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Inter-individual body mass variations relate to
fractionated functional brain hierarchies
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Variations in body mass index (BMI) have been suggested to relate to atypical brain orga-
nization, yet connectome-level substrates of BMI and their neurobiological underpinnings
remain unclear. Studying 325 healthy young adults, we examined associations between
functional connectivity and inter-individual BMI variations. We utilized non-linear con-
nectome manifold learning techniques to represent macroscale functional organization along
continuous hierarchical axes that dissociate low level and higher order brain systems. We
observed an increased differentiation between unimodal and heteromodal association net-
works in individuals with higher BMI, indicative of a disrupted modular architecture and
hierarchy of the brain. Transcriptomic decoding and gene enrichment analyses identified
genes previously implicated in genome-wide associations to BMI and specific cortical, striatal,
and cerebellar cell types. These findings illustrate functional connectome substrates of BMI
variations in healthy young adults and point to potential molecular associations.
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high body mass index (BMI) has been recognized as an
A important contributor to adverse health and psychological

outcomes'-3. High BMI is an indicator of obesity, a
condition with increasing prevalence worldwide? and a con-
tributing factor to the development of type 2 diabetes, cardio-
vascular disease, stroke, cancer, and metabolic syndrome*-’.
In addition, multiple neurobiological processes related to
obesity have been recognized, including mechanisms regulating
eating behaviors, together with genetic and transcriptomic
underpinnings’-1°.

Neuroimaging techniques, particularly magnetic resonance
imaging (MRI), can identify cerebral substrates associated with
BMI by tapping into whole-brain structure, function, and con-
nectivity. Prior structural MRI research has shown that measures
of cortical and subcortical morphology robustly correlate with
inter-individual variations of BMI in healthy!117-19 and diseased
populations20-21, Multiple task-based functional MRI studies have
also shown associations between BMI and brain activations in
impulse control and reward processing paradigms22-2°, During
resting conditions, studies reported associations between BMI
and connectivity of specific regions3*-33 and larger networks
involved in cognitive control and reward systems34-36, A recent
study suggested regional functional connectivity patterns related
to inter-individual variations in obesity phenotypes using
machine learning3”38. However, it is less well established how
these patterns are associated with whole-brain functional net-
works. The current work aims to address this gap by applying
connectome manifold learning techniques to identify functional
substrates of BMI in a large population of healthy adults. The key
to manifold learning is the ability to compress high-dimensional
connectomes into a series of lower-dimensional eigenvectors (i.e.,
gradients) that visualize spatial trends in inter-regional con-
nectivity variations’®, simplifying connectivity analysis and
visualization. Eigenvectors estimated from resting-state functional
MRI (rs-fMRI), myelin-sensitive imaging, and diffusion MRI can
serve as axes of the brain’s intrinsic coordinate system3°-4>, These
eigenvectors have been shown to follow established models of
neural hierarchy and laminar differentiation0. Complementing
modular descriptions of brain networks in terms of network
integration and segregation, these manifold learning techniques
thus offer a data-driven perspective on the gradual and hier-
archical organization of functional and structural brain systems in
health and disease3?4147-51 In the context of BMI, these tech-
niques have not been applied but promise to assess whether
patterns of functional network integration and segregation reflect
inter-individual body mass variations.

As the above manifold learning can generate cortical maps
capturing large-scale principles of brain connectivity and hier-
archical differentiation, these features can be readily integrated
with other spatial features of brain organization. Spatial associa-
tions between connectome gradients and measures of brain
morphology and microstructure can query shared and unique
effects. Furthermore, neurobiological data that is not per se
neuroimaging derived is increasingly represented in MRI refer-
ence space. One such repository, comprising post-mortem gene
expression maps, has been disseminated by the Allen Institute for
Brain Science (AIBS)2-°6, This resource can inform spatial
association analyses between imaging-derived findings and gene
expression patterns. Coupled with gene set enrichment
analyses®’ 01, these approaches can discover molecular, devel-
opmental, and disease-related processes, and provide additional
context for MRI findings. Recent studies utilized transcriptomic
decoding to explore the underpinnings of brain imaging findings
in both healthy and diseased cohorts*>->0:62-66,

Here, we studied associations between macroscale functional
connectome organization and inter-individual variations in BML

Our functional network analysis was based on the identification
of connectome manifolds, which offer a continuous and low
dimensional analytical space to interrogate macroscale brain
organization and network hierarchy3*4%:67. Studying the multi-
modal human connectome project (HCP) dataset®, we also
examined whether associations between functional manifolds and
BMI existed above and beyond structural effects as measured by
MRI-based measures of cortical thickness, sulco-gyral folding,
and intracortical myelin. To explore neurobiological under-
pinnings of BMI-related whole-brain connectome changes, we
performed spatial association analyses to post-mortem gene
expression data and carried out gene enrichment analyses.

Results

We studied 325 unrelated young and healthy adults (mean + SD
age = 28.56 + 3.74 years; 55% female; mean + SD BMI = 26.30 +
5.16 kg/m?, range 16.65-47.76kg/m?) from the S900 release of
the HCP%. Details on participant selection, image processing,
and analysis are outlined in the “Methods”. Reproducibility was
studied in an additional 74 unrelated healthy adults from the
HCP S1200 release (mean+SD age=28.08 +3.90 years; 34%
female; mean + SD BMI = 26.17 + 4.39 kg/m?, range 18.89-39.47
kg/m?2), as well as an independent dataset of healthy adults
acquired from the St. Vincent’s Hospital (SVH; n = 36; mean +
SD age=38.78+10.52 years; 47% female; mean+SD BMI =
29.38 + 6.29 kg/m?2, range 23.15-57.13 kg/m?2).

