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Note1. Methods and parameters  

TDDFT simulations. The evolution of the spinor states and the evaluation of the time-

dependent Hubbard U and magnetization are computed by propagating the generalized 

Kohn–Sham equations within time-dependent density functional theory including 

mean-field interactions, as provided by the Octopus package [1-2], using the ACBN0 

functional together with the local density approximation (LDA) functional for 

describing the semi-local DFT part. We compute ab initio the Hubbard U and Hund’s J 

for the 4d orbitals of Ruthenium and 3p orbitals of Chlorine. In the time-dependent 

simulations, the laser is coupled to the electronic degrees of freedom via the standard 

minimal coupling prescription using a time-dependent, spatially-homogeneous vector 

potential A(t), with the electric field E(t) = −
1

𝑐

𝜕𝐴(𝑡)

𝜕𝑡
, where c is the velocity of light in 

vacuum. We consider a laser pulse of 12.7 fs duration at full-width half maximum with 

a sin-square envelope corresponding to a total width of 25.4 fs. In all our calculations, 

a carrier-envelope phase of ϕ = 0 is used.  

The experimental lattice parameters (i.e., 5.98 Å and 10.35 Å) and atomic positions 

are employed [3]. We employed a mixed periodic boundary condition with a vacuum 

region of 15 Å to ensure that interactions between periodic images were negligible. We 

employ norm-conserving HGH pseudopotentials, a real-space grid spacing of 0.33 

atomic units, and an 8 × 6 × 1 k-point grid in a 1×√3 supercell with a rhombus shape 

(containing 16 atoms for the zigzag AFM magnetic order). The inclusion of semi-core 

states of Ru and Cl elements are prominent to obtain accurate electronic structures; the 

valence electrons explicitly included are Ru: 4s2, 4p6, 4d7 and 5s1; Cl: 3s2 and 3p5. In 

all calculations, we include the spin-orbit coupling, which is vital to obtain the correct 

electronic and magnetic structures. In this work, we neglect the coupling to phonons 

and the contribution from thermal effects to the demagnetization. 

ACBN0 functional implementation. The time-dependent generalized Kohn-Sham 

equation (in atomic units) within the adiabatic approximation is simply expressed by 

𝑖
𝜕|𝜓𝑖

𝜎(𝑡)⟩

𝜕𝑡
= [

−𝛻2

2
+ 𝜈𝑒𝑥𝑡(𝑡) + 𝜈𝐻[𝑛(𝒓, 𝑡)] + 𝜈𝑥𝑐[𝑛(𝒓, 𝑡)] + 𝑉𝑈[𝑛(𝒓, 𝑡), {𝑛𝑚𝑚′

𝜎 }]] |𝜓𝑖
𝜎(𝑡)⟩. 

(1) 

where 𝜓𝑛,𝑘
𝜎 (𝑡) is a Bloch state with a band index n, at the point k in the Brillouin zone 

and with the spin index σ, 𝜈𝑒𝑥𝑡 is the external potential containing both the driving 

laser field and the ionic potential, 𝜈𝐻  is the Hartree potential, 𝜈𝑥𝑐  is the exchange-
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correlation potential, and 𝑉𝑈 is the plus U (nonlocal) operator. 

𝑉𝑈[𝑛(𝒓, 𝑡), {𝑛𝑚𝑚′
𝜎 }] = 𝑈𝑒𝑓𝑓 ∑ (

1

2
𝛿𝑚𝑚′ − 𝑛𝑚𝑚′

𝜎 )𝑃𝑚,𝑚′
𝜎

𝑚,𝑚′ . (2) 

Here 𝑃𝑚,𝑚′
𝜎 = |𝛿𝑚

𝜎 ⟩⟨𝛿𝑚′
𝜎 |  is the projector over the localized subspace defined by the 

localized orbitals {𝜙𝑚
𝜎 }, and 𝑛𝜎 is the density matrix of the localized subspace.The 

number of excited electrons (Nex) is calculated by projecting the time-evolved 

wavefunctions (|𝜓𝑛,𝑘(𝑡)⟩) on the basis of the ground-state wavefunctions (|𝜓𝑛′,𝑘
𝐺𝑆 ⟩). 

𝑵𝒆𝒙(𝒕) = 𝑵𝒆 −
𝟏

𝑵𝒌
∑ ∑ |⟨𝝍𝒏,𝒌(𝒕)|𝝍𝒏′,𝒌

𝑮𝑺 ⟩|
𝟐𝑩𝒁

𝒌
𝒐𝒄𝒄
𝒏,𝒏′ . (3)    

where Ne is the total number of electrons and Nk is number of k-points used to sample 

the Brillouin zone (BZ). The sum over band indices n and n’ go over all occupied states.  

