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We present a semilocal exchange-correlation energy functional for noncollinear spin density functional theory
based on short-range expansions of the spin-resolved exchange hole and the two-body density matrix. Our
functional is explicitly derived for noncollinear magnetism, is U(1) and SU(2) gauge invariant, and gives rise
to nonvanishing exchange-correlation torques. Testing the functional for frustrated antiferromagnetic chromium
clusters, the exchange part is shown to perform favorably compared with the far more expensive Slater and
optimized effective potentials, and a delicate interplay between exchange and correlation torques is uncovered.
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I. INTRODUCTION

In the framework of density functional theories, the key
to success in describing the equilibrium and time-dependent
properties of electronic systems lies in the quality of ap-
proximations of the exchange-correlation (xc) energy and its
functional derivatives. In the quest to develop more accurate
xc functionals, most of the recent effort has been devoted
to the construction of approximations for spin-unpolarized
systems or for systems well described by collinear spins [1–4].

Considering the ever growing interest in the fields of spin-
tronics and optical control of magnetism, reliable functionals
going beyond the widely used local spin density approxima-
tion (LSDA) are highly desirable. In particular, one of the
features expected from the exact xc magnetic field, Bxc, of
spin density functional theory (SDFT) [5,6] is to generate
locally a nonzero xc torque, which arises from the fact that
in SDFT the Kohn-Sham current is not the same as the exact
many-body current [7]. Globally, this xc torque must average
to zero, which is known as the zero-torque theorem [7]. How-
ever, the practical significance of xc torques is still relatively
little explored [8,9], and a better understanding would be ben-
eficial for the application of SDFT to noncollinear magnetism
and spin dynamics [10].
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In frustrated antiferromagnetic systems, such as freestand-
ing Cr monolayers, local xc torques can be sizable in the
vicinity of the Cr atoms [11], based on calculations performed
at the level of the optimized effective potential (OEP) for exact
exchange (EXX) [12,13]. How this nonzero xc torque affects
the static and dynamical properties of magnetic systems, such
as light-induced demagnetization [10] or the dispersion of
spin waves [14], is an open question that needs to be addressed
in order to gain understanding and control of the magne-
tization dynamics in these systems. More recently, it was
demonstrated using a source-free version of the LSDA [15]
that the xc torque affects the light-demagnetization process
[16]. The influence of xc torques on magnetization dynamics
was also recently studied in small Hubbard clusters [17].

Two main approaches are available for constructing xc
functionals for noncollinear systems. The most common ap-
proach consists in promoting existing functionals for collinear
systems to work for noncollinear ones. As shown by Kübler
et al. [18] and Sandratskii [19], noncollinear LSDA calcu-
lations can be carried out by performing a rotation of the
spin density matrix in the frame of the local magnetization
m. The drawback of this is clear: Because the resulting lo-
cal Bxc is aligned with m, it cannot produce any local xc
torques. Various extensions of this approach to generalized
spin-gradient approximation (GGA) functionals have been
proposed since then [20,21]. While these different schemes
can produce nonzero xc torques, they tend to suffer from
numerical instabilities and can encounter difficulties in repro-
ducing the collinear limit unless special care is taken [22].
We also mention a recently proposed multicollinear averaging
scheme [23].

In this paper, we follow a second approach: Instead of up-
grading existing collinear xc functionals, we directly construct
xc functionals for noncollinear magnetism. This philosophy
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was used in some earlier studies, such as the transverse spin-
gradient functional of Eich and Gross [24]. More recently,
Pittalis et al. [25] proposed a general method to construct
noncollinear spin density functionals from existing collinear
spin functionals by applying a simple minimal substitution
on the kinetic energy density and the on-top hole expression,
which controls the short-range behavior of the exchange hole.
They demonstrated the method by constructing the spin non-
collinear version of the Becke-Roussel meta-GGA (MGGA)
exchange energy functional [26], but no numerical imple-
mentation of this functional has been reported so far. This
is the functional we use here as a noncollinear exchange
functional. Finally, a class of orbital-dependent functionals for
noncollinear SDFT was proposed in Ref. [27] and applied to
the asymmetric Hubbard dimer and other small lattice systems
[9].

In this paper, we show how to use a short-range expansion
of the exchange hole and of the two-body reduced density
matrix to build an exchange-correlation MGGA functional
for noncollinear SDFT. Our derivation of the exchange part
differs slightly from that of Ref. [25] but leads to the same
result. A matching correlation functional will be obtained
via a generalization of the correlated wave-function ansatz
proposed originally by Colle and Salvetti [28], which allows
us to generalize the work of Lee, Yang, and Parr (LYP) [29]
to the noncollinear case. From this, we obtain an MGGA xc
functional that depends locally not only on the direction of m
but also on the direction of the curvature of the exchange hole,
which implies that the resulting Bxc can exert a local torque on
m. We then apply this functional to planar Cr clusters with
frustrated antiferromagnetic interactions and show that not
only does the functional produce a nonzero exchange torque,
but also it properly reproduces the most salient features of
the exchange torques obtained by the far more complicated
noncollinear Slater potential and EXX-OEP. We mention that
it was shown for model systems that the Slater potential
and EXX-OEP yield decent approximations to the exact xc
torques, as long as the systems are not too strongly interacting
[9].

