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Abstract
We prove continuity and Harnack’s inequality for bounded solutions to the equation

div
( | ∇u |p(x)−2 ∇u

) = 0, p(x) = p̄ + L
log log 1

|x−x0|
log 1

|x−x0|
,

p̄ > 1, L > 0,

under the precise non-logarithmic condition on the function p(x).

Mathematics Subject Classification 35B09 · 35B40 · 35B45 · 35B65

1 Introduction andmain results

Let � be a bounded domain in R
n , n � 2. In this paper we are concerned with elliptic

equations of the type

divA(x,∇u) = 0, x ∈ �. (1.1)

We suppose that the functions A : � × R
n → R

n are such that A(·, ξ) are Lebesgue
measurable for all ξ ∈ R

n , and A(x, ·) are continuous for almost all x ∈ �. We assume also
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that the following structure conditions are satisfied

A(x, ξ) ξ � K1 | ξ |p(x),
| A(x, ξ) | � K2 | ξ |p(x)−1,

(1.2)

where K1, K2 are positive constants,

p(x) = p̄ + �(| x − x0 |), �(s) = L
log log 1

s

log 1
s

(1.3)

p̄ > 1 and L > 0.
The aim of this paper is to establish basic qualitative properties such as continuity of

bounded solutions and Harnack’s inequality for non-negative bounded solutions to equation
(1.1).

Before formulating the main results, we say few words concerning the history of the
problem. The study of regularity of minima of functionals with non-standard growth has
been initiated by Zhikov [51–54, 56], Marcellini [36, 37], and Lieberman [35], and in the
last thirty years, the qualitative theory of second order elliptic and parabolic equations with
so-called ”logarithmic” condition, i.e. if

osc
Br (x0)

p(x) � L

log 1
r

, 0 < r < 1, 0 < L < ∞, (1.4)

has been actively developed (see e.g. [1–3, 5, 6, 9–16, 20–22, 25–30, 39, 45–47, 49] for
references). Equations of this type and systems of such equations arise in various problems
of mathematical physics (see e.g. the monographs [8, 25, 40, 50] and references therein).

The case when condition (1.4) is replaced by the condition

osc
Br (x0)

p(x) � μ(r)

log 1
r

, lim
r→0

μ(r) = ∞, lim
r→0

μ(r)

log 1
r

= 0, (1.5)

differs substantially from the logarithmic case. It turns out that suchnon-logarithmic condition
is a precise condition for the smoothness of finite functions in the corresponding Sobolev
spaceW 1,p(x)(�). Thus this case is extremely interesting to study. But to our knowledge there
are only few results in this direction. Zhikov [55] obtained a generalization of the logarithmic
condition which guaranteed the density of smooth functions in Sobolev space W 1,p(x)(�).
Particularly, this result holds if 1 < p̄ � p(x) and

osc
Br (x0)

p(x) � L
log log 1

r

log 1
r

, 0 < L � p̄

n
. (1.6)

Later Zhikov and Pastukhova [57] proved higher integrability of the gradient of solutions to
the p(x)-Laplace equation under the same condition.

Interior continuity, continuity up to the boundary and Harnack’s inequality to the p(x)-
Laplace equation were proved in [4, 7] and [48] under condition (1.5) and

ˆ

0

exp
( − γ exp(μc(r))

)dr
r

= +∞, (1.7)

with some numbers γ, c > 1. For example, the function μ(r) = L log log log
1

r
satisfies

conditions (1.5), (1.7), provided that L is a sufficiently small positive number.
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The results from [4, 7, 48] were generalized in [41, 46] for a wide class of elliptic and
parabolic equations with non-logarithmic Orlicz growth. Particularly, it was proved in [46]
that under conditions (1.5), (1.7) functions from the correspondent DeGiorgi’sB1(�) classes
are continuous and moreover, it was shown that the solutions of the correspondent elliptic
and parabolic equations with non-standard growth belong to these classes.

The exponential condition of the type (1.7) was substantially refined in [24]. Particularly,
the continuity of solutions to double-phase and degenerate double-phase elliptic equations

div

(
| ∇u |p−2 ∇u + a(x) | ∇u |q−2 ∇u

)
= 0, q > p,

and

div

(
| ∇u |p−2 ∇u

(
1 + log(1 + b(x) | ∇u |))

)
= 0

was proved under the conditions

osc
Br (x0)

a(x) � Aμ(r)q−p rq−p, osc
Br (x0)

b(x) � Bμ(r) r ,
ˆ

0

dr

μ(r)
= +∞.

Note that the function μ(r) = log
1

r
satisfies the above conditions. In the present paper the

continuity and the Harnack’s type inequality have been proved under the conditions similar
to (1.6).

Before formulating the main results, let us recall the definition of a bounded weak solution
to equation (1.1). We introduce W (�) as a class of functions u ∈ W 1,1(�), such that´
�

| ∇u |p(x) dx < +∞, and W0(�) = W (�) ∩ W 1,1
0 (�).

Definition 1 We say that a function u ∈ W (�) ∩ L∞(�) is a bounded weak sub(super)-
solution to equation (1.1) if ˆ

�

A(x,∇u)∇ϕ dx � (�) 0, (1.8)

holds for all non-negative test functions ϕ ∈ W0(�).

The following Theorem is the first main result of this paper.

Theorem 1.1 Let u be a bounded weak solution of Eq. (1.1) and let conditions (1.2), (1.3) be
fulfilled, then u is Hölder continuous at point x0.

The next result is a weak Harnack type inequality for non-negative super-solutions.

Theorem 1.2 Let u be a bounded non-negativeweak super-solution toEq. (1.1), let conditions
(1.2), (1.3) be fulfilled. Assume also that

(
A(x, ξ) − A(x, η)

)
(ξ − η) > 0, ξ, η ∈ R

n, ξ �= η, (1.9)

then there exist numbers γ, γ̄ > 0 depending only on n, p̄, K1, K2 and M = sup
�

u, such

that for any θ ∈ (0, p̄ − 1) there holds

(  

Bρ(x0)

uθ dx

) 1
θ

�
(

γ

p̄ − 1 − θ

) 1
θ (

inf
B ρ

2
(x0)

u + ρ
)
, (1.10)
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provided that B16ρ(x0) ⊂ � and

1

log log 1
16ρ

+ γ̄ L
log log 1

16ρ

log 1
16ρ

� 1. (1.11)

The following Theorem is Harnack’s inequality

Theorem 1.3 Let u be a bounded non-negative weak sub-solution to Eq. (1.1), let conditions
(1.2), (1.3) be fulfilled. Assume also that the monotonicity condition (1.9) holds. Then there
exist positive numbers γ , γ̄1 depending only on n, p̄, K1, K2, M such that for any θ ∈
(0, p̄ − 1)

sup
B ρ

2 (x0)

u � γ

(  

Bρ(x0)

uθ dx

) 1
θ + γ ρ, (1.12)

provided that B16ρ(x0) ⊂ � and

1

log log 1
16ρ

+ γ̄1 L
log log 1

16ρ

log 1
16ρ

� 1. (1.13)

Particularly, if u is a bounded non-negative weak solution to Eq. (1.1), then

sup
B ρ

2 (x0)

u � γ ( inf
B ρ

2
(x0)

u + ρ), (1.14)

provided that B16ρ(x0) ⊂ � and

1

log log 1
16ρ

+ max(γ̄ , γ̄1) L
log log 1

16ρ

log 1
16ρ

� 1, (1.15)

where γ̄ > 0 is the constant defined in Theorem 1.2.

