
Numerical Algorithms (2023) 93:731–764
https://doi.org/10.1007/s11075-022-01437-1

ORIGINAL PAPER

Adaptively restarted block Krylov subspace methods
with low-synchronization skeletons

Kathryn Lund1

Received: 19 August 2022 / Accepted: 8 October 2022
© The Author(s) 2022

Abstract
With the recent realization of exascale performance by Oak Ridge National Lab-
oratory’s Frontier supercomputer, reducing communication in kernels like QR fac-
torization has become even more imperative. Low-synchronization Gram-Schmidt
methods, first introduced in Świrydowicz et al. (Numer. Lin. Alg. Appl. 28(2):e2343,
2020), have been shown to improve the scalability of the Arnoldi method in high-
performance distributed computing. Block versions of low-synchronization Gram-
Schmidt show further potential for speeding up algorithms, as column-batching
allows for maximizing cache usage with matrix-matrix operations. In this work,
low-synchronization block Gram-Schmidt variants from Carson et al. (Linear Alge-
bra Appl. 638:150–195, 2022) are transformed into block Arnoldi variants for use
in block full orthogonalization methods (BFOM) and block generalized minimal
residual methods (BGMRES). An adaptive restarting heuristic is developed to han-
dle instabilities that arise with the increasing condition number of the Krylov basis.
The performance, accuracy, and stability of these methods are assessed via a flexi-
ble benchmarking tool written in MATLAB. The modularity of the tool additionally
permits generalized block inner products, like the global inner product.

Keywords Gram-Schmidt · Krylov subspace methods · Arnoldi method ·
Block methods · Stability · Loss of orthogonality · Low-synchronization methods ·
High-performance computing · Communication-avoiding methods

Mathematics Subject Classification (2010) 65F10 · 65F25 · 65F50 · 15-04

� Kathryn Lund
lund@mpi-magdeburg.mpg.de

1 Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of
Complex Technical Systems, Sandtorstr. 1, Magdeburg, 39106, Germany

/ Published online: 28 December 2022 

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01437-1&domain=pdf
mailto: lund@mpi-magdeburg.mpg.de


Numerical Algorithms (2023) 93:731–764

1 Introduction andmotivation

Oak Ridge National Laboratory reported in May 2022 that its Frontier supercom-
puter is the first machine to have achieved true exascale performance.1 That is, for
the first time ever, a supercomputer performed more than 1 exaflop (i.e., 1018 double-
precision floating-point operations) in a single second. This astounding development
is clear motivation for our work. Exascale computing is no longer a next-generation
dream; it is reality, and the need for highly parallelized algorithms that take full
advantage of exaflop computational potential while reducing global communication
between nodes is urgent.

To this end we build on the low-synchronization (“low-sync”) Gram-Schmidt
methods of Barlow [1], Świrydowicz et al. [2], Yamazaki et al. [3], Thomas et al. [4],
and Bielich et al. [5], as well as our own earlier work with block versions of these
methods [6, 7]. Gram-Schmidt methods are an essential backbone in orthogonaliza-
tion routines like QR factorization and in iterative methods like Krylov subspace
methods for linear systems, matrix functions, and matrix equations [8–10]. Block
Krylov subspace methods in particular make better use of L3 cache via matrix-matrix
operations and feature often in communication-avoiding Krylov subspaces, such as
s-step [11, 12], enlarged methods [13], and randomized methods [14].

As in most realms of life, there is no such thing as a free lunch here. While low-
sync variations have the potential to speed up highly parallelized implementations
of Gram-Schmidt [3], they introduce new floating-point errors and thus potential
instability, due to the reformulation of inner products and normalizations. Instability
surfaces in the loss of orthogonality between basis vectors and can lead to break-
downs or wildly inaccurate approximations in downstream applications [15, 16].
Stability bounds for some low-sync variants have been established, but it often takes
much longer to carry out a rigorous stability analysis than to derive and deploy new
methods [1, 4, 6, 7]. It can also happen that a backward error bound is established
and later challenged by an obscure edge case [17, 18]. With this tension in mind, we
have not only extended low-sync variants of block Gram-Schmidt to block Arnoldi
but also developed a benchmarking tool for the community to explore the efficiency,
stability, and accuracy of these new algorithms, in a similar vein as the BlockStab2

comparison tool developed in tandem with a recent block Gram-Schmidt survey [7].
We refer to this new tool as LowSyncBlockArnoldi3 and encourage the reader to
explore the tool in parallel with the text.

Established in this earlier work is the fact that block variants of low-sync Gram-
Schmidt are less stable than their column-wise counterparts. However, when these
skeletons are transferred to block Arnoldi and used to solve linear systems, we
gain the option to restart the process. Restarting can be effective at mitigating
stability issues in communication-avoiding algorithms [19, 20]. As long as each
node redundantly computes residual or error estimates and checks the stability via

1http://www.top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/. Accessed 8 August 2022.
2https://github.com/katlund/BlockStab
3https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi

732

http://www.top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/
https://github.com/katlund/BlockStab
https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi


Numerical Algorithms (2023) 93:731–764

local quantities, restarting does not introduce additional synchronization points.
Furthermore, adaptive restarting allows for robustness, as we can use basic look-
ahead heuristics to foresee a breakdown and salvage progress without giving up
completely at the first sign of trouble.

Given the modularity of our framework, we are also able to treat generalized block
inner products, as described in [21, 22]. We focus in particular on the classical and
global inner products.

The paper is organized as follows. In Section 2 we summarize terms, definitions,
and concepts from high-performance (HPC) computing, generalized block inner
products, block Gram-Schmidt algorithms, and block Krylov subspace methods with
static restarting. We present new low-synchronization block Arnoldi skeletons in
Section 3, and derive an adaptive restarting heuristic in Section 4. Section 5 features
a more in-depth discussion of the LowSyncBlockArnoldi benchmarking tool as
well as examples demonstrating how to compare different block Arnoldi variants. We
summarize our findings in Section 6.

2 Background

This work is a combination of the generalized inner product framework of Frommer,
Lund, and Szyld [21, 22] and the skeleton-muscle framework for block Gram-
Schmidt (BGS) by Carson, Lund, Rozložnı́k, and Thomas [6, 7]. Throughout the text,
we focus on solving a linear system with multiple right-hand sides

AX = B, (1)

where A ∈ C
n×n is large and sparse (i.e., with O (n) nonzero entries) and B ∈ C

n×s

is a tall-skinny (i.e., s � n) matrix.
We employ standard numerical linear algebra notation throughout. In particular,

A∗ denotes the Hermitian transpose of A, ‖·‖ refers to the Euclidean 2-norm, unless
otherwise specified, and êk denotes the kth standard unit vector with the kth entry
equal to 1 and all others 0.

In the following subsections, we define key concepts in HPC, block Gram-Schmidt
methods, and block Krylov subspace methods.

2.1 Communication in high-performance computing

As floating-point operations have become faster and less energy-intensive, commu-
nication—the memory operations between levels of cache on a node or between
parallelized processors on a network—has become a bottleneck in distributed com-
puting. How expensive a memory operation is depends on the physical aspects of a
specific system, specifically the latency, or the amount of time needed to pack and
transmit a message, and the bandwidth, or how much information can be transmit-
ted at a time. To improve algorithm performance in bandwidth-limited algorithms
like Krylov subspace methods, it is therefore advantageous to increase the computa-
tional intensity, or the ratio between floating-point and memory operations [23]. We
pay particular attention to synchronization points (“sync points”), i.e., the steps in an

733



Numerical Algorithms (2023) 93:731–764

algorithm that initiate a broadcast or reduce pattern to synchronize a quantity on all
processors. Reducing calls to kernels with sync points is a straightforward way to
improve computational intensity [24].