II. NONCOLLINEAR EXCHANGE FUNCTIONAL

The starting point for the exchange part is the exchange
energy of a system of N electrons,

Ex = −1

2

∫∫
drdr′

|r − r′|Tr[γ (r, r′)γ (r′, r)], (1)

where Tr is the trace over spin indices of the one-particle spin
density matrix γστ (r, r′) = ∑N

j ψ jσ (r)ψ∗
jτ (r′), constructed

from two-component spinor Kohn-Sham orbitals, where σ =
↑,↓ and likewise for τ . Here and in the following, doubly
underlined quantities such as γ represent 2 × 2 matrices in

spin space. Here, Ex is U(1) × SU(2) gauge invariant [25];
directly approximating Ex is therefore a good strategy to pro-
duce meaningful exchange functionals for noncollinear SDFT.

From Ex of Eq. (1) the noncollinear OEP EXX potential
as well as the Slater potential can be derived for noncollinear
spins [27]; it also generalizes the definition of the exchange
hole, as discussed in Appendix A. Since the noncollinear

exchange hole is now a 2 × 2 matrix in spin space, it would be
necessary to approximate its diagonal as well as off-diagonal
elements. The existing models for the collinear exchange hole
[30] rely on the fact that the modeled exchange is positive
and normalized to unity. These properties are obviously not
fulfilled by the off-diagonal terms of the noncollinear ex-
change hole, which makes them difficult to approximate using
existing collinear models.

To circumvent this problem, one can seek an alternative
quantity to approximate, for which we could use already ex-
isting collinear models. We rewrite Eq. (1) as

Ex = −1

2

∫
drn(r)

∫
dr′ hx(r, r′)

|r − r′| , (2)

where n(r) = ∑
σ nσσ (r) is the total density and the quan-

tity hx(r, r′) = Tr[γ (r, r′)γ (r′, r)]/n(r), referred to in the

following as the effective exchange hole, displays the same
properties as the physical exchange hole for unpolarized or
collinear spin systems. Indeed, Tr[γ (r, r′)γ (r′, r)] is always

positive, and hence hx is always positive, too. Moreover,
hx has the right normalization condition,

∫
dr′hx(r, r′) = 1.

Therefore hx is suited to be approximated by already existing
models for the collinear exchange hole. A recent review [30]
of the existing models for the collinear exchange hole found
that the hydrogenic model [26] seems to perform best, at least
for the systems considered.

Only the spherical average of the effective exchange-hole
function around a given reference point r is relevant for the
exchange energy. We perform a Taylor expansion of the spher-
ical average of hx to obtain its short-range behavior around
a reference point r, which gives, up to second order in the
distance s from r, its on-top value and its curvature. Omitting
the explicit dependence on r, we obtain

hx(s) =
∑

σ

n2
σσ + |nσ−σ |2

n
+ s2

6n

∑
σ

[
nσσ∇2nσσ

+ Re(nσ−σ∇2n−σσ ) − 2nσσ τ̃σσ − 2Re(nσ−σ τ̃−σσ )

+ 1

2
(|∇nσσ |2 + |∇nσ−σ |2)

]
+ O(s4). (3)

Here, τ̃ is an effective kinetic energy density defined by the
matrix equation

n τ̃ + τ̃ n = n τ + τ n − 2i∇(n j − j n) − 2j · j, (4)

where ταβ = ∑
j (∇ψ jα (r)) · ∇ψ∗

jβ (r) is the usual kinetic en-
ergy density and j is the paramagnetic current density.

This quantity, τ̃ , is U(1) gauge invariant but is not invariant
under a local SU(2) gauge transformation [25]. Of course, the
entire curvature is SU(2) invariant. Thus, in order to obtain an
expression for hx(s) that is made of SU(2) invariant building
blocks, we rewrite it as

hx(s) = nζx + s2

6
[∇2n − 2γ (τ̄ − τW )]

= nζx

[
1 + s2k2

F

(
2

3
q(n, |m|) − γ

5
α(n, |m|, |∇n|, τ̄ )

)]
,

(5)
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where we define the dimensionless spin-polarization fac-
tor ζx(r) = 1

2 (1 + |m(r)|2
n(r)2 ) which is obviously invariant under

SU(2) local rotation; τ̄ is the U(1) × SU(2) gauge invariant
kinetic energy density of Ref. [25], given by

2nτ̄ = Tr[ n τ̃ + τ̃ n ] +
∑

σ

[
nσσ∇2nσ̄ σ̄ − Re(nσ σ̄∇2nσ̄ σ )

− |∇nσ σ̄ |2
2

+ ∇nσσ · ∇nσ̄ σ̄

2

]
, (6)

where σ̄ = −σ . One can show (see Appendix D) that in
the one-electron limit τ̄ reduces to the von Weizsäcker ki-
netic energy density [31] τW = |∇n|2/4n and in the uniform
gas limit τ̄ reduces to τ̄ unif = 3

5 k2
Fnζx, with kF = (6π2n)1/3.

Similar to common collinear MGGAs [32,33], we intro-
duce a dimensionless parameter α(n, |m|, |∇n|, τ̄ ) = (τ̄ −
τW)/τ̄ unif , which in the one-electron and uniform gas limits
reduces to α = 0 and α = 1, respectively, as in the collinear
case. We also define a dimensionless Laplacian q(n, |m|) =
∇2n/(4k2

Fnζx ). The different components of the exchange-
hole curvature, in particular τ̄ , are all U(1) and SU(2) gauge
invariant. Note that the SU(2) gauge invariance implies α � 0.