In the present paper, we substantially refine the results of [4, 7, 41, 45, 46, 48]. We would
like to mention the approach taken in this paper. To prove the interior continuity we use
DeGiorgi’s approach. Let us consider the standard DeGiorgi’s class DGp(·)(�) of functions
u which corresponds to equation (1.1):

ˆ

Br (x0)

| ∇(u − k)± |p(x) ζ q dx�γ

ˆ

Br (x0)

(
u − k

rσ

)p(x)

±
dx, k ∈ R

1, σ ∈ (0, 1), (1.16)

B16r (x0) ⊂ � and ζ(x) is the correspondent cut-off function for the ball Br (x0), namely,
ζ ∈ C∞

0 (Br (x0)), 0 � ζ � 1, ζ = 1 in Br(1−σ)(x0), | ∇ζ |� (σr)−1. Using the Young
inequality, by conditions (1.5) we have

ˆ

Br (x0)

| ∇(u − k)± |p− ζ q dx � γ σ−γ μ(r)
ˆ

Br (x0)

(
u − k

r

)p−

±
dx

+γ | Br (x0) ∩ {(u − k)± > 0} |, p− := min
Br (x0)

p(x).

This estimate leads us to condition (1.7) (see, e.g. [45, 46]). It is easy to see that condition
(1.7) fails for the function μ(r) = L log log 1

r . To avoid this, using the Young inequality and
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our choice of p(x) we rewrite inequality (1.16) as

ˆ

Br (x0)

(
M±

r (u, k)

r

)�(|x−x0|)
| ∇(u − k)± | p̄ ζ q dx

� γ σ−γ

(
M±

r (u, k)

r

) p̄ ˆ

Br (x0)∩{(u−k)±>0}

(
M±

r (u, k)

r

)�(|x−x0|)
dx,

M±
r (u, k) := sup

Br (x0)
(u − k)±. (1.17)

It appears that the weight

(
M±

r (u, k)

r

)�(|x−x0|)
satisfies the Muckenhoupt type properties.

In Sect. 2 we define the correspondent weighted De Giorgi’s classes by inequalities (1.17)
and prove the Hölder continuity at point x0 for the functions which belong to these classes.

The main difficulty arising in the proof of the Harnack type inequalities is related to the
so-called theorem on the expansion of positivity. Roughly speaking, having information on
the measure of the “positivity set” of u over the ball Br (x) ⊂ Bρ(x0):

| {x ∈ Br (x) : u(x) � s} |� α(r) | Br (x) |, α(r) = γ −1 exp(−μβ(r)),

with some r > 0, s > 0 and γ > 1, and using the standard DeGiorgi’s orMoser’s arguments,
we inevitably arrive at the estimate

u(x) � γ −1s exp
( − γ exp(μc(r))

)
, x ∈ B2r (x),

with some γ , c > 1. This estimate leads us to condition (1.7) (see, e.g. [41, 46]). Note that we
can not use the classical approach of Krylov and Safonov [31], DiBenedetto and Trudinger
[19], as it was done in [9] under the logarithmic conditions. We also can not use the local
clustering lemma of DiBenedetto, Gianazza and Vespri [17] (see also [18, 49] ). Difficulties
arise not only due to the constant α(r)which depends on r , but also when an additional term,
that couldn’t be estimated, occurs during the process of iteration from Br (x̄) to Bρ(x0). To
overcome it, we use a workaround that goes back to Mazya [38] and Landis [33, 34] papers.

We will demonstrate our approach on the p-Laplacian. Fix x0 ∈ � and let 0 < r < ρ,
E ⊂ Br (x0) ⊂ Bρ(x0), B16ρ(x0) ⊂ � and consider solution v := v(x, s) of the following
problem:

div
( | ∇v |p−2 ∇v

) = 0, x ∈ D := B16ρ(x0) \ E, (1.18)

v − sψ ∈ W 1,p
0 (D), (1.19)

where s > 0 is some fixed number, and ψ ∈ W 1,p
0 (B16ρ(x0)), ψ = 1 on E .

By the well-known estimate (see e.g. [23]) we have

inf
B4ρ(x0)\B2ρ(x0)

v � γ −1 s

(
Cp(E)

ρn−p

) 1
p−1

,

where Cp(E) is a capacity of the set E . By the Poincare inequality from the previous we
obtain

inf
B4ρ(x0)\B2ρ(x0)

v � γ −1 s

( | E |
ρn

) 1
p−1

, (1.20)
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Let u be a non-negative bounded super-solution to the p-Laplace equation in� and construct
the set

E(ρ, s) := Bρ(x0) ∩ {u > s}, 0 < s < sup
�

u.

Consider also a solution v of the problem (1.18), (1.19) with E replaced by E(ρ, s). Then
since u � v on ∂D, by the maximum principle and by (1.20) we obtain

m(2ρ) := inf
B2ρ(x0)

u � γ −1 s

( | E(ρ, s) |
ρn

) 1
p−1

,

which by standard arguments yields for any θ ∈ (0, p − 1)

 

Bρ(x0)

uθ dx = | Bρ(x0) |−1 θ

∞̂

0

E(ρ, s) sθ−1 ds � mθ (2ρ)

+γmp−1(2ρ)

∞̂

m(2ρ)

sθ−p ds � γ

p − 1 − θ
mθ (2ρ),

from which the weak Harnack type inequality follows.
In Sects. 3, 4 we adapt this simple idea to the case of p(x)-Laplacian with non-logarithmic

growth. The weight

(
M̂ρ1(v)

ρ1

)�(|x−x0|)
, M̂ρ1(v) := sup

B16ρ(x0)\Bρ1 (x0)
v, ρ < ρ1 < 16ρ

which naturally arises in the proof of Theorem 1.2 also satisfies a Muckenhoupt-type condi-
tions.

Remark 1 It was unexpected for authors that the modulus of continuity and the constants in

the Harnack type inequalities do not depend on the additional term log log
1

r
(usually, there

is a dependency, see e.g. [7, 24, 46, 48]).

The rest of the paper contains the proof of the above theorems.

2 EllipticDG classes, proof of Theorem 1.1

In this Section we define the following De Giorgi’s classes.

Definition 2 We say that a measurable function u : BR(x0) → R belongs to the elliptic
class DG(BR(x0)) if u ∈ W 1, p̄(BR(x0)) ∩ L∞(BR(x0)), ess sup

BR(x0)
| u |� M and there exists

numbers 1 < p̄ < q , c1 > 0 such that for any ball B8r (x0) ⊂ BR(x0), any k ∈ R, | k |< M ,
any σ ∈ (0, 1), for any ζ ∈ C∞

0 (Br (x0)), 0 � ζ � 1, ζ = 1 in Br(1−σ)(x0), | ∇ζ |� (σr)−1,
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the following inequalities hold:

ˆ

A±
k,r

(
M±

r (u, k)

r

)�(|x−x0|)
| ∇u | p̄ ζ q dx

� c1 σ−q
(
M±

r (u, k)

r

) p̄ ˆ

A±
k,r

(
M±

r (u, k)

r

)�(|x−x0|)
dx, (2.1)

here (u − k)± := max{±(u − k), 0}, A±
k,r := Br (x0) ∩ {(u − k)± > 0},

M±
r (u, k) := sup

Br (x0)
(u − k)± and �(| x − x0 |) := L

log log 1
|x−x0|

log 1
|x−x0|

, L > 0.

We refer to the parameters c1, n, p̄, q and M as our structural data, and we write γ if it can
be quantitatively determined a priory in terms of the above quantities. The generic constant
γ may change from line to line.

Our main result of this Section reads as follows:

Theorem 2.1 Let u ∈ DG(BR(x0)), then u is Hölder continuous at x0.

We note that the solutions of Eq. (1.1) belong to the corresponding DG(BR(x0)) classes,
provided that B2R(x0) ⊂ �. We test identity (1.8) by ϕ = (u − k)±ζ q(x), by the Young
inequality we obtain

ˆ

A±
k,r

| ∇u |p(x) ζ q(x) dx � γ

ˆ

A±
k,r

(
u − k

σr

)p(x)

±
dx

� γ σ−γ

(
M±

r (u, k)

r

) p̄ ˆ

A±
k,r

(
M±

r (u, k)

r

)�(|x−x0|)
dx .

