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Introduction: Arterial brain vessel assessment is crucial for the diagnostic process

in patients with cerebrovascular disease. Non-invasive neuroimaging techniques, such

as time-of-flight (TOF) magnetic resonance angiography (MRA) imaging are applied in

the clinical routine to depict arteries. They are, however, only visually assessed. Fully

automated vessel segmentation integrated into the clinical routine could facilitate the

time-critical diagnosis of vessel abnormalities and might facilitate the identification of

valuable biomarkers for cerebrovascular events. In the present work, we developed and

validated a new deep learning model for vessel segmentation, coined BRAVE-NET, on a

large aggregated dataset of patients with cerebrovascular diseases.

Methods: BRAVE-NET is a multiscale 3-D convolutional neural network (CNN) model

developed on a dataset of 264 patients from three different studies enrolling patients

with cerebrovascular diseases. A context path, dually capturing high- and low-resolution

volumes, and deep supervision were implemented. The BRAVE-NET model was

compared to a baseline Unet model and variants with only context paths and deep

supervision, respectively. The models were developed and validated using high-quality

manual labels as ground truth. Next to precision and recall, the performance was

assessed quantitatively by Dice coefficient (DSC); average Hausdorff distance (AVD);

95-percentile Hausdorff distance (95HD); and via visual qualitative rating.

Results: The BRAVE-NET performance surpassed the other models for arterial brain

vessel segmentation with a DSC = 0.931, AVD = 0.165, and 95HD = 29.153. The

BRAVE-NET model was also the most resistant toward false labelings as revealed by the

visual analysis. The performance improvement is primarily attributed to the integration
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of the multiscaling context path into the 3-D Unet and to a lesser extent to the deep

supervision architectural component.

Discussion: We present a new state-of-the-art of arterial brain vessel segmentation

tailored to cerebrovascular pathology. We provide an extensive experimental validation

of the model using a large aggregated dataset encompassing a large variability of

cerebrovascular disease and an external set of healthy volunteers. The framework

provides the technological foundation for improving the clinical workflow and can serve

as a biomarker extraction tool in cerebrovascular diseases.

Keywords: artificial intelligence (AI), segmentation (image processing), UNET, cerebrovascular disease (CVD),

machine learning

INTRODUCTION

Stroke is one of the leading causes of death worldwide and
15 million people each year suffer a stroke (WHO EMRO,
2019). Stroke is a cerebrovascular disease and as such is
characterized by changes in the arterial vasculature of the brain,
such as stenosis and occlusion of vessels. Information about the
arterial vessel status proves crucial for the diagnostic process.
In chronic cerebrovascular disease—which is often present prior
to stroke—it can serve as a biomarker: It was shown that brain
vessel status can predict the likelihood of further stroke events
(Gutierrez et al., 2015). In the acute clinical setting, brain vessel
status provides stroke physicians with pivotal information. For
example, acute arterial vessel occlusions qualify patients for
mechanical thrombectomy, the best reperfusion therapy of stroke
at the moment (Turc et al., 2019). This explains the high clinical
relevance to depict brain vessels in cerebrovascular disease.

Non-invasive neuroimaging techniques are used to depict
brain vessels. One method is magnetic resonance (MR) time-
of-flight (TOF) imaging. It is fast, has no ionizing radiation
exposure and can depict the arterial vasculature in high detail.
Clinical reading of vessel imaging is based on visual judgment
alone, as there is a lack of fully automated vessel segmentation
methods. Fully automated segmentation means in the clinical
context that the segmentation results would be rapidly available
on the scanner console without the need of extra post-processing.
Extensive, time-consuming and non-standardized image post-
processing is an important obstacle to widespread clinical
application. Fully automated analysis of TOF images could
facilitate the diagnosis of vessel abnormalities and allow the
quantification of the cerebrovascular status, e.g., arterial vessel
density or arterial vessel diameters, to make potential biomarkers
for diagnostic stratification easily available (Dengler et al., 2016;
Santos et al., 2016; Yoo et al., 2018; Dutra et al., 2019; Murray
et al., 2019).

Convolutional neural networks (CNNs)—a type of artificial
neural networks (ANN) tailored for image analysis—have
become the method of choice for vessel segmentation including
the brain vasculature and showed promising results in recent
applications (Moccia et al., 2018; Tetteh et al., 2018; Livne et al.,
2019a). However, these previous studies suffer from various
impediments that still limit their usability in the clinical setting.

First, post-processing of the images, such as noise filtration
and brain masking are commonly applied (Passat et al., 2005;
Livne et al., 2019a). The necessity of image processing may
not only lead to suboptimal generalization due to a lack of
standardized processing methods but may disqualify the models
for clinical use due to time constraints, as the same processing
needs to be applied to each image before predictions can be
run. Second, the studies are often performed on small datasets
or even simulated data due to a lack of large amounts of high-
quality labeled data. Third, a lack of data heterogeneity limits
the generalizability of these models to new datasets. Lastly, the
suggested frameworks are rarely developed in cases with vessel
pathologies. These constraints constitute a severe challenge for
the clinical application of the models, since it may impair their
ability to accurately detect vessels and vessel abnormalities in
patients with cerebrovascular pathologies.

Recognizing this challenge, this work presents a high
performance fully automated framework for vessel segmentation
in patients with cerebrovascular disease addressing all the above-
mentioned limitations, coined BRAVE-NET (BRAinVEssel-
NETwork). BRAVE-NET is a multiscale 3-D CNN model
designed to dually capture high- and low-resolution volumes
thus enabling enhanced distinction of brain vessels from
other structures, such as skull areas and arteries not feeding
the brain, making masking and other post-processing steps
obsolete. The model was developed and validated using
high-quality labeled data derived from multiple datasets
of patients (n = 264) with cerebrovascular disease. This
approach ensured the high performance and high generalization
of BRAVE-NET.