Let us comment here on the significance of the gauge
invariance. Already at the level of collinear MGGAs, the U(1)
gauge invariance is very important, especially for the dynam-
ical case in which the current is nonzero or for the description
of current-carrying states [34–37]. For noncollinear systems, a
semirelativistic theory including on equal footing electromag-
netic fields and spin-related terms in the Hamiltonian (Zeeman
term, spin-orbit coupling) should also preserve the local SU(2)
gauge invariance [25]. This is the case not only of the exact-
exchange energy, but also in our proposed functional. This
is also needed if one wants to employ the generalized Bloch
theorem [38], for instance, to study spin waves [14].

It is clear that building a functional from the quantities (α,
q, τ̄ ) will directly recover the collinear limit, which is a strong
requirement for any noncollinear xc functional. Moreover, we
see that while the on-top term is determined by the direction of
m, the curvature has its own direction, which is independent
of that of m. This implies that the resulting Bxc is in general
not aligned with m, thus producing a nonvanishing local ex-
change torque. Finally, note that compared with Ref. [25], we
introduced a scaling factor γ in Eq. (5) to ensure the correct
homogeneous electron gas limit, as done in the collinear case
[26]. This scaling factor does not break the gauge invariance
of the energy, as it acts on a building block which is gauge
invariant by itself. The limit of hydrogenic systems (α = 0) is
also not affected by the choice of γ . In the following, we use
γ = 0.8 unless stated otherwise.

Having at hand the short-range behavior of the effective
exchange hole, we now express it via a hydrogenic model
[26]; see Appendix B. Once the parameters a(r) and b(r) of
the model are determined for each r, we obtain the following
expression for the exchange energy:

Ex = −3
(3π2)1/3

4π

∫
drn4/3(r)ζx(r)1/3Fx(r). (7)

Here,

Fx(r) = 4π2/3ex(r)/3

34/3x(r)

[
1 − e−x(r)

(
1 + x(r)

2

)]
(8)

plays the role of an enhancement factor, where x(r) =
a(r)b(r) � 0. Importantly, because the on-top effective ex-
change hole as well as the exchange-hole curvature are U(1)
and SU(2) gauge invariant, a and b are invariant under local
spin rotation, and our functional is then U(1) and SU(2) gauge
invariant and also recovers naturally the collinear limit. More-
over, because the functional is based on the exchange hole of
a physical system (the H atom), the energy is constrained to
reasonable values.

III. NONCOLLINEAR CORRELATION FUNCTIONAL

Our correlation energy functional is obtained by extending
the work of LYP [29] to the noncollinear case. We start with
the correlation energy expression of Colle and Salvetti [28],

Ec = −4a
∫

dr
ρ2(r, r)

n(r)

[
1 + br8

s (r)
[∇2

s ρ2(r, s)
]

s=0e−crs (r)

1 + drs(r)

]
,

(9)

where rs(r) = (4πn(r)/3)−1/3 is the local Wigner-Seitz
radius, a = 0.049 18, b = 0.132(4π/3)8/3, c = 0.2533
(4π/3)1/3, and d = 0.349(4π/3)1/3. We then approximate
the two-body reduced density matrix in the interparticle
coordinates as

ρ2(r1, r2) = 1
2 [n(r1)n(r2) − Tr[γ (r1, r2)γ (r2, r1)]]. (10)

In order to evaluate the correlation energy, we need to
evaluate ρ2(r, r) and [∇2

s ρ2(r, s)]s=0 with

ρ2(r1, r2) = 1

2

[
n(r1)n(r2) −

∑
αβ

γαβ (r1, r2)γβα (r2, r1)

]
.

(11)

We directly get from this definition the on-top value

ρ2(r, r) = 1

2
n(r)2 − 1

2
Tr(n n) = 1

4
n(r)2

(
1 − |m(r)|2

n(r)2

)
,

(12)

where we define a spin-polarization factor ζc(r) = (1 −
|m(r)|2
n(r)2 ) as introduced in the exchange functional. After some

algebra, the value of [∇2
s ρ2(r, s)]s=0 is found to be

[∇2
s ρ2

]
s=0 = −n

(
τW − ∇2n

4

)
+ 1

4

[
− 1

2
Tr[n∇2n + ∇2nn]

+2Tr[n τ + τ n] − 4Tr[j · j]
]
, (13)

where we recognize the trace of the U(1) kinetic energy den-
sity τ̃ defined by Eq. (4).
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From these two expressions, we are getting the expression
of the kinetic energy density.