Macroscale functional manifolds are associated with inter-
individual variations in BMI. We constructed functional con-
nectomes in individual subjects based on the correlation analysis
of rs-fMRI data and estimated functional manifolds3® using dif-
fusion map embedding® implemented in BrainSpace (https:/
github.com/MICA-MNI/BrainSpace; see “Methods™)”. The
template manifold was estimated using the group averaged
functional connectome, and we aligned individual manifolds to
this template using Procrustes rotations®”>7%. We selected three
eigenvectors (E1, E2, E3), explaining ~48% of information in the
template affinity matrix (Fig. la, b). Each eigenvector (also
referred to as gradient) represents an axis of spatial variation in
the functional connectome. In accordance with prior findings in
the HCP dataset3%%7, the eigenvectors differentiated primary
sensory areas from higher order transmodal areas (E1), visual
from somatomotor cortices (E2), and the multiple demand net-
work from the rest of the brain (E3).

Multivariate analysis associated the three eigenvectors with
inter-individual differences in BMI, controlling for age and sex.
Significant associations were identified in transmodal cortical
areas (false discovery rate (FDR) < 0.057}; Fig. 1c). Stratifying the
effects according to intrinsic functional communities’? and
a model of cortical hierarchical laminar differentiation®, we
revealed the highest effects in default mode and frontoparietal
networks situated in both unimodal and heteromodal association
cortices.

To express the multivariate pattern in a single scalar, we
computed a compact manifold eccentricity metric for all
participants#7-73, which was calculated as the Euclidean distance
between the center of template manifold and all data points (i.e.,
cortical regions) in manifold space (Supplementary Fig. 1a). The
manifold eccentricity showed high value in somatosensory, lateral
temporal, and medial prefrontal cortices, while frontoparietal and
limbic regions showed low value. After controlling for age and
sex, we could replicate an association between inter-individual
variations in BMI and manifold eccentricity of the regions
identified from the multivariate analysis (see Fig.lc; p <0.001;
non-parametric permutation tests; Supplementary Fig. 1b). To
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Fig. 1 Functional connectome manifolds. a A group averaged functional connectome in graph (left) and matrix representation (middle left), and a scree
plot describing connectome information across functional components (middle right). The reordered functional connectivity matrix according to the first
eigenvector (i.e., E1) is shown on the right. b Template manifolds were built by three dominant eigenvectors (E1, E2, E3), based on the group averaged

functional connectome (left). The scatter plot represents each brain region

projected onto the three-dimensional manifold space with different colors

(middle), also mapped to the cortical surface for visualization (right). € The distribution of BMI is reported on the left. Multivariate association highlighted
regions showing significant associations between the three eigenvectors and inter-individual variations in BMI (middle left). Findings were corrected for
multiple comparisons using a false discovery rate (FDR) < 0.05. Effects were stratified according to intrinsic functional communities’? (middle right) and

levels of cortical hierarchy“® (right), and shown in the spider plots. Source

provide further topological context, we also calculated spatial
associations between manifold eccentricity and graph-theoretical
measures representing the integration/segregation of intrinsic
functional communities. Specifically, we calculated within-
module degree and participation coefficient’47> based on an
established intrinsic functional partitioning’? (Supplementary
Fig. 2a-c). We found a significant positive correlation with
within-module degree (r=0.20, FDR <0.001; non-parametric
permutation tests followed by FDR across modular parameters),
while participation coefficient was negatively correlated (r=
—0.12, FDR=0.02). Similar patterns were observed when
defining modules wusing Louvain community detection
algorithm’® (Supplementary Fig. 2d—f) or the Mesulam schema
of cortical hierarchy and laminar differentiation*® (Supplemen-
tary Fig. 2g-i). These results indicate increased functional
segregation of networks involved in transmodal areas in
individuals with higher BMI.

Associations to inter-individual variations in cortical mor-
phology. Previous studies have reported associations between
individual differences in BMI and MRI measures of cortical
thickness, cortical folding, and tissue microstructure!:77-80, Here,
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data are provided in Supplementary Data 2.

we explored whether functional connectome manifold findings
were, in part, explainable by these underlying structural associa-
tions. We measured cortical morphology (cortical thickness and
folding) and intracortical microstructure (the ratio between T1-
and T2-weighted imaging contrast, a proxy for intracortical
myelin) in the same subjects (Fig. 2a)*81:82, Two analyses were
performed. First, we correlated inter-individual differences in BMI
with these indices of brain structure while controlling for age and
sex. While cortical folding was not associated with BMI, a negative
effect on cortical thickness was observed in the temporal pole (r =
—0.21; FDR<0.05), and we also found reductions in myelin
proxies in occipital, central, and ventrolateral prefrontal regions in
individuals with higher BMI (r= —0.35; FDR < 0.05) (Fig. 2b).
Second, we repeated the analysis associating inter-individual dif-
ferences in BMI to multivariate connectome manifolds (E1-E3)
after controlling for the measures of brain structure. Findings were
consistent with our main results, showing strong effects in default
mode and frontoparietal networks (Fig. 2c). Collectively, these
findings suggest that functional connectivity associations to inter-
individual variations in BMI were robust above and beyond
associations between BMI and measures of cortical morphology
and microstructure.
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a. Different types of brain structure associated with BMI

Cortical thickness

Cortical folding

Myelin content

)

2.5 3.5

b. Correlation with BMI

N

£ 2
o

2

@9 s
2 <N W
H

o T-statistic .
2

0

(=

2

=)

e

-

c

(1]

L

e

c

2

»n

T-statistic

4 Tstatistic

c. Connectome manifolds associated with BMI after controlling for brain structures
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Fig. 2 Effects of brain structures. a MRI measures of brain structure, including cortical morphology and intracortical microstructure were obtained in the
same participants. b Linear correlations between inter-individual variations in BMI and these indices of brain structure. ¢ Multivariate association of the
three functional eigenvectors with BMI, after controlling for variations in brain structure. Source data are provided in Supplementary Data 2.