METHODS

Data
Accessibility
Due to data protection laws, the imaging data used in this study
cannot be published at the current time point. Implementation
of the proposed network, as well as the training, prediction, and
evaluation framework can be found on Github at https://github.
com/prediction2020/brain-vessel-segmentation.
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Patients
Retrospective data from the PEGASUS (Martin et al., 2015),
7UP (Ultrahigh-Field MRI in Human Ischemic Stroke—a 7
Tesla Study), and 1000Plus (Hotter et al., 2009) studies, with
264 patients in total, were analyzed in this study. From the
PEGASUS and 7UP studies, 74 and 9 patients with chronic
steno-occlusive disease were available for this study, respectively.
From the 1000Plus study, we included 181 patients with acute
stroke. All mentioned studies were carried out in accordance
with the recommendations of the authorized institutional ethical
review board of Charité-Universitätsmedizin Berlin (PEGASUS
and 1000Plus) and the Berlin state ethics boards (7UP). All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Imaging Properties
Time-of-Flight (TOF) Magnetic Resonance Angiography (MRA)
images were used to train all benchmarked models. TOF relies
on the fact that, within an imaged volume, inflowing blood has
high magnetization compared to stationary tissue that becomes
magnetically saturated by multiple radiofrequency pulses. TOF-
MRA is one of the most important methods for non-contrast
neurovascular and peripheral MRA. In the PEGASUS and
1000Plus studies, TOF imaging was performed on a Magnetom
Trio 3T whole-body system (Siemens Healthcare, Erlangen,
Germany) using a 12-channel receive radiofrequency (RF) coil
(Siemens Healthcare) tailored for head imaging. In the 7UP
study, TOF imaging was performed on a Magnetom Verio 3T
whole body system (also Siemens Healthcare) using a 12-channel
receive radiofrequency (RF) coil (Siemens Healthcare) tailored
for head imaging. Parameters of the TOF imaging of each dataset
are shown in Table 1.

Data Labeling
Intra-cerebral arteries as well as the major brain-supplying
arteries, i.e., the internal carotid arteries, the vertebral arteries
and the basilar artery were labeled. For PEGASUS and 7UP data,
ground-truth labels of the arterial brain vessels were generated
semi-manually using a standardized pipeline. Pre-labeling of
the vessels was performed by a thresholded region-growing
algorithm using the regiongrowingmacro module implemented
in MeVisLab (Mevis Medical Solutions, Bremen, Germany).
To tackle inter-rater variability in label generation, these pre-
labeled data were thoroughly manually corrected by either OUA
and EA (both junior raters) and then cross-checked by the
other rater. Junior raters were trained for image segmentation
and were only allowed to independently label images once
their performance met ground truth standards. These labels
were then checked subsequently by VIM (9 years experience
in stroke imaging). Thus, each ground-truth was eventually
checked by three independent raters, including 1 senior rater.
The total labeling time with this framework amounted to 60–
80min per patient. For 1000Plus data, the MeVisLab-based pre-
segmentation step was replaced by using a 2DUnet segmentation
model, developed in earlier work (Livne et al., 2019a). These pre-
segmentations were—as described above—manually corrected
either by OUA, EA, or JB, cross-checked by another junior rater

and then subsequently checked by VIM. For this approach, the
total labeling time was reduced to 40–60min per patient.

Data Pre-/Post-processing
No pre- or post-processing methods were applied in the
presented framework that are necessary to be performed on
datasets prior to any prediction. Importantly, no mask was used
for validation or test. All the developed models can operate on
raw TOF images coming directly from the scanner and are not
dependent on any processing step or external tool.

For the training step only, and here to reduce the training time
of the models, a heuristical mask was automatically computed for
each TOF image to exclude training patches containing only air
as follows: (1) The images were smoothed with a 16 × 16 × 16
averaging filter in a shifting window fashion. (2) A threshold of
intensity values at 10 was applied (intensity > 10 implies ROI).
This provides an automatically generated mask for the training
phase which contains all the brain tissue but also a thick border
area around the skull. The inclusion of patches from these border
areas proved to be crucial for the learning process, particularly
for the distinction of the skull and the ability to capture the
distinctive neighborhood of small vessels in that area. We note
that this step serves the purpose of pre-selection of training
patches only and is fully optional for the training phase. Inference
with any of the models is possible on any raw image without
a selection mask, consequently no masks were utilized in the
testing phase. Similarly, instead of prior normalization of input
data, an initial Batch-normalization layer was introduced to each
architecture before other layers to learn and adjust to moving
mean and variance statistics of training samples. This approach
eliminates data pre-processing and the need of stashing statistics
as well as enables quick adaptation when necessary through
“fine-tuning” of Batch-normalization layers.

Dataset Preparation and Patch Extraction
Images from each dataset were used for training, model selection
and evaluation. A 4-fold cross-validation methodology was
employed to ensure the robustness of all models toward different
training and test sets. Therefore, data was split randomly into 4
distinct training and test sets making sure that each set contained
the same number of patients from each source dataset (Pegasus,
7UP, 1000Plus). Furthermore, 15% of images were separated
randomly without overlaps from each training set for validation
and used for parameter selection. Figure 1 illustrates the creation
of training, validation and test sets. Final number of patients was
170, 29, 65 in each set, respectively; including equal numbers of
patients from each source across folds.

The task of brain vessel segmentation on 3D MRI images
challenges deep learning techniques from several aspects. First,
processing of whole brain volumes at once requires significant
resources in terms of GPU memory. Second, the distribution of
vessels compared to brain tissue is very sparse. The physiological
arterial vascular volume fraction of the brain is 1.5%. TOF-
detectable arterial vessel voxels can be as low as on average
0.3% of all voxels within the brain. Finally, sufficient training
of deep neural networks requires numerous images, while our
dataset is—like most medical imaging datasets—limited in size.
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TABLE 1 | Time of flight (TOF) magnetic resonance imaging (MRI) parameters.