Sync points in Krylov subspace methods arise primarily in the orthonormaliza-
tion procedure, such as Arnoldi or Lanczos, both of which are reformulations of
the Gram-Schmidt method, a standard method for orthonormalizing a basis one
(block) vector at a time. For large n, vectors are typically partitioned row-wise and
distributed among processors, meaning that any time an operation like an inner prod-
uct or normalization is performed—which is at least once per (block) vector in
Gram-Schmidt—a sync point is inevitable.

Other possibly communication-intensive kernels include applications of the oper-
ator A4 and applications of Vm, an n × ms Krylov basis matrix. We count each
operation separately from sync points (block inner products and vector norms) in
LowSyncBlockArnoldi; see Section 5.

2.2 Generalized block inner products

A block vector is a tall-skinny matrix X ∈ C
n×s , and a block matrix is a matrix of

s × s matrices, e.g.,

H =

⎡

⎢

⎢

⎢

⎣

H1,1 H1,2 · · · H1,p

H2,1 H2,2 · · · H2,p

...
...

. . .
...

Hq,1 Hq,2 · · · Hq,p

⎤

⎥

⎥

⎥

⎦

∈ C
qs×ps .

We use a mixture of MATLAB- and block-indexing notation to handle block objects.
In particular, we write Vk to denote the first k block vectors of the block-partitioned
matrix V = [

V 1 V 2 · · · V m

]

instead of V :,1: ks (i.e., the first ks columns).
In a similar vein, s × s block entries of H are denoted as Hj,k instead of as
H(j−1)s+1:js,(k−1)s+1:ks . We denote block generalizations of the standard unit vectors
êk as ̂Ek := êk ⊗ Is , where ⊗ is the Kronecker product and Is the identity matrix of
size s.

Blocking is a batching technique that can reduce the number of calls to the oper-
ator A applied to individual column vectors, maximize computational intensity by
filling up the local cache with BLAS3 operations, and reduce the total number of
sync points by performing inner products and normalization en masse [25, 26]. In the
context of Krylov subspaces, blocking can also lead to enriched subspaces by shar-
ing information across column vectors instead of treating each right-hand side as an
isolated problem. How much information is shared across columns depends on the
choice of block inner product.

Let S be a ∗-subalgebra of Cs×s with identity; i.e., I ∈ S and when S, T ∈ S,
α ∈ C, then αS + T , ST , S∗ ∈ S.

4The term matvec is often used to refer to the multiplication of A with a vector. Because we will be
focusing on block vectors, we refrain from this term to avoid confusion.

734



Numerical Algorithms (2023) 93:731–764

Definition 1 A mapping 〈〈·,·〉〉 from C
n×s × C

n×s to S is called a block inner product
onto S if it satisfies the following conditions for all X, Y , Z ∈ C

n×s and C ∈ S:

(i) S-linearity: 〈〈 X + Y , ZC 〉〉 S = 〈〈 X, Z 〉〉 SC + 〈〈 Y , Z 〉〉 SC;
(ii) symmetry: 〈〈 X, Y 〉〉 S = 〈〈 Y , X 〉〉 ∗

S
;

(iii) definiteness: 〈〈 X, X 〉〉 S is positive definite if X has full rank, and 〈〈 X, X 〉〉 S = 0
if and only if X = 0.

Definition 2 A mapping N which maps all X ∈ C
n×s with full rank on a matrix

N(X) ∈ S is called a scaling quotient if for all such X, there exists Y ∈ C
n×s such

that X = YN(X) and 〈〈 Y , Y 〉〉 S = Is .

The scaling quotient is closely related to the intraorthogonalization routine dis-
cussed in Section 2.3. Block notions of orthogonality and normalization arise
organically from Definitions 1 and 2.

Definition 3 Let X, Y ∈ C
n×s and {Xj }mj=1 ⊂ C

n×s .

(i) X, Y are block orthogonal, if 〈〈 X, Y 〉〉 S = 0s .
(ii) X is block normalized if N(X) = Is .

(iii) X1, . . . , Xm are block orthonormal if 〈〈 Xi , Xj 〉〉 S = δij Is .

A set of vectors {Xj }mj=1 ⊂ C
n×s block spans a space K ⊆ C

n×s , and we write

K = spanS{Xj }mj=1 if

K =
{

m
∑

j=1

Xj�j : �j ∈ S for j = 1, . . . , m
}

.

The set {Xj }mj=1 constitutes a block orthonormal basis for K = spanS{Xj }mj=1 if it
is block orthonormal.

In this work, we consider only the classical and global block paradigms, described
in Table 1. These paradigms represent the two extremes of information-sharing, with
the classical approach maximizing information shared among columns and the global
approach minimizing it; see, e.g., [22, Theorem 3.3]. Moreover, the global paradigm
leads to a lower complexity per iteration in Krylov subspace methods, because what
are matrix-matrix products in the classical paradigm get reduced to scaling operations
in the global one. Many other paradigms are also possible; see, e.g., [27, 28].

Table 1 Choices of S, 〈〈 ·, · 〉〉S, and N in the classical and global block paradigms

S 〈〈X,Y 〉〉 S N(X)

classical (cl) C
s×s X∗Y R, where X = QR, and Q ∈ C

n×s ,Q∗Q = Is

global (gl) CIs
1
s
trace(X∗Y )Is

1√
s
‖X‖FIs

735



Numerical Algorithms (2023) 93:731–764

2.3 Block Gram-Schmidt

Block Gram-Schmidt (BGS) is a routine for orthonormalizing a set of block vectors
{Xj }mj=1 ⊂ C

n×s . Writing

X := [

X1 X2 · · · Xm

] ∈ C
n×ms,

we define a BGS method as one that returns a block orthonormal Q ∈ C
n×ms and a

block upper triangular R ∈ C
ms×ms such that X = QR. Important measures in the

analysis of BGS methods are the condition number of X ,

κ(X ) := σmax(X )

σmin(X )
, (2)

i.e., the ratio between the largest and smallest singular values of X , and the loss of
orthogonality (LOO),

∥

∥I − 〈〈Q,Q 〉〉 S
∥

∥ , (3)

where 〈〈 ·, · 〉〉S is a generalized inner product as described in Section 2.4.
When we discuss the stability of BGS methods, we refer to bounds on the loss of

orthogonality in terms of machine precision, ε. We assume IEEE double precision
here, so ε = O

(

10−16
)

.
For categorizing BGS variants, we recycle the skeleton-muscle notation from

[7, 12], where skeleton refers to the interorthogonalization routine between block
vectors, and the muscle refers to the intraorthogonalization routine between the
columns of a single block vector. As a prototype, consider the Block Modified Gram-
Schmidt (BMGS) skeleton, given by Algorithm 1. Here, IntraOrtho denotes a
generic muscle that takes X ∈ C

n×s and returns Q ∈ C
n×s and R ∈ C

s×s such that
〈〈 Q, Q 〉〉 S = Is and X = QR. For the classical paradigm, this could be any imple-
mentation of a QR factorization: a column-wise Gram-Schmidt routine, Householder
QR (HouseQR), Cholesky QR (CholQR), etc. As for the global paradigm, there
is only one possible muscle, given by the global scaling quotient, which effectively
reduces to normalizing block vectors with a scaled Frobenius norm. Consequently,
intraorthogonalization does not actually occur in the global paradigm, as the columns
of block vectors are not orthogonalized with respect to one another at all.

We regard a single call to either 〈〈 ·, ·〉〉S or IntraOrtho as one sync point,
which is only possible in practice if single-reduce algorithms like CholQR [29] or
TSQR/AllReduceQR [30, 31] are employed for IntraOrtho.

