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Abstract

We prove continuity and Harnack’s inequality for bounded solutions to the equation

div
(

|∇u|p(x)−2∇u
)

= 0, p(x) = p+ L
log log 1

|x−x0|

log 1
|x−x0|

, L > 0,

under the precise non-logarithmic condition on the function p(x).

Keywords: p(x)-Laplace equation, non-logarithmic conditions, continuity of solutions,

Harnack’s inequality.

MSC (2010): 35B09, 35B40, 35B45, 35B65.

1 Introduction and main results

Let Ω be a bounded domain in R
n, n > 2. In this paper we are concerned with elliptic equations

of the type

divA(x,∇u) = 0, x ∈ Ω. (1.1)

We suppose that the functions A : Ω×R
n → R

n are such that A(·, ξ) are Lebesgue measurable

for all ξ ∈ R
n, and A(x, ·) are continuous for almost all x ∈ Ω. We assume also that the

following structure conditions are satisfied

A(x, ξ) ξ > K1 |ξ|
p(x),

|A(x, ξ)| 6 K2 |ξ|
p(x)−1,

(1.2)

where K1, K2 are positive constants, p(x) = p+ p(|x− x0|), p(|x− x0|) = L
log log 1

|x−x0|

log 1
|x−x0|

and

L > 0.

The aim of this paper is to establish basic qualitative properties such as continuity of

bounded solutions and Harnack’s inequality for non-negative bounded solutions to equation

(1.1).

Before formulating the main results, we say few words concerning the history of the problem.

The study of regularity of minima of functionals with non-standard growth has been initiated

by Zhikov [55–58, 60], Marcellini [36, 37], and Lieberman [35], and in the last thirty years, the

1
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qualitative theory of second order elliptic and parabolic equations with so-called ”logarithmic”

condition, i.e. if

osc
Br(x0)

p(x) 6
L

log 1
r

, 0 < r < 1, 0 < L <∞, (1.3)

has been actively developed (see e.g. [1–3, 5, 6, 9–16, 20–22, 25–30, 39, 46–48, 50] for references).

Equations of this type and systems of such equations arise in various problems of mathematical

physics (see e.g. the monographs [8, 25,40,51] and references therein).

The case when condition (1.3) is replaced by the condition

osc
Br(x0)

p(x) 6
µ(r)

log 1
r

, lim
r→0

µ(r) = ∞, lim
r→0

µ(r)

log 1
r

= 0, (1.4)

differs substantially from the logarithmic case. It turns out that such non-logarithmic condition

is a precise condition for the smoothness of finite functions in the corresponding Sobolev space

W 1,p(x)(Ω). Thus this case is extremely interesting to study. But to our knowledge there are only

few results in this direction. Zhikov [59] obtained a generalization of the logarithmic condition

which guaranteed the density of smooth functions in Sobolev space W 1,p(x)(Ω). Particularly,

this result holds if 1 < p 6 p(x) and

osc
Br(x0)

p(x) 6 L
log log 1

r

log 1
r

, 0 < L 6
p

n
. (1.5)

Later Zhikov and Pastukhova [61] proved higher integrability of the gradient of solutions to

the p(x)-Laplace equation under the same condition. Interior continuity, continuity up to the

boundary and Harnack’s inequality to the p(x)-Laplace equation were proved in [4], [7] and [49]

under condition (1.4) and

ˆ

0

exp
(

− γ exp(µc(r))
)dr

r
= +∞, (1.6)

with some numbers γ, c > 1. For example, the function µ(r) = L log log log
1

r
stisfies conditions

(1.4), (1.6), provided that L is a sufficiently small positive number.

These results were generalized in [41,47] for a wide class of elliptic and parabolic equations

with non-logarithmic Orlicz growth. Particularly, it was proved in [47] that under conditions

(1.4), (1.6) functions from the correspondent DeGiorgi’s B1(Ω) classes are continuous and more-

over, it was shown that the solutions of the correspondent elliptic and parabolic equations with

non-standard growth belong to these classes.

The exponential condition of the type (1.6) was substantially refined in [24]. Particularly,

the continuity of solutions to double-phase and degenerate double-phase elliptic equations

div

(

|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)

= 0, q > p,

and

div

(

|∇u|p−2∇u
(

1 + log(1 + b(x)|∇u|)
)

)

= 0
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was proved under the conditions

osc
Br(x0)

a(x) 6 Aµ(r)q−p rq−p, osc
Br(x0)

b(x) 6 Bµ(r) r,

ˆ

0

dr

µ(r)
= +∞.

Note that the function µ(r) = log
1

r
satisfies the above conditions. In the present paper the

continuity and the Harnack’s type inequality have been proved under the conditions similar to

(1.5).

Before formulating the main results, let us recall the definition of a bounded weak solu-

tion to equation (1.1). We introduce W (Ω) as a class of functions u ∈ W 1,1(Ω), such that
´

Ω

|∇u|p(x) dx < +∞, and W0(Ω) =W (Ω) ∩W 1,1
0 (Ω).

Definition 1.1. We say that a function u ∈ W (Ω) ∩ L∞(Ω) is a bounded weak sub(super)-

solution to equation (1.1) if
ˆ

Ω
A(x,∇u)∇ϕdx 6 (>) 0, (1.7)

holds for all non-negative test functions ϕ ∈W0(Ω).

The following Theorem is the first main result of this paper.

Theorem 1.1. Let u be a bounded weak solution of equation (1.1) and let conditions (1.2),

(1.3) be fulfilled, then u is Hölder continuous at point x0.

The next result is a weak Harnack type inequality for non-negative super-solutions.

Theorem 1.2. Let u be a bounded non-negative weak super-solution to equation (1.1), let

conditions (1.2), (1.3) be fulfilled. Assume also that

(

A(x, ξ)−A(x, η)
)

(ξ − η) > 0, ξ, η ∈ R
n, ξ 6= η, (1.8)

then there exist numbers γ, γ̄ > 0 depending only on n, p,K1,K2 and M = sup
Ω
u, such that for

any θ ∈ (0, p − 1) there holds

(

|Bρ(x0)|
−1

ˆ

Bρ(x0)

uθ dx

)
1
θ

6

(

γ

p− 1− θ

)
1
θ
(

min
B ρ

2
(x0)

u+ ρ
)

, (1.9)

provided that B16ρ(x0) ⊂ Ω and

1

log log
1

16ρ

+ γ̄ L

log log
1

16ρ

log
1

16ρ

6 1. (1.10)

The following Theorem is Harnack’s inequality

Theorem 1.3. Let u be a bounded non-negative weak sub-solution to equation (1.1), let condi-

tions (1.2), (1.3) be fulfilled. Then there exist positive numbers γ, γ̄1 depending only on n, p,K1,

K2,M such that for any θ ∈ (0, p − 1)

max
B ρ

2 (x0)

u 6 γ

(

|Bρ(x0)|
−1

ˆ

Bρ(x0)

uθ dx

)
1
θ

+ γ ρ, (1.11)
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provided that B16ρ(x0) ⊂ Ω and

1

log log
1

16ρ

+ γ̄1 L

log log
1

16ρ

log
1

16ρ

6 1. (1.12)

Particularly, if u is a bounded non-negative weak solution to equation (1.1), then

max
B ρ

2 (x0)

u 6 γ ( min
B ρ

2
(x0)

u+ ρ), (1.13)

provided that B16ρ(x0) ⊂ Ω and

1

log log
1

16ρ

+max(γ̄, γ̄1)L

log log
1

16ρ

log
1

16ρ

6 1, (1.14)

where γ̄ > 0 is the constant defined in Theorem 1.2.