Transcriptomic association analysis. To explore neurobiological
associations to our macroscale findings (see “Methods” for
details), we correlated the spatial map of BMI-related functional
manifold changes (see Fig. 1c) with cortical maps of post-mortem
gene expression data obtained from the AIBS*#8384. We repe-
ated the correlation analysis with spin-rotated maps of BMI-
related patterns 100 times to ensure that significantly associated
genes (FDR < 0.05) were not selected by chance3>. Among the
significantly associated gene lists, only the genes consistently
expressed across different donors (FDR < 0.05) (see “Methods”;
Supplementary Data 1)°2 were fed into the genome-wide

association studies using Enrichr (https://amp.pharm.mssm.
edu/Enrichr/)>>01. These findings pointed to the strongest
effects for genes previously shown to be associated with BMI
(FDR < 0.05; Fig. 3a). Furthermore, cell-type specific expression
analysis (http://genetics.wustl.edu/jdlab/csea-tool-2/)0 suggested
that genes associated with BMI-related functional manifold
changes were enriched to cortical cells as well as those in stria-
tum and cerebellum (FDR < 0.05; Fig. 3b) previously implicated
in the regulation of food-related reward processing and
appetite8®-89, Specifically, genes were enriched for GABAergic
cells of D1 medium spiny neurons in the striatum and stellate

4 COMMUNICATIONS BIOLOGY | (2021)4:735 | https://doi.org/10.1038/s42003-021-02268-x | www.nature.com/commsbio


https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
http://genetics.wustl.edu/jdlab/csea-tool-2/
www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02268-x

ARTICLE

a. Genome-wide association studies

** BMI

** Motion sickness

* BMI (adjusted for smoking behavior)
Corneal astigmatism

Obesity (extreme)

Paneth cell defects in Crohn's disease

Cutaneous psoriasis
Childhood ear infection
BMI in smokers

Calcium levels

]

** FDR<0.05; * FDR<0.1 Log FDR-corrected p-values

b. Cell-type specific expression

Granule Neurons

Cerebellum

Golgi Neurons Neurons

chonne.g.c Cortex
Hypocretinergic Cerebellum
Neuvens
Cclebellum Cholinergic

Stelatea  Bergmann Glia
Basket Neurons

Cerebellum

D1+ Spiny
Layer 5b Layer 6 Nculonsy
Neurons Neurons

Corts

Cones @ Neurons
Unipolar &

Cortex Sonax

D2+ Spiny
rons

Cortex Striatum
Layer5A &

Immune Cells
Cerabellum

Striatum
Oligodendrocytes

Retina

Retina
Oligodendrocyte
P

Cortex

Purkinje Neurons Cortex

Oligodendrocytes
Astrocytes

Cholinergic

Habenula Motor Neurons.

Cerebellum
Astrocytes

uasu Forebrain Cortex

Bergmann Giia &

Cholinergic Hypmhz!mus Cholinergic
Oligodendrocytes

Neurons Motor Neurons

Serotonergic

Neu rons Ncu rons Spnarcord

Stratum Bran ‘ fom

Brain stem

Cerebellum

Cerebellum

0.1 0.05 0
FDR corrected p-values

Fig. 3 Transcriptomic analysis. a Genes were derived by associating map of BMI-related manifold changes and gene expression maps from Allen Brain
Atlas. Top ten categories associated with gene expressions derived from genome-wide association studies. b Cell-type specific expression analysis

identified candidate cell populations associated with genes expressed in the input spatial map (see Fig. 1c). The hexagon size represents the proportion of
genes specifically expressed in a particular tissue. Varying stringencies for enrichment are represented by the size of hexagons going from least specific
(outer hexagons) to most specific (center hexagons) (specificity index threshold (pSI) = 0.05, 0.01, 0.001, and 0.0001, respectively)0. Colors represent
the FDR-corrected p-values. Source data are provided in Supplementary Data 2.

and basket cells in cerebellum, as well as in cortical neurons
(FDR < 0.05).

Sensitivity and replication experiments. A series of analyses
evaluated robustness of our findings.

(a) Head motion. We repeated the multivariate analyses
associating BMI with connectome manifolds after control-
ling for head motion, quantified as frame-wise displacement
in rs-fMRI®0. We observed overall increased effect sizes
(+42%) in functional communities except for the fronto-
parietal network, which showed decreased effects (—14%)
(Supplementary Fig. 3a).

(b)  Fluid intelligence, sleep quality, and blood pressure. BMI has
previously been related to fluid intelligence!l!, sleep
quality?”3, as well as blood pressure?®>. These associa-
tions were confirmed in this dataset, showing low to
moderate correlations between BMI and fluid intelligence
(r=—-0.17, FDR = 0.003; non-parametric permutation tests
followed by FDR across covariates), quality of sleep (r=
0.13, FDR = 0.02), and blood pressure (r = 0.45/0.30, FDR
<0.001 for systolic/diastolic) after controlling for age and
sex. Repeating the multivariate association analyses after
additionally controlling for these factors, we obtained
findings that were largely similar to our main results
(Supplementary Fig. 3b-d).

(c) Multivariate association with weight. We additionally per-
formed multivariate association analyses between weight and
connectome manifolds with controlling for age and sex, as
well as height. We found almost unchanged spatial patterns
relative to our main findings (Supplementary Fig. 4a).