2.4 Block Krylov subspacemethods

The mth block Krylov subspace for A and B (with respect to S) is defined as

K S

m (A, B) := S{B, AB, . . . , Am−1B}. (4)

Block Arnoldi is often used to compute a basis for K S
m (A, B), and it is typically

implemented with BMGS as the skeleton; see Algorithm 2. BMGS-Arnoldi accrues
a high number of sync points due to the inner for-loop, where an increasing number
of inner products is performed per block column.

736



Numerical Algorithms (2023) 93:731–764

Algorithm 1 [Q,R] = BMGS(X ).

Performing m steps of a block Arnoldi routine returns the block Arnoldi relation

AVm = VmHm + V m+1Hm+1,m, (5)

where Vm S-spans K S
m (A, B) and Hm denotes the ms × ms principal submatrix of

Hm+1,m.

2.4.1 Block full orthogonalizationmethods with low-rank modifications

We define
Xm := Vm

(

Hm + M
)−1

̂E1B, (6)

where ̂E1 = ê1 ⊗ Is is a standard block unit vector, as the (modified) block full
orthogonalization method (BFOM) for approximating (1). When M = 0, we recover
BFOM, which minimizes the error in the A-weighted S-norm for A hermitian posi-
tive definite [21]. There are infinitely many choices for M, but perhaps only a few
useful ones, some of which are discussed in [22]. We will concern ourselves here with
just M = H−∗

m

(

̂EmH ∗
m+1,mHm+1,m

)

̂E
∗
m, which gives rise to a block generalized

minimal residual method (BGMRES) [32–34]. As in [22], we implement BGMRES
as a modified BFOM here, with an eye towards downstream applications like f (A)B

where the BFOM form is explicitly needed. In practice, there may be computational
savings with a less modular implementation; see, e.g., [35–37].

2.4.2 Static restarting and cospatial factors

Restarting is a well-established technique for reconciling a growing basis with
memory limitations. Define the residual of (6) as

Rm := B − AXm. (7)

The basic idea of restarts is to use Rm to build a new Krylov subspace, which we
then use to approximate the error Em := A−1B − Xm, which solves AE = Rm

in exact arithmetic. Building a new Krylov subspace from Rm directly is not a great
idea, because it would require an extra computation with A. Furthermore, we need
a cheap, accurate, and ideally locally computable way to approximate ‖Rm‖ from

737



Numerical Algorithms (2023) 93:731–764

Algorithm 2 [Vm+1,Hm+1,m, B] = BMGS-Arnoldi(A,B,m).

one cycle to the next in order to monitor convergence. In [22] a static restarting
method for low-rank modified BFOM is introduced that satisfies these requirements.
By “static,” we mean the basis size m is fixed from one restart cycle to the next, in
contrast to adaptive or dynamic restart cycle lengths. We restate [22, Theorem 4.1],
which enables an efficient residual approximation and restarting procedure.

Theorem 2.1 Suppose M = M̂E
∗
m, where M ∈ C

ms×s and ̂Em = êm ⊗ Is . Define

Um := Vm+1

[

M

−Hm+1,m

]

and let �m := (Hm+M)−1
̂E1B be the block coefficient

vector for the approximation Xm = Vm�m (6) of the system (1). With Rm as in (7)
it then holds that

Rm = Um

(

̂E
∗
m�m

)

. (8)

We refer to the s × s matrix ̂E
∗
m�m as a cospatial factor, and (8) as the cospatial

residual relation. The term cospatial refers to the fact that the columns of Rm and
those of Um span the same space. Moreover, in exact arithmetic, it is not hard to see
that

‖Rm‖F =
∥

∥

∥

∥

[

M

−Hm+1,m

]

(

̂E
∗
m�m

)

∥

∥

∥

∥

F
, (9)

and the right-hand term can be computed locally (and possibly redundantly on each
processor) for m � n.

If the approximate residual norm does not meet the desired tolerance, then we can
compute the Arnoldi relation for Km(A, Um) to obtain V(2)

m+1, H(2)
m , H

(2)
m+1,m, and

B(2), where the superscript here and later denotes association to the restarted Krylov
subspace. We then approximate Em as

Dm := V(2)
m (H(2)

m + M(2))−1
̂E1B

(2)
(

̂E
∗
m�m

)

,

and update Xm as
X(2)

m := Xm + Dm.

The process is repeated, applying Theorem 2.1 iteratively, until the desired residual
tolerance is reached.

738



Numerical Algorithms (2023) 93:731–764

Remark 1 The analysis in [21, 22] is carried out in exact arithmetic. Therefore, when
we replace Algorithm 2 with low-sync versions in Section 3, all the results summa-
rized in this section still hold, because all block Gram-Schmidt variants generate the
same QR factorization in exact arithmetic.

3 Low-synchronization variants of block Arnoldi

To distinguish between block Arnoldi variants, we default to the name of the underly-
ing block Gram-Schmidt skeleton. We specify a configuration as ip-skel◦(musc):
inner product, skeleton, and muscle, respectively. This naturally leads to bit of an
“alphabet soup,” for which we ask the reader’s patience, as it is crucial to precisely
define algorithmic configurations for benchmarking. Please refer often to Table 2,
which summarizes acronyms for all the Gram-Schmidt skeletons we consider in this
text. Note that the coefficient in front of the number of sync points per cycle is often
used to describe low-sync methods; e.g., BCGS-PIP is a “one-sync” method, while
BMGS-SVL is a “three-sync” method.

Remark 2 The methods presented here are closely related to but not quite the same
as the block methods used by Yamazaki et al. in [3], where BMGS, BCGS-PIP, and
BCGSI+LS are employed as Gram-Schmidt skeletons in s-step Arnoldi (also known
as communication-avoiding Arnoldi) [11, 12, 23], which is used to solve a linear
system with a single right-hand side. Recall that we are solving (1), i.e., multiple
right-hand sides simultaneously.

Remark 3 In the pseudocode for each algorithm, intermediate quantities like W and
U are defined explicitly each iteration for readability. In general, we purposefully
avoid redefining quantities in a given iteration and instead only set an output (i.e.,
entries in B, Vm, or Hm+1,m) once all computations pertaining to that value are
complete. This approach simplifies mathematical analysis. Exceptions include Algo-
rithms 1 and 2, where W is redefined inside the for-loop as projected components
are subtracted away from it. In practice, it is preferable to save storage by overwriting
block vectors of Vm instead of allocating separate memory for W and U , for which
there anyway may not be space.

3.1 BCGS-PIP and BCGS-PIO

A simple idea for reducing the number of sync points in BMGS is to condense the
for-loop in lines 4–7 of Algorithm 2 into a single inner product and subtraction,

H1:k,k = 〈〈Vk, W 〉〉 S
W = W − WH1:k,k

This exchange gives rise to what is commonly referred to as the block classi-
cal Gram-Schmidt (BCGS) method. It is, however, rather unstable, with a loss of
orthogonality worse than O (ε) κ2([B AVm]) [6]. However, by making a correction

739



Numerical Algorithms (2023) 93:731–764

Ta
bl
e
2

A
cr

on
ym

s
fo

r
B

G
S

sk
el

et
on

s.
H

er
e

“m
-c

yc
le

”
re

fe
rs

to
a

re
st

ar
tc

yc
le

,o
r

th
e

co
ns

tr
uc

tio
n

of
V

m
+1

.L
os

s
of

or
th

og
on

al
ity

is
de

fi
ne

d
in

(3
),

an
d

he
re

κ
is

sh
or

th
an

d
fo

r
κ
([B

A
V

m
]).