Dataset Voxel size Matrix size TR/TE (ms) Time of acquisition (min:s) Flip angle (◦)

PEGASUS 0.52 × 0.52 × 0.65 312 × 384 × 127 22/3.86 3:50 18

7UP 0.28 × 0.28 × 0.6 644 × 768 × 136 24/3.60 5:54 18

1000Plus 0.52 × 0.52 × 0.65 312 × 384 × 127 22/3.86 3:50 18

FIGURE 1 | Illustration of a 4-fold cross-validation framework. Each row in the

figure represents a fold. Data assigned to the training- validation- and test sets

are indicated with the colors blue, yellow, and green, respectively. In each fold,

the training set comprises 60%, the validation set 15%, and the test set 25%

of all images (170, 29, 65 images, respectively).

To solve these challenges, we redesigned the segmentation task
as voxel-wise classification and trained our models on patches
that represent an arbitrary neighborhood of the center voxel.
Accordingly, 2,000 locations per TOF image (i.e., patient) were
randomly sampled within the heuristical mask, ensuring 50% of
the samples were vessel-centric. Patches of sizes [64 × 64 × 8]
and [128 × 128 × 16] were extracted around each location, and
comprised the input patches of our proposed framework.

External Validation
In recent years, the medical AI research field showed a
tendency to develop an overwhelming focus for performance
in homogeneous samples in contrast to the requirements for
a medical imaging product (Higgins and Madai, 2020). In
the real world clinical setting algorithms are confronted with
highly heterogeneous data reflecting different settings, multiple
hardware options and various population properties. To this end,
next to our—already heterogeneous—in-house dataset for model
development and evaluation, we include an external validation
set. We used the publicly available MRA TOF dataset of healthy
volunteers from the MIDAS data collection website1, similarly
to Bullitt et al. (2005). The dataset comprises images of 109
volunteers, evenly distributed into five age categories. We have
chosen four images randomly from each age group, i.e., 20 in
total—to thoroughly test generalization and robustness of our
models but limit time requirements of the labeling process.
Matrix sizes and voxel sizes were 448 × 448 × 128 and 0.51 ×

1https://www.insight-journal.org/midas/community/view/21

0.51 × 0.8, respectively. Other properties of image can be found
on the original website. The same labeling procedure was applied
as for 1000Plus data, described in the Data labeling section.
Ground truth labels for the external validation are published
under (Hilbert et al., 2020).

Segmentation Frameworks
Baseline Unet
The backbone of the proposed framework is realized by an
adjusted Unet architecture (Ronneberger et al., 2015) with four
levels, shown on Figure 2. The Unet model consists of an
encoding path (left side), and a decoding path (right side). At
each level of the encoding, we employ a sequence of Convolution,
Rectified Linear Unit (ReLU) activation and Batch-normalization
two times consecutively followed by Max-pooling (Ioffe and
Szegedy, 2015). Additional dropout is applied in the first
sequence after the Batch-normalization (Srivastava et al., 2014).
We set the kernels and stride to 3× 3× 3 and 1 for convolutions
and 2 × 2 × 2 and 2 for max-pooling. The resolution and depth
of feature maps are reduced to half and doubled, respectively
after each level. As an extension of the original Unet architecture,
we add two consecutive fully connected layers to the last level
realized by 1× 1× 1 convolutions.

The decoding part of the architecture recovers the
original input dimensions by applying the same sequences
of Convolution, ReLU, Batch-normalization but replacing
max-pooling with up-sampling at each level. Additionally,
corresponding feature maps from the encoding part are
concatenated to the input of each decoding level. Finally, 1× 1×
1 convolution with sigmoid activation is applied to map feature
maps into a binary prediction map, which is used to calculate
DSC loss.

Context Unet
Patch-wise formulation of the segmentation problem comes at
the cost of neglecting the full spatial context of input images.
In theory, the model should learn to distinguish vessels from
other structures within the brain. On the other hand, as described
under the data labeling section, we are only interested in
segmenting specific arterial brain vessels which have specific
spatial locations. Furthermore, Livne et al. (2019a) showed the
limitation of a standard Unet variant in detecting small vessels.
A significant amount of these small vessels lie close to the skull,
i.e., has a particularly distinctive spatial context. To tackle these
problems, a multiscale approach is applied (Havaei et al., 2016;
Kamnitsas et al., 2017; Yue et al., 2019). We extend the base
architecture with a context aggregation under the hypothesis that
it will improve the discrimination between vessels of interest and
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FIGURE 2 | The baseline architecture. A standard Unet architecture, coined Unet, consisting of four levels, two consecutive sequences of convolution, ReLU,

Batch-normalization at each level of encoding (left side) and decoding (right side) part. Two additional fully connected layers are added to the last level realized by 1 ×

1 × 1 convolutions.

other constructs and particularly improve the segmentation of
small vessels.

This approach is depicted in Figure 3. The encoding part of
our Unet is extended with a so-called context path. The input
of this path is a larger—context—patch, extracted around the
same center voxel as for the other encoding path. Inspired by
Kamnitsas et al. (2017), the input patch is then down-sampled
by average-pooling with 2 × 2 × 2 kernels and stride of 2,
i.e., to the same dimension but half-resolution compared to the
other encoding path. The down-sampling allows for neglecting
fine details and focusing on contextual information. The down-
sampled input is fed into a parallel, equivalent sequence of layers.
The two parallel downward paths are realized as duplicates (i.e.,
with no shared parameters) in order to enable distinctive feature
encodings for the context and original patch. The output of
the encoding paths, i.e., bottom level—are concatenated and
fed through two fully connected layers realized by 1 × 1 ×

1 convolution followed by ReLU. Finally, the residuals of each
level of both encoding paths are concatenated to the input of
the corresponding decoding level to facilitate the contribution of
spatial and context information in the final prediction map.