(d) Group comparison. Instead of carrying out a correlation
analysis between functional manifolds and BMI, we also
performed a multivariate group comparison to compare
cortex-wide manifolds (E1-E3) between individuals with
healthy weight (18.5<BMI<25) and those with higher
BMI (BMI 2 25). We observed virtually identical results to
our main findings (Supplementary Fig. 4b).

(e) Spatial scale. As the main analysis was performed using the
Schaefer atlas with 200 parcels®®, we additionally evaluated

()

(g)

(h)

@

()

the results at both coarser and finer parcellation schemes of
100, 300, and 400 parcels, respectively. Findings were
consistent across all parcel resolutions, despite subtle
variations in the exact pattern of findings (Supplementary
Fig. 5).

Mitrix thresholding. While main findings were based on
functional connectomes thresholded at a 10% density as in
prior work3%4%67, we also repeated our analysis at 5, 15,
and 20% densities (Supplementary Fig. 6). We found highly
similar patterns at these densities (mean spatial correlation
across manifold maps, r = 0.85).

Reproducibility in HCP validation dataset. We repeated the
main analyses in an independent dataset from the HCP
$1200 (n="74) and found largely consistent results, with
frontoparietal and default mode networks showing high
associations with BMI (Supplementary Fig. 7a—c).
Reproducibility in HCP dataset with bootstraps. Among the
whole HCP sample (n=399), we associated eigenvectors
and BMI using randomly selected 300 participants, and
replicated the findings in the remaining 99 subjects, for a
total of 1000 times (see “Methods”). We found that the
results were consistent (Supplementary Fig. 7d, e).
Reproducibility in another dataset. Using an independent
dataset with different acquisition parameters (n = 36; see
“Methods”), we replicated our main findings that the
connectome manifolds in higher order heteromodal
association areas are associated with BMI (Supplementary
Fig. 8).

Association between BMI and graph-theoretical measures.
Correlating BMI to betweenness, eigenvector, and degree
centrality’>°7-%8 with controlling for age and sex, we could
not find significant associations (FDR > 0.8).

Discussion

Human connectome organization can be conceptualized along
multiple processing hierarchies®, which allow for integrative and
segregated neural functions. Here, we assessed inter-individual
differences in this architecture relative to phenotypic variations
in BMI, a well-known predictor of health, wellbeing, and life
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expectancy!=3. Our approach leveraged techniques that decom-
pose the whole-brain functional connectome into a set of eigen-
vectors differentiating macroscale systems in a gradual manner
along the cortical surface. We observed that unimodal and het-
eromodal association areas are more differentiated in individuals
with higher BMI, suggestive of a potentially disrupted segregation
between different levels of the cortical hierarchy. Findings
remained consistent when additionally controlling for inter-
individual variations in MRI-based measures of cortical mor-
phology and microstructure, suggesting that functional network
associations with BMI existed above and beyond potential
regional effects on local brain structure. Functional connectome
changes were found in cortical territories known to harbor genes
previously implicated in BMI variations, as well as those involved
in cortical, striatal, and cerebellar cells. These findings suggest
functional network substrates of inter-individual variations in
BMI that may ultimately reflect macroscale effects of cellular-
genetic associations to BMIL

Manifold learning techniques were utilized to represent mac-
roscale functional connectomes through a series of lower-
dimensional eigenvectors. Studying the HCP cohort, we identi-
fied three eigenvectors that each described a spatial gradient in
cortico-cortical functional differentiation and that collectively
explained approximately 50% of connectivity information. The
overall pattern of gradients was in agreement with earlier studies
in the same dataset3%¢7, with a principal gradient differentiating
sensorimotor and transmodal systems, a second gradient dif-
ferentiating sensorimotor and visual networks, and a third gra-
dient being sensitive to a differentiation of the multiple demand
network from the rest of the brain3%100. Notably, associating
inter-individual differences in BMI with manifold organization,
we observed a marked modulation of functional gradients by
inter-individual differences in BMI. Findings were particularly
visible in association cortices that encompass integrative default
mode and frontoparietal networks. Further contextualization
with manifold eccentricity and graph theoretical parameters
indicated segregation of association cortices in individuals with
higher BMI. Prior fMRI studies reported atypical intrinsic
functional connectivity in individuals with obesity, at both nodal
and global network levels, relative to individuals with healthy
weight30:3435101-103 Oyr findings complement these previous
reports focusing on the analysis of connectivity patterns of
specific  areas’0-3235  alongside prior  graph-theoretical
analyses30:34103 in the context of person-to-person variations
in BMI. Prior functional connectivity studies found that indivi-
duals with obesity showed increased connectivity in nodes
belonging to frontoparietal and default mode networks3%-3>101,
These findings also parallel work showing positive associations
between overall network connectivity and BMI, again frequently
observed in networks situated in transmodal association
cortex3437:103_ Tongitudinal evidence also points to an associa-
tion between BMI changes and connectivity of reward and
frontoparietal networks, both when following healthy individuals
over time!® and secondary to repetitive transcranial magnetic
stimulation targeting the dorsolateral prefrontal cortex!0>.
Beyond work focusing on associations between inter-individual
differences in BMI and localized connectivity patterns, a more
recent study reported increased modular segregation of func-
tional networks as BMI increases!%. A more segregated network
organization has previously been reported in several psychiatric
and neurological diseases, including attention deficit hyper-
activity  disorder!07-111 Alzheimer’s disease!!1-114, ~ and
impulsivity!1°>. These studies noted that increased segregation
might reduce global network efficiency and delay information
transfer between nodes!10-118, potentially contributing to cog-
nitive decline!!11°. Based on these studies, the observed

alterations in unimodal and heteromodal association cortices in
individuals with higher BMI in our work could reflect disrup-
tions in feedforward and feedback processing, and indicate aty-
pical cognitive flexibility”,3:11,15,34,120-123