T
he

lo
ss

of
or

th
og

on
al

ity
bo

un
d

fo
r
B
M
G
S
-
L
T
S

is
co

nj
ec

tu
re

an
d

fo
r
B
M
G
S
-
C
W
Y

,B
M
G
S
-
I
C
W
Y

,a
nd

B
C
G
S
I
+
L
S

,u
nk

no
w

n

U
nd

er
ly

in
g

G
ra

m
-S

ch
m

id
t

sk
el

e-
to

n
M

ea
ni

ng
be

hi
nd

ab
br

ev
ia

tio
ns

Se
ct

io
n

nu
m

be
r

of
sy

nc
po

in
ts

pe
r

m
-c

yc
le

bo
un

d
on

lo
ss

of
or

th
og

o-
na

lit
y,

as
su

m
pt

io
n

on
κ

B
M
G
S

B
lo

ck
M

od
if

ie
d

G
ra

m
-S

ch
m

id
t

2.
4

m
(m

+1
)

2
O

(ε
)
κ

, O
(ε

)
κ

<
1

B
C
G
S
-
P
I
P

B
lo

ck
C

la
ss

ic
al

G
S,

Py
th

ag
or

ea
n

w
ith

In
ne

r
Pr

od
uc

t
3.

1
m

+
1

O
(ε

)
κ

2
,O

(ε
)
κ

2
<

1

B
C
G
S
-
P
I
O

B
lo

ck
C

la
ss

ic
al

G
S,

Py
th

ag
or

ea
n

w
ith

In
tr

ao
rt

ho
go

na
liz

at
io

n
3.

1
2m

+
1

O
(ε

)
κ

2
,O

(ε
)
κ

2
<

1

B
M
G
S
-
S
V
L

/B
M
G
S
-
L
T
S

Sc
hr

ei
be

r
&

V
an

L
oa

n/
L

ow
er

T
ri

an
gu

la
r

So
lv

e
3.

2
3m

O
(ε

)
κ

,O
(ε

)
κ

<
1

B
M
G
S
-
C
W
Y

/B
M
G
S
-
I
C
W
Y

C
om

pa
ct

W
Y

/I
nv

er
se

C
om

pa
ct

W
Y

3.
3

m
+

2
–

B
C
G
S
I
+
L
S

In
ne

r
R

eo
rt

ho
go

na
liz

at
io

n
(+

),
L

ow
-S

yn
c

3.
4

m
+

2
–

740



Numerical Algorithms (2023) 93:731–764

based on the block Pythagorean theorem (as derived in, e.g., Section 2.1 [6]), we
can guarantee a loss of orthogonality bounded by O (ε) κ2([B AVm]), as long as
O

(√
ε
)

κ([B AVm]) ≤ 1.
One version of the corrected algorithm is given as Algorithm 3. The acronym

“PIP” stands for “Pythagorean (variant) with Inner Product,” due to how the factor
Hk+1,k is computed. An alternative formulation based off BCGS-PIO (where “PIO”
stands for “Pythagoren with IntraOrthogonalization”) is also possible and is given as
Algorithm 4. Note that in line 5, we use ∼ to denote that a full block vector need not
be computed or stored here, just the 2s × 2s scaling quotient �. For subtle reasons,
BCGS-PIO appears to be less reliable in practice (see Section 4).

Algorithm 3 [Vm+1,Hm+1,m, B] = BCGS-PIP-Arnoldi(A,B,m).

Algorithm 4 [Vm+1,Hm+1,m, B] = BCGS-PIO-Arnoldi(A,B,m).

3.2 BMGS-SVL and BMGS-LTS

Barlow developed and analyzed one of the first stabilized low-sync Gram-Schmidt
methods by using the Schreiber-Van Loan representation of products of Householder
transformations [1, 38]. Under modest conditions, this method—which we denote

741



Numerical Algorithms (2023) 93:731–764

here as BMGS-SVL—has loss of orthogonality like BMGS. Its success depends on
tracking the loss of orthogonality via an auxiliary matrix T (as defined in lines 1,
2, 6, and 9 of Algorithm 5) and using this matrix to make corrections each iteration.
A closely related method is BMGS-LTS, which is identical to BMGS-SVL except
that the T matrix is formed via lower-triangular solves instead of matrix products.
A column version of BMGS-LTS was first developed by Świrydowicz et al. [2] and
generalized to blocks by Carson et al. [7]. Although BMGS-LTS appears to behave
identically to BMGS-SVL in practice, a formal analysis for the former remains open.
We present Arnoldi versions of BMGS-SVL and BMGS-LTS as, with different colors
highlighting the small differences between the methods. In both methods, the main
inner product in line 4 is performed as in BCGS. Meanwhile T acts as a kind of buffer,
storing the loss of orthogonality per iteration, which is used in successive iterations
to make small corrections to the computation in line 4. Balabanov and Grigori use a
similar technique to stabilize randomized sketches of inner products, where instead
of explicitly computing and storing T , they solve least squares problems to compute
H1:k,k [14, 39].

Algorithm 5 [Vm+1,Hm+1,m, B] = BMGS-SVL/BMGS-LTS-Arnoldi(A,B,m).

3.3 BMGS-CWY/BMGS-ICWY

A column-wise version of this algorithm was first presented by Świrydowicz et al.
as [2, Algorithm 8]. To the best of our knowledge, we are the first to develop a
block-wise formulation, which we refer to here as BMGS-CWY-Arnoldi, where
CWY stands for “compact WY,” an alternative way to represent Householder trans-
formations used to originally derive this algorithm. A related Arnoldi algorithm, not
treated in either [2] or [4], is based on the inverse CWY (ICWY) form, and is given
simultaneously with BMGS-CWY in Algorithm 6.

It is important to note that BMGS-CWY-Arnoldi would not reduce to [2, Algo-
rithm 8] or [4, Algorithm 6] for s = 1, as we have one total sync point, due to the lack

742



Numerical Algorithms (2023) 93:731–764

of a reorthonormalization step for V k . Algorithm 6 was largely derived by transform-
ing BMGS-CWY and BMGS-ICWY from [7] into a block Arnoldi routine. The most
challenging part is tracking how the R factor in the Gram-Schmidt formulation maps
to Hm+1,m and determining where to scale by the off-diagonal entry Hk,k−1 each
iteration. It is also possible to compute only with R and reconstruct Hm+1,m after
Vm+1 is finished; this approach proved to be much less stable in practice, however,
due to the growing condition number of R.

Algorithm 6 [Vm+1,Hm+1,m, B] = BMGS-CWY/BMGS-ICWY-Arnoldi(A,B,m).

3.4 BCGSI+LS

One of the most intriguing of all the low-sync algorithms is DCGS2 [5], referred to
as CGSI+LS in [7]. This algorithm is a reformulation of reorthogonalized CGS with
a single sync point derived by “delaying” normalization to the next iteration, where
operations are batched in a kind of s-step approach (where s = 2). The column-
wise version exhibits O(ε) loss of orthogonality; a rigorous proof of the backward
stability bounds remains open, however. The block version, BCGSI+LS, does not
exhibit perfect O(ε) LOO; see numerical results in [7].

Bielich et al. present a column-wise Arnoldi based on DCGS2 as Algorithm 4 in
[5]. Our Algorithm 7 is a direct block generalization of this algorithm with slight

743



Numerical Algorithms (2023) 93:731–764

reformulations to match the aesthetics of Algorithm 6 and principles of Remark 3.
Note that, as in Algorithm 6, we are able to compute Hm directly, but we must track
an auxiliary matrix J and scale several quantities by Hk−1,k−2. An alternative version
of Algorithm 7 based more directly on BCGSI+LS from [7, Algorithm 7] is included
in the code but not described here.

Algorithm 7 [Vm+1,Hm+1,m, B] = BCGSI+LS-Arnoldi(A,B,m).

