R−1
X,τ · (1⊗Υ) · (Ad(γ) ◦ θ−1

q ⊗ id)(R) · (Υ⊗ 1).
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Proof. By Theorem 7.14, it follows that Υ satisfies (8.2). Then, from (7.25), we
have

Δ(Υ) = Ξ−1
X Ad(κid)(1⊗Υ) (Ad(γ) ◦ θ−1

q ⊗ id)(Ξ) (Υ⊗ 1)

= Ξ−1
X Ad(κ−θ)(1⊗Υ) (Ad(γ) ◦ θ−1

q ⊗ id)(Ξ) (Υ⊗ 1)

= R−1
X,τ (1⊗Υ) (Ad(γ) ◦ θ−1

q ⊗ id)(R) (Υ⊗ 1),

where the first equality follows from the identity Ad(κθ+id)(1⊗ x) = 1⊗ x for any
x ∈ (Uqn

+)λ and λ ∈ Q−θ, while the third equality follows from (θ−1
q ⊗ id)(κid) = κθ

(cf. Remark 4.1). �

Remark 8.2. The choice of κθ in the definition of RX,τ (cf. Definition 6.7) is there-
fore instrumental to obtain (8.3), in that it absorbs the Cartan corrections that
naturally arise in the coproduct identity of the quasi-K-matrix.

8.2. Quantum pseudo-involutions on Uqkγ,σ. In the following, we shall use the
quantum pseudo-involution θq as defining a new intertwining equation. To this end,
we need to describe its action on Uqkγ,σ. Recall that we regard γ as an element in

(Uqh)
O+

int . We have the following

Proposition 8.3. For any u ∈ Uqkγ,σ, it holds θ−1
q (u) = Ad(γ−1)(f(u)).

Proof. For u ∈ UqgXUqh
θ, we have Ad(γ−1)(u) = f(u) = u = θ−1

q (u). It remains
to prove that, for i 
∈ X,

(8.4)
(
θq ◦ Ad(γ−1)

)
(Bi;γ′

i,σ
′
i
) = Bi;γi,σi

.

Note that

(8.5)
(
θq ◦ Ad(γ−1)

)
(Fi) = γiθq(Fi).

Moreover, by (7.3) and (6.10), we have

γ′
iθq(Fi)=−(−1)αi(2ρ

∨
X)γτ(i)Ad(TX,τ )(Eτ(i))=−γτ(i)Ad(T

−1
X,τ )(Eτ(i))=γτ(i)θ

−1
q (Fi).

Therefore,(
θq ◦ Ad(γ−1)

)(
γ′
iθq(Fi)

)
= γτ(i)

(
θq ◦ Ad(γ−1)

)
(θ−1

q (Fi)) = Fi.

Finally,

(8.6)
(
θq ◦ Ad(γ−1)

)
(σiti) = σiθq(ti) = σitθ(αi) = σit

−1
i

since σi = 0 if θ(αi) 
= −αi. Combining (8.5)–(8.6), we obtain (8.4). �

8.3. The standard universal K-matrix KX,τ . We introduce a subtle correction
of the operator Υ, which reveals crucial in the following.

Definition 8.4. The standard universal K-matrix is the operator in (Uqb
+)O

+

given by

KX,τ := γ−1Υ,

where Υ is defined in (8.1). The standard twisting operator is the algebra auto-
morphism of Uqg given by ψX,τ := θ−1

q .

We prove the first main result of the paper.
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Theorem 8.5. The standard universal K-matrix KX,τ satisfies the intertwining
equation

KX,τu = ψX,τ (u)KX,τ(8.7)

for any u ∈ Uqkγ,σ and the coproduct identity

Δ(KX,τ ) = R−1
X,τ · (1⊗KX,τ ) ·

(
ψX,τ ⊗ id

)
(R) · (KX,τ ⊗ 1) .(8.8)

Proof. Combining (7.1) with Proposition 8.3, we immediately obtain (8.7). To
prove (8.8), note that Δ(γ) = γ ⊗ γ and (8.3) imply

Δ(KX,τ ) = (γ−1 ⊗ γ−1) R−1
X,τ (1⊗Υ)

(
Ad(γ) ◦ θq(X, τ )−1 ⊗ id

)
(R) (Υ⊗ 1).