Deep Supervision Unet
Deep supervision is a method commonly used to avoid the
problem of exploding or vanishing gradients in deep networks
by forcing intermediate layers to produce more discriminative
features. Stawiaski (2017) implemented deep supervision by
down-sampling ground truth segmentations and weighting each
coefficient equally in the loss function. Other implementations
aggregated the coarse, low-resolution feature maps into the final
convolutional layers and thus incorporated different features in a
single loss coefficient (Chen et al., 2014; Long et al., 2014; Folle

et al., 2019). In contrast, we aim to facilitate the convergence
of intermediate layers by direct supervision. Feature maps from
intermediate decoding levels (i.e., all except bottom and final
level) are first up-sampled to the output dimension and then fed
into a 1 × 1 × 1 convolutional layer with sigmoid activation
to produce prediction masks. From each output of the model,
DSC loss is computed with respect to the ground truth labeling.
The loss coefficients are weighted and summed to create the
training loss of the framework. We aim to reflect more emphasis
on the final prediction thus assign 0.5 weight to the final layer
and distribute the remaining 0.5 across intermediate outputs. A
deep supervision variant of the architecture is coined here as DS-
Unet. An illustration of deep supervision integration in the final
architecture can be found in Figure 4.

BRAVE-NET
The proposed BRAVE-NET architecture integrates the 3D Unet
with both approaches introduced above, multiscaling and deep
supervision. Figure 4 shows the BRAVE-NET architecture—
including an illustration of the integration of deep supervision
to the loss function. A model card outlining the model
characteristics of BRAVE-NET can be found in Appendix I—
Model card section of the Supplementary material, as suggested
by Mitchell et al. (2019).

The number of trainable parameters are shown in Table 2.
Naturally, Context-Unet and BRAVE-NET contain more
parameters due to the multi-scale encoder part, while DS-
Unet has only few more trainable parameters than Unet due
to the two additional final convolutions of the up-sampled
outputs. Mathematical formulations of encoder outputs and
decoder inputs can be found in Appendix III—Mathematical
formulations section of the Supplementary material.
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FIGURE 3 | Unet architecture extended with context aggregation, coined Context-Unet. Additional context path (purple columns) is added to the encoding (left side)

part. The initial downsampling of the 128 × 128 × 16 input patch is followed by the same number of layers as the other encoding path (blue columns). The two paths

are concatenated and fed into the decoding part (right side). Input patches are extracted around the same center voxel.

FIGURE 4 | BRAVE-NET architecture. The model is composed of a Unet architecture extended with context aggregation and deep supervision. Feature maps of

intermediate decoding levels are up-sampled to output—spatial—dimension (striped yellow arrows) and prediction masks are produced by 1 × 1 × 1 convolution and

sigmoid activation (striped blue arrows).

Model Training and Evaluation
Experimental Setup
The models were trained in the above-described cross-validation
framework. The optimal learning rate of the optimization process
was selected by highest average performance across validation
sets evaluated on whole brain segmentation. The largest batch-
size feasible was used to fully utilize computational resources
and to optimize training time. Models were trained on a high
performance deep learning server using a single NVIDIA Titan
RTX GPU.

To analyze the contribution of the proposed extensions,
different configurations of the segmentation framework were
tested. The performance of BRAVE-NET was compared to the
DS-Unet, the Context-Unet, and to the baseline Unet.

Training Scheme
The designated input (BRAVE-NET: [64 × 64 × 8], [128 ×

128 × 16], DS-Unet: [64 × 64 × 8], Context-Unet: [64 × 64
× 8], [128 × 128 × 16], Unet: [64 × 64 × 8]) and ground
truth patches ([64 × 64 × 8]) were used to train the models.
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TABLE 2 | Number of trainable parameters of all implemented models.

Unet DS-Unet Context-Unet BRAVE-NET

Number of trainable

parameters

∼6 million ∼6 million ∼10 million ∼10 million

All models were implemented in Python using Tensorflow Deep
learning framework (Abadi et al., 2015) and were trained using
Adam optimizer (Kingma and Ba, 2014). The final layer of each
model utilizes a voxel-wise sigmoid activation function, defined
as p(x) = 1/(1 + exp(f (x))), where f (x) denotes the output
value of the last [1 × 1 × 1] convolutional layer at the voxel
position x ∈ � with � ∈ Z3and p(x) is the approximated
probability of a voxel x to be a vessel. The same activation is
applied to each output of the deep supervision method. DSC
loss was used to update the model parameters and to monitor
training convergence, throughout all experiments. DSC between
two binary volumes, i.e., prediction and ground truth—is defined
asDSC = 2TP/(2TP+FP+FN), where TP is the number of true
positive voxels, FP is the number of false-positive voxels and FN
is the number of false-negative voxels. Further derived:

DSC

=
2TP

(2TP + FP + FN)

=
2
∑

x∈� pxgx

2
(
∑

x∈� pxgx
)

+
(
∑

x∈� p2x − pxgx
)

+
(
∑

x∈� g2x − pxgx
)

=
2
∑

x∈� pxgx
∑

x∈� p2x +
∑

x∈ � g2x

Where px ∈ P :� → {0, 1} is the binary prediction volume and
gx ∈ G :� → {0, 1} the binary ground truth volume. This yields
in the following differentiated gradient at each position j:

∂D

∂pj
= 2

[

gj
(
∑

x∈� p2x +
∑

x∈� g2x
)

− 2pj
(
∑

x∈� pxgx
)

(
∑

x∈� p2x +
∑

x∈� g2x
)

]

Wemonitored—patch-level—validation loss during training and
employed EarlyStopping with a patience of 3 epochs to optimize
training time and to save the best model with respect to validation
loss. The weight of every convolutional layer was initialized with
the commonly used Glorot uniform initialization scheme (Glorot
and Bengio, 2010).