While exploring associations between BMI variations and
functional connectome organization may illustrate brain sub-
strates of obesity”:11:17:18:21,26,30,36,124 ' BMT measure is not per se
an indication of body fat distribution!?>. Central obesity mea-
sures, such as waist circumference and waist-to-hip ratio are
alternative proxies for obesity, in particular for abdominal obe-
sity. Indeed, BMI is strongly associated with these central obesity
measures'?> and shows similar or better reproducibility of pre-
dicting cardiovascular disease risk!2. Although the interpretation
of BMI should be carefully discussed, BMI is a widely adopted
index of obesity in the clinics and has been used to examine brain
substrates associated to BMI variations”-813:32,34104,105,122 " Of
note, our findings were largely consistent when incorporating a
range of potential confounds, including fluid intelligence, sleep
quality, and blood pressure. Moreover, we could observe similar
patterns in an initially held out HCP subsample, as well as in a
completely different dataset, supporting that our findings appear
overall robust. It should be noted that, however, head motion was
found to be related to BMI, in a rather complex way. Indeed,
additionally controlling for head motion parameters in our sta-
tistical models increased the effect sizes in several networks but
reduced effect sizes in the frontoparietal network. A prior study
showed weight loss is related to reduced head motion, suggesting
a need to assess head motion effects in obesity neuroimaging
studies'?”. Further work is needed to identify mediating factors
between head motion and body weight, and to determine how to
optimally include head motion parameters in BMI/obesity
neuroimaging.

In addition to its conceptual alignment with established models
of cortical hierarchical organization3%4%, the manifold framework
allowed for the projection of connectome-derived findings back
to cortical surfaces. In our analyses, we could thus integrate
functional findings with morphological and microstructural
measures in the same participants. Previous studies have explored
morphological substrates of BMI variations, reporting cortical
thinning in lateral prefrontal, entorhinal, and parahippocampal
regions as BMI increases, indicating that overweight and obese
people have reduced cortical thickness compared to people with a
normal body weight!1:78:80.128-130 " A recent multi-site study
confirmed that high BMI (= 30) relates to reduced thickness in
temporal and frontal cortices!3!. In our study, we observed dif-
fuse tendencies for decreased cortical thickness in individuals
with higher BMI, with significant peak effects in temporopolar
cortices. Findings were complemented by microstructural asso-
ciations in primary sensory and ventrolateral prefrontal cortices,
potentially indicative of myelin anomalies in individuals with
high BMI that have already been suggested based on different
methodologies!32-134, Notably, associations between BMI and
functional connectome organization were virtually unchanged
when controlling for MRI-derived indices of morphology and
microstructure. These findings indicate that the functional con-
nectome reorganization situated in higher order brain regions
likely occurred above and beyond these underlying structural
variations.

In addition to MRI-based analyses of regional morphology
and microstructure, we performed a transcriptomic association
analysis based on post-mortem gene expression maps provided
by the Allen Brain Atlas. Although such transcriptomic asso-
ciations were established through a different and small dataset
that is not necessarily representative of the HCP sample,
equivalent approaches have been increasingly adopted in neu-
roimaging research to identify genes whose expression patterns
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covary with macroscopic findings*>>0:62-66_ In our work, spatial
association analyses pointed to specific gene sets, which were
cross-referenced with previously reported genome-wide asso-
ciation studies. This analysis demonstrated that the topo-
graphy of functional connectome manifold changes seen in the
current study co-localized with the expression pattern of genes
previously implicated in BMI variations through genome-wide
association studies. These findings could thus indicate that the
functional connectome associations with BMI may ultimately
reflect macroscale effects of genetically mediated processes, a
finding to be further validated with direct imaging-genetics
approaches. Additional gene set enrichment analyses suggested
that the identified genes are mainly expressed by cortical neu-
rons, together with cells in the cerebellum, as well as D1
medium spiny neurons in the striatum. Although these asso-
ciations are indirect and based on different samples, they may
extend and recapitulate computational theories on circuit
mechanisms contributing to BMI, and notably point to an
atypical organization of dopaminergic circuits involving
mesolimbic and cortical control systems in high BMI/
obesity86-89,

In sum, our study identified functional connectome substrates
of inter-individual BMI variations in healthy young adults based
on connectome manifold learning. Our findings point to altered
modular and hierarchical organization of the brain, specifically
between unimodal and heteromodal association cortices. These
findings were robust with respect to several confounds and var-
iations in cortical morphology, and could be replicated in several
datasets. Transcriptomic decoding suggested that these patterns
were spatially associated with the expression of genes previously
implicated in BMI variations as well, potentially related to
cortical-subcortical dopamine signaling pathways. Our findings,
thus, suggest coupled macroscale and molecular substrates of
BMI variations in the adult human brain.

