
Tutorial Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A 1007

TMM-Fast, a transfer matrix computation package
for multilayer thin-film optimization: tutorial
Alexander Luce,1,2,* Ali Mahdavi,2 Florian Marquardt,1,3 AND Heribert Wankerl2,4

1Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
2OsramOpto-Semiconductors, Regensburg, Germany
3Max Planck Institute for the Science of Light, Erlangen, Germany
4Universität Regensburg, Regensburg, Germany
*Corresponding author: alexander.luce@ams-osram.com

Received 12 January 2022; revised 14 March 2022; accepted 11 April 2022; posted 15 April 2022; published 11 May 2022

Achieving the desired optical response from a multilayer thin-film structure over a broad range of wavelengths
and angles of incidence can be challenging. An advanced thin-film structure can consist of multiple materials
with different thicknesses and numerous layers. Design and optimization of complex thin-film structures with
multiple variables is a computationally heavy problem that is still under active research. To enable fast and easy
experimentation with new optimization techniques, we propose the Python package Transfer Matrix Method - Fast
(TMM-Fast), which enables parallelized computation of reflection and transmission of light at different angles of
incidence and wavelengths through the multilayer thin film. By decreasing computational time, generating datasets
for machine learning becomes feasible, and evolutionary optimization can be used effectively. Additionally, the
subpackage TMM-Torch allows us to directly compute analytical gradients for local optimization by using PyTorch
Autograd functionality. Finally, an OpenAI Gym environment is presented, which allows the user to train new
reinforcement learning agents on the problem of finding multilayer thin-film configurations. © 2022 Optica

PublishingGroup

https://doi.org/10.1364/JOSAA.450928

1. INTRODUCTION

Although the existence of a globally optimal multilayer thin
film has been proven [1–3], the optimization of multilayer thin
films concerning reflectivity and transmittivity over wavelength,
incidence angles, and many other targets such as phase con-
trol remains an interesting field for the scientific community
[4–6]. Since the commercial and scientific applications for
fine tuned thin films are vast, many dedicated and specialized
programs have been developed [7–11] that exploit special-
ized optimization procedures for thin films, such as the needle
method [12–15] or the Fourier method [13,16], which can
optimize thin films without the intervention of the user. In
the recent past, numerous global optimization techniques
have been introduced to the field of thin-film optimization
[17–21] including various methods based on reinforcement
learning [22,23] and machine learning [24,25]. Especially more
complicated thin-film target functions that include scattering
and phase control push traditional optimization algorithms to
its limits. Researchers are, therefore, investigating new tech-
niques including machine learning and deep search to tackle
new and complicated problems [26,27]. Naturally, the need
for a standardized, encompassing environment arises to make
future research more comparable, consistent, and simple. Here,
we propose a comprehensive Python package that provides

functionality to researchers to simulate and handle multilayer
thin films to test and compare new experimental optimization
methods. By relying only on open-source Python packages,
automation and interoperability with any software that pro-
vides a Python interface can be easily achieved. At its core, the
proposed Transfer Matrix Method - Fast (TMM-Fast) package
is a parallelized and re-implemented revision of the existing
TMM code that was initially published by Byrnes [28]. It
implements the Abèles TMM [29] in Python to calculate the
optical response to an incident plane wave through a slab of
layered thin-film materials with different thicknesses. Given
a broad, discretized spectrum of light irradiating a thin film
under particular incident angles, the optical properties must
be calculated for each contributing wavelength at each angle
of incident, e.g., the coefficients of transmission and reflection
for a specific wavelength and angle of incidence depend on the
thicknesses and dispersive and dissipative refractive index of
the layers. Those coefficients can deviate significantly at wave-
lengths that differ only slightly for the same multilayer thin film.
An intuitive approach to increase the computational speed of
the response of a multilayer thin film is to parallelize the pairwise
independent computations regarding wavelengths and angles.
The parallelization is implemented via matrix operations based
on the open-source numeric algebra package NumPy [30] and