Performance Evaluation
The performance of vessel segmentation models can be assessed
from many different angles. As Moccia et al. (2018) also
highlights, different anatomical regions or imaging modalities
might require different measures to be considered. To give a
broader view of the performance of our models, we report
five different metrics: Precision, Recall, DSC, 95 percentile
Hausdorff Distance (95HD) and Average Hausdorff Distance
(AVD). We included Precision and Recall to compare models
by the quality and completeness of segmentations, respectively

and DSC, 95HD, and AVD to assess the spatial overlap between
predictions and ground truth. The evaluation metrics were
calculated on whole-brain segmentations (reconstructed from
patch-wise predictions), by using the open-source evaluation tool
from Taha and Hanbury (2015). We report mean values and
standard deviation across test sets defined by the cross-validation
framework. In case of the external validation set, we first generate
ensemble predictions from each of the 4 models per architecture
resulting from the cross-validation by averaging softmax scores
voxel-wise then thresholding—using the same threshold of 0.5 as
previously—into binary segmentations. Performance metrics are
computed on these ensemble predictions.

Visual Assessment
For qualitative assessment, the predicted segmentation masks
were transformed by in-house python code where true positives
(TP), false positives (FP), and false negatives (FN) were assigned
different voxel values (True negatives (TN) remained labeled
with 0). The images were then visualized by overlaying these
new masks with the original scans using ITK-Snap software
(Yushkevich et al., 2006). By adjusting the opaqueness, it was
possible to qualitatively assess which structures were correctly
identified and which anatomical structures dominated with
errors. Owing to the time burden of reviewing such a large
number of images (4 models, 264 patients, 4-folds), only 1-
fold was visually assessed. The first fold was chosen without
prior inspection of any results. The 65 patients in the fold
were assessed based on a predefined scheme slightly adapted
from Livne et al. (2019a). Large vessels were defined as all
parts of the internal carotid artery (ICA), the basilar artery, the
anterior cerebral artery (ACA) and the M1, and P1 segments
of the middle and posterior cerebral artery. All other parts
were considered small vessels. The results of the visual analysis
are summarized qualitatively in the results section. The scheme
was the following: Vessel pathology detected (yes/no); Large
vessels, overall impression (bad, sufficient, good); Small vessels,
overall impression (bad, sufficient, good); Large vessels, errors
(FP or FN dominating; or balanced); Small vessels, errors (FP
or FN dominating, or balanced); Other tissue type segmentation
errors (yes/no).

RESULTS

In-house Dataset
The BRAVE-NET model yielded the highest performance on all
measures except Recall, namely DSC of 0.931, AVD of 0.165,
95HD of 29.153, and Precision of 0.941. Highest Recall of 0.930
was achieved by the Context-Unet model. The standard Unet
baseline achieved a DSC of 0.928, AVD of 0.232, 95HD of 33.259,
Precision and Recall of 0.928 and 0.929, respectively. Averaged
test results of the cross-validation framework are presented in
Table 3, while detailed results for each cross-validation fold can
be found in Table 1 in Appendix II—Detailed results section of
the Supplementary material. Example segmentation results can
be found in Figure 5.

Context-aggregation alone was shown to improve the baseline
performance of Unet for each measure while deep supervision

Frontiers in Artificial Intelligence | www.frontiersin.org 7 September 2020 | Volume 3 | Article 552258

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Hilbert et al. Fully-Automated Arterial Brain Vessel Segmentation

TABLE 3 | Test results of cross-validation for all models, average (SD) over all folds are given. Best overall performance was achieved by our proposed BRAVE-NET model.

Models (all 3D) DSC (SD) AVD (SD) 95HD (SD) Precision (SD) Recall (SD)

Unet 0.928 (0.004)* 0.232 (0.041)* 33.259 (1.060)* 0.928 (0.005)* 0.929 (0.004)

DS-Unet 0.927 (0.004)* 0.222 (0.033)* 33.420 (0.866)* 0.927 (0.003)* 0.929 (0.005)

Context-Unet 0.931 (0.004) 0.198 (0.067) 29.279 (1.900) 0.934 (0.006)* 0.930 (0.008)

BRAVE-NET 0.931 (0.003) 0.165 (0.013) 29.153 (0.988) 0.941 (0.005) 0.923 (0.004)

An asterisk (*) indicates significantly better performance of BRAVE-NET using the Wilcoxon Signed-Rank Test (zscore > zcritical at 5% significance level).

FIGURE 5 | As demonstrated by the high performance results, segmentation results were excellent. Two example patients are shown in rows (A,B), showing in the

first column the ground truth and in the following the segmentation results derived from the Unet, the DS-Unet, the Context-Unet and finally the BRAVE-NET model.

Only very few false positive (green) and false negative (blue) vessels can be observed.

alone only improved the AVD measure. Combining both
techniques however yielded the best overall performance.

For all models, the visual analysis found comparable excellent
performance. Of the 65 patients, 15 showed visible steno-
occlusive changes. These vessel pathologies were detected by all
models. The overwhelming majority of images was rated to have
good performance both for large vessels (Unet: 95%; DS-Unet:
93%; Context-Unet: 95%; BRAVE-NET: 93%) as well as small
vessels (Unet: 91%; DS-Unet: 91%; Context-Unet: 92%; BRAVE-
NET: 92%). Large vessel error was dominated by false positives
(∼65% of images for all models), whereas small vessel error was
dominated by balanced error (∼63% of images for all models).