Ec = −a
∫

drnζc

[
1 + br5

s [τHF − τW + (∇2n)/4]e−crs

1 + drs

]
,

(14)

where

2nτHF = Tr[n τ̃ + τ̃ n] − 1
4 Tr[n∇2n + ∇2nn]. (15)

This term is not directly connected to the gauge invariant
kinetic energy density introduced before. Moreover, it is not
clear at this stage that the quantity [τHF − τW + ∇2n

4 ] is SU(2)
gauge invariant. It is clearly U(1) gauge invariant as τHF is
defined in terms of τ̃ . In order to show that it is in fact gauge

invariant, we first write τHF in terms of the SU(2) gauge
invariant kinetic energy τ̄

τHF = τ̄

2
− 1

4n

∑
σ

[nσσ∇2nσσ + nσσ∇2n−σ−σ

− |∇nσ−σ |2 + ∇nσσ · ∇n−σ−σ ]. (16)

Now, using the fact that

n∇2n =
∑

σ

[nσσ∇2nσσ + nσσ∇2n−σ−σ ],

we obtain that

τHF + ∇2n

4

= τ̄

2
+ 1

4n

∑
σ

[|∇nσ−σ |2 − ∇nσσ · ∇n−σ−σ ]. (17)

In order to understand the meaning of the last term, we re-
express it in terms of the components of the magnetization
vector. Using that n↑↓ = mx + imy, we obtain easily that∑

σ

|∇nσ−σ |2 = 1

2
(|∇mx|2 + |∇my|2). (18)

Similarly, we find∑
σ

∇nσσ · ∇n−σ−σ = 1

2
(|∇n|2 − |∇mz|2). (19)

Hence we get that

τHF + ∇2n

4
= τ̄

2
+ |∇m|2

8n
− |∇n|2

8n

= τ̄

2
+ |∇m|2

8n
− τW

2
. (20)

This therefore leads to the correlation energy

Ec = −a
∫

drnζc

⎡
⎣1 + br5

s
2

[
τ̄ + |∇m|2

4n − 3τW
]
e−crs

1 + drs

⎤
⎦, (21)

where ζc(r) = (1 − |m(r)|2
n(r)2 ). It is straightforward to see that

our noncollinear correlation functional is also gauge invariant.
Moreover, we are able to express it in terms of the same
gauge invariant kinetic energy density τ̄ as in the noncollinear
exchange functional of Eq. (7).

We note that in order to obtain a GGA correlation func-
tional, as originally done by LYP, we would need to use here
a gradient expansion up to second order of the noncollinear
kinetic energy density. However, this gradient expansion for
the SU(2) gauge invariant kinetic energy density is not known,
except for the zero-order term which is τ̄ unif . How the gradient
expansion can be performed to maintain gauge invariance un-
der local rotation of the spins needs to be carefully explored,
and we postpone this to a subsequent work. We therefore keep
our correlation functional at the MGGA level.

IV. RESULTS

By making the total energy stationary with respect to
spinor orbital variations, we obtain a differential operator
rather than a local multiplicative Kohn-Sham potential, be-
cause of the explicit dependence on the kinetic energy density;
see Appendix C. This treatment, first used by Neumann,
Nobes, and Handy [39], is usually referred to as the general-
ized Kohn-Sham (gKS) treatment. We refer to MGGA treated
using this approach as MGGA-gKS. Alternatively, one can
construct a local multiplicative Kohn-Sham potential using
the OEP formalism (MGGA-OEP). This approach tends to
be less used as the solution of the OEP equation can be nu-
merically involved [13]. While these two approaches usually
give similar total energies, they can yield different results
for other quantities of interest such as the nuclear shielding
of small molecules [40] or the band gap of solids [41], and
it is therefore interesting to explore how gKS and OEP can
differ for noncollinear systems. In order to perform this anal-
ysis, we derived an explicit solution for the Krieger-Li-Iafrate
(KLI) approximation [12] toward the exact OEP result for
noncollinear spins (see Appendix F). The implementation of
this solution and of our MGGA functional was done using the
real-space code OCTOPUS [42].

As a critical check of the functional, we consider a
planar Cr3 cluster with frustrated antiferromagnetic interac-
tions, which is typically used to test noncollinear versions of
collinear functionals [20,21,43]. Calculations were performed
using a grid spacing of 0.15 bohrs, employing norm-
conserving fully relativistic Hartwigsen-Goedecker-Hutter
(HGH) pseudopotentials [44], including semicore electrons as
valence ones and spin-orbit coupling in all the simulations.
The distance between the Cr atoms is taken to be 3.7 bohrs.

As an important measure of the performance of the func-
tional, we first consider the local magnetic moment of the Cr
atoms, computed on atom-centered spheres of radii 1.8 bohrs;
see Table I. Interestingly, the exchange-only LSDA (LSDAx)
gives much larger magnetic moments than the full LSDA,
showing the importance of correlation effects in this system.

The proposed MGGA exchange (MGGAx) functional sig-
nificantly improves the description of the magnetic structure
of the Cr3 cluster compared with the LSDAx; all results are
relatively insensitive to the choice of γ . We note that there
is a difference between using the MGGAx functional within
the gKS framework and using the KLI scheme. This obser-
vation is in line with previously reported results for magnetic
moments in solids [45,46], in which it was found, using the
gKS approach, that MGGA for collinear magnetism only
slightly changes the magnetic moments compared with the
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TABLE I. Local magnetic moment |m|, in μB, and ionization
potential Ip, in eV, of the Cr atoms in Cr3 obtained for different levels
of theory (see text). MGGAc, correlation-only MGGA.