From this, using again the Young inequality

ˆ

A±
k,r

(
M±

r (u, k)

r

)�(|x−x0|)
| ∇u | p̄ ζ q dx

�
ˆ

A±
k,r

| ∇u |p(x) dx +
ˆ

A±
k,r

(
M±

r (u, k)

r

)p(x)

dx,

from which the required (2.1) follows.

2.1 Auxiliary propositions

For k ∈ R and 0 < r < R set w±
r (x, u, k) :=

(
M±

r (u, k)

r

)�(|x−x0|)
, further we need the

following lemmas

123
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Lemma 2.2 There exists C > 0 depending only on the data, such that for any u ∈
DG(BR(x0)) and for any t > 0 the following inequalities hold

r−n
ˆ

Br (x0)

w±
r (x, u, k) dx

(
r−n

ˆ

Br (x0)

[
w±
r (x, u, k)

]−t
dx

) 1
t

� γ 1+ 1
t , (2.2)

(
r−n

ˆ

Br (x0)

[
w±
r (x, u, k)

]1+t
dx

) 1
1+t

� γ
1

1+t +1 r−n
ˆ

Br (x0)

w±
r (x, u, k) dx, (2.3)

provided that

1

log log 1
r

+ t C L
log log 1

r

log 1
r

� 1, and r � M±
r (u, k) � 1. (2.4)

Proof To prove inequalities (2.2), (2.3) we just need to check

γ −1
(
M±

r (u, k)

r

)−t�(r)

� r−n
ˆ

Br (x0)

[
w±
r (x, u, k)

]−t
dx � γ

(
M±

r (u, k)

r

)−t�(r)

,(2.5)

γ −1
(
M±

r (u, k)

r

)t�(r)

� r−n
ˆ

Br (x0)

[
w±
r (x, u, k)

]t
dx � γ

(
M±

r (u, k)

r

)t�(r)

(2.6)

for t > 0. The left inequality in (2.5) and the right inequality in (2.6) are obvious due to the
fact that �(| x − x0 |) is increasing if x ∈ Br (x0) and r is sufficiently small. Let us check the

right inequality in (2.5). Integrating by parts, using the fact that
log log 1

s

log2 1
s

is increasing on

the interval (0, r), we obtain

ˆ

Br (x0)

[
w±
r (x, u, k)

]−t
dx = γ

rˆ

0

(
M±

r (u, k)

r

)−t�(s)

sn−1 ds

� γ rn
(
M±

r (u, k)

r

)−t�(r)

+γ t L log
M±

r (u, k)

r

rˆ

0

(
M±

r (u, k)

r

)−t�(s) log log 1
s

log2 1
s

sn−1 ds

� γ rn
(
M±

r (u, k)

r

)−t�(r)

+γ t L log
M±

r (u, k)

r

log log 1
r

log2 1
r

rˆ

0

(
M±

r (u, k)

r

)−t�(s)

sn−1 ds

� γ rn
(
M±

r (u, k)

r

)−t�(r)

+ 1

2

ˆ

Br (x0)

[
w±
r (x, u, k)

]−t
dx,
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provided that γ t L
log log 1

r

log 1
r

� 1

2
, r � M±

r (u, k) � 1, from which the required inequality

follows.
Similarly,

ˆ

Br (x0)

[
w±
r (x, u, k)

]t
dx � γ rn

(
M±

r (u, k)

r

)t�(r)

−γ t L log
M±

r (u, k)

r

rˆ

0

(
M±

r (u, k)

r

)t�(s) log log 1
s

log2 1
s

sn−1 ds

� γ rn
(
M±

r (u, k)

r

)t�(r)(
1 − γ t L

log log 1
r

log 1
r

)
,

from which the left inequality in (2.6) follows, provided that γ t L
log log 1

r

log 1
r

� 1

2
,

r � M±
r (u, k) � 1, which completes the proof of the lemma. 	


In the sequel we also need the following lemma

Lemma 2.3 There exist C1 > 0, κ1 > 1 such that for any u ∈ DG(BR(x0)) and any
ϕ ∈ W0(Br (x0)) the following inequality holds

1

S±
u,k,r (Br (x0))

ˆ

Br (x0)

w±
r (x, u, k) | ϕ |κ1 p̄ dx

� γ

(
r p̄

1

S±
u,k,r (Br (x0))

ˆ

Br (x0)

w±
r (x, u, k) | ∇ϕ | p̄ dx

)κ1

, (2.7)

provided that

1

log log 1
r

+ C1 L
log log 1

r

log 1
r

� 1, and r � M±
r (u, k) � 1. (2.8)

Here

S±
u,k,r (F) :=

ˆ

F

w±
r (x, u, k) dx, F ⊂ R

n .

Proof Inequality (2.7) is a consequence of (2.5), (2.6) and Sobolev embedding theorem.
Indeed, using the Hölder inequality, if 0 < δ <

p̄
p̄+n and 1 < κ1 <

n(1−δ)
n− p̄(1−δ)

, we obtain with

t = n(1−δ)
n(1−δ)−κ1(n− p̄(1−δ))

> 1

123
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ˆ

Br (x0)

w±
r (x, u, k) | ϕ |κ1 p̄ dx

�
( ˆ

Br (x0)

[
w±
r (x, u, k)

]t
dx

) 1
t
( ˆ

Br (x0)

| ϕ |
n p̄(1−δ)
n− p̄(1−δ) dx

)κ1
n− p̄(1−δ)
n(1−δ)

� γ

( ˆ

Br (x0)

[
w±
r (x, u, k)

]t
dx

) 1
t
( ˆ

Br (x0)

| ∇ϕ | p̄(1−δ) dx

) κ1
1−δ

� γ

( ˆ

Br (x0)

[
w±
r (x, u, k)

]t
dx

) 1
t
( ˆ

Br (x0)

[
w±
r (x, u, k)

]− 1−δ
δ dx

) κ1δ

1−δ

×
( ˆ

Br (x0)

w±
r (x, u, k) | ∇ϕ | p̄ dx

)κ1

� γ r p̄κ1
( ˆ

Br (x0)

w±
r (x, u, k) dx

)1−κ1
( ˆ

Br (x0)

w±
r (x, u, k) | ∇ϕ | p̄ dx

)κ1

.

Choosing C1 = t C , we arrive at the required (2.7), which completes the proof of the lemma.
	


2.2 De Giorgi Type Lemma

Let B8r (x0) ⊂ BR(x0) and let μ+
r � ess sup

Br (x0)
u, μ−

r � ess inf
Br (x0)

u, ωr := μ+
r − μ−

r .

Lemma 2.4 Let u ∈ DG(BR(x0))andfix ξ ∈ (
0, 1

2M

)
. Then there existsν ∈ (0, 1)depending

only on n, p̄, q, c1 and M, such that if

S+
u,μ+

r −ξωr ,r

(
Br (x0) : u � μ+

r − ξωr

)
� ν S+

u,μ+
r −ξωr ,r

(Br (x0)), (2.9)

then either

ξ ωr � 4 r , (2.10)

or

u(x) � μ+
r − ξ

4
ωr for a.a. x ∈ Br

2
(x0), (2.11)

provided that

1

log log 1
r

+ C1 L
log log 1

r

log 1
r

� 1, (2.12)

where C1 is the constant defined in Lemma 2.3.
Likewise, if

S−
u,μ−

r +ξωr ,r

(
Br (x0) : u � μ−

r + ξωr

)
� ν S−

u,μ−
r +ξωr ,r

(Br (x0)), (2.13)
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then either (2.10) holds, or

u(x) � μ−
r + ξ

4
ωr for a.a. x ∈ Br

2
(x0), (2.14)

provided that (2.12) is valid.

