
nanomaterials

Article

Supercurrent Induced by Chiral Coupling in
Multiferroic/Superconductor Nanostructures

Bjoern Niedzielski 1, Chenglong Jia 2 and Jamal Berakdar 1,*

����������
�������

Citation: Niedzielski, B.; Jia, C.;

Berakdar, J. Supercurrent Induced by

Chiral Coupling in Multiferroic/

Superconductor Nanostructures.

Nanomaterials 2021, 11, 184.

https://doi.org/10.3390/

nano11010184

Received: 19 November 2020

Accepted: 4 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06099 Halle (Saale), Germany;
bjoern.niedzielski@student.uni-halle.de

2 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education and Institute of
Theoretical Physics, Lanzhou University, Lanzhou 730000, China; cljia@lzu.edu.cn

* Correspondence: jamal.berakdar@physik.uni-halle.de

Abstract: We study the transport and the superconducting dynamics in a layer of type II super-
conductor (SC) with a normal top layer that hosts a helical magnetic ordering that gives rise to
spin-current-driven ferroelectric polarization. Proximity effects akin to this heterostructure result
in an anisotropic supercurrent transport and modify the dynamic properties of vortices in the SC.
The vortices can be acted upon and controlled by electric gating or other means that couple to the
spin ordering in the top layer, which, in turn, alter the superconducting/helical magnet coupling
characteristics. We demonstrate, using the time dependent Ginzburg–Landau approach, how the spin
helicity of the top layer can be utilized for pinning and guiding the vortices in the superconducting
layer.

Keywords: superconductor; multiferroic/superconductor nanostructures; superconducting vortices

1. Introduction

Based on the Ginzburg–Landau (GL) theory for superconductors, A.A. Abrikosov
predicted two distinct classes of superconductors depending on the parameter κ, which
quantifies the ratio between the magnetic field penetration depth λGL and the coherence
length ξGL of the superconducting state. In type-II superconductors with κ > 1/

√
2, the

magnetic flux of an applied magnetic field is no longer expelled completely and it penetrates
the material in the form of filaments of quantized flux. These filaments, called vortices or
fluxons, are whirls of supercurrent around a normal conducting core, and for mesoscopic
systems they form a lattice due to their mutual repulsion. From a technological point of
view it is crucial to understand how the vortex lattice behaves under the application of
a transport current, since moving fluxons cause a finite electrical resistance and energy
dissipation in SCs. Much effort has been made to find effective ways to pin vortices and
thereby enhance the critical current of the SC. A class of methods utilizes artificial pinning
centers such as nanoparticles, antidots, columnar defects, thickness modulations, and
magnetic dots on top of the SC [1–5]. In addition, the pinning potential of magnetic stray
fields in coupled ferromagnet/superconductor (FM/SC) multilayers has been explored.
Here, the idea is to pin the magnetic flux of the vortex rather than its normal conducting
core by attaching the SC to a strong-anisotropy FM [6]. For magnetic fields below the
coercive field, the stray fields of the domains in the FM are able to pin vortices—an effect
that has been predicted to be potentially much stronger than pinning by conventional
methods [7]. There is a further property of mesoscopic superconductors that can be utilized
for vortex control. Microsized SCs of non-elipsoidal shape are known to display large
energy barriers for flux penetration and expulsion. In general, these surface barriers
depend in a complicated way on the material properties as well as on the geometry of the
specimen, which makes their systematic investigation challenging [8–10]. Nonetheless, the
understanding of them is of great importance for applications. They are not only a source
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of irreversibility of the superconductor’s magnetic response, but they can also serve to keep
fluxons out of the SC, improving the device efficiency. In combination with conventional
pinning methods, the exploitation of the penetration barrier can greatly enhance the critical
current of an SC [11]. The problem of the surface barrier has been under investigation for
several decades and is still of current importance. This problem is also of relevance to our
system. Below, we discuss how it affects the flux pinning in the presence of spin–orbit
coupling (SOC). Here, we investigate the transport properties and the flux flow in a SC
that is proximity-coupled to a helical multiferroic oxide such as TbMnO3 [12]. In such
noncollinearly magnetically ordered compounds, the interplay of electronic correlation, the
exchange field, and the spin–orbit interaction causes a spontaneous (spin-driven) electric
polarization, meaning ferroelectricity and magnetism are coupled. The emergence of the
ferroelectric polarization thus offers the opportunity to act on the spin ordering via an
electric field [13,14]. For helical spin ordering, the switching from positive to negative spin
helicity can be achieved by a moderate gate voltage, modifying in turn the characteristics
of the coupling to the SC, in particular the SOC. Thus, the multiferroic layer can be utilized
as a control element for flux motion in the SC. We show that by altering the helicity of the
spin-spiral, the vortex motion undergoes subsequent phases of viscous flow and pinning.
An inversion of the helicity can transit the system from the resistive to the dissipationless
state. The mechanism that couples the spin ordering to the superconducting phase field is
in our case an interfacial spin–orbit coupling caused by the proximity to the oxide layer
on top of the SC. We find that the SOC-induced supercurrents modify the edge barrier for
vortex entry into the system. We identify this barrier modification as the key factor that
drives flux motion. Furthermore, it is observed that the ferroelectric top layer renders the
fluxon transport anisotropic, meaning the transport depends on the mutual orientation
of the transport current density je and the wave vector of the spin-spiral k. For je ‖ k the
vortex motion can be strongly inhibited depending on |k|, whereas for je⊥k the vortex
motion becomes channeled.