Besides excellent vessel segmentation performance, the visual
inspection revealed a high rate of falsely labeled rare pathologies
and other tissue classes. The false-labeling-rate was lowest for
the BRAVE-NETmodel (40%), followed by Context-Unet (43%),
DS-Unet (49%), and Unet (50%) with the highest false-labeling-
rate. Figure 6 demonstrated the improved performance of the
BRAVE-NET model. Of all found false labelings, the majority
were partially labeled segments of the external carotid artery in
the neck region (48%), followed by false positively labeled deep
veins (29%), as illustrated in Figure 7. Other false labelings were
rarer [false labeling of hyperintensities in the mesencephalon
10%; cortical laminar necrosis 6%, cerebellar structures 2%,

arteria meningea media 2%, proteinaceous fluid (2%), and false
negative labeling of rete mirabile structures 2%].

External Dataset
The results were consistent in case of our external validation set.
BRAVE-NET achieved highest performance on all measures but
Recall, where Context-Unet was superior. Details can be found
in Table 4.

Visual inspection of the results revealed similarly high
performance in terms of granularity and completeness of
segmentations. The lower overall performance originated from
the inclusion of large sinuses in the segmentations yielding a
high number of false positives. As Precision values also indicate,
the BRAVE-NET architecture was superior in reduction of false
positives compared to other architectures. Figure 8 demonstrates
this in an example.

DISCUSSION

We present the BRAVE-NET model for fully automated arterial
vessel segmentation from TOF-MRA images in cerebrovascular
disease. The model combines multiscaling and deep-supervision
as extensions of the standard Unet approach and yielded a
new state-of-the-art performance. This was achieved by robust
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FIGURE 6 | Vessel segmentation of an example patient. Two slices are shown (A,B). True positive and false positive are shown in red and green, respectively. The

patient had hyperintense proteinaceous fluid in the sinuses (purple and orange arrows) indicative of chronic sinusitis and an extranial vessel (yellow arrow), which were

all false positively labeled in the plain Unet (column 2). It is evident that the network needs high contextual anatomic knowledge to distinguish the hyperintense

roundish sinusitis structures from vessels. Also, this example illustrates how close—anatomically—extracranial vessels can be located to brain-supplying vessels

(correctly labeled by all networks). For the structure labeled by the purple arrow, only the BRAVE-NET network correctly classifies the majority of voxels as non-vessels

(purple star). For the larger structure which is less hyperintense and further away from brain areas as well as the extracranial vessel, the Context-net alone correctly

classified the structures (orange and yellow asterisks). This example illustrates that while the overall differences between the models do not seem large, in certain

pathological cases the contextual information proves crucial to avoid false positive segmentation results.

FIGURE 7 | Example patient showing the phenomenon of a hyperintense Vena basalis rosenthali. In some patients, the flow of venous structures feeding the sinus

rectus is high enough to be depicted in TOF-imaging. Since these structures are located very centrally in the brain and are very close to arterial structures, none of the

presented models was able to correctly ignore these structures in all images. Blue crosshairs depict the same coordinates in all three images.

validation using the largest presented dataset in the literature
so far. BRAVE-NET is suitable for clinical application, as
it can be applied on raw images without the necessity for
additional image processing. The superiority of the BRAVE-NET
was demonstrated quantitatively and was confirmed via visual
assessment. It outperformed the other tested models especially in
cases of visible pathologies and false labeling. The performance

was further validated on an external set of healthy volunteers,
where BRAVE-NET proved superior in quantitative measures as
well as in exclusion of non-relevant brain structures (i.e., false
positive reduction). BRAVE-NETmarks a significant step toward
increased applicability of deep learning based segmentations
in the clinical setting and the continued development of
quantitative vascular biomarkers in cerebrovascular disease.
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TABLE 4 | Test results on external validation set for all models, average (SD) performance across the 20 patients are shown.

Models (all 3D) DSC (SD) AVD (SD) 95HD (SD) Precision (SD) Recall (SD)

Unet 0.710 (0.038)* 2.044 (0.473)* 30.636 (7.157)* 0.659 (0.049)* 0.773 (0.044)

DS-Unet 0.719 (0.036)* 2.001 (0.443)* 29.647 (7.338) 0.665 (0.053)* 0.785 (0.031)

Context-Unet 0.745 (0.029) 1.689 (0.442)* 30.517 (7.641)* 0.700 (0.042)* 0.798 (0.04)

BRAVE-NET 0.746 (0.036) 1.587 (0.461) 29.233 (7.027) 0.720 (0.049) 0.778 (0.055)

Best overall performance was achieved by our proposed BRAVE-NET model. An asterisk (*) indicates significantly better performance of BRAVE-NET using the Wilcoxon Signed-Rank

Test (zscore > zcritical at 5% significance level). Bold values imply superior performance with respect to the certain metric.

FIGURE 8 | Our result findings were consistently favoring the performance of the BRAVE-NET architecture. One example is shown from two view-points in rows

(A,B). From row (A) the granularity of the close to perfect segmentations, i.e., minimal false negative (blue) voxels—can be observed while row (B) gives a better view

on the large falsely segmented sinus (green). These results are not surprising given that the external validation set heavily depicted veins and sinuses next to arteries

which were not present in the data used for training.

Reported models in the literature for brain vessel
segmentation are usually limited to a DSC of 0.90 (Babin
et al., 2013; Wang et al., 2015b; Chen et al., 2017; Livne et al.,
2019a). Notable exceptions, besides our work, are the works of
Ni et al. (2020) and Patel et al. (2020) who reported DSC values
of 0.96 and 0.94, respectively. They were, however, obtained for
different modalities, CT angiography and digital subtraction
angiography, respectively. Moreover, the DSC measure alone is
not sufficient to provide the full picture regarding the needs of
clinical application. Here, our model has other major advantages
that have to our knowledge not been achieved together in one
single model so far.