By (4.14), γ⊗γ commutes with RX,τ = κθ(X,τ)Θ
−1
X , which completes the proof. �

8.4. The universal K-matrices KY,η. The twisting operator ψX,τ = θ−1
q is in

general quite a complicated automorphism, whose pullback functor is not easily
described. It is therefore convenient to introduce a further modification of the pair
(KX,τ , ψX,τ ) in terms of an auxiliary generalized Satake diagram (Y, η) which yields
a simpler twisting operator. This however requires to restrict to integrable category
O+ modules.

Definition 8.6. For any (Y, η) ∈ GSat(A) such that Pext is η-compatible, we con-

sider the operator in (Uqg)
O+

int given by

KY,η := (T−1
Y,η TX,τ ) ·KX,τ = (T−1

Y,η TX,τ ) · γ−1 ·Υ(8.9)

and the algebra automorphism of Uqg given by

ψY,η := Ad(T−1
Y,ηTX,τ ) ◦ ψX,τ = θq(Y, η)

−1 ◦ η ◦ τ = Ad(TY,η)
−1 ◦ ω ◦ τ ,(8.10)

where θq(Y, η) denotes the quantum pseudo-involution associated to (Y, η).

Note that, in the case (Y, η) = (X, τ ), Definitions 8.4 and 8.6 yield the same
operators and there is no clash of notations.

Our next main result is that the element KY,η is a universal K-matrix for Uqkγ,σ

with respect to the twisting operator ψY,η. More precisely, following Definition
2.2, we shall prove that (ψY,η, RY,η) is a twist pair, (Uqg, R, ψY,η, RY,η,KY,η) is
a cylindrical bialgebra, and Uqkγ,σ is a cylindrically invariant coideal subalgebra.
These results will be proved in Proposition 8.7 and Theorem 8.8, respectively.

8.5. The twist pair (ψY,η, RY,η). We first prove that (ψY,η, RY,η) is a twist pair
for the quasitriangular bialgebra (Uqg,Δ, ε, R). This amounts to proving that ψY,η

is an isomorphism of quasitriangular bialgebras

ψY,η : (Uqg,Δ
op, ε, R21) −→ (Uqg,Ad(RY,η) ◦Δ, ε, (RY,η)21 ·R ·R−1

Y,η) .

Proposition 8.7. The following relations hold:

(ψY,η ⊗ ψY,η) ◦ Δop = Ad(RY,η) ◦Δ ◦ ψY,η , ε ◦ ψY,η = ε ,(8.11)

and

(ψY,η ⊗ ψY,η)(R21) = (RY,η)21 ·R ·R−1
Y,η.(8.12)
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Proof. Since the diagram automorphisms are bialgebra automorphisms and ω is a
coalgebra antiautomorphism satisfying (4.12), the identities (8.11)–(8.12) reduce to

Ad(T−1
Y,η ⊗ T−1

Y,η) ◦ Δ = Ad(RY,η) ◦Δ ◦ Ad(T−1
Y,η),(8.13)

ε ◦ Ad(TY,η) = ε,(8.14)

Ad(T−1
Y,η ⊗ T−1

Y,η)(R) = (RY,η)21 ·R ·R−1
Y,η.(8.15)

The identity (8.14) follows from (6.7) and the fact that Ad(TY,η)(th) = twY (h) for
h ∈ Q∨

ext. The identities (8.13) and (8.15) follow from (6.12). �

8.6. Properties of KY,η. We prove that the operator KY,η is indeed a universal
K-matrix with respect to the twist pair (ψY,η, RY,η).

Theorem 8.8. The operator KY,η satisfies the intertwining equation

(8.16) KY,η · u = ψY,η(u) ·KY,η ,

for any u ∈ Uqkγ,σ, and the coproduct identity

(8.17) Δ(KY,η) = R−1
Y,η (1⊗KY,η) (ψY,η ⊗ id)(R) (KY,η ⊗ 1).