In the present paper, we substantially refine the results of [4, 7, 41, 46, 47, 49]. We would

like to mention the approach taken in this paper. To prove the interior continuity we use

DeGiorgi’s approach. Let us consider the standard DeGiorgi’s class DGp(·)(Ω) of functions u

which corresponds to equation (1.1) :

ˆ

Br(x0)

|∇(u− k)±|
p(x) ζq dx 6 γ

ˆ

Br(x0)

(

u− k

rσ

)p(x)

±

dx, k ∈ R
1, σ ∈ (0, 1), (1.15)

B16r(x0) ⊂ Ω and ζ(x) is the correspondent cut-off function for the ball B16r(x0). Using the

Young inequality, by conditions (1.4) we have

ˆ

Br(x0)

|∇(u− k)±|
p− ζq dx 6 γ σ−γ µ(r)

ˆ

Br(x0)

(

u− k

r

)p−

±

dx+

+ γ
∣

∣Br(x0) ∩ {(u− k)± > 0}
∣

∣, p− := min
Br(x0)

p(x).

This estimate leads us to condition (1.6) (see, e.g. [46, 47]). It is easy to see that condition

(1.6) fails for the function µ(r) = L log log 1
r . To avoid this, using the Young inequality and our

choice of p(x) we rewrite inequality (1.15) as

ˆ

Br(x0)

(

M±(k, r)

r

)p(|x−x0|)

|∇(u− k)±|
p ζq dx 6

6 γ σ−γ

(

M±(k, r)

r

)p ˆ

Br(x0)∩{(u−k)±>0}

(

M±(k, r)

r

)p(|x−x0|)

dx, M±(k, r) := sup
Br(x0

(u−k)±.

(1.16)

It appears that the weight

(

M±(k, r)

r

)p(|x−x0|)

satisfies the Muckenhoupt type properties. In

Section 2 we define the correspondent weighted De Giorgi’s classes by inequalities (1.16) and

prove the Hölder continuity at point x0 for the functions which belong to these classes.
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The main difficulty arising in the proof of the Harnack type inequalities is related to the

so-called theorem on the expansion of positivity. Roughly speaking, having information on the

measure of the ”positivity set” of u over the ball Br(x) ⊂ Bρ(x0):

|{x ∈ Br(x) : u(x) > m}| > α(r) |Br(x)|, α(r) = γ−1 exp(−µβ(r)),

with some r > 0, m > 0 and γ > 1, and using the standard DeGiorgi’s or Moser’s arguments,

we inevitably arrive at the estimate

u(x) > γ−1 exp
(

− γ exp(µc(r))
)

, x ∈ B2r(x),

with some γ, c > 1. This estimate leads us to condition (1.6) (see, e.g. [41, 47]). Note that we

can not use the classical approach of Krylov and Safonov [31], DiBenedetto and Trudinger [19],

as it was done in [9] under the logarithmic conditions. We also can not use the local clustering

lemma of DiBenedetto, Gianazza and Vespri [17] (see also [18, 50] ). Difficulties arise not only

due to the constant α(r) which depends on r, but also when an additional term, that couldn’t

be estimated, occurs during the process of iteration from Br(x̄) to Bρ(x0). To overcome it, we

use a workaround that goes back to Mazya [38] and Landis [33,34] papers.

We will demonstrate our approach on the p-Laplacian. Fix x0 ∈ Ω and let 0 < r < ρ,

E ⊂ Br(x0) ⊂ Bρ(x0), B16ρ(x0) ⊂ Ω and consider solution v := v(x,m) of the following

problem:

div
(

|∇v|p−2∇v
)

= 0, x ∈ D := B16ρ(x0) \ E, (1.17)

v −mψ ∈W 1,p
0 (D), (1.18)

where m > 0 is some fixed number, and ψ ∈W 1,p
0 (B16ρ(x0)), ψ = 1 on E.

By the well-known estimate (see e.g. [23]) we have

min
B4ρ(x0)\B2ρ(x0)

v > γ−1m

(

Cp(E)

ρn−p

)
1

p−1

,

where Cp(E) is a capacity of the set E. By the Poincare inequality from the previous we obtain

min
B4ρ(x0)\B2ρ(x0)

v > γ−1m

(

|E|

ρn

)
1

p−1

, (1.19)

Let u be a non-negative bounded super-solution to the p-Laplace equation in Ω and construct

the set

E(ρ,m) := Bρ(x0) ∩ {u > m}, 0 < m < sup
Ω
u.

Consider also a solution v of the problem (1.17), (1.18) with E replaced by E(ρ,m). Then since

u > v on ∂D, by the maximal principle and by (1.19) we obtain

m(2ρ) := min
B2ρ(x0)

u > γ−1m

(

|E(ρ,m)|

ρn

)
1

p−1

,
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which by standard arguments yields for any θ ∈ (0, p − 1)

|Bρ(x0)|
−1

ˆ

Bρ(x0)

uθ dx = |Bρ(x0)|
−1 θ

∞̂

0

E(ρ,m)mθ−1 dm 6 mθ(2ρ)+

+ γmp−1(2ρ)

∞̂

m(2ρ)

mθ−p dm 6
γ

p− 1− θ
mθ(2ρ),

from which the weak Harnack type inequality follows.

In Sections 3, 4 we adapt this simple idea to the case of p(x)-Laplacian with non-logarithmic

growth. The weight

(

M(ρ1)

ρ1

)p(|x−x0|)

, M(ρ1) := sup
B16ρ(x0)\Bρ1 (x0)

v, ρ < ρ1 < 16ρ

which naturally arises in the proof of Theorem 1.2 also satisfies the Muckenhoupt type condi-

tions.

Remark 1.1. It was unexpected for authors that the modulus of continuity and the constants

in the Harnack type inequalities do not depend on the additional term log log
1

r
(usually, there

is a dependency, see e.g. [7, 24,47,49]).

The rest of the paper contains the proof of the above theorems.

2 Elliptic DG classes, proof of Theorem 1.1

In this Section we define the following De Giorgi’s classes.

Definition 2.1. We say that a measurable function u : BR(x0) → R belongs to the elliptic

class DG(BR(x0)) if u ∈W 1,p(BR(x0))∩L
∞(BR(x0)), ess sup

BR(x0)
|u| 6M and there exists numbers

1 < p < q, c1 > 0 such that for any ball B8r(x0) ⊂ BR(x0), any k ∈ R, |k| < M , any σ ∈ (0, 1),

for any ζ ∈ C∞
0 (Br(x0)), 0 6 ζ 6 1, ζ = 1 in Br(1−σ)(x0), |∇ζ| 6 (σr)−1, the following

inequalities hold:

ˆ

A±

k,r

(

M±(u, k, r)

r

)p(|x−x0|)

|∇u|p ζ q dx 6

6 c1 σ
−q

(

M±(u, k, r)

r

)p ˆ

A±

k,r

(

M±(u, k, r)

r

)p(|x−x0|)

dx, (2.1)

here (u−k)± := max{±(u−k), 0}, A±
k,r := Br(x0)∩{(u−k)± > 0},M±(u, k, r) := sup

Br(x0)
(u−k)±

and p(|x− x0|) := L
log log 1

|x−x0|

log 1
|x−x0|

, L > 0.
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We refer to the parameters c1, n, p, q and M as our structural data, and we write γ if it can

be quantitatively determined a priory in terms of the above quantities. The generic constant γ

may change from line to line.

Our main result of this Section reads as follows:

Theorem 2.1. Let u ∈ DG(BR(x0)), then u is Hölder continuous at x0.

We note that the solutions of equation (1.1) belong to the correspondingDG(BR(x0)) classes,

provided that B2R(x0) ⊂ Ω. We test identity (1.7) by ϕ = (u−k)±ζ
q(x), by the Young inequality

we obtain

ˆ

A±

k,r

|∇u|p(x) dx 6 γ

ˆ

A±

k,r

(

u− k

σ r

)p(x)

±

dx 6 γσ−γ

(

M±(u, k, r)

r

)p ˆ

A±

k,r

(

M±(u, k, r)

r

)p(|x−x0|)

dx.