2. Methods

The system under investigation is a superconducting thin film, which is proximity
coupled to a magnetically ordered top layer that hosts a transverse-spiral spin ordering.
In the following we will refer to this layer as magnetic, though technically the equilibrium
state has no averaged magnetic moment but a finite spin-driven ferroelectric polarization.
In the simulations we choose both layers to be square films with a side length of d = 4µm
and heights hSC and hFM (see Figure 1). The whole heterostructure is subject to an external
magnetic field Be = Beez, and is driven by a transport current je. Two electrodes are
attached to the sides where the current is injected into the SC. In the cases considered here
we have either je = jeex or je = jeey. Generally, the broken space-inversion symmetry at
the interface between the FM and SC allows for a Rashba spin–orbit coupling between
the materials. In our case, the magnetic layers host an intrinsic SOC associated with
the helical spin ordering as well as the ferroelectricity of the top layer. Thus, a local
exchange coupling to the SC results effectively in a magneto–electric interaction between
the superconducting phase field and the magnetic texture [15–17]. This interaction is
manifested in a supercurrent that flows at the interface of the bilayer even in the absence of
external magnetic fields. We demonstrate how this current can be utilized to control the
dynamics of superconducting vortices.

The starting point for the following analysis is the free energy of the SC in the presence
of SOC [18]

G =
∫

ΩSC

(
|Ψ|2

[
a +

b
2
|Ψ|2

]
+

1
2ms

∣∣D̂Ψ
∣∣2 + α

2ms
·
[
Ψ
(
D̂Ψ

)?
+ Ψ?

(
D̂Ψ

)]
+

B2

2µ0
− B ·He

)
dV. (1)
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Figure 1. Schematic of the system. A superconducting square film of length d and height hSC placed underneath a square
non-superconducting film of height hFM that hosts a helical spin order with a spin-driven ferroelectricity, meaning we are
dealing with a multiferroic (MF) layer. The bilayer is subject to an external magnetic field He = Heez, and the external
current je = jeex flows in the superconductor (SC).

The coefficients a = a0(T − Tc) and b > 0 follow from conventional GL-theory, where
Tc is the critical temperature of the SC and a0 > 0. The condensate wave function Ψ = Ψ0eiθ

is characterized by its amplitude Ψ0 and phase θ. The gauge invariant momentum operator
is D̂ = −ih̄∇− qsA, and the magnetic flux density is B = ∇×A. The applied magnetic
field is He = Be/µ0. The constants ms and qs are the mass and charge of a Cooper pair.
The term proportional to α = α0N× h is the free energy density due to Rashba-SOC and is
only allowed in the absence of space-inversion symmetry. It enters the free energy density
in the form of a Lifshitz invariant [19]. The normal vector N points in the direction of the
axis along which the symmetry is broken, in our case this is the z-direction. The exchange
field h is related to the magnetic texture and penetrates the SC in a thin layer around the
interface. Only there is the Rashba parameter α0 finite. For thin films with hSC � λGL,
the spin–orbit coupling is averaged out over the complete layer [20,21]. We follow this
argument with additionally imposing hSC � ξGL. In this way the wave function Ψ is
approximately constant over the width of the layer. Minimizing the free energy with
respect to Ψ? and A yields the well known time-dependent Ginzburg–Landau equations
(TDGL)

δG
δΨ?