1084-7529/22/061007-07 Journal © 2022Optica PublishingGroup

https://orcid.org/0000-0003-4566-1753
mailto:alexander.luce@ams-osram.com
https://doi.org/10.1364/JOSAA.450928
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAA.450928&domain=pdf&date_stamp=2022-05-10

1008 Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A Tutorial

Fig. 1. Schematic overview of the contents of the TMM-Fast package. The package consists of three subdivisions: Part (a) encompasses the core
functionality of computing reflectivity and transmissivity of a thin film. Part (b) encompasses an OpenAI Gym environment for reinforcement learn-
ing on the task of designing multilayer thin film. Finally, part (c) encompasses a PyTorch implementation of the transfer matrix method to be able to
automatically compute gradients and allow for backpropagation through the computation.

the thread-management package Dask. The parallelization was
shown to reduce the computational time by∼100× compared
to the original implementation and reaches computational
speeds in the same order as state-of-the-art software. By using
Dask, the computation of many thin films can be accelerated
with an additional factor on the order of available CPU cores.
Additionally, by using PyTorch Autograd [31], analytical gra-
dients for any specified thin-film parameter can be computed
for local optimizations. Since the implementation is done via
PyTorch methods, it can be integrated into advanced neural net-
works and can be GPU accelerated if necessary. Moreover, the
parallelized TMM-Fast code is used to implement an OpenAI
Gym environment [32] that can be used by physicists and
reinforcement learning researchers. In the environment, the
optimization of multilayer thin films is introduced as a sequence
generation process and is, thus, considered as a parameterized
Markov decision process [33], shown in Section 7. An overview
of the scope of the package is shown in Fig. 1. All code is available
on GitHub under MIT license [34].

2. OVERVIEW OVER THE CONTENTS

The package is organized in three subpackages: Fig. 1(a) con-
tains the core functionality of the TMM package, computing
the optical response of a multilayer thin film quickly via the
TMM over a broad range of wavelengths and incident angles.
Another part of the core functionality of solving multilayer thin
films is the possibility to generate huge datasets with>1e5 data
samples for machine learning models.

Figure 1(b) encompasses an OpenAI Gym environment,
which allows easy comparisons of different reinforcement learn-
ing agents. Here, the environment state is given by the total
layer number, layer thicknesses, and material choice. The agent
takes an action that specifies the material and thickness of the
layer to stack next. The environment implements the multilayer
thin-film generation as consecutive conduction of actions and
assigns a reward to a proposed multilayer thin film based on
how close the actual (solid orange line) fulfils a desired (dashed
orange line) characteristic—in this case, a one-dimensional
optical characteristic, e.g., reflectivity over wavelength for
perpendicular incidence. The experience accumulated by the
taken actions of the agent is used to adapt subsequent actions
in order to increase the reward and, thus, generate more and
more sophisticated multilayer thin films. An investigation of a
reinforcement learning agent that was trained with the proposed
Gym Environment is given by Wankerl et al . [23].

Figure 1(c) encompasses an implementation of the TMM via
PyTorch functions, which allow for backpropagation through
the entire computation. This enables easy differentiation of
the parameters of interest and allows gradient-based and quasi-
Newton optimization methods to be used for optimization of
multilayer thin films. In the example shown, a random thin
film is optimized with respect to the given optimization target,
weighted by the mean squared error. Gradients via autograd are
used with the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [35]. The iterative evolution of the layer thicknesses
and the correspondingly decreasing figure of merit are shown
below. For the given initial values, the optimization converged
in about 25 iteration steps.

Tutorial Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A 1009

3. PHYSICAL BACKGROUND OF THE
TRANSFER MATRIX METHOD

Light of a particular wavelength passing from one into another
material experiences a sudden change of the refractive index n1

to n2 that results in reflection and transmission of the incoming
wave. A light wave with a wave vector k that is not parallel to
the surface normal experiences refraction. The ratio of angle
of incidence θ1 and angle of refraction θ2 is given by Snell’s
law sin θ1

sin θ2
=

n2
n1

. Given the Fresnel equations, reflection and
transmission coefficients r and t can be computed, where a
distinction is made between s and p polarization by using a
subscript,