4 Adaptive restarting

Reproducibility and stability are not mutually exclusive. This realization is precisely
the motivation for an adaptive restarting routine and can be demonstrated by a simple
example.

Consider the tridiag test case from Section 5.1 with n = 100. Notably, both A

and B are deterministic quantities; neither is defined with random elements. In MAT-
LAB, it is possible to specify the number of threads on which a script is executed via

744



Numerical Algorithms (2023) 93:731–764

the built-in maxNumCompThreads function.5 We solve AX = B with Algorithms
3 and 4 while varying the multithreading setting from 1 to 16 on a standard node of
the Mechthild cluster; see the beginning of Section 5 for more details about the clus-
ter. For both algorithms, we employ a variant of MATLAB ’s Cholesky routine chol,
which stores a flag when chol determines a matrix is too ill-conditioned to be fac-
torized. This flag is fed to the linear solver driver of LowSyncBlockArnoldi
(bfom), which halts the process when the flag is true. Through the following discus-
sion, we refer to this flag as the “NaN-flag,” because ignoring it leads to computations
with ill-defined quantities.

Figure 1 displays the loss of orthogonality (3) and κ([B AVk]) for different thread
counts. The condition numbers for all thread counts and both methods are hardly
affected, except for some slight deviation for BCGS-PIP and 16 threads. The LOO
plots are more telling: for both methods, changing the thread count directly affects the
LOO and how many iterations the method can compute before encountering a NaN-
flag. We allowed for a maximum basis size of m = 50, but no method can compute
that far. BCGS-PIO with 8 threads gives up first at 16 iterations; BCGS-PIP with 1
and 4 threads makes it all the way to 35 iterations. Among the BCGS-PIO methods,
there are orders of magnitude differences between the attained LOO.

This situation is perplexing on the surface: the problem is static, and the same code
has been run every time. The only variable is the thread count.

There are two subtle issues that affect reproducibility in this case: 1) the config-
uration of math kernel libraries according to the parameters of the operating system
and hardware,6 and 2) guaranteed stability bounds. As for stability bounds, it is
important to note that both BCGS-PIO and BCGS-PIP have a complete backward
stability analysis [6]. Both methods have O (ε) κ2([B AVk]) loss of orthogonality,

as long as κ([B AVk]) ≤ O
(

1√
ε

)

= O
(

108
)

and as long as the IntraOrtho

for BCGS-PIO behaves no worse than CholQR. (For this test, we used HouseQR,
MATLAB ’s built-in qr routine, which is unconditionally stable and therefore behaves
better than CholQR [15].) For both methods, κ([B AVk]) exceeds O

(

108
)

around
iteration 15. At that point, the assumptions for the LOO bounds are no longer satis-
fied. The fact that either algorithm continues to compute something useful after that
point is a lucky accident.

Computing κ([B AVk]) every iteration to check whether the LOO bounds are sat-
isfied is not practical. We therefore propose a simple adaptive restarting regime based
on whether chol raises a NaN-flag, which happens whenever chol is fed a numeri-
cally non-positive definite matrix. When a NaN-flag is raised, we give up computing
a new basis vector and go back to the last safely computed basis vector, which is
then used to restart. Simultaneously, the maximum basis size m is also reduced. It
is possible that an algorithm exhausts its maximum allowed restarts and basis size
before converging; indeed, we have observed this often for BCGS-PIP in examples
not reported here. At the same time, there are many scenarios in which restarting is

5https://mathworks.com/help/matlab/ref/maxnumcompthreads.html. Accessed 8 August 2022.
6https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/
obtaining-numerically-reproducible-results/reproducibility-conditions.html. Accessed 8 August 2022.

745

https://mathworks.com/help/matlab/ref/maxnumcompthreads.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/obtaining-numerically-reproducible-results/reproducibility-conditions.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/obtaining-numerically-reproducible-results/reproducibility-conditions.html


Numerical Algorithms (2023) 93:731–764

0 5 10 15 20 25
Iteration Index

10 0

10 5

10 10

10 15

10 20

co
nd

(X
)

BCGS-PIO

maxNumCompThreads = 1
maxNumCompThreads = 2
maxNumCompThreads = 4
maxNumCompThreads = 8
maxNumCompThreads = 16

0 5 10 15 20 25 30 35
Iteration Index

10 0

10 5

10 10

10 15

10 20

co
nd

(X
)

BCGS-PIP

maxNumCompThreads = 1
maxNumCompThreads = 2
maxNumCompThreads = 4
maxNumCompThreads = 8
maxNumCompThreads = 16

0 5 10 15 20 25
Iteration Index

10 -15

10 -10

10 -5

10 0

10 5

Lo
ss

 o
f O

rt
ho

go
na

lit
y

BCGS-PIO

maxNumCompThreads = 1
maxNumCompThreads = 2
maxNumCompThreads = 4
maxNumCompThreads = 8
maxNumCompThreads = 16

0 5 10 15 20 25 30 35
Iteration Index

10 -15

10 -10

10 -5

10 0

10 5

Lo
ss

 o
f O

rt
ho

go
na

lit
y

BCGS-PIP

maxNumCompThreads = 1
maxNumCompThreads = 2
maxNumCompThreads = 4
maxNumCompThreads = 8
maxNumCompThreads = 16

Fig. 1 Multithreading example for tridiag problem with n = 100, no restarts, and maximum basis size
m = 50

an adequate band-aid, thus allowing computationally cheap, one-sync algorithms line
BCGS-PIP to salvage progress and converge, oftentimes faster than competitors.
See Section 5 for demonstrations.

Remark 4 The restarted framework outlined in Section 2.4.2 does not change funda-
mentally with adaptive cycle lengths; only the notation becomes more complicated.
We omit the details here.

5 Numerical benchmarks

Our treatment of BGS and block Krylov methods is hardly exhaustive. It is not our
goal to determine the optimal block Arnoldi configuration at this stage, but rather
to demonstrate the functionality of a benchmarking tool for the fair comparison of
possible configurations on different problems. To this end, we restrict ourselves to
the options below:

• inner products: cl (classical), gl (global)
• skeletons: Table 2

746



Numerical Algorithms (2023) 93:731–764

• muscles: CholQR, which has O (ε) κ2 loss of orthogonality guaranteed only for
O (ε) κ2 < 1, but is a simple, single-reduce algorithm. In practice, we would rec-
ommend TSQR/AllReduceQR [30, 31], which has O(ε) loss of orthogonality
and the same number of sync points, but is difficult to program in MATLAB due
to limited parallelization and message-passing features. Other low-sync muscles
are programmed in LowSyncBlockArnoldi as well, and the user can eas-
ily integrate their own. Note that BCGS-PIP does not require a muscle, and
BMGS-CWY, BMGS-ICWY, and BCGSI+LS only call a muscle once, in the first
iteration of a new basis. BMGS-SVL and BMGS-LTS are forced to use their
column-wise counterparts MGS-SVL and MGS-LTS (both 3-sync), respectively,
and global methods are forced to use the global muscle (i.e., normalization
without intraorthogonalization via the scaled Frobenius norm).

• modification: none (FOM), harmonic (GMRES)

All results are generated by the LowSyncBlockArnoldi MATLAB pack-
age. A single script (paper script.m) comprises all the calls for generating
the results in this manuscript. LowSyncBlockArnoldi is written as modu-
larly as possible, to facilitate the exchange of inner products, skeletons, muscles,
and modifications. While the timings reported certainly do not reflect the optimal
performance for any of the methods, they do reflect a fair comparison across imple-
mentations and provide insights for possible speed-ups when these methods are
ported to more complex architectures. The code is also written so that sync points
(inner prod and intra ortho) and other potentially communication-intensive
operations (matvec and basis eval) are separate functions that can be tuned
individually.