= γ

(
h̄

∂Ψ
∂t

+ iqsφΨ
)

(2)

δG
δA

= −σ

(
∂A
∂t

+∇φ

)
. (3)

Here γ = h̄/(2msD) is a dimensionless relaxation coefficient that determines the
relaxation time of the system, σ is the electric conductivity of the normal state, D = v f l/3
is a phenomenological diffusion constant, and v f and l are the Fermi velocity and the
electron mean free path, respectively. The electric scalar potential φ will be utilized to
simulate transport currents through the SC. The electric currents in- and outside the SC are
the source of the vector potential A. Specifically we have dissipationless supercurrents js,
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normal electric currents jn = −σ(∂tA +∇φ), and current flow jext = ∇×He in a coil that
generates the external magnetic field Be = Beez. For the total vector potential we choose
the Coulomb gauge ∇ · A = 0, whereas the vector potential corresponding to external
currents is formulated in the symmetric gauge Ae = 0.5Be(−yex + xey). The TDGL were
originally proposed by Schmid with the aim to find the simplest model that adequately
describes nonequilibrium phenomena, like flux flow and relaxation processes in SCs [22].
For more information about the phenomenological TDGL model and its limits, as well as
consistency issues also in connection with more microscopic approaches, we refer to the
literature [23–26]. After performing the functional derivatives in Equations (2) and (3), the
TDGL take on the following form:

0 = γ

(
h̄

∂Ψ
∂t

+ iqsφΨ
)
+ Ψ

(
b|Ψ|2 − |a| − α2

2ms

)
+

1
2ms

(
D̂ + α

)2Ψ (4)

0 = − 1
µ0
∇× B− σ

(
∂A
∂t

+∇φ

)
+∇×He + js (5)

0 = −σ∆φ +∇ · js. (6)

with supercurrent density

js = i
qs h̄
2ms

(Ψ∇Ψ? −Ψ?∇Ψ)− qs

ms
|Ψ|2(qsA− α). (7)

Equation (6) is obtained by taking the divergence of Equation (5). Since the external
magnetic field Be = µ0He is already defined via its vector potential Ae, it can be inferred
that ∇×He = 0 in the SC. The vector potential entering Equation (4) can be written as
A = As + Ae, where As is the solution of Equation (5) in the absence of external currents.
In Equation (4) the SOC-parameter enters the expression containing the first GL-coefficient
a and leads to an enhanced critical temperature T?

c = Tc + α2/2msa0. A space-dependent
SOC-parameter modulates the effective critical temperature T?

c in the same way as α2. On
the other hand, α also appears in the form of a vector potential giving rise to an anomalous
contribution to the supercurrent density js. For our calculations, the SOC-parameter is
chosen such that α2(r)/2ms ≤ 0.01|a| and the temperature modulation is of a minor
relevance. It should be noted, however, that we are operating with a rather strong SOC
parameter compared with typically employed values |α| ∼ 0.01h̄/ξGL [27]. It was shown
that for such a value of α the spontaneous vortex–antivortex generation is possible even
in the absence of external magnetic fields [28]. In our case, the simulations did not show
SOC-induced vortex–antivortex pairs, but it should be noted that we are considering a
different geometry of the SC/FM bilayer and also a different spin texture. We consider Nb
with the same material constants as in [29] and a normal conductivity of σ = 38(µΩ m)−1.
This yields a relaxation coefficient γ = 0.016. Nb is well studied and documented. On the
other hand, the combination of Nb and TbMnO3 is probably not optimal, since the vortex
diameter in Nb is much larger than the wave length of the spin spiral, which is in the order
of several nanometers. High-Tc superconductors with κ � 1/

√
2 offer a better match. The

wave length of the spin spiral was chosen to have minimum of Λ = 400 nm, which is
roughly 2.5 times the vortex diameter dv = 2ξGL in our calculations. The spin ordered
part is ideally an insulator with large SOC. Alternatively, SOC can also be introduced to
the system by adding a thin metallic interlayer with strong intrinsic SOC in between the
bilayer [30]. To be specific, we assume a helical spin texture and an exchange field in the
form of a Néel spiral

h = − sin
(

2π
nx
d

)
ex − cos

(
2π

nx
d

)
ez. (8)
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The winding number n corresponds to the number of complete rotations of h from
one end of the SC to the other. The absolute value of the field h is absorbed into the SOC-
parameter and h is therefore a unit-vector field. With this we infer for the SOC-parameter