From this, using again the Young inequality

ˆ

A±

k,r

(

M±(u, k, r)

r

)p(|x−x0|)

|∇u|p ζ q dx 6

ˆ

A±

k,r

|∇u|p(x) dx+

ˆ

A±

k,r

(

M±(u, k, r)

r

)p(x)

dx,

from which the required (2.1) follows.

2.1 Auxiliary Propositions

For k ∈ R and 0 < r < R set w±(x, u, k, r) :=

(

M±(u, k, r)

r

)p(|x−x0|)

, further we need the

following lemmas

Lemma 2.1. There exists C > 0 depending only on the data, such that for any u ∈ DG(BR(x0))

and for any t > 0 the following inequalities hold

r−n

ˆ

Br(x0)

w±(x, u, k, r) dx

(

r−n

ˆ

Br(x0)

w−t
± (x, u, k, r) dx

)
1
t

6 γ1+
1
t , (2.2)

(

r−n

ˆ

Br(x0)

w1+t
± (x, u, k, r) dx

)
1

1+t

6 γ
1

1+t
+1 r−n

ˆ

Br(x0)

w±(x, u, k, r) dx, (2.3)

provided that
1

log log 1
r

+ t C L
log log 1

r

log 1
r

6 1, and r 6M±(u, k, r) 6 1. (2.4)

Proof. To prove inequalities (2.2), (2.3) we just need to check

γ−1

(

M±(u, k, r)

r

)−tp(r)

6 r−n

ˆ

Br(x0)

w−t
± (x, u, k, r) dx 6 γ

(

M±(u, k, r)

r

)−tp(r)

, t > 0, (2.5)

γ−1

(

M±(u, k, r)

r

)tp(r)

6 r−n

ˆ

Br(x0)

wt
±(x, u, k, r) dx 6 γ

(

M±(u, k, r)

r

)tp(r)

, t > 0. (2.6)
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The left inequality in (2.5) and the right inequality in (2.6) are obvious due to the fact that

p(|x−x0|) is increasing if x ∈ Br(x0) and r is sufficiently small. Let us check the right inequality

in (2.5). Integrating by parts, using the fact that
log log 1

s

log2 1
s

is increasing on the interval (0, r),

we obtain

ˆ

Br(x0)

w−t
± (x, u, k, r) dx = γ

r
ˆ

0

(

M±(u, k, r)

r

)−tp(s)

sn−1 ds 6 γrn
(

M±(u, k, r)

r

)−tp(r)

+

+ γtL log
M±(u, k, r)

r

r
ˆ

0

(

M±(u, k, r)

r

)−tp(s) log log 1
s

log2 1
s

sn−1 ds 6

6 γrn
(

M±(u, k, r)

r

)−tp(r)

+ γ tL log
M±(u, k, r)

r

log log 1
r

log2 1
r

r
ˆ

0

(

M±(u, k, r)

r

)−tp(s)

sn−1 ds 6

6 γrn
(

M±(u, k, r)

r

)−tp(r)

+
1

2

ˆ

Br(x0)

w−t
± (x, u, k, r) dx,

provided that γ tL
log log 1

r

log 1
r

6
1

2
, r 6 M±(u, k, r) 6 1, from which the required inequality

follows.

Similarly,

ˆ

Br(x0)

wt
±(x, u, k, r) dx > γrn

(

M±(u, k, r)

r

)tp(r)

−

− γtL log
M±(u, k, r)

r

r
ˆ

0

(

M±(u, k, r)

r

)tp(s) log log 1
s

log2 1
s

sn−1 ds >

> γrn
(

M±(u, k, r)

r

)tp(r)(

1− γtL
log log 1

r

log 1
r

)

,

from which the left inequality in (2.6) follows, provided that γ tL
log log 1

r

log 1
r

6
1

2
,

r 6M±(u, k, r) 6 1, which completes the proof of the lemma.

In the sequel we also need the following lemma

Lemma 2.2. There exist C1 > 0, κ1 > 1 such that for any u ∈ DG(BR(x0)) and any

ϕ ∈W0(Br(x0)) the following inequality holds

1

w±
u,k,r(Br(x0))

ˆ

Br(x0)

w±(x, u, k, r)|ϕ|
κ1p dx 6

6 γ

(

rp
1

w±
u,k,r(Br(x0))

ˆ

Br(x0)

w±(x, u, k, r)|∇ϕ|
p dx

)κ1

, (2.7)

provided that
1

log log 1
r

+ C1 L
log log 1

r

log 1
r

6 1, and r 6M±(u, k, r) 6 1. (2.8)
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Here

w±
u,k,r(F ) :=

ˆ

F

w±(x, u, k, r) dx, F ⊂ R
n.

Proof. Inequality (2.7) is a consequence of (2.5), (2.6) and Sobolev embedding theorem. Indeed,

using the Hölder inequality, if 0 < δ <
p

p+ n
and 1 < κ1 <

n(1− δ)

n− p(1− δ)
, we obtain with

t =
n(1− δ)

n(1− δ) − κ1(n− p(1− δ))
> 1

ˆ

Br(x0)

w±(x, u, k, r)|ϕ|
κ1p dx 6

(
ˆ

Br(x0)

wt
±(x, u, k, r) dx

)
1
t
(
ˆ

Br(x0)

|ϕ|
np(1−δ)
n−p(1−δ) dx

)κ1
n−p(1−δ)
n(1−δ)

6

6 γ

(
ˆ

Br(x0)

wt
±(x, u, k, r) dx

)
1
t
(
ˆ

Br(x0)

|∇ϕ|p(1−δ) dx

)

κ1
1−δ

6

6 γ

(
ˆ

Br(x0)

wt
±(x, u, k, r) dx

)
1
t
(
ˆ

Br(x0)

w
− 1−δ

δ
± (x, u, k, r) dx

)

κ1δ
1−δ

(
ˆ

Br(x0)

w±(x, u, k, r)|∇ϕ|
p dx

)κ1

6 γrpκ1

(
ˆ

Br(x0)

w±(x, u, k, r) dx

)1−κ1
(
ˆ

Br(x0)

w±(x, u, k, r)|∇ϕ|
p dx

)κ1

.

Choosing C1 = t C, we arrive at the required (2.7), which completes the proof of the lemma.

2.2 De Giorgi Type Lemma

Let B8r(x0) ⊂ BR(x0) and let µ+r > ess sup
Br(x0)

u, µ−r 6 ess inf
Br(x0)

u, ωr := µ+r − µ−r .

Lemma 2.3. Let u ∈ DG(BR(x0)) and fix ξ ∈ (0,
1

2M
). Then there exists ν ∈ (0, 1) depending

only on n, p, q, c1 and M , such that if

w+
u,µ+

r −ξωr,r

(

Br(x0) : u > µ+r − ξωr

)

6 ν w+
u,µ+

r −ξωr,r
(Br(x0)), (2.9)

then either

ξ ωr 6 4 r, (2.10)

or

u(x) 6 µ+r −
ξ

4
ωr for a.a. x ∈ B r

2
(x0), (2.11)

provided that
1

log log 1
r

+ C1 L
log log 1

r

log 1
r

6 1, (2.12)

where C1 is the constant defined in Lemma 2.2.

Likewise, if

w−
u,µ−

r +ξωr,r

(

Br(x0) : u 6 µ−r + ξωr

)

6 ν w−
u,µ−

r +ξωr,r
(Br(x0)), (2.13)
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then either (2.10) holds, or

u(x) > µ−r +
ξ

4
ωr for a.a. x ∈ B r

2
(x0), (2.14)

provided that (2.12) is valid.