Proof. From (8.7), one has

KY,η·u=T−1
Y,η TX,τ θ

−1
q (u)KX,τ =

(
Ad(T−1

Y,η)◦ω◦τ
)
(u)T−1

Y,η TX,τ KX,τ =ψY,η(u)KY,η,

for any u ∈ Uqkγ,σ. Then, from (8.8), one has

Δ(KY,η)

= Δ
(
T−1
Y,ηTX,τ

)
R−1

X,τ (1⊗KX,τ )
(
θq(X, τ )−1 ⊗ id

)
(R) (KX,τ ⊗ 1)

= Δ(TY,η)
−1 (TX,τ ⊗ TX,τ ) (1⊗KX,τ )

(
θq(X, τ )−1 ⊗ id

)
(R) (KX,τ ⊗ 1)

= Δ(TY,η)
−1 (1⊗ TX,τKX,τ )

(
Ad(TX,τ ) ◦ θq(X, τ )−1 ⊗ id

)
(R) (TX,τKX,τ ⊗ 1)

=R−1
Y,η (T−1

Y,η⊗T−1
Y,η) (1⊗TX,τKX,τ )

(
Ad(TX,τ )◦θq(X, τ )−1⊗id

)
(R) (TX,τKX,τ ⊗ 1)

= R−1
Y,η (1⊗KY,η)

(
ψY,η ⊗ id

)
(R) (KY,η ⊗ 1),

where the second and fourth equalities follows from (6.12). �

8.7. Generalized reflection equation. The following result is the analogue of
Proposition 2.4.

Theorem 8.9. The operator KY,η satisfies the generalized reflection equation (2.9)
with respect to the twisting operator ψY,η, i.e.,

(ψY,η ⊗ ψY,η)(R21) · (1⊗KY,η)·(ψY,η ⊗ id)(R) · (KY,η ⊗ 1)

=(KY,η ⊗ 1) · (id⊗ ψY,η)(R21) · (1⊗KY,η) ·R .

(8.18)

Proof. From the coproduct formula (8.17), one has

Δop(KY,η) = (RY,η)
−1
21 (KY,η ⊗ 1) (id⊗ ψY,η)(R21) (1⊗KY,η)

and, from (4.11),

Δop(KY,η)=R ·Δ(KY,η) ·R−1=R R−1
Y,η (1⊗KY,η) (ψY,η ⊗ id)(R) (KY,η ⊗ 1) R−1.
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Therefore,

(KY,η ⊗ 1) · (id⊗ ψY,η)(R21) · (1⊗KY,η) ·R
= (RY,η)21 R ·R−1

Y,η · (1⊗KY,η) · (ψY,η ⊗ id)(R) (KY,η ⊗ 1).

Thus, the result follows from (8.12). �

8.8. Cartan corrections of universal K-matrices. We describe a further mod-
ification of the standard K-matrix KX,τ associated to the elements g ∈ (Uqh)

W,×

such that Ad(g) preserves Uqg ⊂ (Uqg)
Wint . Namely, we set

Kg
Y,η := g ·KY,η and ψg

Y,η := Ad(g) ◦ ψY,η .(8.19)

The operator Kg
Y,η remains a universal K-matrix.

Theorem 8.10. The operator Kg
Y,η satisfies the intertwining equation

Kg
Y,ηu = ψg

Y,η(u)KY,η
g ,(8.20)

for any u ∈ Uqkγ,σ, the coproduct identity

Δ(Kg
Y,η) = (Rg

Y,η)
−1 · (1⊗KY,η

g) · (ψg
Y,η ⊗ id)(R) · (Kg

Y,η ⊗ 1) ,(8.21)

where (Rg
Y,η)

−1 := Δ(g)R−1
Y,η (g

−1 ⊗ g−1), and the generalized reflection equation

(8.22)
(Kg

Y,η ⊗ 1) · (id⊗ ψg
Y,η)(R21) · (1⊗KY,η

g) ·R
= (ψg

Y,η ⊗ ψg
Y,η)(R21) · (1⊗KY,η

g) · (ψg
Y,η ⊗ id)(R) · (Kg

Y,η ⊗ 1).