This method has been recently extended to the real-time case, within the framework 

of time-dependent density-functional theory [4-5]. In practice, the ACBN0 functional 

is an efficient and computationally affordable method to simulate the optical response 

of correlated systems driven out of equilibrium without relying on perturbation theory. 

The method has been proven to yield accurate electronic bandgaps, effective U, and 

other electronic properties of the charge-transfer insulators and magnetic insulators in 

pyrochlore iridates [6-7].  

In our simulations, the SOC comes from the pseudopotentials and is therefore fixed 

during the entire simulation. Concerning the magnetic interactions and correlations, 

they depend directly on the Hubbard U terms, which change in the simulations. The 

magnetic interactions go as t^2/U, where t is the kinetic energy. The kinetic energy of 

the electrons will increase with the laser pulse, and hence t will increase. Hubbard U is 

found to decrease in the meantime. So, we expect the values of parameters increase 

during the laser excitation. 

Bader charge analysis. The calculations were performed within the Vienna Ab initio 

Simulation Package (VASP) [8-9] using a projector-augmented wave (PAW) 

pseudopotential in conjunction with the Perdue–Burke–Ernzerhof (PBE) functionals 

and plane-wave basis set with energy cutoff at 400 eV [10]. For Bader analysis [11], 

the surface Brillouin zone was sampled by 8×6×1 Monkhorst–Pack k-meshes. All 

structures were fully relaxed until the force on each atom was less than 0.01 eV Å−1. 

We checked and reproduced the band structures with Hubbard correction on both Ru 

and Cl orbitals in α-RuCl3, yielding a quantitatively consistent Mott gap of 1.02 eV 

using VASP. 
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Figure S1. Projected band structures of α-RuCl3. Projected band structures of α-

RuCl3, with ACBN0 functional on both Ru (red dots on the left) and Cl elements (blue 

dots on right). The dashed blue lines (0 eV) indicate the valence band maximum of each 

panel. 

From Figure S1, we find that the states at the top of the valence results from a 

hybridization of Ru and Cl orbitals. The states at both the conduction bands and valence 

bands exhibit nonnegligible Cl-character, validating that both the on-site Coulomb 

potentials on Ru 4d and Cl 3p orbitals are crucial to obtain accurate electronic properties. 
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Figure S2. Band structure of α-RuCl3 with different magnetic orders. (a) Band 

dispersions for in-plane zigzag antiferromagnet order. (b) Band dispersions for 

modulated zigzag antiferromagnet order where the magnetic moments are oriented 

±35 from the ab plane. In panel a-b, spin-orbital coupling (SOC) and Hubbard 

corrections for both the Ru and Cl orbitals are included. (c) Electronic structures of 

RuCl3 without SOC and non-magnetic state. The effective Hubbard U values are 

respectively 2.16 eV and 5.42 eV for Ru 4d and Cl 3p orbitals after full self-consistency 

based on ACBN0 functional. The dashed blue lines (0 eV) indicate the valence band 

maximum of each panel. 

Our simulations on α-RuCl3 with the modulated out-of-plane magnetic orders are 

presented in Figure 2, where the magnetic orders are artificially fixed as the starting 

parameters. We observe that α-RuCl3 with the modulated zigzag state exhibits a slightly 

smaller bandgap of 1.0 eV. The comparison indicates magnetic states are crucial to 

determine the electronic structures of the system. If the SOC is neglected, the band 

structure is significantly affected. Moreover, without SOC, no demagnetization would 

occur. 
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Figure S3. Snapshots of magnetic moments of α-RuCl3 under laser excitation at 

different photon energies. (a) Time-dependent magnetic moments for the laser pulse 

with the photon energy of ħꞷ=1.25×bandgap at 0, 6.5, 12.5, 18.5 and 25 fs, respectively. 

(b) The same quantities as (a) for the photon energy corresponding to the ground-state 

bandgap of α-RuCl3. (c) The same quantities as (a) for the photon energy corresponding 

to half of the bandgap. The laser intensity is I0=2.5×1012 W/cm2 and the polarization is 

perpendicular to the magnetic moments. For clarity, the snapshots for 

ħꞷ=0.75×bandgap are not shown here considering they are quite similar to those for 

ħꞷ=0.5×bandgap. 