Functional |m| Ip

LSDA 1.67 2.90
LSDAx 2.66 2.30
LSDAx+MGGAc-gKS 1.81 2.60
MGGAx+MGGAc-gKS (γ = 0.8) 2.30 4.61
MGGAx-gKS (γ = 0.8) 3.04 3.65
MGGAx-gKS (γ = 1) 3.07 3.53
MGGAx-KLI (γ = 0.8) 3.09 3.59
MGGAx-KLI (γ = 1) 3.14 3.47
Slater 3.48 6.52
EXX-KLI 3.81 4.68
Hartree-Fock 3.86 4.86

ones obtained by GGAs. Our results for Cr3 reveal that more
detailed studies of the impact on the choice of gKS versus
OEP for treating MGGA in magnetic systems is needed. We
note that the LSDA correlation reduces the magnetic mo-
ment compared with a LSDAx calculation. A similar effect
is obtained for our correlation functional, which reduces the
magnetic moment compared with exchange-only. We also
report in Table I the ionization potential computed from the
different functionals. Similar conclusions are obtained as from
the magnetic moments. In particular, LSDA correlations and

our MGGA correlations increase the ionization potential com-
pared with exchange-only functionals.

Next, we analyze the xc torque along the out-of-plane
direction of the cluster (the z direction). Figure 1 shows the
exchange torque obtained with our MGGAx, compared with
the Slater potential and EXX-KLI. Clearly, while the Slater
potential provides decent magnetic moments, the exchange
torque does not resemble that obtained by EXX-KLI, apart
from regions close to the atoms. As expected for our pro-
posed MGGA, we obtain a nonzero exchange torque as a
consequence of the fact that the curvature of the noncollinear
exchange hole is not aligned with the magnetization direction.
The alternation of positive and negative local torques leads to
an overall zero torque, as required by the zero-torque theorem
[47]. Overall, our functional agrees well with the Slater and
EXX-KLI torques in the regions around the atoms. In fact, our
MGGA yields fewer torque features than the Slater functional,
in better agreement with EXX-KLI, especially in the intersti-
tial region, except that the signs of the features are inverted.
There are slight differences between the gKS and OEP imple-
mentations of the MGGA, but these are small compared with
the differences between the MGGA functional and the Slater
or EXX-KLI functionals. Further away from the atoms, it is
clear that the proposed MGGA does not capture all the details
of the exchange torque, as expected for a functional based on
a short-range expansion of the noncollinear exchange hole.

We note that compared with the spin-spiral wave non-
collinear functional of Eich and Gross [24], which produces

FIG. 1. The z component of the local exchange torque m(r) × Bx(r) around the Cr atoms in a Cr3 cluster, computed from the (a) Slater
potential, (b) EXX-KLI, (c) MGGAx functional at the gKS level, and (d) MGGAx at the OEP-KLI level.
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FIG. 2. Out-of-plane component of the exchange torques for a Cr5 cluster, calculated with MGGAx-gKS, Slater, and EXX-KLI functionals.

a sixfold symmetric exchange torque around all the Cr atoms,
our functional yields a torque that depends on the local en-
vironment of the atoms, as obtained by the Slater potential,
EXX-KLI, or EXX-OEP for Cr monolayers [11]. The non-
collinear GGA by Scalmani and Frisch [21] produces an
exchange torque depending on the local environment of the
atoms, but their result for the torques displays a wrong number
of positive-negative features around the atoms compared with
those of the Slater functional, EXX-KLI, and our MGGA.
Overall, while our MGGAx results for Cr3 leave some room
for improvement, they do provide a realistic description of the
exchange torques.

We also performed calculations for a Cr5 cluster (see
Fig. 2) using a distance of 3.7 bohrs between the Cr atoms.
Similar to Cr3 (see main text), our exchange functional pro-
duces an exchange torque of the same order of magnitude as
and with similar features around the atoms to that obtained by
the Slater functional or EXX-KLI. As for Cr3, the sign of the
exchange torque is inverted in the interstitial region. Again,
we attribute this to the short-range nature of our expansion,
which has difficulties producing the correct sign of the Bx

away from the atomic centers.

FIG. 3. Same as Fig. 1, but now showing the correlation torque
(at the MGGAc-gKS level).

Figure 3 presents the corresponding correlation torque for
Cr3. The conclusions obtained are similar to those for the ex-
change torque (Fig. 1), even if the magnitude of the correlation
torque is smaller than for the exchange one. We note a sign
change of the torque close to the atom between the exchange
and correlation parts, indicating an intricate balance between
exchange and correlation.

V. CONCLUSIONS

In conclusion, we have developed a semilocal xc functional
for noncollinear SDFT which belongs to the class of MGGAs,
is numerically well behaved, and is computationally much
cheaper than nonlocal exchange functionals of comparable
quality (Slater and KLI functionals). The correlation part of
the functional provides the first insight into the shape and
strength of the correlation torques. Potential applications of
this functional range from ab initio equilibrium studies of
unconventional spin structures such as skyrmions to a va-
riety of dynamical phenomena in magnetic materials such
as spin-wave dispersions and the demagnetization in light-
driven magnetic solids. From a more fundamental perspective,
this work highlights the important and interesting role of xc
torques in SDFT, which should motivate further study.
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APPENDIX A: NONCOLLINEAR EXCHANGE HOLE

The Slater potential for noncollinear spin systems, vS, is
defined by a Sylvester equation [27]:

vS(r)n(r) + n(r)vS(r) = 2
∫

dr′

|r − r′|γ (r, r′)γ (r′, r),

(A1)
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where γ (r, r′) is the spin density matrix defined after Eq. (1)

in the main text. Similar to the collinear case, one can write
the Slater potential as the Coulomb potential originating from
an exchange hole, which here has the form of a tensor:

vS(r) = −
∫

dr′

|r − r′|ρ
x(r, r′). (A2)

From this we obtain a generalization of the exchange hole to
the noncollinear case, ρx, defined by the equation

n(r)ρx(r, r′) + ρx(r, r′)n(r) = 2γ (r, r′)γ (r′, r). (A3)

It is straightforward to verify that this definition leads to the
required properties that one expects for the exchange hole.
Moreover, this expression reduces to the usual one if we take
the collinear limit. From this definition, we can recast the
exchange energy in terms of the noncollinear exchange hole:

Ex = −1

4

∫∫
drdr′

|r − r′|Tr[n(r)ρx(r, r′) + ρx(r, r′)n(r)].