Every test script (including the example from Section 4) has been executed in
MATLAB R2019b on 16 threads of a single, standard node of Linux Cluster Mechthild
at the Max Planck Institute for Dynamics of Complex Technical Systems in Magde-
burg, Germany.7 A standard node comprises 2 Intel Xeon Silver 4110 (Skylake)
CPUs with 8 Cores each (64KB L1 cache, 1024KB L2 cache), a clockrate of 2.1
GHz (3.0 GHz max), and 12MB shared L3 cache each. We further focus on small
problems that easily fit in the L3 Cache, which is easy to guarantee with sparse A,
n ≤ 104, and s ≤ 10. Given that the latency between CPUs on a single node is small
relative to exascale machines, we expect small improvements observed in these test
cases to translate to bigger gains in a more complex setting.

For the timings, we measure the total time spent to reach a specified error tol-
erance. We run each test 5 times and average over the timings. We also calculate
several intermediate measures, namely counts for A-calls, applications of Vk , and
sync points. In addition, we plot the convergence history in terms of the follow-
ing quantities per iteration: relative residual, relative error, κ([B AVk]), and loss of
orthogonality (LOO) (3). When a ground truth solution X∗ is provided, the error is
calculated as

‖Xk − X∗‖F / ‖X∗‖F ,

7https://www.mpi-magdeburg.mpg.de/cluster/mechthild. Accessed 8 August 2022.

747

https://www.mpi-magdeburg.mpg.de/cluster/mechthild


Numerical Algorithms (2023) 93:731–764

For all our examples, X∗ is computed by MATLAB ’s built-in backslash opera-
tor. The residual is approximated by (9) and is scaled by ‖B‖F . A summary of the
parameters for all benchmarks can be found in Table 3. Except for tridiag and
lapl 2d, all examples are taken from the SuiteSparse Matrix Collection [40]. Via
the suite sparse.m script, it is possible to run tests on any benchmark from this
collection.

5.1 tridiag

The operator A is defined as a sparse, tridiagonal matrix with 1 on the off-diagonals
and −1, −2, . . . , −n on the diagonal, where n is also the size of A. Clearly A is
symmetric. The right-hand side B has two columns, where the first has identical
elements 1√

n
and the second is 1, 2, . . . , n. This example is actually procedural, in

the sense that a user can choose a desired n. At the same time, a larger n necessarily
leads to a worse condition number.

Figure 2 presents the total run time per configuration as well as operator counts
as a bar chart; see Table 4 in the Appendix for more details. The fastest methods are
the stabilized low-sync variants. Despite being the computationally cheapest classical
method per iteration, cl-BCGS-PIP is notably slower than cl-BMGS, because its
inherent instability requires restarting 3 times (and therefore additional applications
of A and Vk) before converging. The method with the fewest Vk evaluations is cl-
BMGS, which is to be expected, since the basis is split up and applied one block
column at a time in the inner-most loop; see Algorithm 1.

The fastest global method, gl-BCGS-PIP, is significantly slower even than the
slowest classical method. In fact, all global methods require over 6 times as many
total iterations as the fastest classical method to converge; this is in line with the the-
ory of Section 2.4. In this particular case, the floating-point savings per iteration do
not outweigh the sheer amount of time needed for all the extra A-calls. Nevertheless,
the one-sync global methods (gl-BCGS-PIP, gl-BMGS-CWY, gl-BMGS-ICWY,
and gl-BCGSI+LSs) have relatively low sync counts, compared even to cl-BMGS.

Figures 3 and 4 display convergence histories for a subset of the methods in
Table 4 in the Appendix. The convergence histories for all global BMGS variants are
very similar; we omit BMGS-SVL and BMGS-CWY, as they are visually identical to

Table 3 Test properties and parameter choices

test name κ(A) n s m modification tol

tridiag O
(

103
)

1000 2 70 FOM 10−10

1138 bus O
(

106
)

1138 5 30 GMRES 10−6

circuit 2 O
(

105
)

4510 5 10 GMRES 10−6

rajat03 O
(

107
)

7602 5 10 GMRES 10−6

Kaufhold O
(

1014
)

8765 5 10 GMRES 10−6

t2d q9 O
(

103
)

9801 5 10 GMRES 10−6

lapl 2d O
(

103
)

10000 10 25 FOM 10−6

748



Numerical Algorithms (2023) 93:731–764

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

su
re

 s
ca

le
d 

by
 s

er
ie

s 
m

ax
im

um

Fig. 2 Results from tridiag example

BMGS-LTS and BMGS-ICWY, respectively. BMGS is identical to BMGS-SVL and
BMGS-LTS and is therefore also omitted.

Both the classical and global variants of BCGS-PIP show the robustness of
the adaptive restarting procedure in action. In the global case, the LOO exceeds
O

(

10−10
)

and reaches O (1) in cl-BCGS-PIP. Despite the loss of orthogonality,
restarting allows the methods to recover and eventually converge. All other low-sync
variants remain stable, only restarting once the basis size limit of m = 70 has been
reached. Although hardly perceptible, BMGS-ICWY does have a slightly worse LOO
than that of BMGS-LTS, which can be seen by zooming in on the last few iterations
of the global plots in Fig. 3 or of the classical plots in Fig. 4.

We also note that the residual estimate (7) for all methods follows the same qual-
itative trend as that of the error. In the worst case, cl-BCGS-PIP, the residual is
nearly 3 orders of magnitude lower than the error in some places, which could lead
to premature convergence. For all other methods, the difference is between 1 and 2
orders of magnitude. We would thus recommend setting the residual tolerance a cou-
ple orders of magnitude lower in practice, to ensure that the true error is accurate
enough.

5.2 1138 bus

Now we turn to a slightly more complicated matrix. The matrix A comes from a
power network problem and is real and symmetric positive definite, while entries

749



Numerical Algorithms (2023) 93:731–764

100 200 300 400 500 600
Iteration Index

10 -10

10 0

10 10

10 20

gl-BCGSI+LS(gl)-FOM

residual
error
cond([B AV]
LOO

100 200 300 400 500 600
Iteration Index

10 -10

10 0

10 10

10 20

gl-BMGS-LTS(gl)-FOM

residual
error
cond([B AV]
LOO

100 200 300 400 500 600
Iteration Index

10 -10

10 0

10 10

10 20

gl-BMGS-ICWY(gl)-FOM

residual
error
cond([B AV]
LOO

100 200 300 400 500 600
Iteration Index

10 -10

10 0

10 10

10 20

gl-BCGS-PIP(gl)-FOM

residual
error
cond([B AV]
LOO

Fig. 3 Convergence histories of some global variants for tridiag example

of B are drawn randomly from the uniform distribution. Moreover we apply an
incomplete LU (ILU) preconditioner with no fill, using MATLAB ’s built-in ilu.

Even with the preconditioner, none of the global methods converges. We adjusted
the thread count to see if it would aid convergence, to no avail. This is perhaps an
extreme case of [22, Theorem 3.3], wherein the global method is much less accu-
rate than the classical method in the first cycle and cannot manage to catch up even
after restarting. A preconditioner better attuned to the structure of the problem may
alleviate stagnation for global methods, but we do not explore this here.

In Fig. 5 we see the performance results for the convergent classical methods; more
details can be found in Table 5 in the Appendix. Most notably, the one-sync meth-
ods BMGS-CWY, BMGS-ICWY, and BCGSI+LS improve over BMGS only slightly in
terms of timings. BCGS-PIP is much slower, due to a quick loss of orthogonality
and need to restart more often. However, it is clear that sync counts for all one-sync
methods are drastically reduced compared to that of BMGS.