Proof. We provide the proof of (2.11), while the proof of (2.14) is completely similar. For

j = 0, 1, 2, . . . we set rj :=
r

2
(1 + 2−j), kj := µ+r −

ξ

2
ωr − ξ ωr2

−j−1, let ζj(x) ∈ C∞
0 (Brj (x0)),

0 6 ζj(x) 6 1, ζj(x) = 1 for x ∈ Brj+1(x0) and set Aj := Brj (x0) ∩ {u > kj}. Further we will

assume that sup
B r

2
(x0)

(u − k∞)+ >
ξ

4
ωr, because otherwise inequality (2.11) is evident. We note

that

γ−1w+(x, u, kj , rj) 6 w+(x, u, µ
+
r − ξωr, r) 6 γw+(x, u, kj , rj), x ∈ Brj (x0).

If (2.10) is violated, then condition (2.8) holds due to (2.12) and the choice of ξ,

rj 6 sup
Brj

(u− kj)+ 6 1. So, by Lemma 2.2 and inequality (2.1) we have

(kj − kj+1)
p w+

u,µ+
r −ξωr,r

(Aj+1) 6 γ2jγ
ˆ

Brj (x0)

w+(x, u, kj , rj) (u− kj)
p
+ζ

q
j dx 6

6 γ2jγ
(
ˆ

Brj
(x0)

w+(x, u, kj , rj)
(

(u− kj)
p
+ζ

q
j

)κ1 dx

)
1
κ1 [

w+
u,µ+

r −ξωr,r
(Aj)

]1− 1
κ1 6

6 γ 2jγ
[

w+
u,µ+

r −ξωr,r
(Br(x0))

]
1
κ1

−1
rp

ˆ

Brj (x0)

w+(x, u, kj , rj)|∇
(

(u− kj)+ζ
q
j

)

|p dx×

×
[

w+
u,µ+

r −ξωr,r
(Aj)

]1− 1
κ1 6 γ 2jγ

(

ξωr

)p [
w+
u,µ+

r −ξωr,r
(Br(x0))

]
1
κ1

−1 [
w+
u,µ+

r −ξωr ,r
(Aj)

]2− 1
κ1 ,

which implies

yj+1 :=
w+
u,µ+

r −ξωr,r
(Aj+1)

w+
u,µ+

r −ξωr,r
(Br(x0))

6 γ2jγy
2− 1

κ1
j ,

from which by standard arguments (see e.g. [32]) the required (2.11) follows, provided that ν is

chosen to satisfy ν 6 γ−1. This completes the proof of the lemma.

2.3 Expansion of the Positivity

To prove our next result we need the following lemma.

Lemma 2.4. Let k < l, 0 < δ < 1− 1
p , u ∈ DG(BR(x0)), ϕ ∈W 1,p(1−δ)(Br(x0)), then

(l − k)
w+
u,l,r(A

+
l,r)

w+
u,l,r(Br(x0))

|A−
k,r|

|Br(x0)|
6 γr

1− n
p(1−δ)

(
ˆ

A+
k,r\A

+
l,r

|∇ϕ|p(1−δ) dx

)
1

p(1−δ)

, (2.15)

(l − k)
w−
u,k,r(A

−
k,r)

w−
u,k,r(Br(x0))

|A+
l,r|

|Br(x0)|
6 γr

1− n
p(1−δ)

(
ˆ

A−

l,r\A
−

k,r

|∇ϕ|p(1−δ) dx

)
1

p(1−δ)

, (2.16)
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provided that

1

log log 1
r

+
LC

p(1− δ) − 1

log log 1
r

log 1
r

6 1, and r 6M+(u, l, r),M−(u, k, r) 6 1, (2.17)

here C > 1 is the constant, defined in Lemma 2.1.

Proof. Let {v}r = |Br(x0)|
−1

´

Br(x0)

v dx. Using the Poincare inequality and inequality (2.3)

with t = 1
p(1−δ)−1 we get

ˆ

Br(x0)

w+(x, u, l, r)|v − {v}r| dx 6 γ

(
ˆ

Br(x0)

w
p(1−δ)

p(1−δ)−1

+ (x, u, l, r) dx

)1− 1
p(1−δ)

×

×

(
ˆ

Br(x0)

|v − {v}r|
p(1−δ) dx

)
1

p(1−δ)

6 γr
1− n

p(1−δ) w+
u,l,r(Br(x0))

(
ˆ

Br(x0)

|∇v|p(1−δ) dx

)
1

p(1−δ)

.

Take v = 0, if ϕ < k, v = ϕ − k, if k < ϕ < l, v = l − k, if ϕ > l. We evidently have

{v}r 6 (l − k)
|A+

k,r|

|Br(x0)|
, hence

ˆ

Br(x0)

w+(x, u, l, r)|v − {v}r| dx > (l − k)

(

1−
|A+

k,r|

|Br(x0)|

)
ˆ

A+
l,r

w+(x, u, l, r) dx,

from which the required inequality (2.15) follows. The proof of (2.16) is completely similar.

Lemma 2.5. (Expansion of the Positivity) Let u ∈ DG(BR(x0)), fix ξ ∈ (0, 1
2M ) and

assume that with some α ∈ (0, 1) there holds

|{x ∈ Br(x0) : u(x) > µ+ − ξ ωr}| 6 (1− α) |Br(x0)|. (2.18)

Then there exists number s∗ depending only on n, p, q, c1, M , α and ξ such that either

ωr 6 2s∗+1 r, (2.19)

or

u(x) 6 µ+ − 2−s∗−1 ωr for a.a. x ∈ B r
2
(x0), (2.20)

provided that
1

log log 1
r

+ L (s∗ + 1)
log log 1

r

log 1
r

6 1. (2.21)

Likewise, if

|{x ∈ Br(x0) : u(x) 6 µ− + ξ ωr}| 6 (1− α) |Br(x0)|, (2.22)

then there exists number s∗ depending only on n, p, q, c1, M , α and ξ, such that either (2.19)

holds or

u(x) > µ− + 2−s∗−1 ωr for a.a. x ∈ B r
2
(x0), (2.23)

provided that (2.21) holds.
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Proof. We provide the proof of (2.20), while the proof of (2.23) is completely similar. We set

ks := µ+r −
ωr

2s
, s = log

1

ξ
, . . . , s∗−1, where s∗ is large enough to be chosen later. We will assume

that sup
B r

2
(x0)

(u− ks∗)+ >
ωr

2s∗+1
, since otherwise inequality (2.20) is evident. If inequality (2.19)

is violated, then Lemma 2.5 with l = ks+1 and k = ks yields

ωr

2s+1

w+
u,ks+1,r

(A+
ks+1,r

)

w+
u,ks+1,r

(Br(x0))
6 γ(α) r

1− n
p(1−δ)

(
ˆ

A+
ks,r

\A+
ks+1,r

|∇u|p(1−δ) dx

)
1

p(1−δ)

6

6 γ(α) r
1− n

p(1−δ)

(
ˆ

A+
ks,r

\A+
ks+1,r

w
− 1−δ

δ
+ (x, u, ks, r)dx

)
δ

p(1−δ)
(
ˆ

A+
ks,r

w+(x, u, ks, r)|∇u|
p dx

)
1
p

.

From this, by inequality (2.1) we obtain

w+
u,ks+1,r

(A+
ks+1,r

)

w+
u,ks+1,r

(Br(x0))
6 γ(α) r

− n
p(1−δ)

(
ˆ

A+
ks,r

\A+
ks+1,r

w
− 1−δ

δ
+ (x, u, ks, r)dx

)
δ

p(1−δ)

[w+
u,ks,r

(B2r(x0))]
1
p .