Proof. The identities (8.20), (8.21) and (8.22) follow by multiplying (8.16), (8.17)
and (8.18) by g, Δ(g) and g ⊗ g, respectively. �

Remark 8.11. Clearly, g can be thought of as a gauge transformation acting on
the cylindrical structure (ψY,η, RY,η,KY,η), i.e., we have g � (ψY,η, RY,η,KY,η) =

(ψg
Y,η, R

g
Y,η,K

g
Y,η). In fact, the same result applies for any g ∈ (Uqg)

O+
int such

that Ad(g) preserves Uqg (cf. [AV22, Sec. 3]). In particular, we have (T−1
Y,ηTX,τ ) �

(ψX,τ , RX,τ ,KX,τ ) = (ψY,η, RY,η,KY,η).

8.9. An alternative choice. From Remark 8.11, it is clear that the universal K-
matrix KX,τ and the twisting operator ψX,τ give rise to large family of universal
K-matrices depending upon the choice of a gauge transformation with some mild
restrictions. In particular, we can recover immediately the slightly different setup
used in [BK19]. Namely, instead of considering KY,η and ψY,η defined by (8.9)–
(8.10), we can set

K ′
Y,η := (TY,ηTX,τ ) ·KX,τ and ψ′

Y,η := Ad(TY,ηTX,τ ) ◦ ψX,τ .

Proceeding as before, one verifies that the operator K ′
Y,η satisfies the intertwining

equation

K ′
Y,ηu = ψ′

Y,η(u)K
′
Y,η

for any u ∈ Uqkγ,σ, the coproduct identity

Δ(K ′
Y,η) = (RY,η)21 (1⊗K ′

Y,η) (ψ
′
Y,η ⊗ id)(R) (K ′

Y,η ⊗ 1) ,

and the generalized reflection equation

(K ′
Y,η ⊗ 1) · (id⊗ ψ′

Y,η)(R21) · (1⊗K ′
Y,η) ·R

=(ψ′
Y,η ⊗ ψ′

Y,η)(R21) · (1⊗K ′
Y,η) · (ψ′

Y,η ⊗ id)(R) · (K ′
Y,η ⊗ 1) .
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8.10. Distinguished K-matrices. By Sections 8.4 and 8.6, as (Y, η) ranges
through GSat(A), we obtain various universal K-matrices KY,η. In the case (Y, η) =
(X, τ ), we recover the standard universal K-matrix KX,τ . From a representa-
tion theoretic point of view, this choice is somewhat preferable, since KX,τ ∈
(Uqg)

O+

,i.e., it acts on any category O+ Uqg-module. Note however that this
is no longer true if Y 
= X.

In the case (Y, η) = (X, τ ), the twisting operator ψX,τ is in general a complicated
automorphism, since it coincides with θ−1

q . From the point of view of integrability
theory, it is convenient to look for choices of (Y, η), yielding a simple form of the
generalized reflection equation. As a measure, since ψY,η = θq(Y, η)

−1 ◦ η ◦ τ , we
consider the dimension of the subspace of fixed points in h′. Namely, we define a
strict linear order on GSat(A) given by

(Y, η) < (Y ′, η′) ⇐⇒ dim((h′)−θ(Y,η)) < dim((h′)−θ(Y ′,η′)).

Recall that, since η|Y = oiY , the dimension of (h′)−θ(Y,η) equals the restricted rank
of (Y, η), i.e., the number of η-orbits in I\Y . There are two extreme cases.

(i) The restricted rank is maximal. This corresponds to the choice (Y, η) =
(∅, id). In this case, we have θ(∅, id) = ω,

K∅,id := T−1
∅,id · TX,τ ·KX,τ and ψ∅,id = Ad(T∅,id)

−1 ◦ ω ◦ τ.