ts =
2n1 cos θ1

n1 cos θ1 +
µr 1
µr 2

n2 cos θ2
,

r s =
n1 cos θ1 −

µr 1
µr 2

n2 cos θ2

n1 cos θ1 +
µr 1
µr 2

n2 cos θ2
, (1)

tp =
2n1 cos θ1

µr 1
µr 2

n2 cos θ1 + n1 cos θ2
,

r p =

µr 1
µr 2

n2 cos θ1 − n1 cos θ2

µr 1
µr 2

n2 cos θ1 + n1 cos θ2
, (2)

with µr being the respective magnetic permeability. Note that,
for θ1 = 0◦, i.e., vertical incidence, r s = r p and ts = tp . Based on
the reflection and transmission coefficients, the reflectivity and
transmittivity R and T can be computed as shown in Eq. (3):

Rλ,θ1 = r 2
i , Tλ,θ1 =

n2 cos θ2

n1 cos θ1
t2
i , (3)

where the subscript i indicates the polarization. Note that, for
absorptionless materials, T + R = 1 holds.

Now, consider a multilayer thin film with L ∈N layers when
the individual layers are denoted by l ≤ L . The light enters from
an injection layer of semi-infinite thickness l = 0 with a relative
amplitude of 1 and exits the multilayer thin film in the outcou-
pling layer of semi-infinite thickness with l = L + 1. From the
outcoupling layer, no light enters the thin film. The transmitted
part of the light in layer l that travels in “forward” direction,
i.e., toward the layer with l = lcurrent+1, is denoted by vl , and the
reflected part that travels in “backward” direction is given bywl .
By using the reflection and transmission coefficients r and t , the
response of any layer can be written as(

vl

wl

)
=

(
e−iδl 0

0 e iδl

)(
1 r l ,l+1

r l ,l+1 1

)
1

tl ,l+1

(
vl+1

wl+1

)

=Ml

(
vl+1

wl+1

)
,

(4)

where δ = dl kz is the accumulated phase of the light wave when
traveling through a layer with a specific thickness dl and with
wave vector kl .

Eventually, the total characteristic matrix of the multilayer
thin film is given by

M̃ =
L−1∏
i=0

Mi . (5)

Finally, to compute the reflection and transmission of the entire
multilayer thin film, one needs to evaluate(

1
r

)
= M̃

(
t
0

)
. (6)

The transmission and reflection coefficients are separated,

rλ,ϑ =
M̃10

M̃00

, tλ,ϑ =
1

M̃00

, (7)

and allow us to compute the reflectivity and transmittivity via
Eq. (3). Note that one can easily calculate the partial transmis-
sion and reflection coefficients by only multiplying Eq. (5) up
to L − l . The initial angle of incidence in the first layer is given
byϑ .

4. IMPLEMENTATION IN NUMPY

The key contribution to the core functionality of the TMM
package is the parallelized handling of the characteristic matrix
that reduces computational time. The matrix Ml consists of
three separate matrices: matrix A, which encompasses the accu-
mulated phase, and the two matrices holding the coefficients
of reflection and transmission, respectively. They are of shape
[Nλ, Nϑ , L, 2, 2], where Nλ and Nθ represent the number
of wavelengths and incident angles, respectively. To get the
characteristic matrix Ml , NumPy’s einsum method allows us to
specify multiplication and contractions of different dimensions
easily:

1 M_l=np.zeros((num_lambda,num_angles,
num_layers,2,2),dtype=complex)

2 F=r_list[:,1:]
3 M_l[:,:,1:-1,0,0]=np.einsum(’hji,ji->

jhi’,1/A,1/t_list[:,1:])
4 M_l[:,:,1:-1,0,1]=np.einsum(’hji,ji->

jhi’,1/A,F/t_list[:,1:])
5 M_l[:,:,1:-1,1,0]=np.einsum(’hji,ji->

jhi’,A,F/t_list[:,1:])
6 M_l[:,:,1:-1,1,1]=np.einsum(’hji,ji->

jhi’,A,1/t_list[:,1:])
7 Mtilde=np.empty((num_angles,num_lambda,

2,2),dtype=complex)
8 Mtilde[:,:]=make_2x2_array(1,0,0,1,

dtype=complex)
9 foriinrange(1,num_layers-1):
10 Mtilde=np.einsum(’ijkl,ijlm->ijkm’,

Mtilde,M_l[:,:,i])

Finally, M̃ is computed by multiplying out the thickness
dimensions.