α = −α0 sin
(

2π
nx
d

)
ey. (9)

Considering the similarity between the SOC-parameter and a vector potential, one
realizes that the corresponding magnetic field points perpendicular to the interface

BSOC = −∇× α

qs
= 2πn

α0

dqs
cos
(

2π
nx
d

)
ez. (10)

and modulates the external magnetic field Be. In contrast to the external field, the spin–orbit
field has a spatial dependency and its magnitude increases with the winding number n.
Since the SC is constructed such that d � ξGL < λGL, the dipolar fields of its Meißner
currents can be neglected and Equation (5) does not need to be solved explicitly. Instead,
Equations (4) and (6) are solved with the methods described in [29]. For the boundary
conditions we have (

D̂ + α
)
Ψ ·Nv = 0, on ∂Ωv (11)

Ψ = 0, on ∂Ωe (12)

− σ∇φ ·Ne = je, on ∂Ωe (13)

Ωv and Ωe are the SC/vacuum and SC/electrode boundaries and Nv and Ne the
corresponding surface normals. These boundary conditions are most commonly used
for simulating current flows in SCs [31,32], but other formulations may also be employed
[33]. For simplification purposes, the thickness of the FM hFM is chosen to be small enough
that its dipolar fields can be neglected [20]. In addition, the back-action from the SC on
the FM is not taken into account [34], and the FM is supposed to be unaffected by all
considered magnetic fields. However, in general even weak magnetic fields can lead to
a spatial distortion of the magnetic texture. The broken spatial inversion symmetry then
allows for additional texture-induced Lifschitz invariants in the free energy, which should
be taken into account for a more complete picture [35]. Oersted fields of the remaining
parts of the circuit are neglected.

3. Results and Discussions
3.1. Vortex Dynamics in the Absence of SOC

The problem of vortex matter in the presence of transport currents has been studied
for a long time and the key principles in extended systems are well understood [23,36].
The Lorentz force resulting from the transport current drives the fluxons into a state of
viscous flow, with a moving direction being transverse to the current and to the applied
magnetic flux. A moving vortex thereby induces an electric field in the direction of the
current flow, which causes a finite electrical resistance. In clean samples with no pinning
centers, the heat generation and energy loss caused by the vortex motion deteriorate the
device efficiency. Therefore, much effort has been devoted to understanding how the
flux-motion can be inhibited. Here we are dealing with vortex pinning caused only by
electromagnetic fields and geometric confinement, since our SC is assumed to be free
of defects. We note that the presence of impurities and the influence of pinning centers
can considerably change the conditions for vortex entry and flux motion, as discussed in
numerous studies [37–39].

We start studying the vortex motion by slowly ramping up the external current from
an initial state with one vortex in the center of the SC. In this state we set Be = 1.5 mT with
no SOC or equivalently n = 0. For small current densities je = jeey the vortex is pushed
in the x-direction until it finds a new equilibrium position closer to the edge at x = 2 µm.
A new equilibrium is established since vortex expulsion is prevented by a surface barrier
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that, in mesoscopic samples, is typically a hybrid effect of the microscopic Bean–Livingston
barrier and the geometric confinement [38,40,41]. If the current reaches a critical value jd,
the vortex motion sets in and the Lorentz force becomes strong enough to push the fluxons
across the barrier. In this regime a steady vortex motion is reflected in periodic oscillations
of the mean voltage (see Figure 2)

〈U〉x,y =
1
d

∫
ΩSC

∇φ · ex,ydA. (14)

Figure 2. Time evolution of the SC for Be = 1.5 mT, α0 = 0, and je = 7.07 GA/m2ey. Upper panel: mean voltage versus
time over two complete periods. The numbering of the red points corresponds to that of the lower panels and marks the
vortex state of the SC. Lower panel: time evolution of the vortices. The red color corresponds to the fully superconducting
material and blue to the normal conducting regions.

When the critical current is surpassed, a flux motion is triggered by a vortex enter-
ing the sample from the left and traveling towards the center. The Lorentz force and
the repulsive vortex–vortex interaction drive the fluxon pair towards the edge until an
expulsion event happens. After this stage the flux motion stops for a moment and the new
vortex remains static until another vortex enters the SC from the left edge. After that the
whole process starts again. In general, the fluxons in mesoscopic systems are affected in a
complicated way by the edge barrier, which in turn depends on the number of fluxons in
the system and on their distribution. In addition, the edge imperfections and the strength
of the applied magnetic fields, as well as the geometry of the SC, are important factors.
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A detailed analysis of these issues is beyond the scope of this work. We focus mainly on
the influence of SOC on the vortex dynamics. In the following section we demonstrate how
the edge barrier is affected by the magnetic texture and how the vortex motion changes in
the presence of SOC.