(A4)

However, while this expression is conceptually important, it
does not allow for simple approximations as one needs to
approximate both the diagonal and off-diagonal parts of the
exchange hole, and we are not aware of existing models for the
off-diagonal part. This is why, in the main text [see Eq. (2)],
we followed the alternative path of approximating an effective
exchange hole.

APPENDIX B: HYDROGENIC MODEL
FOR THE EXCHANGE HOLE

The hydrogenic model for the exchange hole proposed by
Becke and Roussel [26] reads as follows:

ρx
H(a, b; s) = a

16πbs
[(a|b − s| + 1)e−a|b−s|

− (a|b + s| + 1)e−a|b+s|], (B1)

where a and b are positive parameters of the model. This
model has two important properties: It is non-negative, and
it is normalized as

4π

∫
ds s2ρx

H(a, b; s) = 1. (B2)

As we showed in the main text, the effective exchange-hole
matrix has the expected properties.

Imposing the on-top condition for the hydrogenic model,
we find from the zeroth-order term of the Taylor expansion
that

a3

8π
e−ab = hx(r, r). (B3)

The second-order term is defined by

(a2b − 2a)

6b
= Q(r, r)

hx(r, r)
, (B4)

where Q is the curvature of the effective exchange hole. From
the second-order term, and defining x = ab, one finds that x

satisfies the equation

(x − 2) = xe−2x/3 6Q(r, r)

4π2/3(hx(r, r))5/3 , (B5)

and one also obtains

b3 = x3e−x

8πhx(r, r)
. (B6)

Equation (B5) can be put in a more familiar form:

xe−2x/3

(x − 2)
= 2

3
π2/3 (hx(r, r))5/3

Q(r, r)
. (B7)

This is equation is numerically solved for x, which then yields
the values for b and a via Eqs. (B4) and (B6).

APPENDIX C: NONCOLLINEAR MGGA POTENTIAL
AND NONLOCAL TERM

For the sake of generality, we consider here a generic form
of a noncollinear MGGA depending on the spin density matrix
and its gradient and Laplacian, as well as the kinetic energy
density matrix,

Exc =
∫

drexc(n(r),∇n(r),∇2n(r), τ (r)). (C1)

Its functional derivative with respect to the density is

vxc,αβ (r) = δExc

δnβα (r)
= e1

xc,βα (r) − ∇e2
xc,βα (r) + ∇2e3

xc,βα (r)

+
∑
γ δ

∫
e4

xc,γ δ (r′)
δτγ δ (r′)
δnβα (r)

dr′, (C2)

where we defined

e1
xc,νμ(r) =

∂exc(n,∇n,∇2n, τ )

∂nνμ(r)
, (C3)

e2
xc,νμ(r) =

∂exc(n,∇n,∇2n, τ )

∂∇nνμ(r)
, (C4)

e3
xc,νμ(r) =

∂exc(n,∇n,∇2n, τ )

∂∇2nνμ(r)
, (C5)

e4
xc,νμ(r) =

∂exc(n,∇n,∇2n, τ )

∂τνμ(r)
. (C6)

One important aspect of noncollinear MGGAs lies in the
evaluation of the contribution to the xc potential originating
from the functional derivative of the kinetic energy density
with respect to the spin density matrix, vτ , which is given by
the last term of Eq. (C2):

vτ
αβ (r) =

∑
γ δ

∫
e4

xc,νμ(r)
δτγ δ (r′)
δnβα (r)

dr′, (C7)

which we do not know how to compute directly. Here,
α, β, γ , δ refer to spin indices. In order to evaluate the ap-
plication of the MGGA potential to a given orbital, in the
framework of generalized Kohn-Sham equations, we need a
generalization of the approach used in the collinear case. In
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the collinear case, we have the relation

δExc

δψ∗
i (r)

= δExc

δn(r)
ψi(r), (C8)

which is based on the fact that δn(r)
δψ∗

i (r′ ) = ψi(r)δ(r′ − r).
In the noncollinear case, the spin density matrix is given

by nαβ (r) = ∑
i ψiα (r)ψ∗

iβ (r), where ψi(r) is a Pauli spinor
describing the ith orbital of the electronic system. From the
definition of the spin density matrix it then directly follows
that

δnαβ (r)

δψ∗
iσ (r′)

= ψiα (r)δβ,σ δ(r′ − r). (C9)

In the case of a pure functional of the density, using the
chain rule, we obtain that

δExc

δψ∗
iσ (r)

=
∑
αβ

∫
dr′ δExc

δnαβ (r′)
δnαβ (r)

δψ∗
iσ (r′)

=
∑

α

δExc

δnασ (r)
ψiα (r) =

∑
α

(vxc,σαψiα )(r).