The entire function is called coh_tmm_fast or by
coh_tmm_fast_disp. Both methods differ since the former
assumes dispersionless materials whereas the latter accepts
dispersive materials. An example is give in Appendix A.1.

1010 Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A Tutorial

5. CORE FUNCTIONALITY SPEEDUP AND
DATASET GENERATION

To verify the speedup that the TMM-Fast package provides
through parallelization compared to the native implementation
of Byrnes, 10 multilayer thin films are generated with 21 layers
and are evaluated in a spectral range from 400 to 700 nm at 300
equally spaced points. The angles of incidence range from 0◦ to
90◦ based on 40 equally spaced supporting points. The original
TMM method requires a computation time of 17.5± 0.2 s for
the evaluation while our proposed method computes the coef-
ficients of the multilayer thin film in 0.266± 0.003 s, which
corresponds to an acceleration of ∼100×. Additionally, to
compare the TMM package, the same evaluation was performed
by the stackrt function from Lumerical [36], which performed
the task in 0.155± 0.003 s. The commercial software has an
edge over the NumPy implementation, which is expected since
it relies on compiled code for the computation.

Finally, the Python package Dask manages parallel threads of
the CPU to distribute the computation of different independent
computations on all available CPU cores. The application is
straightforward: by calling the coh_tmm_fast function implicitly
inside the delayed() function of Dask, a list of all necessary com-
putations is created. Then, the entire list is executed implicitly
to create a computational graph for Dask, which is required
to orchestrate the parallel threads efficiently. Lastly, the com-
pute() method triggers the actual computation, and the result
is returned. By running coh_tmm_fast on all available threads,
an additional speedup of the dataset creation on the order of the
number of available CPU cores is possible. However, the ben-
efit might decrease for very large computational clusters with
many cores since the management of the parallel threads creates
computational overhang. By calling multithread_coh_tmm from
the TMM-Fast package, the computation is easily started. A
dataset with 1 million samples of 9-layer multilayer thin films
at 100 wavelengths and 10 angles of incidence can be created
in approximately 40 min on an 8-core machine. Computing
more layers, wavelengths points, and angles can increase the
computational time significantly. An example is shown in
Appendix A.2.

6. TMM-TORCH: MULTILAYER THIN-FILM
GRADIENTS VIA AUTOGRAD

For optimization, computing gradients enable gradient-based
optimization algorithms such as gradient descent [35]. These
gradient-based optimization methods generally converge to
local minima with fewer iterations than other non-gradient-
based algorithms such as the Nelder–Mead downhill simplex
algorithm [37]. The optimization procedure is shown in
pseudocode in Algorithm 1. The Python package PyTorch
implements matrix multiplication methods, which allow
parameters to be automatically differentiated (Autograd) via the
chain rule [31]. Autograd enables the user to compute the gra-
dients of the input parameters without the necessity of deriving
the gradient analytically and can be dynamically adapted to the
problem. By using the TMM-Torch subpackage of TMM-Fast,
the gradients for a multilayer thin film can be readily computed.
An example is shown in Appendix A.3. The application of
the transfer matrix takes slightly longer by using the PyTorch

Algorithm 1. Pseudocode for the optimization of a
thin film with the TMM-Torch subpackage

1: Initialize thin-film parameters
2: while loss> tolerance do
3: compute optical response Ex via tmm-torch(parameters)
4: computeL(Ex)
5: compute gradients w.r.t. the parameters via backpropagation
6: Optimizer(parameters, loss, gradients)→ update parameters
7: end while
8: return parameters

routines. Therefore, using the regular TMM-Fast algorithms is
still advised to reduce computational time if gradients are not
necessary.