3.2. Vortex Dynamics in the Presence of SOC

We start investigating the vortex dynamics in the presence of SOC by slowly ramping
up the winding number from n = 0 to |n| = 10 in the dynamic state introduced in the last
section (see Figure 2). This can be done by acting on the magnetic layer with an electric
field that couples to the ferroelectric polarization associated with the spin helical ordering.
For instance, when the ferroelectric polarization vanishes, we reach the ferromagnetically
ordered state. In the simulation we tune the SOC-parameter such that |α| = 0.1h̄/ξGL,
whereas the values of the external magnetic field and of the current remain the same.
A change in the winding number leads to a spatial variation of the magnetic field in the SC
with the strength and distribution being determined by Equation (10). The gate voltage
applied to the magnetically active elements is symmetric with respect to the central axis
ey of the SC with a constant local magnetic moment and exchange field h = −ez along
the y-axis. We do not simulate the transient spin dynamics in the magnetic layer itself.
We consider two scenarios where the local magnetic moment is not fixed in the center but
along one of the two edges (x = ±d/2, y), yielding two additional SOC-parameters with
indices l (left) and r (right) marking the edge of fixed local magnetic moments

αl,r = −kr,lα0 sin
(

nπ
[
2

x
d
+ kr,l

])
ey (15)

with kl = 1 and kr = −1. The corresponding magnetic field is

Bl,r
SOC = kr,l2πn

α0

dqs
cos
(

nπ
[
2

x
d
+ kr,l

])
ez (16)

For the remainder of the text, the field of symmetric magnetic moment contraction is
marked as αs. For all considered values of n, the vortex motion is studied by calculating the
space and time-averaged voltage across the SC. The effect of ramping up |n| for all three
cases α = αs,l,r is shown in Figure 3. With increasing the winding number the mean voltage
starts to oscillate. Each period consists of a sharp minimum of U followed by an interval of
relatively constant voltage. Analysis of the simulation data reveals that the pronounced
voltage minima are due to a greater vortex mobility, which is enabled by an easier vortex
penetration into the sample. The plateaus of the constant voltage are due to vortex pinning,
which is caused by impeded vortex penetration. In all calculations we observed that the
entry into the resistive state was triggered by a vortex entering the sample, and therefore
the edge barrier for vortex penetration is crucial for dynamics. The barrier for vortex exit is
of lesser relevance. This observation is also reflected by the voltage curves in Figure 3b,c,
where the SOC field has a fixed value at one of the edges. In Figure 3b, the magnetization
is fixed at the left edge of the sample where vortex penetration happens. For negative
values of n, BSOC has a minimum, whereas for positive n it is maximal. For a positive SOC
field at the left edge, the vortex motion is permanently inhibited, whereas for negative
values sharp voltage oscillations appear with a higher frequency than in the previous case.
This observation suggests that the edge barrier for vortex penetration depends on the sign
and strength of BSOC and can be controlled with an appropriate phase shift of the spin
spiral. Such a phase shift can indeed be utilized to trigger vortex pinning and switch the
system from the resistive to the dissipationless state. To demonstrate this phenomenon we
modified the SOC-parameter αs according to

αs = −α0 sin
(

2π
nx
d

+ ϕ
)

ey (17)
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with a phase factor ϕ ∈ [0, 2π] that was ramped up for specific n-values of the curve of
Figure 3a. The phase shift was performed for values of n for which the vortex motion is
enhanced and the mean voltage has a minimum. The results are presented in Figure 4.
The vortex pinning can be restored by shifting ϕ by π, which goes hand in hand with a
sign inversion of BSOC. As for α = αl and for fixed magnetic ordering at the left edge, also
for the symmetric field αs, the vortex motion was observed to be enhanced by negative
values of BSOC around the left edge of the SC. The phase shift of ϕ restores the pinning by
switching the sign of the SOC field back to positive, thereby increasing the edge barrier.
In the calculations for Figure 3c, the field at the left edge was variable, whereas the field
on the right edge was set to have a positive value for negative n, and a negative value for
positive n. In line with previous observations, the frequency of the oscillations has roughly
doubled since BSOC also changes sign twice as fast at the left edge of the SC for α = αr

with increasing n. The asymmetry in the curve suggests that the vortex expulsion barrier,
despite its lesser relevance in the given problem, plays a role in the vortex dynamics.