Proof We provide the proof of (2.11), while the proof of (2.14) is completely similar. For

j = 0, 1, 2, . . . we set r j := r

2
(1 + 2− j ), k j := μ+

r − ξ

2
ωr − ξ ωr2− j−1, let ζ j (x) ∈

C∞
0 (Br j (x0)), 0 � ζ j (x) � 1, ζ j (x) = 1 for x ∈ Br j+1(x0) and set A j := Br j (x0) ∩ {u �

k j }. Further we will assume that sup
B r
2
(x0)

(u − k∞)+ � ξ

4
ωr , because otherwise inequality

(2.11) is evident. We note that

γ −1 w+
r j (x, u, k j ) � w+

r (x, u, μ+
r − ξωr ) � γw+

r j (x, u, k j ), x ∈ Br j (x0).

If (2.10) is violated, then condition (2.8) holds due to (2.12) and the choice of ξ , r j �
sup
Br j

(u − k j )+ � 1. So, by Lemma 2.3 and inequality (2.1) we have

(k j − k j+1)
p̄ S+

u,μ+
r −ξωr ,r

(A j+1)

� γ 2 jγ
ˆ

Br j (x0)

w+
r j (x, u, k j ) (u − k j )

p̄
+ζ

q
j dx

� γ 2 jγ
( ˆ

Br j (x0)

w+
r j (x, u, k j )

(
(u − k j )

p̄
+ζ

q
j

)κ1 dx

) 1
κ1 [

S+
u,μ+

r −ξωr ,r
(A j )

]1− 1
κ1

� γ 2 jγ [
S+
u,μ+

r −ξωr ,r
(Br (x0))

] 1
κ1

−1
r p̄

×
ˆ

Br j (x0)

w+
r j (x, u, k j ) | ∇(

(u − k j )+ζ
q
j

) |p dx
[
S+
u,μ+

r −ξωr ,r
(A j )

]1− 1
κ1

� γ 2 jγ (
ξωr

) p̄ [
S+
u,μ+

r −ξωr ,r
(Br (x0))

] 1
κ1

−1 [
S+
u,μ+

r −ξωr ,r
(A j )

]2− 1
κ1 ,

which implies

y j+1 :=
S+
u,μ+

r −ξωr ,r
(A j+1)

S+
u,μ+

r −ξωr ,r
(Br (x0))

� γ 2 jγ y
2− 1

κ1
j ,

from which by standard arguments (see e.g. [32]) the required (2.11) follows, provided that
ν is chosen to satisfy ν � γ −1. This completes the proof of the lemma. 	


2.3 Expansion of the Positivity

To prove our next result we need the following lemma.
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Lemma 2.5 Let k < l, 0 < δ < 1 − 1
p̄ , u ∈ DG(BR(x0)), ϕ ∈ W 1, p̄(1−δ)(Br (x0)), then

(l − k)
S+
u,l,r (A

+
l,r )

S+
u,l,r (Br (x0))

| A−
k,r |

| Br (x0) | � γ r1−
n

p̄(1−δ)

( ˆ

A+
k,r \A+

l,r

| ∇ϕ | p̄(1−δ) dx

) 1
p̄(1−δ)

, (2.15)

(l − k)
S+
u,k,r (A

−
k,r )

S+
u,k,r (Br (x0))

| A+
l,r |

| Br (x0) | � γ r1−
n

p̄(1−δ)

( ˆ

A−
l,r \A−

k,r

| ∇ϕ | p̄(1−δ) dx

) 1
p̄(1−δ)

, (2.16)

provided that

1

log log 1
r

+ L C

p̄(1 − δ) − 1

log log 1
r

log 1
r

� 1, and r � M+
r (u, l), M−

r (u, k) � 1, (2.17)

here C > 1 is the constant, defined in Lemma 2.2.

Proof Let {v}r = ffl
Br (x0)

v dx . Using the Poincare inequality and inequality (2.3) with t =
1

p̄(1−δ)−1 we get
ˆ

Br (x0)

w+
r (x, u, l) | v − {v}r | dx

� γ

( ˆ

Br (x0)

[
w+
r (x, u, l)

] p̄(1−δ)
p̄(1−δ)−1 dx

)1− 1
p̄(1−δ)

( ˆ

Br (x0)

| v − {v}r | p̄(1−δ) dx

) 1
p̄(1−δ)

� γ r1−
n

p̄(1−δ) S+
u,l,r (Br (x0))

( ˆ

Br (x0)

| ∇v | p̄(1−δ) dx

) 1
p̄(1−δ)

.

Take v = 0, if ϕ < k, v = ϕ − k, if k < ϕ < l, v = l − k, if ϕ > l. We evidently have

{v}r � (l − k)
| A+

k,r |
| Br (x0) | , hence

ˆ

Br (x0)

w+
r (x, u, l) | v − {v}r | dx � (l − k)

(
1 − | A+

k,r |
| Br (x0) |

) ˆ

A+
l,r

w+
r (x, u, l) dx,

from which the required inequality (2.15) follows. The proof of (2.16) is completely similar.
	


Lemma 2.6 (Expansion of the Positivity) Let u ∈ DG(BR(x0)), fix ξ ∈ (0, 1
2M ) and assume

that with some α ∈ (0, 1) there holds

| {x ∈ Br (x0) : u(x) � μ+ − ξ ωr } |� (1 − α) | Br (x0) | . (2.18)

Then there exists number s∗ depending only on n, p̄, q, c1, M, α and ξ such that either

ωr � 2s∗+1 r , (2.19)

or

u(x) � μ+ − 2−s∗−1 ωr for a.a. x ∈ Br
2
(x0), (2.20)
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provided that

1

log log 1
r

+ L (s∗ + 1)
log log 1

r

log 1
r

� 1. (2.21)

Likewise, if

| {x ∈ Br (x0) : u(x) � μ− + ξ ωr } |� (1 − α) | Br (x0) |, (2.22)

then there exists number s∗ depending only on n, p̄, q, c1, M, α and ξ , such that either (2.19)
holds or

u(x) � μ− + 2−s∗−1 ωr for a.a. x ∈ Br
2
(x0), (2.23)

provided that (2.21) holds.

Proof We provide the proof of (2.20), while the proof of (2.23) is completely similar. We set

ks := μ+
r − ωr

2s
, s = [

log 1
ξ

] + 1, . . . , s∗ − 1, where s∗ is large enough to be chosen later,

[a] denotes the integer part of a number a. We will assume that sup
B r
2
(x0)

(u − ks∗)+ � ωr

2s∗+1 ,

since otherwise inequality (2.20) is evident. If inequality (2.19) is violated, then Lemma 2.6
with l = ks+1 and k = ks yields

ωr

2s+1

S+
u,ks+1,r

(A+
ks+1,r

)

S+
u,ks+1,r

(Br (x0))
� γ (α) r1−

n
p̄(1−δ)

( ˆ

A+
ks ,r

\A+
ks+1,r

| ∇u | p̄(1−δ) dx

) 1
p̄(1−δ)

� γ (α) r1−
n

p̄(1−δ)

( ˆ

A+
ks ,r

\A+
ks+1,r

[
w+
r (x, u, ks)

]− 1−δ
δ dx

) δ
p̄(1−δ)

×
( ˆ

A+
ks ,r

w+
r (x, u, ks) | ∇u | p̄ dx

) 1
p̄

.

From this, by inequality (2.1) we obtain

S+
u,ks+1,r

(A+
ks+1,r

)

S+
u,ks+1,r

(Br (x0))

� γ (α) r− n
p̄(1−δ)

( ˆ

A+
ks ,r

\A+
ks+1,r

[
w+
r (x, u, ks)

]− 1−δ
δ dx

) δ
p̄(1−δ) [S+

u,ks ,r
(B2r (x0))]

1
p̄ .