The user needs to specify the loss function L : Ex 7→ l , where
Ex denotes the optical properties of interest of the thin film. L
measures the performance of the thin film such that the require-
ments are fulfilled if l = 0. Note that L must be differentiable
and implemented by using PyTorch functionality to allow
backpropagation. Additionally, the user must specify an existing
or custom Optimizer, for example, gradient descent, which
updates the thin-film parameters according to the gradient.

7. ENVIRONMENT FOR REINFORCEMENT
LEARNING

Reinforcement learning [38] is an area of machine learning
concerned with how intelligent agents ought to take actions
in an environment in order to maximize a notion of reward.
The proposed code implements such an environment, where
agents can stack, characterize, and optimize multilayer thin
films. Therefore, the generation of multilayer thin films is
considered as a parameterized Markov decision processes [33]
and is, thereby, implemented as a sequence generation process:
Beginning from l = 1, an agent subsequently executes param-
eterized actions al = (dl ,ml) that specify the thickness dl and
material index ml of the l th layer. These actions determine
which material of which thickness to stack next, thereby con-
secutively forming a multilayer thin film as illustrated in Fig. 1.
The stacked l layers and the optical characteristics of these inter-
mediate multilayer thin films are provided to the agent as the
environmental state s . Given this state, the agent takes the next
action al+1 until the predefined maximum number of layers is
reached or the agent decides to terminate stacking. The optical
characteristic of the final proposed multilayer thin film of L lay-
ers, e.g., regarding reflectivity Rλ,ϑ (I, d) over wavelength λ and
angle ϑ of incidence, is computed via the proposed TMM-Fast
method. Here, I ∈CL×Nλ refers to the matrix of (dispersive and
dissipative) refractive indices of the material of each layer. Each
material is identified by the material identifier index ml . d ∈RL

denotes the vector of layer thicknesses. When the agent starts
to stack a thin film, d and I are initialized with zeros and get
filled according to the taken actions with the layer thicknesses
and (dispersive) refractive indices, respectively. The observed
reflectivity is compared to a user-defined, desired reflectivity
R target
λ,ϑ , in order to derive a notion of numeric reward, e.g., an

inverted reconstruction error,

−

∑
λ,ϑ

|R target
λ,ϑ − Rλ,ϑ

(
I, d

)
|.

Tutorial Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A 1011

Based on this reward, the agent learns—for example, based on
Q-learning [22,39]—to distinguish between good and bad
actions and, thus, derive an optimal thin-film design.

Whereas the contained physical methods are well-studied
and known for decades, the contribution of the code lies in the
implementation of an OpenAI Gym-related environment.
Here, the intention is to enable machine-learning researchers
without optical expertise to solve the corresponding parameter-
ized Markov decision processes based on common code in the
future.

8. CONCLUSION

In this tutorial, the comprehensive Python package TMM-
Fast for multilayer thin-film computation, optimization, and
reinforcement learning is presented. At its core, the package
comprises revised and speedup TMM code from the original
TMM package [28]. TMM-Fast enables the user to compute
multilayer thin films with NumPy and PyTorch methods and
gives full control over the data to the user to enable automation
and interoperability. Since the TMM-Fast package evaluates
multilayer thin films especially fast, it can be used to generate
datasets for machine learning. The reduced computational
time also enables evolutionary optimization to be executed in a
reasonable amount of time. The TMM-Torch implementation
allows the user to compute analytical gradients via automatic
differentiation. Quasi-Newton or gradient-based optimiza-
tion algorithms such as gradient descent can then be used and
converge faster to local minima by using an analytical gradient.
Finally, an OpenAi Gym environment is proposed, which allows
researchers to easily test and experiment with new reinforcement
agents on solving the multilayer thin-film problem. All code
proposed in this paper is open-source and available on GitHub
under the MIT license [34].

APPENDIX A

A.1. TMM-Fast Example

To demonstrate the functionality, a minimal example is given
for a multilayer thin film with random thicknesses and refractive
indices.