Methods

Participants. We obtained the minimally processed imaging and phenotypic
data from the 5900 release of HCP%. We excluded participants who are
genetically related (i.e., twin pairs; n =461), and who did not complete full
imaging data with acceptable image quality (i.e., less than one T1- and T2-
weighted and four sessions of rs-fMRI; n = 169), resulting in a total of 325
participants (mean + SD age = 28.56 + 3.74 years; 55% female). The mean BMI
of the participants was 26.30 kg/m? with an SD of 5.16 (range = 16.65-47.76 kg/
m?), and the proportion of underweight (BMI < 18.5 kg/m?), healthy weight
(18.5 < BMI < 25 kg/m?), overweight (25 < BMI < 30), and obesity (BMI > 30)
was 6:143:113:63. We selected additional data from the S1200 release of HCP to
replicate the findings (see “Sensitivity and reproducibility analyses” section).
Identical exclusion criteria were applied (twin pairs n = 144; without full ima-
ging n = 18). A total of 74 participants (mean + SD age = 28.08 + 3.90 years; 34%
female; mean + SD BMI = 26.17 + 4.39 kg/m?2, range 18.89-39.47 kg/m?) were
enrolled, and the ratio of healthy weight, overweight, and obesity was 30:29:15.
All MRI data used in this study were publicly available and anonymized. Par-
ticipant recruitment procedures and informed consent forms, including consent
to share de-identified data, were previously approved by the Washington Uni-
versity Institutional Review Board as part of the HCP. In addition, we analyzed
an independent dataset from an independent site (St. Vincent’s Hospital (SVH):
n = 36; mean + SD age = 38.78 + 10.52 years; 47% female; mean + SD BMI =
29.38 +6.29 kg/m?, range 23.15-57.13 kg/m?). Data collection and usage were
approved from the Institutional Review Boards of the Catholic University of
Korea (no. XC15DIMI0012, approved March 2015), and written and informed
consent was obtained from all participants.

MRI acquisition.

(a) HCP: HCP imaging data were obtained on a Siemens Skyra 3T at
Washington University. The T1-weighted images were acquired using a
magnetization-prepared rapid gradient echo (MPRAGE) sequence (repeti-
tion time (TR) = 2400 ms; echo time (TE) = 2.14 ms; field of view (FOV) =
224 x 224 mm?; voxel size = 0.7 mm?; and number of slices = 256). The T2-
SPACE sequence was used for scanning T2-weighted structural data, and
the acquisition parameters were the same as the T1-weighted data except for
TR (3200 ms) and TE (565 ms). The rs-fMRI data were collected using a

gradient-echo EPI sequence (TR = 720 ms; TE = 33.1 ms; FOV = 208 x 180
mm?; voxel size = 2 mm?3; number of slices = 72; and number of volumes =
1200). During the rs-fMRI scan, participants were instructed to keep their
eyes open looking at a fixation cross. Two sessions of rs-fMRI data were
acquired; each of them contained data of left-to-right and right-to-left
phase-encoded directions, providing up to four time series per participant.

(b) SVH: The SVH imaging data were scanned using a Siemens Magnetom 3T
scanner equipped with a 32-channel head coil. The T1-weighted images
were acquired using a MPRAGE sequence (TR = 1900 ms; TE = 2.49 ms;
FOV =250 x 250 mm?; voxel size=1mm?; and number of slices = 160).
The rs-fMRI data were collected using a gradient-echo EPI sequence (TR =
2490 ms; TE=30ms; FOV =220 x 220 mm? voxel size=3.4x3.4x3
mm?; number of slices = 36; and number of volumes = 150).

Data preprocessing.

(a) HCP: HCP data were minimally preprocessed using FSL, FreeSurfer, and
Workbench!35-137 Structural MRI data were corrected for gradient
nonlinearity and b0 distortions, and co-registration was performed between
the T1- and T2-weighted data using a rigid-body transformation. Bias field
was adjusted using the inverse intensities from the T1- and T2-weighting.
Processed data were nonlinearly registered to MNI152 space, and white and
pial surfaces were generated by following the boundaries between different
tissues!38-140, The midthickness surface was generated by averaging white
and pial surfaces, and it was used to generate the inflated surface. The
spherical surface was registered to the Conte69 template with 164k
vertices'4! using MSMAII'42 and downsampled to a 32k vertex mesh. The
rs-fMRI data were preprocessed as follows: first, EPI distortions and head
motion were corrected, and data were registered to the T1-weighted data
and subsequently to MNI152 space. Magnetic field bias correction, skull
removal, and intensity normalization were performed. Noise components
attributed to head movement, white matter, cardiac pulsation, arterial, and
large vein related contributions were removed using FMRIB’s ICA-based X-
noiseifier (ICA-FIX)!43, Preprocessed time series were mapped to the
standard grayordinate space, with a cortical ribbon-constrained volume-to-
surface mapping algorithm. The total mean of the time series of each left-to-
right/right-to-left phase-encoded data was subtracted to adjust the
discontinuity between the two datasets and they were concatenated to form
a single time series data.

(b) SVH: Data were processed using the fusion of the neuroimaging
preprocessing (FuNP) pipeline integrating AFNI, FSL, FreeSurfer, and
ANTSs!35-137,144-146 T]_weighted data were processed using equivalent
procedures as for HCP. The rs-fMRI preprocessing removed the first 10's (5
volumes) to allow for magnetic field saturation. Head motion and slice
timing were corrected, and volumes with frame-wise displacement >0.5 mm
removed. After removing non-brain tissues, intensity was normalized.
Effects of head motion, white matter, cerebrospinal fluid, cardiac pulsation,
and arterial and large vein related contributions were removed using ICA-
FIX!43, Registration from fMRI onto the T1-weighted data and subsequently
to the ICBM-MNI152 3 mm? standard space was performed. Data were
band-pass filtered to within 0.009 and 0.08 Hz, and we applied spatial
smoothing with a full width at half maximum of 5 mm. Processed fMRI data
were mapped to the cortical surface with a cortical ribbon-constrained
volume-to-surface mapping algorithm.