By our choice and (2.21) we have

(
M+

r (u, ks)

M+
r (u, ks∗)

)�(|x−x0|)
� 2(s∗+1−s)�(|x−x0|) � 2

L(s∗+1)
log log 1

r
log 1

r � 2, x ∈ Br (x0),
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therefore S+
u,ks+1,r

(A+
ks+1,r

) � γ −1S+
u,ks∗ ,r (A

+
ks∗ ,r ) and S

+
u,ks+1,r

(Br (x0))+S+
u,ks ,r

(B2r (x0)) �
γ S+

u,ks∗ ,r (Br (x0)), s = [
log 1

ξ

] + 1, . . . , s∗ − 1, so from the previous relation we have

[S+
u,ks∗ ,r (A

+
ks∗ ,r )]

p̄(1−δ)
δ

� γ (α)r− n
δ [S+

u,ks∗ ,r (Br (x0))]( p̄+1) 1−δ
δ

ˆ

A+
ks ,r

\A+
ks+1,r

[
w+
r (x, u, ks∗)

]− 1−δ
δ dx .

Summing up these inequalities over s = [
log 1

ξ

] + 1, . . . , s∗ − 1, we conclude that

(
s∗ −

[
log

1

ξ

]
− 1

)
[S+

u,ks∗ ,r (A
+
ks∗ ,r )]

p̄(1−δ)
δ

� γ (α)r− n
δ [S+

u,ks∗ ,r (Br (x0))]( p̄+1) 1−δ
δ

ˆ

Br (x0)

[
w+
r (x, u, ks∗)

]− 1−δ
δ dx .

Using inequality (2.2) from the last inequality we arrive at

S+
u,ks∗ ,r (A

+
ks∗ ,r ) � γ (α)

(
s∗ −

[
log

1

ξ

]
− 1

)− δ
p̄(1−δ)

S+
u,ks∗ ,r (Br (x0)).

Choosing s∗ by the condition γ (α)
(
s∗ −

[
log 1

ξ

]
− 1

)− δ
p̄(1−δ) = ν and using Lemma 2.4 we

obtain (2.20), which proves Lemma 2.6. 	


2.4 Proof of Theorems 1.1, 2.1

To complete the proof of Theorems 1.1 and 2.1 we fix R by the condition

1

log log 1
R

+ L (s∗ + 1)
log log 1

R

log 1
R

� 1,

where s∗ is the number defined in Lemma 2.6, and assume that the following two alternative
cases are possible:

|
{
x ∈ Br (x0) : u(x) � μ+

r − ωr

2s0

}
|� 1

2
| Br (x0) |, s0 � 2 + [logM],

or

|
{
x ∈ Br (x0) : u(x) � μ−

r + ωr

2s0

}
|� 1

2
| Br (x0) |

for any 0 < r < ρ < R. Assume, for example, the first one holds. Then by Lemma 2.6 we
obtain

ω r
2

�
(
1 − 2−s∗−1) ωr + 2s∗+1r .

Iterating this inequality, we have

ωr � γ M

(
r

ρ

)β

+ γ ρ, β = β(s∗) ∈ (0, 1).

This completes the proof of Theorems 1.1 and 2.1.
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3 Upper and lower estimates of auxiliary solutions

In this Section we prove upper and lower bounds for auxiliary solutions v := v(x,m) to the
problem

divA(x,∇v) = 0, x ∈ D := B16ρ(x0) \ E, E ⊂ Bρ(x0),

v − mψ ∈ W0(D),

where 0 < m � M is some fixed number, and ψ ∈ W0(B16ρ(x0)), ψ = 1 on E . The
existence of the solutions v follows from the general theory of monotone operators. We will
assume that the following integral identity holds:

ˆ
D
A(x,∇v)∇ϕ dx = 0 for any ϕ ∈ W0(D). (3.1)

Testing (3.1) by ϕ = (v − m)+ and by ϕ = v− and using condition (1.9), we obtain that
0 � v � m � M .

For ρ < ρ1 < ρ2 � 16ρ we set:

K (ρ1, ρ2) := Bρ2(x0) \ Bρ1(x0), M̂ρ1(v) := sup
K (ρ1,16ρ)

v,

ŵρ1(x, v) :=
(
1 + M̂ρ1(v)

ρ1

)�(|x−x0|)
, Ŝv(K (ρ1, ρ2)) :=

ˆ

K (ρ1,ρ2)

ŵρ1(x, v) dx .

Note that similarly to (2.5), (2.6), for all ρ1 ∈ (ρ, 16ρ) there hold

γ −1
(
1 + M̂ρ1(v)

ρ1

)−t�(16ρ)

�
 

K (ρ1,16ρ)

[
ŵρ1(x, v)

]−t
dx

� γ

(
1 + M̂ρ1(v)

ρ1

)−t�(16ρ)

, t > 0, (3.2)

γ −1
(
1 + M̂ρ1(v)

ρ1

)t�(16ρ)

�
 

K (ρ1,16ρ)

[
ŵρ1(x, v)

]t
dx

� γ

(
1 + M̂ρ1(v)

ρ1

)t�(16ρ)

, t > 0, (3.3)

provided that

1

log log 1
16ρ

+ t C̄ L log
(
1 + M

ρ

) log log 1
16ρ

log2 1
16ρ

� 1, (3.4)

where C̄ = max(C,C1) and C , C1 are the constants defined in Lemmas 2.2, 2.3. Therefore
Lemmas 2.2, 2.3 continue to hold in K (ρ1, 16ρ) with w±

r (x, u, k) replaced by ŵρ1(x, v).
To formulate our results, we need the notion of the capacity. Let E ⊂ Br (x0) ⊂ Bρ(x0)

and for any m > 0 set

Cp(·)(E, B16ρ(x0);m) := 1

m
inf

ϕ∈M(E)

ˆ

B16ρ(x0)

| m∇ϕ |p(x) dx,
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where the infimum is taken over the setM(E) of all functions ϕ ∈ W0(B16ρ(x0))with ϕ � 1
on E . Ifm = 1, this definition leads to the standard definition ofCp(·)(E, B16ρ(x0)) capacity
(see, e.g. [3]).

3.1 Upper bound for the function v

We note that in the standard case (i.e. if L = 0) the upper bound for the function v was
proved in [42] (see also [43, Chap.8, Sec. 3], [44]).

Lemma 3.1 There exists positive number γ1 depending only on the data such that if

ρ
Cp(·)(E, B16ρ(x0),m)

Ŝv

(
K

( 3
2ρ, 16ρ

)) � 1, (3.5)

then

γ −1
(

ρ p̄ Cp(·)(E, B16ρ(x0),m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1

� M̂ 3
2 ρ(v)

� γ

(
ρ p̄ Cp(·)(E, B16ρ(x0),m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1

, (3.6)

provided that

1

log log 1
16ρ

+ γ1 L
log log 1

16ρ

log 1
16ρ

� 1. (3.7)

Proof First, we prove inequality on the right-hand side of (3.6). Fix σ ∈ (0, 1/4) and for any
s ∈ (5/4ρ, 2ρ(1 − σ)), j = 0, 1, 2, .... set ρ(1)

j := s(1 + σ − σ2− j ),

K j := K (ρ
(1)
j , 16ρ), k j := k − k 2− j , k > 0, A j := K j ∩ {v > k j }, Mj := sup

K j

v and

let ζ j ∈ C∞(B16ρ(x0)), 0 � ζ j � 1, ζ j = 0 in B
ρ

(1)
j

(x0), ζ j = 1 in K j+1, | ∇ζ j |�
γ 2 j

(
σρ

)−1. Further, we will assume that

M̂ 3
2 ρ(v) � 3

2
ρ,

since otherwise, by (3.5) inequality (3.6) is evident, moreover this inequality yields

(
M̂ρ1(v)

ρ1

)�(|x−x0|)
� ŵρ1(x, v) � γ

(
M̂ρ1(v)

ρ1

)�(|x−x0|)
, x ∈ D.