We examine the convergence histories of cl-BCGS-PIP and cl-BMGS-ICWY
more closely in Fig. 6. Although not discernible on the graph, we found that
cl-BCGS-PIP actually restarts every 28 iterations, meaning in the first cycle it

750



Numerical Algorithms (2023) 93:731–764

20 40 60 80
Iteration Index

10 -10

10 0

10 10

cl-BCGSI+LS(CholQR)-FOM

residual
error
cond([B AV]
LOO

20 40 60 80
Iteration Index

10 -10

10 0

10 10

cl-BMGS-LTS(MGS-LTS)-FOM

residual
error
cond([B AV]
LOO

20 40 60 80
Iteration Index

10 -10

10 -5

10 0

10 5

10 10

cl-BMGS-ICWY(CholQR)-FOM

residual
error
cond([B AV]
LOO

20 40 60 80 100 120 140 160
Iteration Index

10 -10

10 -5

10 0

10 5

10 10

cl-BCGS-PIP(CholQR)-FOM

residual
error
cond([B AV]
LOO

Fig. 4 Convergence histories of some classical variants for tridiag example

encountered a NaN-flag and reduced the maximum basis size to m = 28 for all subse-
quent cycles. Instability in the first cycle thus hinders cl-BCGS-PIP greatly. On the
other hand, BMGS-ICWY (as well as the other variants) is stable enough to exhaust
the entire basis size allowance, which allows for further error reduction in the first
cycle.

5.3 circuit 2

The next example comes from a circuit simulation problem. The matrix A is real but
not symmetric or positive definite. We again apply an ILU preconditioner with no fill.

All the one-sync classical and global methods converge, and their performance
data is presented in Fig. 7 with further details in Table 6 in the Appendix. In fact,
some global methods, like gl-BCGS-PIP, are even faster than some classical meth-
ods, due to the fact that they require the same number of iterations to converge, and
therefore fewer floating-point operations.

Figure 8 demonstrates how close in accuracy the global and classical BCGS-PIP
variants are for this problem. The global method even has a slightly better LOO, but

751



Numerical Algorithms (2023) 93:731–764

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
m

ea
su

re
 s

ca
le

d 
by

 s
er

ie
s 

m
ax

im
um

Fig. 5 Performance results for 1138 bus example

it should be noted that global LOO is measured according to a different inner product
than classical LOO; see Section 2.2 and (3).

5.4 rajat03

Another circuit simulation problem highlights slightly different behavior. In this case,
A is again real but neither symmetric nor positive definite, and we again use an ILU
preconditioner with no fill.

50 100 150 200
Iteration Index

10 -10

10 -5

10 0

10 5

10 10
cl-BCGS-PIP(CholQR)-GMRES

residual
error
cond([B AV]
LOO

10 20 30 40 50 60 70 80
Iteration Index

10 -10

10 -5

10 0

10 5

10 10

cl-BMGS-ICWY(CholQR)-GMRES

residual
error
cond([B AV]
LOO

Fig. 6 Subset of convergence histories for 1138 bus example

752



Numerical Algorithms (2023) 93:731–764

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

su
re

 s
ca

le
d 

by
 s

er
ie

s 
m

ax
im

um

Fig. 7 Performance results for circuit 2 example

Figure 9 summarizes the performance results, with details given in Table 7 in the
Appendix. It should be noted right away that cl-BCGS-PIP fails to converge for
this problem, while gl-BCGS-PIP does not, and takes second place in terms of the
timings. More specifically, cl-BCGS-PIP encounters a NaN-flag it cannot resolve,
which means that every time it reduces the basis size, it cannot avoid a NaN-flag.
However, because global methods do not use Cholesky at all, non-positive definite
factors do not pose a problem, unless their trace is numerically zero, which occurs
with very low probability. Otherwise, cl-BMGS-CWY shows a small improvement
over cl-BMGS.

5 10 15 20
Iteration Index

10 -15

10 -10

10 -5

10 0

10 5

gl-BCGS-PIP(gl)-GMRES

residual
error
cond([B AV]
LOO

5 10 15 20
Iteration Index

10 -10

10 -5

10 0

10 5

cl-BCGS-PIP(CholQR)-GMRES

residual
error
cond([B AV]
LOO

Fig. 8 Convergence histories of the BCGS-PIP variants for the circuit 2 example

753



Numerical Algorithms (2023) 93:731–764

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

su
re

 s
ca

le
d 

by
 s

er
ie

s 
m

ax
im

um

Fig. 9 Performance results for rajat03 example

Table 7 in the Appendix confirms that none of the methods requires restarting
despite how high the condition number becomes in later iterations; see also Fig. 10. It
is again interesting to see how close the error and residual plots are between the global
and classical methods. In fact, the residual for the global method underestimates
convergence by a couple orders of magnitude.

5.5 Kaufhold

This example treats a nearly numerically singular matrix with an extremely high
condition number. Also notable, the norm of A is nearly O

(

1015
)

. The matrix is

1 2 3 4 5 6 7 8 9
Iteration Index

10 -10

10 0

10 10

gl-BCGS-PIP(gl)-GMRES

residual
error
cond([B AV]
LOO

1 2 3 4 5 6 7 8
Iteration Index

10 -10

10 0

10 10

cl-BMGS-CWY(CholQR)-GMRES

residual
error
cond([B AV]
LOO

Fig. 10 Convergence histories of the two fastest variants for the rajat03 example

754



Numerical Algorithms (2023) 93:731–764

real, but neither symmetric nor positive definite, and it was designed to trigger a
bug in Gaussian elimination in a 2002 version of MATLAB. We again apply an ILU
preconditioner with no fill.

Figure 11 shows cl-BCGS-PIP to be the fastest of the classical one-sync meth-
ods, but the improvement over cl-BMGS is small. The global methods are all much
slower. A look at the convergence histories in Fig. 12 shows a stubborn error curve
despite significant progress in the initial iterations. For both BCGS-PIP methods
the LOO is moderately high in the first cycle, matching the high condition numbers,
but the situation is not bad enough to trigger a NaN-flag, and the LOO drops after
restarting.

5.6 t2d q9

We now examine a nonlinear diffusion problem, specifically a biquadratic mesh of a
temperature field. The matrix A is real but not symmetric or positive definite, and we
again use an ILU preconditioner with no fill.

Figure 13 shows that both BCGS-PIP are the fastest overall, with cl-BMGS in
second-to-last place; see Table 9 in the Appendix for more details. Interestingly, even
gl-BMGS is faster than cl-BMGS in this scenario.

Both BCGSI+LS variants are rather slow in this example. Despite having just
one sync per iteration, BCGSI+LS does generally have a higher complexity than its
one-sync counterparts, which manifests here as a disadvantage.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

su
re

 s
ca

le
d 

by
 s

er
ie

s 
m

ax
im

um

Fig. 11 Performance results for Kaufhold example

755



Numerical Algorithms (2023) 93:731–764

10 20 30 40 50
Iteration Index

10 -10

10 0

10 10

gl-BCGS-PIP(gl)-GMRES

residual
error
cond([B AV]
LOO

5 10 15
Iteration Index

10 -10

10 -5

10 0

10 5

10 10

cl-BCGS-PIP(CholQR)-GMRES

residual
error
cond([B AV]
LOO

Fig. 12 Convergence histories of the BCGS-PIP variants for the Kaufhold example

The convergence behavior for the BCGS-PIP variants is given in Fig. 14. Here
we see that despite the global condition number having a high variation relative to
the classical method, the global LOO is overall much less. This phenomenon is not
unique to this example, however, it just happens to be more noticeable.