We recognize here the application of the xc potential to a Pauli
spinor, for which we take the component σ . It is clear that
the connection between this quantity and the potential is less
obvious than in the collinear case.

Let us now consider the case of a pure MGGA depending
only on the kinetic energy density. Using the definition of the
noncollinear kinetic energy (without the factor 1/2), ταβ =∑

i(∇ψiα ) · (∇ψiβ )∗, we get

δταβ

δψ∗
iσ (r′)

= (∇ψiα )δβ,σ∇δ(r − r′). (C10)

We therefore have in this case

δExc[τ ]

δψ∗
iσ (r)

=
∑
αβ

∫
dr′ δExc[τ ]

δταβ (r′)
δταβ (r′)
δψ∗

iσ (r)

=
∑

α

∫
dr′ δExc[τ ]

δτασ (r′)
(∇ψiα (r′))∇δ(r − r′)

= −
∑

α

∇ ·
(

δExc[τ ]

δτασ (r)
∇ψiα (r′)

)
. (C11)

This leads to the result that

δExc[τ ]

δnασ (r)
ψiα (r) = −∇ ·

(
δExc[τ ]

δτασ (r)
∇ψiα (r)

)
,

which is the noncollinear analog of the collinear relation; see,
for instance, Ref. [48].

From this it is straightforward to show that for a most
general form of a noncollinear MGGA, we have

δEx

ψ∗
i,σ

=
∑

α

(
e1

x,ασ (r) − ∇e2
x,ασ (r) + ∇2e3

x,ασ (r)
)
ψi,σ

−
∑

α

∇ · (
e4

x,ασ (r)∇ψiα (r)
)
, (C12)

where the first part is defining the local xc potential and the
second part corresponds to the nonlocal term originating from
the dependence on the kinetic energy density.

APPENDIX D: ONE-ELECTRON LIMIT
OF THE EXCHANGE-HOLE CURVATURE

We now consider the one-electron limit of the exchange-
hole curvature,

Q = 1
6 [∇2n − 2γ D],

with

D = τ̄ − ∇n · ∇n

4n
= τ̄ − τW (D1)

and

nτ̄ = 1

2

∑
σ

[2nσσ τσσ + nσ−σ τ−σσ + τσ−σ n−σσ ]

−
∑

σ

[|jσσ |2 + |jσ−σ |2] + 1

4

∑
σ

[2nσσ∇2n−σ−σ

− (nσ−σ∇2n−σσ + ∇2nσ−σ n−σσ )

− |∇nσ−σ |2 + ∇nσσ · ∇n−σ−σ ]. (D2)

Let us now look at the one-electron limit of the noncollinear
kinetic energy density:

ταβ → (∇ψα ) · (∇ψ∗
β ). (D3)

Using the fact that

∇nαβ → (∇ψα )ψ∗
β + ψα∇ψ∗

β , (D4a)

jαβ → 1

2i
[(∇ψα )ψ∗

β − ψα∇ψ∗
β ], (D4b)

we get
1
2 (∇nαβ − 2ijαβ ) → ψα∇ψ∗

β , (D5a)

1
2 (∇nαβ + 2ijαβ ) → (∇ψα )ψ∗

β . (D5b)

From these expressions it is clear that

nσσ τσσ − |jσσ |2 = 1
4 |∇nσσ |2, (D6)

which is the known result for the collinear case. Similarly, one
finds that

nσ−σ (∇2n−σσ − 2τ−σσ ) + (∇2n−σσ − 2τσ−σ )n−σσ

→ nσσ (∇2n−σ−σ − 2τ−σ−σ )

+n−σ−σ (∇2nσσ − 2τσσ ). (D7)

Combining these expressions, we obtain the following re-
sult for the one-electron limit:

nD → −
∑

σ

[
|jσ−σ |2 + 1

4
|∇nσ−σ |2 + τσσ n−σ−σ

]
= 0.

Therefore D vanishes in the one-electron limit, which shows
that in this limit we have τ̄ = τW .

APPENDIX E: UNIFORM GAS LIMIT

In the original paper by Becke and Roussel [26], the value
of γ = 0.8 was introduced to improve the agreement of the
exchange hole with respect to the uniform electron gas ex-
change hole. As our functional recovers the collinear spin
limit, it is already justified to use this value. Moreover, we
can show that the structure of the noncollinear exchange hole
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in the uniform electron gas limit is similar to the one of the
unpolarized or collinear cases.

For this, we consider the limit of the uniform electron
gas. In this limit, the kinetic energy density limit τ unif

σσ ′
becomes

τ unif
σσ ′ = 3

5 k2
Fnσσ ′, (E1)

where kF is the Fermi vector of our uniform electron gas, given
by

kF = (6π2n)1/3. (E2)

By setting ∇nσσ ′ = 0 and ∇2nσσ ′ = 0, we arrive at

τ̄ unif = 3

5n
k2

F(n2
↑↑ + n2

↓↓ + 2|n↑↓|2) = 3

5
k2

F

(
n

2
+ |m|2

2n

)
,

(E3)

where we recognize the on-top value of the exchange hole
(n/2 + |m|2/2n) of the last term. Therefore it is clear that
the exchange-hole curvature behaves similarly to the unpo-
larized case, as long as we replace the on-top curvature of
the noncollinear system by the local density of the unpolar-
ized system. This further justifies the use of γ = 0.8 in our
functional.