Testing (3.1) by ϕ = (v − k j+1)+ ζ
q
j and using the Young inequality we obtain

ˆ

K j∩{v>k j+1}
| ∇v |p(x) ζ

q
j dx

� γ σ−γ 2 jγ ρ− p̄
ˆ

A j

(
Mj

ρ
(1)
j

)�(|x−x0|)
(v − k j )

p̄
+ dx
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� γ σ−γ 2 jγ ρ− p̄
ˆ

A j

(
M0

ρ
(1)
0

)�(|x−x0|)
(v − k j )

p̄
+ dx

= γ σ−γ 2 jγ ρ− p̄
ˆ

A j

ŵ
ρ

(1)
0

(x, v) (v − k j )
p̄
+ dx .

Using again the Young inequality, assuming that k > ε0 M0, where ε0 ∈ (0, 1) is small
enough, from the previous we have

ˆ

K j∩{v>k j+1}
ŵ

ρ
(1)
0

(x, v) | ∇v | p̄ ζ
q
j dx

� γ

(
M0

ρ
(1)
0

) p̄ ˆ

K j∩{v>k j+1}
ŵ

ρ
(1)
0

(x, v) dx

+ γ σ−γ 2 jγ ρ− p̄
ˆ

A j

ŵ
ρ

(1)
0

(x, v)(v − k j )
p̄
+ dx

� γ σ−γ 2 jγ
(
M0

ρ k

) p̄ ˆ

A j

ŵ
ρ

(1)
0

(x, v)(v − k j )
p̄
+ dx

+ γ σ−γ 2 jγ ρ− p̄
ˆ

A j

ŵ
ρ

(1)
0

(x, v)(v − k j )
p̄
+ dx

� γ ε
−γ
0 σ−γ 2 jγ ρ− p̄

ˆ

A j

ŵ
ρ

(1)
0

(x, v)(v − k j )
p̄
+ dx .

Choose γ1 > 0 large enough, by our assumption Lemma 2.3 is applicable, therefore from
this we obtain

y j+1 :=
ˆ

A j+1

ŵ
ρ

(1)
0

(x, v)(v − k j+1)
p̄
+ dx

� γ ε
−γ
0 σ−γ 2 jγ

[
Ŝv

(
K

(
ρ

(1)
0 , 16ρ

))]−(1− 1
κ1

)
( ˆ

A j+1

ŵ
ρ

(1)
0

(x, v) dx

)1− 1
κ1

×
ˆ

A j

ŵ
ρ

(1)
0

(x, v)(v − k j )
p̄
+ dx � γ ε

−γ
0 σ−γ 2 jγ

[
Ŝv

(
K

(
ρ

(1)
0 , 16ρ

))]−(1− 1
κ1

)

× k
− p̄(1− 1

κ1
)
y
2− 1

κ1
j , j = 0, 1, 2, ...

Hence, setting Mσ := M∞, by standard arguments (see, e.g. [32]) and by our choice, we
arrive at

M p̄
σ � ε

p̄
0 M p̄

0 + γ ε
−γ
0 σ−γ

[
Ŝv

(
K

(
ρ

(1)
0 , 16ρ

))]−1
ˆ

K (ρ
(1)
0 ,16ρ)

ŵ
ρ

(1)
0

(x, v) v p̄ dx . (3.8)
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Let us estimate the second term on the right-hand side of (3.8). For this we set vM0 :=
min{v, M0}, by Lemma 2.3 we have for any ε ∈ (0, 1)

ˆ

K (ρ
(1)
0 ,16ρ)

ŵ
ρ

(1)
0

(x, v)v p̄dx =
ˆ

K (ρ
(1)
0 ,16ρ)

ŵ
ρ

(1)
0

(x, v)v
p̄
M0

dx

� γρ p̄
ˆ

K (ρ
(1)
0 ,16ρ)

ŵ
ρ

(1)
0

(x, v) | ∇vM0 | p̄ dx

� ε σγ ρ p̄

γ

ˆ

K (ρ
(1)
0 ,16ρ)

[ŵ
ρ

(1)
0

(x, v)] p(x)
p(x)−p dx

+ γρ p̄

εγ σ γ

ˆ

D
| ∇vM0 |p(x) dx

= ε σγ

γ
M p̄

0 Ŝv

(
K

(
ρ

(1)
0 , 16ρ

)) + γρ p̄

εγ σ γ

ˆ

D
| ∇vM0 |p(x) dx .

Collecting the last two inequalities we obtain

M p̄
σ � (ε

p̄
0 + ε

ε
γ
0

) M p̄
0 + γρ p̄

ε
γ
0 εγ σ γ

[
Ŝv

(
K

(
ρ

(1)
0 , 16ρ

))]−1
ˆ

D
| ∇vM0 |p(x) dx . (3.9)

Let us estimate the second term on the right-hand side of (3.9). Let ψ ∈ M(E) be such
that

1

m

ˆ

B16ρ(x0)

| m ∇ψ |p(x) dx

� Cp(·)(E, B16ρ(x0);m) + ρn � Cp(·)(E, B16ρ(x0);m) + γ Ŝv

(
K

(
ρ

(1)
0 , 16ρ

))
.

Testing identity (3.1) by ϕ = v − mψ , by the Young inequality we obtain

ˆ

D
| ∇v |p(x) dx � γ

ˆ

B16ρ(x0)

| m∇ψ |p(x) dx

� γm
(
Cp(·)(E, B16ρ(x0);m) + Ŝv

(
K

(
ρ

(1)
0 , 16ρ

)))
.

Testing (3.1) by ϕ = vM0 − M0

m
v, using the Young inequality and the previous inequality,

we have
ˆ

D
| ∇vM0 |p(x) dx � γ

M0

m

ˆ

D
| ∇v |p(x) dx

� γ M0

(
Cp(·)(E, B16ρ(x0);m) + Ŝv

(
K

(
ρ

(1)
0 , 16ρ

)))
.
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This inequality, the Young inequality and (3.9) imply that

M p̄
σ � (ε

p̄
0 + ε

ε
γ
0

) M p̄
0 + γ ε

−γ
0 ε−γ σ−γ M0

(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

(
ρ

(1)
0 , 16ρ

)) + ρ p̄
)

� (2ε p̄
0 + ε

ε
γ
0

) M p̄
0 + γ ε

−γ
0 ε−γ σ−γ

{(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) p̄

p̄−1 + ρ p̄
}
,

Iterating the last inequality, choosing ε0 and then ε = ε(ε0) small enough, by (3.5) we arrive
at

M̂ 3
2 ρ(v) � γ

(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1 + γ ρ

� γ

(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1

,

which completes the proof of the lemma.
Now we prove inequality on the left-hand side of (3.6). Let ζ1 ∈ C∞

0 (B4ρ(x0)), 0 �
ζ1 � 1, ζ1 = 1 in B2ρ(x0), | ∇ζ1 |� γ

ρ
. Testing (3.1) by ϕ = v − m ζ

q
1 , using the Young

inequality, we obtain for any ε1 > 0ˆ

D
| ∇v |p(x) dx � γ

m

ρ

ˆ

K (2ρ,4ρ)

| ∇v |p(x)−1 ζ
q−1
1 dx

� γ
m

ε1ρ

ˆ

K (2ρ,4ρ)

| ∇v |p(x) dx + γ
m

ρ

ˆ

K (2ρ,4ρ)

ε
p(x)−1
1 dx .

Let ζ2 ∈ C∞
0 (K ( 32ρ, 6ρ)), 0 � ζ2 � 1, ζ2 = 1 in K (2ρ, 4ρ), | ∇ζ2 |� γ

ρ
. Testing (3.1) by

ϕ = v ζ
q
2 and using the Young inequality, we estimate the first term on the right-hand side

of the previous inequality as follows:
ˆ

K (2ρ,4ρ)

| ∇v |p(x) dx � γ

ˆ

K ( 32 ρ,6ρ)

(
v

ρ

)p(x)

dx � γ

ρ p̄

ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v) v p̄ dx .

Combining the last two inequalities and using the definition of capacity, we obtain

Cp(·)(E, B16ρ(x0);m) � 1

m

ˆ

D
| ∇v |p(x) dx

� γ

ε1ρ p̄+1

ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v) v p̄ dx + γ

ρ

ˆ

K (2ρ,4ρ)

ε
p(x)−1
1 dx .