Since T∅,id ∈ (Uqht)
W,×, by setting g = T∅,id in Theorem 8.10, we obtain a

distinguished universal K-matrix

(8.23) Kω := TX,τ ·KX,τ and ψω := ω ◦ τ ,
which we refer to as the semistandard universal K-matrix. Note that in this
case the twisting operator ψω is an involution on Uqg and we obtain the
generalized reflection equation

(Kω ⊗ 1) · (id⊗ ψω)(R21) · (1⊗Kω) ·R = R · (1⊗Kω) · (ψω ⊗ id)(R) · (Kω ⊗ 1).

(ii) The restricted rank is minimal, i.e., it equals the number of τ -orbits in the
complement of the largest τ -stable subset of I of finite type. If A is of
infinite type, there are in general several (Y, η) ∈ GSat(A) whose restricted
rank is minimal. On the other hand, if A is of finite or affine type, the
minimal restricted rank is 0 or 1, respectively, and the choice is canonical as
we describe below.

(iii) If g is of finite type, GSat(A) has a unique minimal element given by (I, oiI).
In this case, we get

Kfin := T−1
I,oiI

· TX,τ ·KX,τ and ψfin = oiI ◦ τ ,

since θq(I, oiI) = id. Note that the twisting operator is an involution on Uqg

(cf. [BK19, Rmk 7.2]). Finally, we obtain the generalized reflection equation

(Kfin⊗ 1) · (id⊗ψfin)(R21) · (1⊗Kfin) ·R = R21 · (1⊗Kfin) · (ψfin⊗ id)(R) · (Kfin⊗ 1).

Remark 8.12. The case (iii) is considered in [BK19, Corollary 7.7], where the op-
position involution oiI is denoted τ0. More precisely, relying on the alternative
formalism from Section 8.9, the operator K constructed in [BK19, Corollary 7.7] is
related to K ′

I,oiI
by

K−1 = (oiI ◦ τ )
(
K ′

I,oiI

)
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under the additional constraints γ = γ′, σ = σ′, γ(oiI◦τ)(i) = γi, and σ(oiI◦τ)(i) = σi,
cf. [BK19, (7.4)]. This is a consequence of the fact that

φ
(
Uqkγ,σ(X, τ )

)
= Uqkφ(γ),φ(σ)(X, τ )

for involutive φ ∈ AutX(A) commuting with τ .

9. Spectral K-matrices for quantum affine sl2

In this section, we motivate our construction by discussing its application in
the finite-dimensional representation theory of the quantum loop algebra UqLsl2.
The general case is treated in detail in [AV22]. We show that the inversion of the
spectral parameter on finite-dimensional representations can be realized in terms
of a suitable choice of the twisting operators ψY,η. The specialization of the corre-
sponding universal K-matrix yields a formal solution of the generalized reflection
equation with a spectral parameter. Finally, we prove that this construction gives
rise to matrix solutions of the standard reflection equation which are formal series
in the spectral parameter.

9.1. The quantum loop algebra UqLsl2. We set I := {0, 1} and we consider the
symmetric generalized Cartan matrix A with a01 = −2. We denote the correspond-

ing Kac-Moody algebra by s̃l2 and its derived subalgebra by ŝl2 (see e.g., [FR92]).

We shall consider 0 as the affine node [Kac90, Ch. 6]. The Lie algebra ŝl2 is an
extension of the loop algebra Lsl2 := sl2 ⊗ C[t, t−1] by a central element c. Simi-

larly, the element tc is central in Uq ŝl2 and the quotient UqLsl2 := Uq ŝl2/(tc − 1)
is known as the quantum loop algebra of sl2. As in the classical case, UqLsl2 is
endowed with a family of algebra homomorphisms eva : UqLsl2 → Uqsl2 (a ∈ F×)
called evaluation homomorphisms (see e.g., [CP91, Prop. 4.1]) defined as follows:

eva(E1) = E, eva(F1) = F, eva(t1) = t,

eva(E0) = q−1aF, eva(F0) = qa−1E, eva(t0) = t−1 .