APPENDIX F: EXPLICIT SOLUTION OF THE KLI EQUATION IN THE NONCOLLINEAR CASE

The noncollinear version of the KLI potential is defined as [27]

[n(r)vKLI(r) + vKLI(r)n(r)]νμ =
∑

i

(
δExc

δψ∗
iν (r)

ψ∗
iμ(r) + δExc

δψiμ(r)
ψiν (r)

)
+

∑
i

ψiν (r)ψ∗
iμ(r)

∫
dr′

×
⎛
⎝2

∑
αβ

vKLI
αβ (r′)ψ∗

iα (r′)ψiβ (r′) −
∑

α

δExc

δψ∗
iα (r′)

ψ∗
iα (r′) −

∑
α

δExc

δψiα (r′)
ψiα (r′)

⎞
⎠. (F1)

If only the first part on the right-hand side is taken into account, then the KLI potential reduces to the Slater potential, vKLI → vS.
We now seek a set of orbital-dependent constants {Ci}, such that

[n(r)vKLI(r) + vKLI(r)n(r)]νμ = [n(r)vS(r) + vS(r)n(r)]νμ +
∑

i

ρiνμ(r)Ci, (F2)

where we defined ρiνμ(r) = ψiν (r)ψ∗
iμ(r). It is clear that

Ci =
∫

dr′

⎛
⎝2

∑
αβ

vKLI
αβ (r′)ρiβα (r′) −

∑
α

δExc

δψ∗
iα (r′)

ψ∗
iα (r′) −

∑
α

δExc

δψiα (r′)
ψiα (r′)

⎞
⎠ = V̄i − v̄S

i , (F3)

where V̄i,αβ needs to be determined.

Assuming that the density matrix is not singular, this can
be solved as [12]

vKLI
νμ (r) = vS

νμ(r) +
∑

i

[N−1(r)vecρi(r)]νμCi, (F4)

where vecρi rearranges the elements of the 2 × 2 matrix ρi

into a single-column vector with four components, N is a 4 ×
4 matrix given by [27]

N = I ⊗ n + nT ⊗ I, (F5)

and I is the 2 × 2 unit matrix. We now multiply both sides of
Eq. (F4) by 2ρ jμν (r), sum over the spin indices, and integrate
over r. This gives

V̄j = 2
∑
νμ

∫
drρ jμν (r)vS

νμ(r) + 2
∑

i

∑
νμ

∫
drρ jμν (r)

× [N−1(r)vecρi(r)]νμ

(
V̄i − v̄S

i

)
. (F6)

We subtract v̄S
j on both sides and obtain after some rearrange-

ment

∑
i

⎡
⎣δi j − 2

∑
νμ

∫
drρ jμν (r)[N−1(r)vecρi(r)

⎤
⎦

νμ

]Ci

= 2
∑
νμ

∫
drρ jμν (r)vS

νμ(r) − v̄S
j . (F7)

We recognize a linear equation that can be solved straightfor-
wardly, similar to the collinear case [12].

Now let us consider the case for which the density matrix is
singular. In this case, the Sylvester equation cannot be solved
directly. To treat this problem, we perform a local rotation
of the equation in the magnetization frame, defined by the
rotation matrix R. In this frame, the density matrix is zero
expect for one diagonal element, and the corresponding matrix
is denoted D = R†nR. The potentials in this frame are labeled
by the superscript “loc.” Equation (F2) then becomes

[DvKLI,loc + vKLI,locD] = [DvS,loc + vS,locD] +
∑

i

ρi
locCi.

(F8)
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In the case of D = (n↑ 0
0 0), we obtain

n↑

(
2vKLI,loc

↑↑ vKLI,loc
↑↓

vKLI,loc
↓↑ 0

)
= n↑

(
2vS,loc

↑↑ vS,loc
↑↓

vS,loc
↓↑ 0

)
+

∑
i

ρi
locCi.

(F9)

This gives us two equations to solve:

vKLI,loc
↑↑ (r) = vS,loc

↑↑ (r) +
∑

i

ρ loc
i↑↑(r)Ci

2n↑(r)
, (F10)

vKLI,loc
↑↓ (r) = vS,loc

↑↓ (r) +
∑

i

ρ loc
i↑↓(r)Ci

n↑(r)
(F11)

and a similar equation for vKLI,loc
↓↑ . The last component,

vKLI,loc
↓↓ , is set to zero. This equation is solved similarly to the

collinear case, and once the solution is obtained, we rotate the
potential back to the original frame.

Combining these two approaches, we can write a general
explicit solution for orbital-dependent constants needed for
the KLI potential of the form

∑
i

⎡
⎣δi j − 2

∑
νμ

∫
drρ jμν (r)Miνμ(r)

⎤
⎦Ci

= 2
∑
νμ

∫
drρ jμν (r)vS

νμ(r) − v̄S
j , (F12)

where Miνμ(r) = [N−1(r)vecρi(r)]νμ for the nonsingular

points and

Mi(r) = R(r)

((
1 − 1

2 I
)

nσ (r)
ρ loc

i
(r)

)
R†(r)

for the singular points. The solution for the KLI potential is
then constructed using either Eqs. (F10) and (F11) or Eq. (F4),
respectively, depending on whether the spin density matrix at
a given point is singular or not.
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