Figure 3. Mean voltage versus winding number for Be = 1.5 mT, α0 = 0.1h̄/ξGL, and je = 7.07 GA/m2ey. (a) The
magnetization is symmetrically contracted around the y-axis with α = αs. (b) The magnetization is fixed at x = −d/2 with
α = αl . (c) The magnetization is fixed at x = +d/2 with α = αr.
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Figure 4. Mean voltage versus phase shift of αs for specific winding numbers. The values of n are chosen such that for
ϕ = 0 we are in the resistive state (see Figure 3a). An appropriate phase shift switches the system from being resistive to
being dissipationless.

The complete phase diagram of static and dynamic vortex phases due to the SOC
field αs is shown in Figure 5. Here the black curve approximates the critical current
densities jd for which the vortex motion is barely inhibited. As in previous calculations,
the depinning current oscillates with the winding number. For large winding numbers,
the maxima and minima of jd coincide with the even and odd values of n, respectively.
For small winding numbers these extrema are shifted to half integer values. Another
interesting observation is that the vortex number along the curve changes more rapidly
for small values of n, whereas for large winding numbers only 1-vortex and 2-vortex
states appear. The maximum depinning current appears at around n = 1.5 and has a
roughly 28% higher value than in the SOC-free case. In Figure 6 we plotted the critical
energy for the vortex penetration Ed, together with the corresponding depinning current
jd. We can see that the maxima and minima of the curves coincide very well and therefore
again the modified penetration barrier at the left edge is identified as the cause for the
alternating depinning current. For a better understanding of the high and low n regimes
in the curves, we plotted the screening current distribution js,y(x, y = 0) due to the SOC
field for different values of the winding number (see Figure 7 ). The reference state with
no vortex and Bext = 0 and jext = 0 was used for this calculation, which means the
screening currents are purely determined by the anomalous part of js, which for |Ψ| ≈ 1
is given by js = qs/msαs. For comparison, the usual screening current due to Bext and
with α = 0 was also plotted. We can see that for arbitrary n the SOC-induced current
distributions are equal in magnitude. This is because the supercurrents always encircle
the same magnetic flux over one period of BSOC, regardless of winding number and the
field strength of BSOC. For small winding numbers the screening currents are broadly
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distributed. As we saw earlier, the vortex penetration is preferred here for n = 0.5 and
n = 2.5. For these values the screening currents along the left edge due to α and Aext are
maximal and add up. The effective screening current is therefore enhanced and leads to a
stronger suppression of |Ψ| and a stronger supervelocity along the edge. This in return
favors the vortex entry and reduces the corresponding edge barrier [37]. If the currents
oppose each other, like for n = 1.5, the total current distribution is reduced. This situation
is similar to that of a recovery of the edge barrier due to vortex entry [42]. In our situation
it has the same effect and prevents the vortex entry, which in return keeps the already
existing vortices static. For larger values of n, the maxima and minima of the screening
currents are no longer located at the edges of the SC when jd becomes extremal. Instead,
the corresponding currents now flow inside the SC and are zero at the edges. However, the
effects that determined the vortex mobility for small n are still active and one can see that
vortex pinning still happens when the total current around the left edge is reduced. So we
conclude that it is not the value of the supercurrent but rather its total distribution around
the edges that determines the vortex velocity in mesoscopic systems. This observation
is supported by the fact that for broader current distributions, apparently more vortices
are able to simultaneously exist inside the SC leading to a stronger voltage signal and a
reduced jd.

Figure 5. Depinning current versus the winding number for Be = 1.5 mT, α = αs, and α0 = 0.1h̄/ξGL. For je ≤ jd the vortex
motion is prevented, whereas for je > jd the SC enters the resistive state. The shape of the approximate curve also depends
on the number of vortices and has kinks where this number changes.
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Figure 6. Depinning current and corresponding energy for Be = 1.5 mT, α = αs, α0 = 0.1h̄/ξGL, and je = 7.07 GA/m2ey.
The depinning energy Ed corresponds to the energy barrier for the vortex entry since the permanent vortex motion was
always observed to be triggered by a vortex entry event.