Here we have denoted the Chevalley-Serre generators of Uqsl2 by E, F , t±1, sup-
pressing the subscript 1. Note that UqLsl2 is also endowed with a grading shift
automorphism (cf. [Dr86])

Σz : UqLsl2[z, z
−1] → UqLsl2[z, z

−1] ,

where UqLsl2[z, z
−1] := UqLsl2⊗F[z, z−1], given by Σz(th) := th, Σz(Ei) := zδ0iEi,

and Σz(Fi) := z−δ0iFi. By specializing z in F×, we obtain a one-parameter family
of automorphism of UqLsl2 satisfying eva = ev1 ◦ Σa.

9.2. Evaluation representations. By pullback through eva, every irreducible
finite-dimensional Uqsl2-module is acted upon by UqLsl2. Specifically, let Vn be
the (n + 1)-dimensional irreducible Uqsl2-module. For any a ∈ F×, we obtain an
irreducible (type 1) UqLsl2-module Vn(a) := ev∗a(Vn), which is referred to as an
evaluation representation. Let Repfd(UqLsl2) be the category of finite-dimensional
(type 1) UqLsl2-modules, which clearly contains every evaluation representation.
By [CP91, Thm. 4.11], every irreducible module in Repfd(UqLsl2) arises as a ten-
sor product of evaluation representation. Note that, while category O+ inte-

grable Uq s̃l2-modules form a semisimple and braided category, Repfd(UqLsl2) is
not semisimple nor braided (see e.g., [CP95, Ch. 12]). However, as we briefly re-

call below, it is functionally braided, since the universal R-matrix of Uq s̃l2 gives
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rise to a parameter-dependent operator on finite-dimensional UqLsl2-modules (cf.
[FR92,KhT92,KS95,EM03]).

9.3. Spectral R-matrices. The universal R-matrix does not immediately act on
finite-dimensional UqLsl2-modules, since the series Ξ determined by R = κid · Ξ
(cf. Section 4.10) does not necessarily converge. Relying on the grading shift, for
any V ∈ Repfd(UqLsl2) with action πV : UqLsl2 → End(V ), we consider the infinite-
dimensional representation V (z) := V ⊗F((z)), with action given by πV,z := πV ◦Σz.
Then, for any V,W ∈ Repfd(UqLsl2), we obtain an operator

RVW (z, w) := πV,z ⊗ πW,w(R) ∈ End(V ⊗W )[[z−1, w]].

By the explicit description of Ξ and (4.4), it follows thatRVW (z, w) is a formal series
in w/z, which we denote by RVW (w/z). For any V1, V2, V3 ∈ Repfd(UqLsl2), the
specialization of the universal R-matrix on the tensor product V1(z

−1)⊗V2⊗V3(w)
yields a formal solution of the Yang-Baxter equation with a spectral parameter:

R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(z) .

Relying on a similar strategy, the universal K-matrices constructed in Section 3
produce formal solutions of generalized reflection equations with a spectral param-
eter.

9.4. Quantum pseudo-fixed-point subalgebras for UqLsl2. We shall consider

the quantum pseudo-fixed-point subalgebras Uqk = Uqkγ,σ(X, τ ) ⊂ Uq s̃l2, where
γ ∈ Γq is such that γ0γ1 = 1, σ ∈ Σq, and (X, τ ) is one of the Satake diagrams
(∅, id), ({1}, id), (∅, (0 1)), with (0 1) being the permutation of two nodes of the affine
Dynkin diagram. Following [BB17], we refer to the corresponding subalgebras as the
q-Onsager algebra, invariant q-Onsager algebra and augmented q-Onsager algebra,
respectively. Note that Uqk(X, τ ) identifies with a coideal subalgebra in UqLsl2,
since θ(X, τ )(c) = −c.