1 importtmm_fastastmmf
2 L=12#numberoflayers
3 d=np.random.uniform(20,150,L)*1e-9#

thicknessesofthelayers
4 d[0]=d[-1]=np.inf#setfirstandlastlayer

asinjectionlayer
5 n=np.random.uniform(1.2,5,L)#random

constantrefractiveindex
6 n[-1]=1#outcouplingintoair
7 wl=np.linspace(500,900,301)*1e-9
8 theta=np.deg2rad(np.linspace(0,90,301))
9 #heresandppolarizationiscomputedand

averagedtosimulateincoherentlight
10 result=(tmmf.coh_tmm_fast(’s’,n,d,theta,

wl)[’R’]+tmmf.coh_tmm_fast(’p’,n,d,
theta,wl)[’R’])/2

The result of the computation can then be further evaluated.
By using the plot_stacks function from the TMM-Fast package,
the multilayer thin film can be visualized. An example is shown
in Fig. 2.

A.2. Dataset Generation

A dataset containing tens of thousands of datasamples can be
created by using the multithread_coh_tmm function. The exter-
nal package tqdm is used to display a progress bar in order to keep
track of the generation progress. In this example, a dataset with
1e6 thin films at 100 wavelengths should be created for vertical
incidence.

1 importnumpyasnp
2 importtqdm
3 n_samples=1e6
4 n_lambda=100
5 n_layers=12
6 wl=np.linspace(1000,1700,n_lambda)*1e-9#

wavelengths
7 theta=np.array([0])#verticalincidence
8 stack_layers=np.random.uniform(5,180,

(n_samples,n_layers))*1e-9
9 stack_layers[:,0]=stack_layers[:,-1]=

np.inf#injectionandoutcouplinglayer
10 optical_index=np.array([2.5]+[2.0,1.4]*5

+[1.])
11 optical_index=np.tile(optical_index,

(n_samples,1))
12 n=10000#thedatasetiscomputedinstepsof

1e5
13 dataset=np.empty((n_samples,n_lambda))
14 foriintqdm.tqdm(np.array(range
(n_samples))[::n]):
15 tmm_res=np.empty((n,n_lambda))
16 tmm_res=multithread_coh_tmm(’s’,

optical_index[i:i+n],stack_layers[i:i+n],
theta,wl,TorR=’R’).squeeze()

17 dataset[i:i+n]=tmm_res

Now the dataset can be saved, for example, by using .hdf or
NumPy’s .npz format.

A.3. TMM-Torch Example

Here, an example of how to compute gradients via automatic
differentiation with the TMM-Torch package is shown.

1 importtorch
2 importtmm_fast_torchastmmt
3 n_layers=12#numberoflayers
4 stack_layers=np.random.uniform(20,150,

n_layers)*1e-9#thicknessesofthelayers
5 stack_layers[0]=stack_layers[-1]=np.inf

#setfirstandlastlayerasinjectionlayer

(Table continued)

1012 Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A Tutorial

Fig. 2. Multilayer thin film with random layer thicknesses and refractive index under unpolarized illumination. In this example, the materials are
dispersionless and dissipationless. The injection region, which is below the thin film in this depiction, possesses a refractive index of n = 2. The out-
coupling region above the thin film possesses a refractive index of n = 1. The reflectivity is computed over a wavelength range of 500–900 nm and
from 0◦ to 90◦ on a 300× 300 grid.

6 optical_index=np.random.uniform(1.2,5,
n_layers)#randomconstantrefractiveindex

7 optical_index[-1]=1#outcouplingintoair
8 stack_layers=torch.tensor(stack_layers,

requires_grad=True)
9 wl=np.linspace(500,900,301)*1e-9
10 theta=np.deg2rad(np.linspace(0,90,301))
11 result=tmmt.coh_tmm_fast(’s’,optical_

index,stack_layers,theta,wl)[’R’]
12 mse=torch.nn.MSELoss()
13 error=mse(result,

torch.zeros_like(result)
14 error.backward()
15 gradients=stack_layers.grad

Since the error is computed with respect to zero reflectivity
for all wavelengths at all incidences, the gradient points toward
the steepest descent for a broadband anti-reflection coating. By
using the minimize function from the Python package SciPy
and a gradient-based optimization algorithm, for example,
“L-BFGS-B” [40], a local optimum is easily found.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data and code underlying the results presented in this
paper are publically available at [34].