By our choice and (2.21) we have

(

M+(u, ks, r)

M+(u, ks∗ , r)

)p(|x−x0|)

6 2(s∗+1−s)p(|x−x0|) 6 2
L(s∗+1)

log log 1
r

log 1
r 6 2, x ∈ Br(x0),

therefore w+
u,ks+1,r

(A+
ks+1,r

) > γ−1w+
u,ks∗ ,r

(A+
ks∗ ,r

) and w+
u,ks+1,r

(Br(x0)) + w+
u,ks,r

(B2r(x0)) 6

γw+
u,ks∗ ,r

(Br(x0)), s = log
1

ξ
, . . . , s∗ − 1, so from the previous relation we have

[w+
u,ks∗ ,r

(A+
ks∗ ,r

)]
p(1−δ)

δ 6 γ(α)r−
n
δ [w+

u,ks∗ ,r
(Br(x0))]

(p+1) 1−δ
δ

ˆ

A+
ks,r

\A+
ks+1,r

w
− 1−δ

δ
+ (x, u, ks∗ , r)dx.

Summing up these inequalities over s = log
1

ξ
, . . . , s∗ − 1, we conclude that

(s∗ − log
1

ξ
− 1)[w+

u,ks∗ ,r
(A+

ks∗ ,r
)]

p(1−δ)
δ 6

6 γ(α)r−
n
δ [w+

u,ks∗ ,r
(Br(x0))]

(p+1) 1−δ
δ

ˆ

Br(x0)

w
− 1−δ

δ
+ (x, u, ks∗ , r)dx.

Using inequality (2.2) from the last inequality we arrive at

w+
u,ks∗ ,r

(A+
ks∗ ,r

) 6 γ(α)

(

s∗ − log
1

ξ
− 1

)− δ
p(1−δ)

w+
u,ks∗ ,r

(Br(x0)).

Choosing s∗ by the condition γ(α)

(

s∗ − log 1
ξ − 1

)− δ
p(1−δ)

= ν and using Lemma 2.3 we obtain

(2.20), which proves Lemma 2.5.
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2.4 Proof of Theorems 1.1, 2.1

To complete the proof of Theorems 1.1 and 2.1 we fix R by the condition

1

log log 1
R

+ L (s∗ + 1)
log log 1

R

log 1
R

6 1,

where s∗ is the number defined in Lemma 2.5, and assume that the following two alternative

cases are possible:
∣

∣

∣

{

x ∈ Br(x0) : u(x) > µ+ −
ωr

2s0

}∣

∣

∣
6

1

2
|Br(x0)|, s0 > 2 + [logM ],

or
∣

∣

∣

{

x ∈ Br(x0) : u(x) 6 µ− +
ωr

2s0

}
∣

∣

∣
6

1

2
|Br(x0)|

for any 0 < r < ρ < R. Assume, for example, the first one holds. Then by Lemma 2.5 we

obtain

ω r
2
6

(

1− 2−s∗−1
)

ωr + 2s∗+1r.

Iterating this inequality, we have

ωr 6 γM

(

r

ρ

)β

+ γ ρ, β = β(s∗) ∈ (0, 1).

This completes the proof of Theorems 1.1 and 2.1.

3 Upper and lower estimates of auxiliary solutions

In this Section we prove upper and lower bounds for auxiliary solutions v := v(x,m) to the

problem

divA(x,∇v) = 0, x ∈ D := B16ρ(x0) \E, E ⊂ Bρ(x0),

v −mψ ∈W0(D),

where 0 < m 6 M is some fixed number, and ψ ∈ W0(B16ρ(x0)), ψ = 1 on E. The existence

of the solutions v follows from the general theory of monotone operators. We will assume that

the following integral identity holds:
ˆ

D
A(x,∇v)∇ϕdx = 0 for any ϕ ∈W0(D). (3.1)

Testing (3.1) by ϕ = (v −m)+ and by ϕ = v− and using condition (1.8), we obtain that

0 6 v 6 m 6M .

For ρ < ρ1 < ρ2 6 16ρ we set K(ρ1, ρ2) := Bρ2(x0) \ Bρ1(x0), M(ρ1) := sup
K(ρ1,16ρ)

v,

w(x, ρ1) :=

(

1 +
M(ρ1)

ρ1

)p(|x−x0|)

, w(ρ1, ρ2) :=
´

K(ρ1,ρ2)

w(x, ρ1) dx.

Note that similarly to (2.5), (2.6), for all ρ1 ∈ (ρ, 16ρ) there hold

γ−1

(

1+
M(ρ1)

ρ1

)−tp(16ρ)

6 |K(ρ1, 16ρ)|
−1

ˆ

K(ρ1,16ρ)

w−t(x, ρ1) dx 6 γ

(

1+
M(ρ1)

ρ1

)−tp(16ρ)

, t > 0,

(3.2)
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γ−1

(

1 +
M(ρ1)

ρ1

)tp(16ρ)

6 |K(ρ1, 16ρ)|
−1

ˆ

K(ρ1,16ρ)

wt(x, ρ1) dx 6 γ

(

1 +
M(ρ1)

ρ1

)tp(16ρ)

, t > 0,

(3.3)

provided that

1

log log
1

16ρ

+ t C̄ L log(1 +
M

ρ
)

log log
1

16ρ

log2
1

16ρ

6 1, (3.4)

where C̄ = max(C,C1) and C, C1 are the constants defined in Lemmas 2.1, 2.2. Therefore

Lemmas 2.1, 2.2 continue to hold in K(ρ1, 16ρ) with w±(x, u, k, r) replaced by w(x, ρ1).

To formulate our results, we need the notion of the capacity. Let E ⊂ Br(x0) ⊂ Bρ(x0) and

for any m > 0 set

Cp(·)(E,B16ρ(x0);m) :=
1

m
inf

ϕ∈M(E)

ˆ

B16ρ(x0)

|m∇ϕ|p(x) dx,

where the infimum is taken over the set M(E) of all functions ϕ ∈ W0(B16ρ(x0)) with ϕ > 1

on E. If m = 1, this definition leads to the standard definition of Cp(·)(E,B16ρ(x0)) capacity

(see, e.g. [3]).

3.1 Upper bound for the function v

We note that in the standard case (i.e. if L = 0) the upper bound for the function v was proved

in [43] (see also [44, Chap. 8, Sec. 3], [45]).

Lemma 3.1. There exists positive number γ1 depending only on the data such that if

ρ
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)
> 1, (3.5)

then

γ−1

(

ρp
Cp(·)(E,B16ρ(x0),m)

w
(

3
2ρ, 16ρ

)

)
1

p−1

6M
(

3/2ρ
)

6 γ

(

ρp
Cp(·)(E,B16ρ(x0),m)

w
(

3
2ρ, 16ρ

)

)
1

p−1

, (3.6)

provided that

1

log log
1

16ρ

+ γ1 L

log log
1

16ρ

log
1

16ρ

6 1. (3.7)

Proof. First we prove inequality on the right-hand side of (3.6). Fix σ ∈ (0, 1/4) and for any

s ∈ (5/4ρ, 2ρ(1 − σ)), j = 0, 1, 2, .... set

ρ
(1)
j := s(1 + σ − σ2−j), Kj := K(ρ

(1)
j , 16ρ), kj := k − k 2−j , k > 0, Aj := Kj ∩ {v > kj},

Mj := sup
Kj

v and let ζj ∈ C∞(B16ρ(x0)), 0 6 ζj 6 1, ζj = 0 in B
ρ
(1)
j

(x0), ζj = 1 in Kj+1,

|∇ζj| 6 γ 2j
(

σρ
)−1

.

Further we will assume that

M
(3

2
ρ
)

>
3

2
ρ,
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since otherwise, by (3.5) inequality (3.6) is evident, moreover this inequality yields
(

M(ρ1)

ρ1

)p(|x−x0|)

6 w(x, ρ1) 6 γ

(

M(ρ1)

ρ1

)p(|x−x0|)

, x ∈ D.