Figure 7. Supercurrent distribution of a reference state with α = αs and without vortex. y-component of the supercurrent
along the x-axis for values of n for which the depinning current becomes extremal. Pinning is observed to happen
when the spin–orbit field becomes maximal around the left edge x = −7.5λGL, whereas the flux motion is enhanced for
negative values.
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The transport current can proceed along the x-direction and transverse to αs. The vor-
tex motion is investigated by calculating the mean voltage for different values of n. For a
comparison, the mean voltage for the case je = jeey is plotted (see Figure 8). The voltage
oscillates with the winding number but there is no regime of vortex pinning for positive
n. Instead, the voltage signal is strongly enhanced, which is most pronounced for small
winding numbers. Inspection of the simulation data revealed that a higher average number
of vortices in the SC is the reason for this enhancement. The average vortex number is
continuously changing with n, and has maxima and minima that coincide with the voltage
extrema for the case je = jeex. The reason for the oscillating mean voltage is still not
fully understood, since the complicated boundary-current distribution due to αs has so far
prevented a reliable conclusion. However, vortex entry was again observed to take place
where BSOC has a maximum at the lower boundary. For the symmetric SOC parameter,
the SOC field is always positive at the center of the SC and builds a channel that vortices
cannot leave in the direction transverse to α. Only for small n does the broad distribution
of BSOC allow for lateral fluxon movement. For n > 1.3, the fluxon motion was observed to
be highly directional along ey. We recorded the frequency of the time-dependent voltage
oscillations that depends on the average vortex number, the vortex velocity, and the time
period a vortex resides in the SC before it is expelled. The frequency of the oscillations are
in the GHz regime with a maximum at n = 1. For this particular value we observed the
highest number of vortices simultaneously moving in the SC. For larger winding numbers
the frequency decreases and approaches the initial value for BSOC = 0. The out-averaging
of the SOC field is observable in the voltage curves where it manifested in decreased
amplitudes of the voltage minima. For large winding numbers the amplitudes of jd are
damped. Allowing for negative values of n (not shown here), the mechanism that enhances
the vortex–vortex mobility is reversed, and we enter the regimes of vortex pinning with a
constant mean voltage.

Figure 8. Left: Mean voltage versus winding number for α = αs and a transport current in the y-direction (upper curve) and
x-direction (lower curve). For je = jeey vortices are forced to move along k and experience subsequent phases of pinning
and motion depending on n. For je = jeex vortices move transverse to k and no pinning is observed for positive winding
numbers. Right: Frequency of the voltage oscillations for je = jeex depending on the average vortex number and the time a
vortex resides in the sample.

4. Conclusions

We investigated how the superconducting vortex dynamics are affected by the prox-
imity to a magnetically ordered top layer with strong SOC due to intrinsic helical order.
As a specific example for the magnetic ordering, we considered a Néel spiral spin-texture
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and found the winding number to be the main control parameter for vortex motion. We in-
ferred that by increasing the winding number, vortices experience alternating phases of
enhanced mobility and pinning. We traced back this behavior to a modification of the
barrier for vortex entry by the SOC-induced screening currents along the edges of the SC.
Furthermore, we demonstrated that the average vortex number in the SC and the critical
depinning current are also modified by the magnetic spin spiral, and that pinning is most
effective for low winding numbers. For high winding numbers the SOC effect averages
out and the amplitudes of jd tend to zero. Our observations of a modified edge barrier
are supported by the fact that the vortex mobility is sensitive to the phase of the magnetic
spiral at the edge where the vortex penetration happens. We also demonstrated that due
to the symmetry of the SOC field, the fluxon transport in the SC is anisotropic, enabling
highly channeled vortex motion for a transport current transverse to the spin spiral. The
presented results point to an all-electric control of superconducting transport properties
by exploiting a spin-current-induced ferroelectricity in the top layer, which renders a
coupling of the spin ordering to electric fields. We also expect the results to be valid for a
single planar superconductor subjected to magnetic stray fields with a distribution that
resembles that of the SOC field. Investigations in this direction are ongoing. Other issues
to be investigated are further facets of the Rashba-SOC, which depends on the potential
gradient at the interface. Therefore, its amplitude may be influenced by the strength of
the ferroelectric polarization. The latter depends linearly on the magnetic spiral winding
number. Thus, the Rashba-type effective magnetic field contains a contribution that is an
even function of the winding number. This secondary effect is currently being quantified
by elaborate simulations.
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