To have a clear view, Figure S3 shows snapshots of magnetic moments at different 

times during laser illumination. As illustrated in Figure 3a, the residual moments for 

ħꞷ=1.25×bandgap are still non-negligible at 25 fs, leading to a disordered magnetic 

structure with apparent rotations. In contrast, the magnetic moments reduce to a 

negligible value in 20 fs for ħꞷ=0.5×bandgap. We should note that laser pulses with 

different polarizations can break different mirror planes, bringing about different spin 

sublattices for the dynamics. For the perpendicular polarization, laser excitation breaks 

the mirror plane vertical to the magnetic moments and we observe two distinct 

sublattices. 
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Figure S4. Magnetic moment dynamics for a laser with a duration of 50 fs. The 

photon energy corresponds to the ħꞷ=0.5×Egap. The laser intensity is I0=2.5×1012 

W/cm2 and the polarization is perpendicular to the magnetic moments. 

For the simulation, we observe similar demagnetization for the laser pulse with the 

durations of 25 fs and 50 fs. 
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Figure S5. Laser-driven dynamics of effective Hubbard U of Ru and Cl orbitals. 

(a) Dynamics of Ueff for the Ru 3d orbitals for the photon energies displayed in Figure 

2b. (b) The same quantities as shown in (a) for the Cl 2p orbitals. The laser pulses are 

in perpendicular polarization. 

 In Figure S5, we monitored the effective Hubbard U of Ru and Cl orbitals. It is 

obvious that the laser decreases the effective U for Ru 4d orbital to 1.50 eV for 

ħꞷ=0.5×Egap. The modification is obviously faster with regard to ħꞷ=1.25×Egap, in 

which the residual effective U is 1.39 eV. 
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Figure S6. Charge redistribution for α-RuCl3 in lase-induced dynamics. (a) Atomic 

structure and corresponding orders of the 4 atoms in primitive cell of α-RuCl3. (b) The 

spatial charge distribution (in-plane cut) after photoexcitation with a parallel laser pulse. 

(c) The spatial charge distribution after photoexcitation with a perpendicular laser pulse. 

The photon energy corresponds to the ħꞷ=0.5×Egap and the laser intensity is 

I0=2.5×1012 W/cm2. 

 From Figure S6, the laser pulses with different polarizations are capable of 

breaking the different symmetries of α-RuCl3, bringing about different spin sublattices 

in the dynamics. For the perpendicular polarization, laser excitation breaks the mirror 

plane vertical to the magnetic moments and we observe two distinct sublattices for 

demagnetization of Ru orbitals.  
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Figure S7. Time-dependent band structures under laser excitation. Time-dependent 

band structures for the laser with the photon energy of ħꞷ=1.25× Egap of α-RuCl3 at 0, 

7.2, 10.8, 14.5, 18.1 and 25.4 fs after photoexcitation, respectively. We use I0=2.5×1012 

W/cm2 and the polarization is perpendicular to the magnetic moments as an example. 

As time goes, the value of Mott gap melts completely in 15 fs. 

Figure S7 exhibits the full trajectory and corresponding bandgaps. We find the 

bandgap drops strikingly to 0.24 eV before the spin subsystem responds significantly 

(in 10 fs). After that, the bandgap melts completely when the laser pulse reaches the 

peak at about 15 fs, revealing that the band renormalization can take place without any 

structural distortions in α-RuCl3. 
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Figure S8. Time-dependent band structures with various photon energies. Band 

structure of α-RuCl3 after photoexcitation, for various photon energy at 25 fs after 

photoexcitation, respectively. We use I0=2.5×1012 W/cm2 and the polarization is 

perpendicular to the magnetic moments. In all the cases, we observed (not shown here), 

that the Mott gap melts completely in less 20 fs. 

The ultrafast insulator-to-metal transition is robust for various photon energies at 

the laser with strong intensity. As for other photon energies, the ultrafast band 

renormalization takes place within 15 fs. This explains the smaller modulation of 

magnetic moments. Our results validate the bandgap of α-RuCl3 can be easily 

modulated by optical excitation. 
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Figure S9. Laser-induced spin dynamics staring from a modulated zigzag 

magnetic order in α-RuCl3. (a) Atomic and magnetic structures of α-RuCl3 with the 

modulated zigzag antiferromagnet order where the magnetic moments are oriented 

±35 from the ab plane. (b) Dynamics of magnetic moment of four Ru atoms for laser 

pulses with parallel polarization and ħꞷ= 0.5× and 1.0×Egap, respectively. (c) Transient 

band structure of α-RuCl3 after photoexcitation at 25.4 fs after photoexcitation, 

respectively. Here, we use I0=0.5×1012 W/cm2 and the polarization is perpendicular to 

the magnetic moments.  

To validate the physical picture, we performed additional simulations from the 

modulated zigzag antiferromagnet order to track the magnetic dynamics and transient 

band structures. It is obvious that the laser-induced magnetic and electronic dynamics 

are similar for the two possible magnetic states (in-plane zigzag and modulated zigzag). 

Therefore, we obtain a robust picture of ultrafast photoinduced insulator-to-metal 

transition in α-RuCl3. 
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