REFERENCES
1. A. V. Tikhonravov and J. A. Dobrowolski, “Quasi-optimal synthesis

for antireflection coatings: a new method,” Appl. Opt. 32, 4265–4275
(1993).

2. A. V. Tikhonravov, “Some theoretical aspects of thin-film optics and
their applications,” Appl. Opt. 32, 5417–5426 (1993).

3. M. Ebrahimi and M. Ghasemi, “Design and optimization of thin film
polarizer at the wavelength of 1540 nm using differential evolution
algorithm,” Opt. Quantum Electron. 50, 1 (2018).

4. S. W. Anzengruber, E. Klann, R. Ramlau, and D. Tonova, “Numerical
methods for the design of gradient-index optical coatings,” Appl.
Opt. 51, 8277–8295 (2012).

5. H. Becker, D. Tonova, M. Sundermann, H. Ehlers, S. Günster, and D.
Ristau, “Design and realization of advanced multi-index systems,”
Appl. Opt. 53, A88–A95 (2014).

6. H. M. Liddell and H. G. Jerrard, Computer-Aided Techniques for the
Design of Multilayer Filters (A. Hilger, 1981).

7. “OptiLayer,” OptiLayer GmbH, https://www.optilayer.com/products-
and-services/optilayer.

8. “Thin Film Center,” Thin Film Center Inc, https://www.
thinfilmcenter.com/essential.php.

9. “RP coating,” RP Photonics AG, https://www.rp-photonics.
com/coating.html.

10. “TFCalc,” Software Spectra, Inc, http://www.sspectra.com/support/
index.html.

11. “Film wizard,” Scientific Computing International, https://sci-
soft.com/product/film-wizard/.

12. B. T. Sullivan and J. A. Dobrowolski, “Implementation of a numeri-
cal needle method for thin-film design,” Appl. Opt. 35, 5484–5492
(1996).

13. S. Larouche and L. Martinu, “OpenFilters: open-source software for
the design, optimization, and synthesis of optical filters,” Appl. Opt.
47, C219–C230 (2008).

14. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coat-
ing design approaches based on the needle optimization technique,”
Appl. Opt. 46, 704–710 (2007).

15. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a
new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332
(2012).

16. J. A. Dobrowolski and D. Lowe, “Optical thin film synthesis program
based on the use of fourier transforms,” Appl. Opt. 17, 3039–3050
(1978).

17. C. P. Chang, Y. H. Lee, and S. Y.Wu, “Optimization of a thin-filmmulti-
layer design by use of the generalized simulated-annealing method,”
Opt. Lett. 15, 595–597 (1990).

18. W. Paszkowicz, “Genetic algorithms, a nature-inspired tool: a survey
of applications in materials science and related fields: Part II,” Mater.
Manuf. Processes 28, 708–725 (2013).

19. C. Yang, L. Hong, W. Shen, Y. Zhang, X. Liu, and H. Zhen, “Design of
reflective color filters with high angular tolerance by particle swarm
optimizationmethod,” Opt. Express 21, 9315–9323 (2013).

https://doi.org/10.1364/AO.32.004265
https://doi.org/10.1364/AO.32.005417
https://doi.org/10.1007/s11082-017-1266-2
https://doi.org/10.1364/AO.51.008277
https://doi.org/10.1364/AO.51.008277
https://doi.org/10.1364/AO.53.000A88
https://www.optilayer.com/products-and-services/optilayer
https://www.optilayer.com/products-and-services/optilayer
https://www.thinfilmcenter.com/essential.php
https://www.thinfilmcenter.com/essential.php
https://www.rp-photonics.com/coating.html
https://www.rp-photonics.com/coating.html
http://www.sspectra.com/support/index.html
http://www.sspectra.com/support/index.html
https://sci-soft.com/product/film-wizard/
https://sci-soft.com/product/film-wizard/
https://doi.org/10.1364/AO.35.005484
https://doi.org/10.1364/AO.47.00C219
https://doi.org/10.1364/AO.46.000704
https://doi.org/10.1364/AO.51.007319
https://doi.org/10.1364/AO.17.003039
https://doi.org/10.1364/OL.15.000595
https://doi.org/10.1080/10426914.2012.746707
https://doi.org/10.1080/10426914.2012.746707
https://doi.org/10.1364/OE.21.009315