9.5. Spectral K-matrices for the q-Onsager algebra. We consider the Satake
diagram (X, τ ) = (∅, id). The corresponding coideal subalgebra Uqk ⊆ UqLsl2 is
generated by

B0 := F0 − q−1γ0E0t
−1
0 + σ0t

−1
0 , and B1 := F1 − q−1γ1E1t

−1
1 + σ1t

−1
1 .

Following Section 8.4, we choose the auxiliary Satake diagram (Y, η) = ({1}, id)
and we consider the universal K-matrix K and the twisting operator ψ given by the
formulae (8.9) and (8.10). Note that ψ descends to an automorphism of UqLsl2 and
satisfies Σz ◦ψ = ψ ◦Σ1/z. We get the following special case of [AV22, Thm. 4.2.1].

Theorem 9.1.

(i) For any V ∈ Repfd(UqLsl2), the universal K-matrix K descends to a formal
series KV (z) ∈ End(V )[[z]] satisfying

(9.1) KV (z)πV (Σz(u)) = πV (ψ(Σ1/z(u)))KV (z)

for any u ∈ Uqk, i.e., it yields a formal Uqk-intertwiner KV (z) : V (z) →
V ψ(1/z), where V ψ := ψ∗(V ).

(ii) For any V,W ∈ Repfd(UqLsl2), the generalized reflection equation with a
spectral parameter holds:

(9.2)
KV (z)⊗ id ·RWψV (zw)21 · id⊗KW (w) ·RVW (wz )

= RWψV ψ (wz )21 · id⊗KW (w) ·RV ψW (zw) ·KV (z)⊗ id.
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Proof. We shall prove that K = (T−1
Y,ηTX,τ ) · γ−1 · Υ acts on V (z). Any finite-

dimensional UqLsl2-module has a weight decomposition over P/(P ∩ Qδ) and is

integrable as a Uqsl2-module. Thus, (T−1
Y,ηTX,τ ) · γ−1 naturally descends to an ele-

ment in End(V ), since γ0γ1 = 1 and T−1
Y,ηTX,τ is supported only on Uqsl2. Moreover,

it is invariant under Σz. Finally, as in the case of Ξ [Dr86], the shifted quasi-K-
matrix Σz(Υ) gives a formal series in End(V )[[z]]. Therefore, we get

KV (z) := πV,z(K) ∈ End(V )[[z]].

Note that (9.1) follows from (8.16) and the identity Σz ◦ ψ = ψ ◦ Σ1/z. Similarly,
(9.2) follows directly from (8.18). �

A direct computation shows that ψ is the identity on Uqsl2 = 〈E1, F1,K1〉 and,
for any a ∈ F×, it satisfies eva ◦ ψ = evq2a−1 . Thus, we get the following special
case of [AV22, Thm. 7.2.1].

Corollary 9.2. Let V,W ∈ Repfd(UqLsl2) be evaluation representations at a = q.
Then, the standard reflection equation with a spectral parameter holds:

(9.3)
KV (z)⊗ id ·RWV (zw)21 · id⊗KW (w) ·RVW (wz )

= RWV (
w
z )21 · id⊗KW (w) ·RVW (zw) ·KV (z)⊗ id.

Proof. It is enough to observe that, for any n � 0,

ψ∗(Vn(q)) = (evq ◦ ψ)∗(Vn) = ev∗q(Vn) = Vn(q) .

Thus, V ψ = V , Wψ = W , and (9.3) follows from (9.2). �
Remark 9.3. For any a ∈ F×, we obtain an analogue of Corollary 9.2 by observing
that Vn(a)

ψ = Vn(q
2a−1).

9.6. Spectral K-matrices for the invariant q-Onsager algebra. We now
consider the Satake diagram (X, τ ) = ({1}, id). Note that in this case we have
γ0 = 1 = γ1. The corresponding coideal subalgebra Uqk is generated by E1, F1, t

±1
1 ,

and
B0 := F0 − q2Ad(T̃1)(E0)t

−1
0 .