Testing (3.1) by ϕ = (v − kj+1)+ ζ
q
j and using the Young inequality we obtain

ˆ

Kj∩{v>kj+1}

|∇v|p(x) ζ q
j dx 6 γ σ−γ 2jγρ−p

ˆ

Aj

(

Mj

ρ
(1)
j

)p(|x−x0|)

(v − kj)
p
+ dx 6

6 γ σ−γ 2jγρ−p

ˆ

Aj

(

M0

ρ
(1)
0

)p(|x−x0|)

(v − kj)
p
+ dx = γ σ−γ 2jγρ−p

ˆ

Aj

w(x, ρ
(1)
0 )(v − kj)

p
+ dx.

Using again the Young inequality, assuming that k > ε0M0, where ε0 ∈ (0, 1) is small enough,

from the previous we have
ˆ

Kj∩{v>kj+1}

w(x, ρ
(1)
0 ) |∇v|p ζ q

j dx 6 γ

(

M0

ρ
(1)
0

)p ˆ

Kj∩{v>kj+1}

w(x, ρ
(1)
0 ) dx+

+ γ σ−γ 2jγρ−p

ˆ

Aj

w(x, ρ
(1)
0 )(v − kj)

p
+ dx 6 γ σ−γ 2jγ

(

M0

ρ k

)p ˆ

Aj

w(x, ρ
(1)
0 )(v − kj)

p
+ dx+

+ γ σ−γ 2jγρ−p

ˆ

Aj

w(x, ρ
(1)
0 )(v − kj)

p
+ dx 6 γ ε−γ

0 σ−γ 2jγρ−p

ˆ

Aj

w(x, ρ
(1)
0 )(v − kj)

p
+ dx.

Choose γ1 > 0 large enough, by our assumption Lemma 2.2 is applicable, therefore from this

we obtain

yj+1 :=

ˆ

Aj+1

w(x, ρ
(1)
0 )(v − kj+1)

p
+ dx 6

6 γ ε−γ
0 σ−γ 2jγ [w(ρ

(1)
0 , 16ρ)]

−(1− 1
κ1

)
(
ˆ

Aj+1

w(x, ρ
(1)
0 ) dx

)1− 1
κ1
ˆ

Aj

w(x, ρ
(1)
0 )(v − kj)

p
+ dx 6

6 γ ε−γ
0 σ−γ 2jγ [w(ρ

(1)
0 , 16ρ)]

−(1− 1
κ1

)
k
−p(1− 1

κ1
)
y
2− 1

κ1
j , j = 0, 1, 2, ...

Hence, setting Mσ := M∞, by standard arguments (see, e.g. [32]) and by our choice, we arrive

at

Mp
σ 6 εp0M

p
0 + γ ε−γ

0 σ−γ [w(ρ
(1)
0 , 16ρ)]−1

ˆ

K(ρ
(1)
0 ,16ρ)

w(x, ρ
(1)
0 ) vp dx. (3.8)

Let us estimate the second term on the right-hand side of (3.8). For this we set

vM0 := min{v,M0}, by Lemma 2.2 we have for any ε ∈ (0, 1)
ˆ

K(ρ
(1)
0 ,16ρ)

w(x, ρ
(1)
0 )vpdx =

ˆ

K(ρ
(1)
0 ,16ρ)

w(x, ρ
(1)
0 )vpM0

dx 6 γρp
ˆ

K(ρ
(1)
0 ,16ρ)

w(x, ρ
(1)
0 )|∇vM0 |

pdx 6

6 ε γ−1 σγ ρp
ˆ

K(ρ
(1)
0 ,16ρ)

[w(x, ρ
(1)
0 )]

p(x)
p(x)−p dx+ γ ε−γ σ−γ ρp

ˆ

D

|∇vM0 |
p(x) dx =

= ε γ−1 σγ Mp
0 w(ρ

(1)
0 , 16ρ) + γ ε−γ σ−γ ρp

ˆ

D

|∇vM0 |
p(x) dx.
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Collecting the last two inequalities we obtain

Mp
σ 6 (εp0 +

ε

εγ0
)Mp

0 + γ ε−γ
0 ε−γ σ−γ ρp [w(ρ

(1)
0 , 16ρ)]−1

ˆ

D

|∇vM0 |
p(x) dx. (3.9)

Let us estimate the second term on the right-hand side of (3.9). Let ψ ∈ M(E) be such that

1

m

ˆ

B16ρ(x0)

|m∇ψ|p(x) dx 6 Cp(·)(E,B16ρ(x0);m) + ρn 6 Cp(·)(E,B16ρ(x0);m) + γw(ρ
(1)
0 , 16ρ).

Testing identity (3.1) by ϕ = v −mψ, by the Young inequality we obtain
ˆ

D

|∇v|p(x) dx 6 γ

ˆ

B16ρ(x0)

|m∇ψ|p(x) dx 6 γm
(

Cp(·)(E,B16ρ(x0);m) + w(ρ
(1)
0 , 16ρ)

)

.

Testing (3.1) by ϕ = vM0 −
M0

m
v, using the Young inequality and the previous inequality, we

have
ˆ

D

|∇vM0 |
p(x) dx 6 γ

M0

m

ˆ

D

|∇v|p(x) dx 6 γM0

(

Cp(·)(E,B16ρ(x0);m) + w(ρ
(1)
0 , 16ρ)

)

.

This inequality, the Young inequality and (3.9) imply that

Mp
σ 6 (εp0 +

ε

εγ0
)Mp

0 + γ ε−γ
0 ε−γ σ−γM0

(

ρp
Cp(·)(E,B16ρ(x0);m)

w(ρ
(1)
0 , 16ρ)

+ ρp
)

6

6 (2εp0 +
ε

εγ0
)Mp

0 + γ ε−γ
0 ε−γ σ−γ

{(

ρp
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

)
p

p−1

+ ρp
}

,

Iterating the last inequality, choosing ε0 and then ε = ε(ε0) small enough, by (3.5) we arrive at

M(3/2ρ) 6 γ

(

ρp
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

)
1

p−1

+ γ ρ 6 γ

(

ρp
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

)
1

p−1

,

which completes the proof of the lemma.

Now we prove inequality on the left-hand side of (3.6). Let ζ1 ∈ C∞
0 (B4ρ(x0)), 0 6 ζ1 6 1,

ζ1 = 1 in B2ρ(x0), |∇ζ1| 6
γ

ρ
. Testing (3.1) by ϕ = v −mζ q

1 , using the Young inequality , we

obtain for any ε1 > 0
ˆ

D

|∇v|p(x) dx 6 γ
m

ρ

ˆ

K(2ρ,4ρ)

|∇v|p(x)−1 ζ q−1
1 dx

6 γ
m

ε1ρ

ˆ

K(2ρ,4ρ)

|∇v|p(x) dx+ γ
m

ρ

ˆ

K(2ρ,4ρ)

ε
p(x)−1
1 dx.

Let ζ2 ∈ C∞
0 (K(32ρ, 6ρ)), 0 6 ζ2 6 1, ζ2 = 1 in K(2ρ, 4ρ), |∇ζ2| 6

γ

ρ
. Testing (3.1) by ϕ = v ζ q

2

and using the Young inequality, we estimate the first term on the right-hand side of the previous

inequality as follows:

ˆ

K(2ρ,4ρ)

|∇v|p(x) dx 6 γ

ˆ

K( 3
2
ρ,6ρ)

(

v

ρ

)p(x)

dx 6
γ

ρp

ˆ

K( 3
2
ρ,16ρ)

w(x,
3

2
ρ) vp dx.
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Combining the last two inequalities and using the definition of capacity, we obtain

Cp(·)(E,B16ρ(x0);m) 6
1

m

ˆ

D

|∇v|p(x) dx 6

6
γ

ε1ρp+1

ˆ

K( 3
2
ρ,16ρ)

w(x,
3

2
ρ) vp dx+

γ

ρ

ˆ

K(2ρ,4ρ)

ε
p(x)−1
1 dx. (3.10)

Choose ε1 from the condition ε1 =
M(32ρ)

ρ
, then inequality (3.10) yields

Cp(·)(E,B16ρ(x0);m) 6 γw(
3

2
ρ, 16ρ)

Mp−1(32ρ)

ρp
,

from which the required inequality follows, this completes the proof of the lemma.