Low dimensional functional manifold identification. We generated functional
connectomes by computing linear correlations of the time series between two
different brain regions, using the Schaefer 7-network based atlas with 200 parcels®.
Correlation coefficients underwent Fisher’s r-to-z transformations to render data
more normally distributed®?. Cortex-wide functional manifolds (i.e., the principal
eigenvectors explaining spatial shifts in the functional connectome) were estimated
using BrainSpace (https://github.com/MICA-MNI/BrainSpace)®’. A template
manifold was estimated from the group average functional connectome (Fig. 1a).
An affinity matrix, capturing the similarity of connections among different brain
regions, was constructed using a normalized angle kernel with a connection density
of 10%. We generated the connectome manifolds (Fig. 1b) using diffusion map
embedding®, a robust and computationally efficient non-linear technique!47-148, Tt
is controlled by two parameters a and t, where a controls the influence of the
density of sampling points on the manifold (¢ =0, maximal influence; & = 1, no
influence) and t scales eigenvalues of the diffusion operator. As in prior
applications3®444%67, we set a = 0.5 and t = 0 to retain the global relations between
data points in the embedded space. In this new manifold, interconnected brain
regions are closely located, and the regions with weak inter-connectivity are located
farther apart. Individual-level manifolds were estimated and aligned to the template
manifold via Procrustes alignment®7-70,

Macroscale connectome associated with body mass index. We performed
multivariate association analysis between BMI and the first three eigenvectors,
which explained approximately 50% in connectome information, with the model
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controlling for age and sex. We utilized SurfStat (http://www.math.mcgill.ca/keith/
surfstat/) to fit linear models to multivariate data (of the form number of subjects x
number of brain regions x number of eigenvectors) as follows:

Y =b0 + bl - Age + b2 - Sex + b3 - BMI (1)

The inference was based on Hotelling’s t-test in each parcel, and multiple
comparisons were corrected for using the FDR procedure’!. Our work focused on
BMI. Although BMI measure may be limited in assessing the distribution of body
fat, it is widely adopted for indexing obesity in the clinics and for exploring obesity-
related associations to large-scale brain network organization”-313-2:34,104,105,122,
We summarized multivariate statistics within established resting-state functional
communities’? and with respect to levels of cortical hierarchy and laminar
differentiation (Fig. 1c)%¢. The latter model, initially formulated in non-human
primates, has recently been extended to humans based on in vivo functional
connectome analysis as well as the mapping of microstructural gradients from post-
mortem histology and myelin-sensitive 3T MRI>*0. Refinements of these models
are to be expected by ongoing developments in high and ultra-high field scanning,
which will offer higher resolution approximations of depth-specific cortical
microstructure!49-152,

We furthermore simplified the multivariate manifolds into a single scalar,
manifold eccentricity, by calculating the Euclidean distance between the center of
template manifold and all data points (i.e., brain regions) in the manifold space for
each individual (Supplementary Fig. 1a)*773, Manifold eccentricity has previously
been related to clustering and path length, underscoring its capacity to index
network segregation and integration!%0, We linearly correlated BMI and manifold
eccentricity in regions identified by the multivariate analysis, controlling for age
and sex (Supplementary Fig. 1b). Significance was assessed using 5,000
permutation tests. A null distribution was constructed and the real correlation
strength was deemed significant if it did not belong to the 95% of the distribution
(two-tailed p < 0.05). To assess how the modular architecture changes according to
connectome manifolds, we calculated linear correlations between manifold
eccentricity and modular measures of within-module degree and participation
coefficient’47" in the regions identified by the multivariate analysis (Supplementary
Fig. 2). Modules were defined using established intrinsic functional communities’?,
a Louvain community detection algorithm”%, and a schema of cortical hierarchy*°.
Within-module degree is the degree centrality within a module, indicating the
intra-modular connections, while participation coefficient represents inter-modular
connections’47. In other words, high within-module degree represents that a
given node has the property of being a hub node within a given module. In
contrast, high participation coefficient indicates the node has edges distributed
equally to other modules. The significance of the associations between manifold
eccentricity and modular measures were assessed using 5000 permutation tests by
randomly shuffling subjects. Multiple comparisons across different modular
parameters were corrected using FDR”!.

Associations to brain structure. To assess morphological and microstructural
associations (Fig. 2a), we first correlated BMI with MRI-based measures of cortical
morphology, i.e., cortical thickness and cortical folding, and in vivo proxies of
intracortical microstructure, i.e., the ratio of the T1-weighted and T2-weighted
imaging contrast in voxels between the white and pial surfaces*48182, with con-
trolling for age and sex (Fig. 2b). We repeated the association analysis between BMI
and manifold changes, after controlling for these regional structural indices

(Fig. 2¢). Multiple comparisons were corrected for using FDR”L.

Transcriptomic association analysis. Transcriptomic association analysis
explored co-varying neuromolecular properties of our functional connectome
manifold findings (Fig. 3)°%%9-61.83.84 Specifically, we correlated the t-statistical
map of manifold changes associated with BMI with post-mortem gene expression
maps from the AIBS using the Neurovault gene decoding tool3384. Neurovault
implements mixed-effect analysis to estimate associations between the input t-
statistic map and the genes of AIBS donor brains yielding the gene symbols
associated with the input t-statistic map. To validate whether the gene symbols
passing FDR < 0.05 were derived by chance or not, we repeated the correlation
analysis using 100 randomly rotated cortical maps of the multivariate association
analysis®®. We, thus, constructed a null distribution of spatial correlations between
the expression patterns of the identified gene list and randomly rotated maps. The
actual correlation t-statistic was placed into this null distribution to assess sig-
nificance, and findings were again FDR-corrected’!. Selected gene symbols were
further tested whether they are consistently expressed across donors using abagen
(https://github.com/rmarkello/abagen)>>84153, For each gene, we estimated the
whole-brain expression map for each donor, and correlated maps between all pairs
of donors. It should be noted that in four of six donors, the right hemisphere gene
expression was obtained from mirroring left hemisphere gene expression. Genes
showing consistent a whole-brain expression pattern across donors (FDR < 0.05)
were compared with genes extracted from genome-wide association studies using
Enrichr (https://amp.pharm.mssm.edu/Enrichr/)**%!. Then we fed the consistent
genes into the cell-type-specific expression analysis (http://genetics.wustl.edu/jdlab/
csea-tool-2/) to identify candidate cell populations likely to be associated with input
gene lists®0. Significances were assessed using a z-score modification of Fisher’s
exact test and FDR correction.