Tutorial Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A 1013

20. X. Guo, H. Y. Zhou, S. Guo, X. X. Luan, W. K. Cui, Y. F. Ma, and L. Shi,
“Design of broadband omnidirectional antireflection coatings using
ant colony algorithm,” Opt. Express 22, A1137–A1144 (2014).

21. S. Martin, J. Rivory, and M. Schoenauer, “Synthesis of optical multi-
layer systems using genetic algorithms,” Appl. Opt. 34, 2247–2254
(1995).

22. A. Jiang, Y. Osamu, and L. Chen, “Multilayer optical thin film design
with deep Q learning,” Sci. Rep. 10, 12780 (2020).

23. H. Wankerl, M. L. Stern, A. Mahdavi, C. Eichler, and E. W.
Lang, “Parameterized reinforcement learning for optical system
optimization,” J. Phys. D 54, 305104 (2021).

24. R. S. Hedge, “Accelerating optics design optimizations with deep
learning,” Opt. Eng. 58, 065103 (2019).

25. J. Roberts and E. W. Wang, “Modeling and optimization of thin-
film optical devices using a variational autoencoder,” Tech. Rep.
(Stanford University, 2018).

26. M. Trubetskov, “Deep search methods for multilayer coating design,”
Appl. Opt. 59, A75–A82 (2020).

27. M. Fouchier, M. Zerrad, M. Lequime, and C. Amra, “Design of multi-
layer optical thin-films based on light scattering properties and using
deep neural networks,” Opt. Express 29, 32627–32638 (2021).

28. S. J. Byrnes, “Multilayer optical calculations,” arXiv:1603.02720
(2019).

29. F. Abelès, “La théorie générale des couches minces,” J. Phys.
Radium 11, 307–309 (1950).

30. C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array program-
ming with NumPy,” Nature 585, 357–362 (2020).

31. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.
Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in PyTorch,” in 31st Conference on Neural Information Processing
Systems (2017).

32. “Gym,” OpenAI, https://gym.openai.com/.
33. W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learn-

ing with parameterized actions,” in Proceedings of the 30th AAAI
Conference on Artificial Intelligence (2016), pp. 1934–1940.

34. A. Luce and H. Wankerl, “TMM-Fast,” GitHub (2021) https://
github.com/MLResearchAtOSRAM/tmm_fast.

35. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE 86, 2278–2324
(1998).

36. “Lumerical,” Ansys Canada Ltd., https://www.lumerical.com/
products/stack/.

37. J. Nelder and R.Mead, “A simplexmethod for functionminimization,”
Comput. J. 7, 308–313 (1965).

38. R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning
(MIT, 1998).

39. C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. thesis
(King’s College, 1989).

40. “minimize(method=‘L-BFGS-B’),” SciPy, https://docs.scipy.org/
doc/scipy/reference/optimize.minimize-bfgs.html.

https://doi.org/10.1364/OE.22.0A1137
https://doi.org/10.1364/AO.34.002247
https://doi.org/10.1038/s41598-020-69754-w
https://doi.org/10.1088/1361-6463/abfddb
https://doi.org/10.1117/1.OE.58.6.065103
https://doi.org/10.1364/AO.59.000A75
https://doi.org/10.1364/OE.437789
https://doi.org/10.1051/jphysrad:01950001107030700
https://doi.org/10.1051/jphysrad:01950001107030700
https://doi.org/10.1038/s41586-020-2649-2
https://gym.openai.com/
https://github.com/MLResearchAtOSRAM/tmm_fast
https://github.com/MLResearchAtOSRAM/tmm_fast
https://doi.org/10.1109/5.726791
https://www.lumerical.com/products/stack/
https://www.lumerical.com/products/stack/
https://doi.org/10.1093/comjnl/7.4.308
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