First, the majority of MRA-based vessel segmentation
frameworks presented so far in the literature require image
pre-processing, such as downsampling, brain masking, intensity
correction, image normalization, and various other methods
before they can be applied (Lesage et al., 2009; Chen et al., 2017;
Livne et al., 2019a; Ni et al., 2020; Taher et al., 2020). Applications
in computed tomography angiography (CTA) do not differ in
that regard and include for example deformable matching, atlas
co-registration, candidate vessel selection and feature extraction
(Passat et al., 2005; Meijs et al., 2017). In contrast, our framework

completely avoids time- and resource-consuming pre- and post-
processing methods that rely on domain knowledge. Moreover,
this means that the BRAVE-NET model is usable on the scanner
console in real-time given that a full brain prediction for clinically
used dimensions, such as in the 1kplus study—can be available
within minutes on a standard CPU system (AMD Ryzen 7
1700X), in our case 2min. As a comparison, predictions for the
same images on a standard GPU (NVIDIA Titan Xp) system take
40 s. Second, previous frameworks were developed using smaller
datasets ranging from 10 to 100 patient scans derived from a
single scanner (Passat et al., 2005; Wang et al., 2015b; Chen et al.,
2017; Livne et al., 2019a; Ni et al., 2020; Patel et al., 2020). Taher
et al. (2020) used a patient cohort size (N = 270) similar to
our study.

Third, the majority of reported models are based on data
obtained from healthy individuals and did not include patients
with (vessel) pathologies. Exceptions are the work of Meijs
et al. (2017) who developed CTA-based models on data of
patients with a suspected stroke, the work of Patel et al. (2020)
including patients with aneurysms and the work of Livne et al.
(2019a) who developed MRA-based models on patients with
cerebrovascular disease and additionally tested the generalization
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of the model on datasets from different scanners. The present
work extends the latter work by adding a large number of
patients from an additional data source allowing development,
validation and testing on a combined multi-scanner, high quality
labeled dataset. Furthermore, the model was developed on data
with a broad range of pathologies present in patients with
acute and chronic cerebrovascular disease. Thus, not only a
broad variety of occlusions and stenoses were present, but also
important pathologies, such as cortical laminar necrosis, rete
mirabile, and others. Such a property is of high importance in
the field of deep learning, as many applications suffer from bias
due to constrained and homogenous data selection (Ho et al.,
2019; Hofmanninger et al., 2020). Consequently, such models
usually perform worse on datasets differing from the dataset
distribution used for training. For example, Taher et al. (2020)
used the freely available model of Livne et al. (2019a,b) for
vessel segmentation on their own data and noticed a reduced
performance compared to the original publication. Here, the
increased generalizability of the model presented in this work is
supported by its ability to capture a considerably greater degree
of data variation caused both by larger technical and pathological
variance in the datasets. Fourth, vessel segmentation provides a
unique challenge owing to the complex nature of the vascular
structure. Arterial brain vessels comprise around 1.5% of the
input volume and therefore lead to an extreme class imbalance
in the dataset. To mitigate this effect, a DSC loss function was
used to neglect true negatives and subsampling of the training
patches was applied so that 50% of all patches are centered around
vessels ensuring representative and fair sampling. However, to
properly evaluate vessel segmentation models, the performance
measures must also reflect the vessel properties. Given ground-
truth segmentations, accuracy, precision, and recall are the most
frequentmeasures but numerous othermeasures exist. DSC is the
most widely used metric and is therefore essential for examining
the results with respect to the literature. Nonetheless, distance
measures, such as AVD or 95HD have a distinct advantage over
DSC in the context of vessels. Both DSC and HD measures are
based on voxel-to-voxel comparisons between the segmented
vessels and the ground-truth labels, without considering the
continuity properties of the brain vasculature. However, since
HD penalizes with respect to distance from the labeling it
results in an implicit preference for (approximated) continuous
structures. Previous studies have suggested HD measures as
more useful to assess the performance of vessel segmentations
(Taha andHanbury, 2015). Thus, we assessedmodel performance
based on five different measures: Precision, recall, DSC, AVD,
and 95HD. This selection of metrics gives a comprehensive and
complete overview of model performance as well as enables
the presented state-of-the-art to be benchmarked thoroughly,
i.e., beyond DSC—against future research. Fifth, one of the
major strengths of our study is the validation of the models
in patients with pathological conditions. Many pathologies are
usually represented only by a small number of voxels compared
to the full number of vessel voxels per patient. Some pathologies
are present only in a small number of patients and are rare
even in large samples. Therefore, these anomalies cannot be
reflected properly by numerical performance measures but must

be assessed visually. Thus, we performed a thorough visual
analysis of the results by a stroke imaging expert. Our findings
indicated that the BRAVE-NET architecture outperformed the
other models and was less likely to misclassify anomalies, such
as proteinaceous fluid or laminar cortical necrosis. Nevertheless,
the ratio of misclassifications, albeit often of minor markedness,
was still 40% of all images. This underlines the importance
of qualitative visual assessments to examine segmentation
models for clinical applications. When quantitative metrics begin
to plateau and stop showing meaningful differences, visual
assessment is necessary to make clinically relevant distinctions.
We, therefore, advise future studies to validate all proposed
models both quantitatively and qualitatively, especially for the
development of clinical applications.

Sixth, we included an external validation set to demonstrate
the applicability of our framework with regards to no need of pre-
processing steps, and test the generalization of our models on a
public, out-of-sample dataset. Here, we made the contribution
to generate 20 high quality ground truth labels for voxel-wise
segmentation and make them publicly available (Hilbert et al.,
2020). We advise future works to use these as an external
test set in order to create a public benchmark for brain vessel
segmentation. Our findings were shown to be consistent on
this dataset. BRAVE-NET achieved superior performance in all
but one measure further validating the benefits of the proposed
improvements over the original Unet model. We also observed,
however, a considerably lower overall performance. This can
be attributed to the fact that the images from the external
validation set show a heavy depiction of venous structures
(internal veins and especially brain sinuses) next to arterial
vessels. As our training set contained almost exclusively arteries,
it is no surprise that the models struggled with these out-of-
sample structures. These findings highlight the heterogeneous
nature of real world data and that the development of tools with
very broad applicability in the clinical setting require a dedicated
validation strategy encompassing as many variations of input
data as possible (Higgins and Madai, 2020).