Sensitivity and reproducibility analyses.

(a) Head motion. To assess the effects of head motion on connectome
manifolds, we repeated the multivariate association analysis while control-
ling for age and sex, as well as head motion. The latter was calculated from
the frame-wise displacement during the rs-fMRI scan (Supplementary
Fig. 3a).

(b)  Fluid intelligence, sleep quality, and blood pressure. BMI has been related to
fluid intelligence! 191, sleep quality®>“3, and blood pressure®%>. To assess
the relationship between BMI and these factors, we obtained fluid
intelligence score from the Penn Progressive Matrices!>* and quality of
sleep from the Pittsburgh Sleep Quality Index!'>>-157, as well as systolic and
diastolic blood pressure measures. We repeated multivariate analyses to
associate connectome manifolds and BMI with controlling for age and sex,
as well as each of these factors (Supplementary Fig. 3b-d).

(c) Multivariate association with weight. We performed multivariate analyses to
associate connectome manifolds with weight after controlling for age, sex,
and height to cross-validate our main findings (Supplementary Fig. 4a).

(d) Group comparison. We compared connectome manifolds spanned by E1-E3
between individuals with healthy weight (18.5 <BMI < 25) to those being
overweight (BMI = 25), controlling for age and sex, to assess whether the
findings from multivariate association to BMI are similar to those from
multivariate group comparison (Supplementary Fig. 4b). Six underweight
(BMI < 18.5) individuals were excluded.

(e) Spatial scale. To evaluate the impact of spatial scale, we repeated our
analyses across different scales of the Schaefer atlas (i.e., 100, 300, or 400
regions) (Supplementary Fig. 5)%.

(f) Matrix thresholding. We repeated manifold estimation using functional
connectomes with different levels of density from 5 to 20% with an interval
of 5% (Supplementary Fig. 6).

(g) Reproducibility in HCP validation dataset. We performed the same analyses
using the validation dataset obtained from the S1200 release of the HCP to
replicate our findings (1 = 74) (Supplementary Fig. 7a-c).

(h)  Reproducibility in HCP dataset with bootstraps. We performed the same
analyses using the dataset combined HCP S900 with S1200 release (n =
399). We randomly selected 300 subjects and associated the estimated
eigenvectors with BMI, with controlling for age and sex. We repeated this
procedure 1,000 times to avoid subject selection bias. For each iteration, we
also performed the association analysis using the remained 99 subjects to
assess robustness (Supplementary Fig. 7d, e).

(i) Reproducibility in another dataset. We replicated our findings using the
independent SVH dataset (n = 36) (Supplementary Fig. 8).

(j) Association between BMI and graph-theoretical measures. To compare the
sensitivity of manifold learning techniques to conventional approaches, we
calculated graph-theoretical measures of betweenness, eigenvector, and
degree centrality and assessed associations with BMI7>7:98, Betweenness
centrality is the number of weighted shortest paths between any
combinations of nodes that run through that node, eigenvector centrality
measures the influence of a node in the whole network, and degree centrality
is the sum of edge weights connected to a given node. We associated BMI
with these graph measures while controlling for age and sex.

Statistics and reproducibility. We associated connectome manifolds and BMI
using multivariate linear regression models while controlling for age and sex. We
calculated Hotelling’s t-statistics and the significance was corrected for multiple
comparisons across the brain regions using FDR”!. The association between BMI
and manifold eccentricity, controlling for age and sex, was assessed using 5000
permutation tests by randomly shuffling subjects, and significance was determined
based on two-tailed p < 0.05. We assessed the association between manifold
eccentricity and modular parameters based on 5000 permutation tests followed by
FDR’!. The morphological associations to BMI were assessed using linear corre-
lations, after controlling for age and sex. These findings were also corrected for
multiple comparisons based on FDR”!. Transcriptomic associations between t-
statistics of manifold changes and maps of gene expressions were performed using
mixed-effect analysis, where the significance was determined by 100 spin tests
followed by FDR”1:8>. The significance of the cell-type specific expression analysis
was assessed using a z-score modification of Fisher’s exact test and FDR correction.
The reproducibility was assessed in the HCP §1200 dataset through 1000 boot-
straps that randomly selected 300 subjects from the initial 399 participants, as well
as using an independent SVH dataset (n = 36).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The imaging and phenotypic data were provided, in part, by the Human Connectome
Project, WU-Minn Consortium (https://www.humanconnectome.org/) and they are
available after approval. Data from St. Vincent’s Hospital are not publicly available due to
IRB restrictions. The subsets of data from these databases that were used in the present
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work are available from the authors upon request. Source data are provided with this
paper as Supplementary Data 2.

Code availability

The codes for data preprocessing are available at https://github.com/Washington-
University/ HCPpipelines and https:/gitlab.com/by9433/funp, for connectome manifold
generation are at https://github.com/MICA-MNI/BrainSpace, for manifold eccentric
calculation are at https://github.com/MICA-MNI/micaopen/tree/master/
manifold_features, and for graph measure calculation are at https://sites.google.com/site/
betnet. Transcriptomic association analyses were conducted using NeuroVault (https://
neurovault.org), cell-type-specific expression analysis (http://genetics.wustl.edu/jdlab/
csea-tool-2/)%0, and abagen tools (https://github.com/rmarkello/abagen)32:84153,
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