Following Section 8.4, we choose the auxiliary Satake diagram (Y, η) = ({1}, id) =
(X, τ ) and we consider the universal K-matrix K and the twisting operator ψ given
by the formulae (8.9). Note that ψ is the same as in Section 9.5. In particular,
it descends to an automorphism of UqLsl2, satisfies Σz ◦ ψ = ψ ◦ Σ1/z, and is the
identity on Uqsl2. Then, the analogues of Theorem 9.1 and Corollary 9.2 hold for
Uqk. The proofs are the same and therefore omitted.

Remark 9.4. Other examples of spectral K-matrices for Uqk and Uqk can be ob-
tained by choosing different auxiliary Satake diagrams. For instance, following Sec-
tion 8.10, one can choose (Y, η) = (∅, id) and consider the semistandard universal K-
matrix and twisting operator given by the formulae (8.23), i.e., K := T∅,(0 1) ·γ−1 ·Υ
and ψ := ω. Note that, in this case, one has eva ◦ ω = ω ◦ evq2a−1 and, for any
n � 0 and a ∈ F×,

ω∗(Vn(a)) = (eva ◦ ω)∗(Vn) = (ω ◦ evq2a−1)∗(Vn) � ev∗q2a−1(Vn) = Vn(q
2a−1) ,

where the third identity relies on the isomorphism of Uqsl2-modules ω∗(Vn) � Vn.
Thus, the semistandard universal K-matrix yields a formal intertwiner Vn(az) →
Vn(

q2

az ) with respect to the action of the coideal subalgebra.
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9.7. Spectral K-matrices for the augmented q-Onsager algebra. Finally,
we consider the Satake diagram (X, τ ) = (∅, (0 1)). The corresponding coideal
subalgebra Uqk is generated by t±1

0 t∓1
1 = t±2

0 ,

B0 := F0 − qγ0E1t
−1
0 and B1 := F1 − qγ1E0t

−1
1 .

As in Remark 9.4, we consider the semistandard universal K-matrix and the twisting
operator

K := TX,τ · γ−1 ·Υ and ψ := ω ◦ τ .
Note that the operator TX,τ is in this case just a Cartan correction. Up to such
correction, K and ψ correspond to the standard universal K-matrix KX,τ and
θq(X, τ )−1, respectively.

In this case, the procedure described in Section 9.5 does not immediately apply,
since τ does not commute with the grading shift. To remedy this, we consider the
principal grading shift

Σpr
z : UqLsl2[z, z

−1] → UqLsl2[z, z
−1] ,

given by Σpr
z (ti) := ti, Σ

pr
z (Ei) := zEi and Σpr

z (Fi) := z−1Fi for i ∈ {0, 1}. Indeed, it
satisfies Σpr

z ◦ ψ = ψ ◦Σpr
1/z. For any V ∈ Repfd(UqLsl2) with action πV : UqLsl2 →

End(V ), we consider the infinite-dimensional representation V (z) := V ⊗F((z)), with
action given by πV,z := πV ◦Σpr

z . With this correction, the analogue of Theorem 9.1
holds for Uqk.

Fix a ∈ F×. Let β : Q → F× be the group homomorphism given by β(α0) =
−qa−1 and β(α1) = −q−1a. As in Section 4.9, we obtain an algebra automorphism
Ad(β) : UqLsl2 → UqLsl2. Following Section 8.8, we consider the universal K-
matrix and twisting operator given by (8.19), i.e.,

Kβ := β · T∅,(0 1) · γ−1 ·Υ and ψβ := Ad(β) ◦ ω ◦ τ .
By direct inspection, the twisting operator ψβ satisfies eva ◦ ψβ = evq2a−1 . There-
fore, for any n � 0, we obtain ψ∗

β(Vn(a)) = Vn(q
2a−1). In particular, for V = Vn(q),

the universal K-matrix Kβ specializes to a formal Uqk-intertwiner V (z) → V (1/z),
yielding the analogue of Corollary 9.2 for Uqk. It is to be expected that Kβ is
related to the generic K-matrices for the augmented q-Onsager algebra given in
[BTs18, Sec. 4.1.2].
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