3.2 Lower bound for the function v

Further we need the following lemma.

Lemma 3.2. Let condition (3.5) holds, then there exists ε ∈ (0, 1) depending only on the data

such that

ˆ

K( 3
2
ρ,16ρ)

w(x,
3

2
ρ)χ

[

v > ε

(

ρp
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

)
1

p−1
]

dx > γ−1w(
3

2
ρ, 16ρ), (3.11)

provided that inequality (3.7) holds.

Proof. To prove (3.11) we use inequality (3.10). Choose ε1 from the condition ε1 = ε̄1
M(32ρ)

ρ
,

ε̄1 ∈ (0, 1), then by Lemma 3.1 the terms on the right-hand side of (3.10) are estimated as

follows

γ

ρ

ˆ

K2ρ,4ρ

ε
p(x)−1
1 dx 6 γ

ε̄1
ρp
M(3/2ρ)p−1w(

3

2
ρ, 16ρ) 6 γε̄1Cp(·)(E,B16ρ(x0);m). (3.12)

Similarly, by Lemma 3.1

γ

ε1ρp

ˆ

K 3
2 ρ,16ρ

w(x,
3

2
ρ) vp dx 6 γ

εp

ε̄1
Cp(·)(E,B16ρ(x0);m)+

+ γ
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

ˆ

K( 3
2
ρ,16ρ)

w(x,
3

2
ρ)χ

[

v > ε

(

ρp
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

)
1

p−1
]

dx.

(3.13)

Collecting estimates (3.10), (3.12), (3.13) we obtain

Cp(·)(E,B16ρ(x0);m) 6
(

γε̄1 + γ
εp

ε̄1

)

Cp(·)(E,B16ρ(x0);m)+

+ γ
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

ˆ

K( 3
2
ρ,16ρ)

w(x,
3

2
ρ)χ

[

v > ε

(

ρp
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

)
1

p−1
]

dx.
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Choosing ε̄1 by the condition γε̄1 =
1

4
and then choosing ε by the condition γ

εp

ε̄1
=

1

4
, from the

previous we arrive at

ˆ

K( 3
2
ρ,16ρ)

w(x,
3

2
ρ)χ

[

v > ε

(

ρp
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)

)
1

p−1
]

dx > γ−1w(
3

2
ρ, 16ρ),

which completes the proof of the lemma.

The following lemma is the main result of this Section

Lemma 3.3. There exists ε̄ ∈ (0, 1) depending only on the data such that either

ε̄ m

(

|E|

|Bρ(x0)|

)
1

p−1

6 ρ, (3.14)

or
∣

∣

{

K(
3

2
ρ, 16ρ) : v > ε̄m

(

|E|

|Bρ(x0)|

)
1

p−1
}∣

∣ > γ−1 |K(
3

2
ρ, 16ρ)|, (3.15)

provided that inequality (3.7) holds.

Proof. Lemma 3.3 is a consequence of Lemma 3.2, for this we first estimate the capacity of the

set E from below. Let ϕ ∈W0(B16ρ(x0)), ϕ = 1 on E , then by Lemmas 2.1, 2.2, 3.1 and using

the evident inequalities γ−1w(32ρ, 16ρ) 6
´

B16ρ(x0)

w(x, 32ρ) dx 6 γw(32ρ, 16ρ) we have

mp |E| 6 mp

ˆ

B16ρ(x0)

ϕp dx 6

6

(
ˆ

B16ρ(x0)

w(x,
3

2
ρ)|(mϕ)|pκ1 dx

)
1
κ1

(
ˆ

B16ρ(x0)

[w(x,
3

2
ρ)]

− 1
κ1−1 dx

)1− 1
κ1

6

6 γ ρp [w(
3

2
ρ, 16ρ)]

1
κ1

−1
(
ˆ

B16ρ(x0)

[w(x,
3

2
ρ)]

− 1
κ1−1 dx

)1− 1
κ1

ˆ

B16ρ(x0)

w(x,
3

2
ρ)|∇(mϕ)|p dx 6

6 γ
ρp+n

w(32ρ, 16ρ)

ˆ

B16ρ(x0)

w(x,
3

2
ρ)|∇(mϕ)|p dx 6

6 γ
ρp+n

w(32ρ, 16ρ)

(
ˆ

B16ρ(x0)

w(x,
3

2
ρ)

(

1 +
M(32ρ)

ρ

)p

dx+

ˆ

B16ρ(x0)

|∇(mϕ)|p(x) dx

)

6

6 γρp+n + γ m
ρp+n

w(32ρ, 16ρ)
Cp(·)(E,B16ρ(x0),m) + γ

ρp+n

w(32ρ, 16ρ)

ˆ

B16ρ(x0)

|∇(mϕ)|p(x) dx. (3.16)

Since ϕ is arbitrary, estimate (3.16) yields

mp |E| 6 γρp+n + γ m
ρp+n

w(32ρ, 16ρ)
Cp(·)(E,B16ρ(x0),m).

If inequality (3.14) is violated then

mp |E|

|Bρ(x0)|
> mp

(

|E|

|Bρ(x0)|

)
p

p−1

>

(

ρ

ε̄

)p

,
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so, if ε̄ is sufficiently small, from the previous we arrive at

ρp

w(32ρ, 16ρ)
Cp(·)(E,B16ρ(x0),m) > γ−1mp−1 |E|

|Bρ(x0)|
.

And hence

ρ
Cp(·)(E,B16ρ(x0);m)

w(32ρ, 16ρ)
> γ−p ρ1−pmp−1 |E|

|Bρ(x0)|
> γ−p ε̄−p

> γ0,

provided that (3.14) is violated and ε̄ is sufficiently small. Now we use Lemma 3.2 for this we

set F :=
{

K(32ρ, 16ρ) : v > ε̄m

(

|E|

|Bρ(x0)|

)
1

p−1
}

and w(F ) :=
´

K( 3
2
ρ,16ρ)

w(x, 32ρ)χ(F ) dx.

We have by Lemmas 2.1 and 3.2

γ−1
6

w(F )

w(32ρ, 16ρ)
6

|F |
1
2

w(32ρ, 16ρ)

(
ˆ

K( 3
2
ρ,16ρ)

[w(x,
3

2
ρ)]2 dx

)
1
2

6 γ

(

|F |

|K(32ρ, 16ρ)|

)
1
2

,

which completes the proof of the lemma.