(3.10)

Choose ε1 from the condition ε1 =
M̂ 3

2 ρ(v)

ρ
, then inequality (3.10) yields

Cp(·)(E, B16ρ(x0);m) � γ Ŝv

(
K

(3
2
ρ, 16ρ

)) M̂ 3
2 ρ(v) p̄−1

ρ p̄
,
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from which the required inequality follows, this completes the proof of the lemma. 	


3.2 Lower bound for the function v

Further we need the following lemma.

Lemma 3.2 Let condition (3.5) holds, then there exists ε ∈ (0, 1) depending only on the data
such that

ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v)χ

[
v � ε

(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1
]
dx

� γ −1 Ŝv

(
K

(3
2
ρ, 16ρ

)
)

, (3.11)

provided that inequality (3.7) holds, here χ[F] is the characteristic function of the set F.

Proof To prove (3.11) we use inequality (3.10). Choose ε1 from the condition ε1 =
ε̄1

M̂ 3
2 ρ(v)

ρ
, ε̄1 ∈ (0, 1), then by Lemma 3.1 the terms on the right-hand side of (3.10)

are estimated as follows

γ

ρ

ˆ

K (2ρ,4ρ)

ε
p(x)−1
1 dx � γ

ε̄1

ρ p̄
M̂ 3

2 ρ(v) p̄−1 Ŝv

(
K

(3
2
ρ, 16ρ

))

� γ ε̄1Cp(·)(E, B16ρ(x0);m). (3.12)

Similarly, by Lemma 3.1

γ

ε1ρ p̄

ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v) v p̄ dx

� γ
ε p̄

ε̄1
Cp(·)(E, B16ρ(x0);m)

+γ
Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))

×
ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v)χ

[
v � ε

(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1
]
dx . (3.13)

Collecting estimates (3.10), (3.12), (3.13) we obtain

Cp(·)(E, B16ρ(x0);m) �
(
γ ε̄1 + γ

ε p̄

ε̄1

)
Cp(·)(E, B16ρ(x0);m)

+γ
Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))

×
ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v)χ

[
v � ε

(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1
]
dx .
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Choosing ε̄1 by the condition γ ε̄1 = 1

4
and then choosing ε by the condition γ

ε p̄

ε̄1
= 1

4
,

from the previous we arrive at

ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v)χ

[
v � ε

(
ρ p̄ Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

))
) 1

p̄−1
]
dx � γ −1 Ŝv

(
K

(3
2
ρ, 16ρ

)
)

,

which completes the proof of the lemma. 	

The following lemma is the main result of this Section

Lemma 3.3 There exists ε̄ ∈ (0, 1) depending only on the data such that either

ε̄m

( | E |
| Bρ(x0) |

) 1
p̄−1

� ρ, (3.14)

or

| {
K

(3
2
ρ, 16ρ

) : v � ε̄m

( | E |
| Bρ(x0) |

) 1
p̄−1 } |� γ −1 | K (

3

2
ρ, 16ρ) |, (3.15)

provided that inequality (3.7) holds.

Proof Lemma 3.3 is a consequence of Lemma 3.2, for this we first estimate the capacity of
the set E from below. Let ϕ ∈ W0(B16ρ(x0)), ϕ = 1 on E , then by Lemmas 2.2, 2.3, 3.1
and using the evident inequalities γ −1 Ŝv

(
K

( 3
2ρ, 16ρ

))
�

´
B16ρ(x0)

ŵ 3
2 ρ(x, v) dx �

γ Ŝv

(
K

( 3
2ρ, 16ρ

))
we have

m p̄ | E | � m p̄
ˆ

B16ρ(x0)

ϕ p̄ dx

�
( ˆ

B16ρ(x0)

ŵ 3
2 ρ(x, v) | (mϕ) | p̄κ1 dx

) 1
κ1

( ˆ

B16ρ(x0)

[ŵ 3
2 ρ(x, v)]− 1

κ1−1 dx

)1− 1
κ1

� γ ρ p̄ [Ŝv

(
K

(3
2
ρ, 16ρ

))] 1
κ1

−1
( ˆ

B16ρ(x0)

[ŵ 3
2 ρ(x, v)]− 1

κ1−1 dx

)1− 1
κ1

×
ˆ

B16ρ(x0)

ŵ 3
2 ρ(x, v) | ∇(mϕ) | p̄ dx

� γ
ρ p̄+n

Ŝv

(
K

( 3
2ρ, 16ρ

))
ˆ

B16ρ(x0)

ŵ 3
2 ρ(x, v) | ∇(mϕ) | p̄ dx � γ

ρ p̄+n

Ŝv

(
K

( 3
2ρ, 16ρ

))

×
( ˆ

B16ρ(x0)

ŵ 3
2 ρ(x, v)

(
1 +

M̂ 3
2 ρ(v)

ρ

) p̄

dx +
ˆ

B16ρ(x0)

| ∇(mϕ) |p(x) dx

)

� γρ p̄+n + γ m
ρ p̄+n

Ŝv

(
K

( 3
2ρ, 16ρ

)) Cp(·)(E, B16ρ(x0),m)
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+γ
ρ p̄+n

Ŝv

(
K

( 3
2ρ, 16ρ

))
ˆ

B16ρ(x0)

| ∇(mϕ) |p(x) dx . (3.16)

Since ϕ is arbitrary, estimate (3.16) yields

m p̄ | E |� γρ p̄+n + γ m
ρ p̄+n

Ŝv

(
K

( 3
2ρ, 16ρ

)) Cp(·)(E, B16ρ(x0),m).

If inequality (3.14) is violated then

m p̄ | E |
| Bρ(x0) | � m p̄

( | E |
| Bρ(x0) |

) p̄
p̄−1

�
(

ρ

ε̄

) p̄

,

so, if ε̄ is sufficiently small, from the previous we arrive at

ρ p̄

Ŝv

(
K

( 3
2ρ, 16ρ

)) Cp(·)(E, B16ρ(x0),m) � γ −1 m p̄−1 | E |
| Bρ(x0) | .

And hence

ρ
Cp(·)(E, B16ρ(x0);m)

Ŝv

(
K

( 3
2ρ, 16ρ

)) � γ − p̄ ρ1− p̄m p̄−1 | E |
| Bρ(x0) | � γ − p̄ ε̄− p̄ � γ0,

provided that (3.14) is violated and ε̄ is sufficiently small. Now we use Lemma 3.2 for this

we set F := {
K ( 32ρ, 16ρ) : v � ε̄m

( | E |
| Bρ(x0) |

) 1
p̄−1 }

. We have by Lemmas 2.2 and 3.2

γ −1 � Ŝv

(
K

(3
2
ρ, 16ρ

))−1 ˆ

K ( 32 ρ,16ρ)

ŵ 3
2 ρ(x, v)χ(F) dx

� | F | 12
Ŝv

(
K

( 3
2ρ, 16ρ

))
( ˆ

K ( 32 ρ,16ρ)

[ŵ 3
2 ρ(x, v)]2 dx

) 1
2

� γ

( | F |
| K ( 32ρ, 16ρ) |

) 1
2

,

which completes the proof of the lemma. 	