To summarize, the presented framework add to the literature
through the unique combination of high performance, full
automation and robust validation. It thus has the largest
applicability for the clinical setting so far.

The excellent performance of BRAVE-NET can also be
attributed to architecture design choices. CNNs and encoder-
decoder Unet variations, in particular, were proven in recent
years as the state-of-the-art method for semantic segmentation
including medical imaging applications (Milletari et al., 2016;
Badrinarayanan et al., 2017; Dong et al., 2017; Alom et al., 2018;
Norman et al., 2018; Huang et al., 2020; Sinha and Jose, 2020;
Zhou et al., 2020). This success was further demonstrated in
vessel segmentation and specifically in brain vessel segmentation
problems (Chen et al., 2017; Alom et al., 2018; Huang et al.,
2018; Livne et al., 2019a; Yue et al., 2019). The utilization of
the Unet as a baseline architecture was, therefore, a natural
choice. Nonetheless, the classic Unet architecture was previously
shown to be prone to errors in the presence of visible
pathologies especially in segmenting small vessels and with
regards to the skull (Livne et al., 2019a). To target these issues
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we aimed to improve spatial information integration using
multiscale- and 3-D variants. Multiscale architectures, i.e., fusion
of information from multiple resolutions—were shown to be
beneficial in boundary detection and segmentation problems
(Kokkinos, 2015; Havaei et al., 2016; Kamnitsas et al., 2017;
Stawiaski, 2017; He et al., 2019; Sinha and Jose, 2020). Some
recent works proposed re-thinking of skip-connections within
the Unet architecture to effectively match semantics and fuse
information on multiple resolutions for prediction (Huang et al.,
2020; Zhou et al., 2020). Others argue that multiscaling in
encoder-decoder architectures lead to the use of redundant
information and rather propose integration guided self-attention
to extract relevant features from more discriminant regions
(Sinha and Jose, 2020). We implemented multiscaling following
a common practice across applications, namely employing an
additional encoder path of the architecture operating on lower
resolution. This so-called context path, allowed to capture the
broader anatomical context of the vessels and particularly target
the detection of small vessels. Multiscale integration was also
important to tackle the challenge of unmasked images: it allowed
distinguishing larger anatomical structures, such as the skull and
neck areas from the regions with brain and brain-supplying
vessels while maintaining high resolution of the segmented
vessels. The down-sampling within the context path enabled
to avoid redundant extraction of features while maintaining
corresponding spatial integrity of the parallel paths. Multiscale
models yielded improved performance in all measures compared
to the baseline Unet, corroborating the advantage of multiscaling
in semantic segmentation tasks. Moreover, deep supervision in
CNNs was previously shown to be advantageous as a strong
“regularization” for classification accuracy and learned features
and tackling problematic convergence behavior (Lee et al., 2015).
Different variations of deep CNNswere described in the literature
and demonstrated improved results and faster convergence (Lee
et al., 2015; Szegedy et al., 2015; Wang et al., 2015a; Dou et al.,
2016). In our study, deep supervision improved performance
only in combination with the multiscaling approach.

Our study has several recognized limitations. First, while
the dataset in this study was acquired from multiple scanners
and patients exhibited a large spectrum of steno-occlusive
cerebrovascular disease, the data heterogeneity was still limited. It
is highly warranted to specifically include in future work datasets
with other pathologies, such as aneurysms, other MR scanner-
and MR imaging sequence types and other imaging modalities,
such as CT. Here, transfer learning approaches seem beneficial.
Heterogeneity is not only essential in training sets but also in
testing for thorough and robust assessment of performance. Even
though our external validation set yielded consistent ranking
of our models, segmentation performance was rather limited
due to a high false positive rate throughout all architectures.
From a development perspective, we expect this to be easily
overcome by minor fine-tuning on a few samples from the
dataset, and this highlights that all variations of input data
need to be used for tools with planned clinical applications.
Second, it was beyond the scope of this work to integrate all
potentially beneficial architecture modifications. Further future
modifications could utilize densely connected convolutional

blocks to enhance feature propagation through encoding levels
(Zhang et al., 2018) or even a more complex Adaptive Pyramid
Context Network with local affinity integration to advance
multiscale context aggregation using global representation (He
et al., 2019). Moreover, the Unet++ architecture shown in Zhou
et al. (2020) would seem like a well fit candidate for direct
comparison. Unet++ realizes multi-scale processing through
nested, dense pathways between the encoder and decoder levels
alleviating the fusion of semantically dissimilar features. The
applied Deep Supervision on the dense, up-sampling pathways
from intermittent layers of the encoder enables learning of lower
resolution features important for prediction, similarly to our
context-path. Third, due to well-recognized resource constraints
only 1-fold was reviewed visually. It is a general challenge for
this kind of research that quality characteristics, such as cross
validation and large data sets lead to an increasing amount of
images that require highly time-consuming visual review. It is
unlikely that reviewing more folds would lead to major changes
in the visual assessment, but it cannot be ruled out with certainty.

CONCLUSION

We present a fully automated deep learning framework for
TOF-MRA brain vessel segmentation. We utilize multiscaling
for better spatial information integration and deep supervision
for improving model convergence. We employ a multi-scanner
dataset of yet unmatched size and range of pathologies in
the published literature. We also ensure a high degree of
robustness of our framework through extensive quantitative and
qualitative evaluation. We explicitly analyze and communicate
model performance in presence of relevant pathologies to further
increase applicability in the clinical setting. Our results thus
constitute a new state-of-the-art for fully automated frameworks
for brain vessel segmentation. Our work strongly facilitates and
promotes the usability of automated vessel segmentation in the
clinical setting and can be swiftly translated to the development
of cerebrovascular biomarkers for clinical applications.
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