4 Harnack’s inequality, proof of Theorems 1.2 and 1.3

4.1 Weak Harnack inequality, proof of Theorem 1.2

For 0 < m < M set E(ρ,m) :=
{

Bρ(x0) : u > m
}

. As it was mentioned in Section 1 Theorem

1.2 is a simple consequence of the following lemma

Lemma 4.1. Let u be a non-negative bounded super-solution to equation (1.1) in Ω and let

condition (1.8) be fulfilled, then there exist positive numbers C2, C3 depending only on the data

such that

|E(ρ,m)| 6 C2 |Bρ(x0)|m
1−p

(

ρ+ min
B ρ

2
(x0)

u
)p−1

, (4.1)

provided that B16ρ(x0) ⊂ Ω and

1

log log
1

16ρ

+ C3 L

log log
1

16ρ

log
1

16ρ

6 1. (4.2)

Proof. We construct the solution v of the problem (3.1) in D = B16ρ(x0) \E(ρ,m), since u > v

on ∂D, by (1.8) u > v in D. First we use Lemma 3.3, if inequality (3.14) is violated, i.e. if

ε̄m

(

|E(ρ,m)|

|Bρ(x0)|

)
1

p−1

> ρ, (4.3)

by Lemma 3.3 there holds

∣

∣

{

B16ρ(x0) : u > ε̄ m

(

|E(ρ,m)|

|Bρ(x0)|

)
1

p−1
}∣

∣ >

>
∣

∣

{

K(
3

2
ρ, 16ρ) : u > ε̄ m

(

|E(ρ,m)|

|Bρ(x0)|

)
1

p−1
}∣

∣ >

>
∣

∣

{

K(
3

2
ρ, 16ρ) : v > ε̄ m

(

|E(ρ,m)|

|Bρ(x0)|

)
1

p−1
}∣

∣ > γ−1 |B16ρ(x0)|,
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provided that

1

log log
1

16ρ

+ γ1 L

log log
1

16ρ

log
1

16ρ

6 1. (4.4)

Now we use Lemma 2.5 with r = 16ρ, µ− = 0 and ξ ωr = ε̄m

(

|E(ρ,m)|

|Bρ(x0)|

)
1

p−1

, we obtain that

u(x) > 2−s∗−1m

(

|E(ρ,m)|

|Bρ(x0)|

)
1

p−1

, x ∈ B8ρ(x0), (4.5)

provided that

1

log log
1

16ρ

+ s∗ L

log log
1

16ρ

log
1

16ρ

6 1. (4.6)

Choosing C2, C3 sufficiently large, collecting (4.3)–(4.6) we arrive at (4.1), which completes the

proof of the lemma.

To complete the proof of Theorem 1.2 set m(ρ/2) := ρ/2 + min
B ρ

2
(x0)

u, then by Lemma 4.1 for

θ ∈ (0, p − 1) we have

|Bρ(x0)|
−1

ˆ

Bρ(x0)

uθ dx = θ |Bρ(x0)|
−1

∞̂

0

|E(ρ,m)|mθ−1 dm 6 mθ(ρ/2)+

+ θ |Bρ(x0)|
−1

∞̂

m(ρ/2)

|E(ρ,m)|mθ−1 dm 6 mθ(ρ/2) + γ mp−1(ρ/2)

∞̂

m(ρ/2)

mθ−p dm 6

6
γ

p− 1− θ
mθ(ρ/2),

provided that

1

log log
1

16ρ

+ C3 L

log log
1

16ρ

log
1

16ρ

6 1,

which completes the proof of Theorem 1.2.

4.2 Proof of Theorem 1.3

The proof of Theorem 1.3 is almost standard. For fixed σ ∈ (0, 1/8), s ∈ (3/4ρ, 7/8ρ), k > 0

and j = 0, 1, 2, ... set kj := k − k2−j , ρj := s(1− σ + σ2−j), ρ̄j :=
1

2
(ρj + ρj+1), Bj := Bρj(x0),

B̄j := Bρ̄j(x0) and let M0 := max
B0

u,Mσ := max
B∞

u. Denote by ζj a non-negative piecewise

smooth cutoff function in B̄j that equals one on Bj+1, such that |∇ζj| 6 γ
2j

σρ
. Set also

w0(x) :=

(

1 +
M0

ρ0

)p(|x−x0|)

and w0(F ) :=
´

F

w0(x) dx. Evidently we have

(

M0

ρ0

)p(|x−x0|)

6 w0(x) 6 γ

(

M0

ρ0

)p(|x−x0|)

, if M0 > ρ0.
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Note that similarly to (2.5), (2.6) there hold

γ−1

(

1 +
M0

ρ0

)−tp(ρ0)

6 |B0|
−1

ˆ

B0

w−t
0 (x) dx 6 γ

(

1 +
M0

ρ0

)−tp(ρ0)

, t > 0, (4.7)

γ−1

(

1 +
M0

ρ0

)tp(ρ0)

6 |B0|
−1

ˆ

B0

wt
0(x) dx 6 γ

(

1 +
M0

ρ0

)tp(ρ0)

, t > 0, (4.8)

provided that

1

log log
1

ρ0

+ t C̄ L log(1 +
M

ρ0
)

log log
1

ρ0

log2
1

ρ0

6 1, (4.9)

where C̄ = max(C,C1) and C, C1 are the constants defined in Lemmas 2.1, 2.2. Therefore

Lemmas 2.1, 2.2 continue to hold in B0 with w±(x, u, k, r) replaced by w0(x).

Furthter we will assume that M0 > ρ0. Test identity (1.7) by ϕ = (u− kj+1)+ ζ
q
j , then

ˆ

B̄j

|∇(u− kj+1)+|
p(x) ζqj dx 6 γ 2jγ

ˆ

B̄j

(

u− kj+1

σρ

)p(x)

+

dx 6

6 γ σ−γ 2jγ

ρp

ˆ

Bj

w0(x) (u − kj)
p
+ dx.

From this by the Young inequality, assuming that k > ε0M0, ε0 ∈ (0, 1) is small enough, we

obtain

ˆ

B̄j

w0(x) |∇(u− kj+1)+|
p ζqj dx 6 γ

(

M0

ρ

)p ˆ

B̄j∩{u>kj+1}

w0(x) dx+

γ σ−γ 2jγ

ρp

ˆ

Bj

w0(x) (u − kj+1)
p
+ dx 6 γ σ−γ 2γ

(

M0

ρ k

)p ˆ

Bj∩{u>kj}

w0(x) (u− kj)
p
+ dx+

+ γ σ−γ 2jγ

ρp

ˆ

Bj

w0(x) (u− kj+1)
p
+ dx 6 γ ε−γ

0 σ−γ 2jγ

ρp

ˆ

Bj

w0(x) (u − kj+1)
p
+ dx,

provided that (4.9) holds. From this similarly to (3.8) we obtain

Mσ 6 ε
1
p

0 M0 + γ ε−γ
0 σ−γ

(

[w0(B0)]
−1

ˆ

B0

w0(x)u
p dx

)
1
p

. (4.10)

Let us estimate the second term on the right-hand side of (4.10), using Lemma 2.1 we obtain
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for any 0 < θ < p and any ε ∈ (0, 1)

(

[w0(B0)]
−1

ˆ

B0

w0(x)u
p dx

)
1
p

6M
1− θ

2p

0

(

[w0(B0)]
−1

ˆ

B0

w0(x)u
θ
2 dx

)
1
p

6

6 εM0 + γε−γ

(

[w0(B0)]
−1

ˆ

B0

w0(x)u
θ
2 dx

)
2
θ

6

6 εM0 + γε−γ [w0(B0)]
− 2

θ

(
ˆ

B0

w2
0(x) dx

)
1
θ
(
ˆ

B0

uθ dx

)
1
θ

6

6 εM0 + γε−γ

(

ρ−n

ˆ

B0

uθ dx

)
1
θ

,

which together with (4.10) yield

Mσ 6 (ε
1
p

0 + ε)M0 + γ ε−γ
0 ε−γ σ−γ

(

ρ−n

ˆ

B0

uθ dx

)
1
θ

.

Choosing ε0, ε small enough, iterating this inequality and taking into account our choices we

arrive at

max
Bρ/2(x0)

u 6 γ

(

ρ−n

ˆ

B0

uθ dx

)
1
θ

+ γ ρ,

provided that (4.9) is valid. This proves inequality (1.11).

Collecting estimates (1.9), (1.11) with θ = 1
2(p− 1), we arrive at

max
Bρ/2(x0)

u 6 γ
(

min
Bρ/2(x0)

u+ ρ
)

,

which completes the proof of Theorem 1.3.
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