4 Harnack’s inequality, proof of Theorems 1.2 and 1.3

4.1 Weak Harnack inequality, proof of Theorem 1.2

For 0 < s < M set E(ρ, s) := {
Bρ(x0) : u � s

}
.As it wasmentioned in Sect. 1 Theorem1.2

is a simple consequence of the following lemma

Lemma 4.1 Let u be a non-negative bounded super-solution to equation (1.1) in � and let
condition (1.9) be fulfilled, then there exist positive numbers C2,C3 depending only on the
data such that

| E(ρ, s) |� C2 | Bρ(x0) | s1− p̄ (
ρ + inf

B ρ
2

(x0)
u
) p̄−1

, (4.1)
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provided that B16ρ(x0) ⊂ � and

1

log log 1
16ρ

+ C3 L
log log 1

16ρ

log 1
16ρ

� 1. (4.2)

Proof We construct the solution v of the problem (3.1) in D = B16ρ(x0) \ E(ρ, s), since
u � v on ∂D, by (1.9) u � v in D. First we use Lemma 3.3, if inequality (3.14) is violated,
i.e. if

ε̄ s

( | E(ρ, s) |
| Bρ(x0) |

) 1
p̄−1

� ρ, (4.3)

by Lemma 3.3 there holds

| {
B16ρ(x0) : u � ε̄ s

( | E(ρ, s) |
| Bρ(x0) |

) 1
p̄−1 } |

� | {
K (

3

2
ρ, 16ρ) : u � ε̄m

( | E(ρ, s) |
| Bρ(x0) |

) 1
p̄−1 } |

� | {
K (

3

2
ρ, 16ρ) : v � ε̄ s

( | E(ρ, s) |
| Bρ(x0) |

) 1
p̄−1 } |� γ −1 | B16ρ(x0) |,

provided that

1

log log 1
16ρ

+ γ1 L
log log 1

16ρ

log 1
16ρ

� 1. (4.4)

Now we use Lemma 2.6 with r = 16ρ, μ− = 0 and ξ ωr = ε̄ s

( | E(ρ, s) |
| Bρ(x0) |

) 1
p̄−1

, we

obtain that

u(x) � 2−s∗−1 s

( | E(ρ, s) |
| Bρ(x0) |

) 1
p̄−1

, x ∈ B8ρ(x0), (4.5)

provided that

1

log log 1
16ρ

+ s∗ L
log log 1

16ρ

log 1
16ρ

� 1. (4.6)

ChoosingC2,C3 sufficiently large, collecting (4.3)–(4.6) we arrive at (4.1), which completes
the proof of the lemma. 	
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To complete the proof of Theorem 1.2 set m(ρ/2) := ρ/2 + inf
B ρ

2
(x0)

u, then by Lemma 4.1

for θ ∈ (0, p̄ − 1) we have

 

Bρ(x0)

uθ dx = θ | Bρ(x0) |−1

∞̂

0

| E(ρ, s) | sθ−1 ds

� mθ (ρ/2) + θ | Bρ(x0) |−1

∞̂

m(ρ/2)

| E(ρ, s) | sθ−1 ds

� mθ (ρ/2) + γ m p̄−1(ρ/2)

∞̂

m(ρ/2)

sθ− p̄ ds � γ

p̄ − 1 − θ
mθ (ρ/2),

provided that

1

log log 1
16ρ

+ C3 L
log log 1

16ρ

log 1
16ρ

� 1,

which completes the proof of Theorem 1.2.

4.2 Proof of Theorem 1.3

The proof of Theorem 1.3 is almost standard.
For fixed σ ∈ (0, 1/8), s ∈ (3/4ρ, 7/8ρ), k > 0 and j = 0, 1, 2, ... set

k j := k − k2− j , ρ j := s(1 − σ + σ2− j ), ρ̄ j := 1

2
(ρ j + ρ j+1), Bj := Bρ j (x0),

B̄ j := Bρ̄ j (x0) and let M0 := sup
B0

u, Mσ := sup
B∞

u. Denote by ζ j a non-negative piece-

wise smooth cutoff function in B̄ j that equals one on Bj+1, such that | ∇ζ j |� γ
2 j

σρ
.

Set also w0(x) :=
(
1 + M0

ρ0

)�(|x−x0|)
and w0(F) := ´

F
w0(x) dx . Evidently, we have

(
M0

ρ0

)�(|x−x0|)
� w0(x) � γ

(
M0

ρ0

)�(|x−x0|)
, if M0 � ρ0.

Note that similarly to (2.5), (2.6) there hold

γ −1
(
1 + M0

ρ0

)−t�(ρ0)

�
 

B0

w−t
0 (x) dx � γ

(
1 + M0

ρ0

)−t�(ρ0)

, t > 0, (4.7)

γ −1
(
1 + M0

ρ0

)t�(ρ0)

�
 

B0

wt
0(x) dx � γ

(
1 + M0

ρ0

)t�(ρ0)

, t > 0, (4.8)

provided that

1

log log 1
ρ0

+ t C̄ L log
(
1 + M

ρ0

) log log 1
ρ0

log2 1
ρ0

� 1, (4.9)
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where C̄ = max(C,C1) and C , C1 are the constants defined in Lemmas 2.2, 2.3. Therefore
Lemmas 2.2, 2.3 continue to hold in B0 with w±

r (x, u, k) replaced by w0(x).
Further we will assume that M0 � ρ0.

Test identity (1.8) by ϕ = (u − k j+1)+ ζ
q
j , then

ˆ

B̄ j

| ∇(u − k j+1)+ |p(x) ζ
q
j dx � γ 2 jγ

ˆ

B̄ j

(
u − k j+1

σρ

)p(x)

+
dx

� γ σ−γ 2 jγ

ρ p

ˆ

Bj

w0(x) (u − k j )
p̄
+ dx .

From this by the Young inequality, assuming that k > ε0 M0, ε0 ∈ (0, 1) is small enough,
we obtain
ˆ

B̄ j

w0(x) | ∇(u − k j+1)+ | p̄ ζ
q
j dx � γ

(
M0

ρ

) p̄ ˆ

B̄ j∩{u>k j+1}
w0(x) dx

+γ σ−γ 2 jγ

ρ p̄

ˆ

Bj

w0(x) (u − k j+1)
p̄
+ dx

� γ σ−γ 2jγ
(
M0

ρ k

) p̄ ˆ

Bj∩{u>k j }
w0(x) (u − k j )

p̄
+ dx

+γ σ−γ 2 jγ

ρ p̄

ˆ

Bj

w0(x) (u − k j+1)
p̄
+ dx

� γ ε
−γ
0 σ−γ 2 jγ

ρ p̄

ˆ

Bj

w0(x) (u − k j+1)
p̄
+ dx,

provided that (4.9) holds. From this similarly to (3.8) we obtain

Mσ � ε
1
p̄
0 M0 + γ ε

−γ
0 σ−γ

(
[w0(B0)]−1

ˆ

B0

w0(x) u
p̄ dx

) 1
p̄

. (4.10)

Let us estimate the second term on the right-hand side of (4.10), using Lemma 2.2 we obtain
for any 0 < θ < p̄ and any ε ∈ (0, 1)

(
[w0(B0)]−1

ˆ

B0

w0(x) u
p̄ dx

) 1
p̄

� M
1− θ

2 p̄
0

(
[w0(B0)]−1

ˆ

B0

w0(x) u
θ
2 dx

) 1
p̄

� εM0 + γ ε−γ

(
[w0(B0)]−1

ˆ

B0

w0(x) u
θ
2 dx

) 2
θ
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� εM0 + γ ε−γ [w0(B0)]− 2
θ

(ˆ

B0

w2
0(x) dx

) 1
θ

(ˆ

B0

uθ dx

) 1
θ

� εM0 + γ ε−γ

(
ρ−n

ˆ

B0

uθ dx

) 1
θ

,

which together with (4.10) yield

Mσ � (ε
1
p̄
0 + ε) M0 + γ ε

−γ
0 ε−γ σ−γ

(
ρ−n

ˆ

B0

uθ dx

) 1
θ

.

Choosing ε0, ε small enough, iterating this inequality and taking into account our choices
we arrive at

sup
Bρ/2(x0)

u � γ

(
ρ−n

ˆ

B0

uθ dx

) 1
θ + γ ρ,

provided that (4.9) is valid. This proves inequality (1.12).
Collecting estimates (1.10), (1.12) with θ = 1

2 ( p̄ − 1), we arrive at

sup
Bρ/2(x0)

u � γ
(

inf
Bρ/2(x0)

u + ρ
)
,

which completes the proof of Theorem 1.3.
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