5.7 lapl 2d

Our last problem is taken directly from [21, Section 5.4], a discretized two-
dimensional Laplacian matrix. A is thus banded, real, and symmetric positive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

su
re

 s
ca

le
d 

by
 s

er
ie

s 
m

ax
im

um

Fig. 13 Performance results for t2d q9 example

756



Numerical Algorithms (2023) 93:731–764

20 40 60 80 100 120 140
Iteration Index

10 -15

10 -10

10 -5

10 0

10 5

gl-BCGS-PIP(gl)-GMRES

residual
error
cond([B AV]
LOO

20 40 60 80 100 120
Iteration Index

10 -15

10 -10

10 -5

10 0

10 5
cl-BCGS-PIP(CholQR)-GMRES

residual
error
cond([B AV]
LOO

Fig. 14 Convergence histories of the BCGS-PIP variants for the t2d q9 example

definite. We do not apply a preconditioner and look at all skeletons considered in the
text.

Figure 15 shows the performance results; more details can be found in Table 4 in
the Appendix. All one-sync classical methods except for cl-BCGSI+LS beat cl-
BMGS, along with a number of global methods. The slowest classical methods are
the three-sync ones, and some one-sync global methods follow behind. The fastest
method, cl-BCGS-PIP also happens to have the highest A count and applications
of Vk , due to its high number of restarts. Both cl-BMGS-CWY and cl-BMGS-ICWY,
however, have fewer sync counts, as well as A counts and Vk counts, and are very
close in terms of timings.

The methods with the highest sync counts are cl-BMGS-SVL and cl-
BMGS-LTS. The reason is that they cannot use CholQR as a muscle,8 and this
problem requires many iterations to converge. LowSyncBlockArnoldi is written
to count sync points within the muscles as well, and with MGS-SVL and MGS-LTS
each contributing 1 + 3s per call, the total number of sync points eventually passes
that of cl-BMGS, which can use a communication-light muscle like CholQR.

6 Conclusions and outlook

Stability bounds and floating-point analysis are challenging to work out rigorously,
and it is therefore simultaneously important to search for counterexamples and edge
cases while trying to prove conjectured bounds. In general, rigorous loss of orthog-
onality and backward error bounds for all these methods could lead to new insights
and improvements in the quest for a reliable, scalable Krylov subspace solver. Our
flexible benchmarking tool can aid in that process, and it can easily be extended to
accommodate new algorithm configurations, test cases, and measures.

8Strictly speaking, they can use whatever muscle they are programmed to use, but BMGS-SVL requires
MGS-SVL to be stable; see [1, 7].

757



Numerical Algorithms (2023) 93:731–764

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

su
re

 s
ca

le
d 

by
 s

er
ie

s 
m

ax
im

um

Fig. 15 Performance results for lapl 2d example

At the same time, low-sync block Arnoldi algorithms with adaptive restarting are
clearly already useful and robust enough for a wide variety of problems, especially
where A is reasonably conditioned and memory limitations cap basis sizes. In every
benchmark, we have observed that at least one low-sync method outperformed both
the classical and global BMGS-based Arnoldi methods. More research is needed to
determine which low-sync skeletons are best for which problems and architectures,
particularly computational models that account not only for operation counts but
also for performance variations relative to block size [26, 41, 42]. Most likely the
best configuration allows for switching between skeletons and muscles depending on
convergence behavior.

For scenarios where the basic adaptive restarting procedure is not sufficient to res-
cue convergence, it might be possible to improve the heuristics with a cheap estimate
of the loss of orthogonality computed, e.g., a randomized sketched inner product [39].
With such a cheap estimate, we could not only decrease the basis size when there are
problems, but increase it again in later cycles. Randomized algorithms themselves
are known to reduce communication, and a thorough comparison and combination
of the methods proposed here and in [39] could lead to powerful Krylov subspace
method well suited for exascale architectures.

Global methods are unfortunately less promising. They are almost always slower
than even the slowest classical method, due to requiring more cycles, and thus oper-
ator calls and sync points, to converge. However, the benchmarks do suggest that, in
cases with a good preconditioner known to guarantee convergence in a few iterations,

758



Numerical Algorithms (2023) 93:731–764

global methods may become competitive again, especially in single-node or “laptop”
applications, where their reduced computational intensity per iteration is favorable.

Appendix. Raw data from tests

A subset of raw data corresponding to the performance plots in Section 5 is provided
below. Many headers are abbreviated for space reasons: “Accel.” refers to “accel-
eration” or “speed-up”; “Ct.” refers to “Count”; and “Iter.” refers to “Iteration”.

Table 4 Results from tridiag example

Configuration Time % Cycle Iter. A V Sync

(s) Accel. Ct. Ct. Ct. Ct. Ct.

gl-BMGS ◦ gl-FOM 2.20e+00 0.00 9 621 621 1242 22401

gl-BMGS-SVL ◦ gl-FOM 2.05e+00 6.59 9 621 621 1863 1872

gl-BMGS-LTS ◦ gl-FOM 2.03e+00 7.90 9 621 621 1863 1872

gl-BCGSI+LS ◦ gl-FOM 1.84e+00 16.53 9 621 630 2493 639

gl-BMGS-CWY ◦ gl-FOM 1.58e+00 28.26 9 621 630 1872 639

gl-BMGS-ICWY ◦ gl-FOM 1.48e+00 32.86 9 621 630 1872 639

gl-BCGS-PIP ◦ gl-FOM 1.37e+00 37.79 9 621 621 1863 630

cl-BCGS-PIP ◦ CholQR-FOM 5.33e-01 75.77 3 172 172 516 175

cl-BMGS ◦ CholQR-FOM 4.08e-01 81.44 2 94 94 188 2881

cl-BMGS-CWY ◦ CholQR-FOM 2.80e-01 87.28 2 94 96 284 98

cl-BMGS-SVL ◦ MGS-SVL-FOM 2.79e-01 87.32 2 96 96 288 584

cl-BMGS-LTS ◦ MGS-LTS-FOM 2.69e-01 87.77 2 96 96 288 584

cl-BCGSI+LS ◦ CholQR-FOM 2.56e-01 88.35 2 94 96 378 98

cl-BMGS-ICWY ◦ CholQR-FOM 2.23e-01 89.87 2 94 96 284 98

Table 5 Results from 1138 bus example

Configuration Time % Cycle Iter. A V Sync

(s) Accel. Ct. Ct. Ct. Ct. Ct.

cl-BCGS-PIP ◦ CholQR-GMRES 1.84e+00 0.00 8 224 224 672 232

cl-BMGS ◦ CholQR-GMRES 9.25e-01 49.75 3 88 88 176 1427

cl-BCGSI+LS ◦ CholQR-GMRES 7.97e-01 56.70 3 88 91 355 94

cl-BMGS-CWY ◦ CholQR-GMRES 7.82e-01 57.50 3 88 91 267 94

cl-BMGS-ICWY ◦ CholQR-GMRES 7.78e-01 57.70 3 88 91 267 94

759



Numerical Algorithms (2023) 93:731–764

Table 6 Results for circuit 2 example

Configuration Time % Cycle Iter. A V Sync

(s) Accel. Ct. Ct. Ct. Ct. Ct.

gl-BCGSI+LS ◦ gl-GMRES 1.26e-01 0.00 2 20 22 82 24

cl-BMGS ◦ CholQR-GMRES 1.19e-01 5.76 2 20 20 40 132

gl-BMGS ◦ gl-GMRES 1.18e-01 6.88 2 20 20 40 132

gl-BMGS-CWY ◦ gl-GMRES 1.15e-01 9.35 2 20 22 62 24

cl-BCGSI+LS ◦ CholQR-GMRES 1.14e-01 9.92 2 20 22 82 24

gl-BMGS-ICWY ◦ gl-GMRES 1.10e-01 13.06 2 20 22 62 24

cl-BMGS-CWY ◦ CholQR-GMRES 1.02e-01 19.32 2 20 22 62 24

gl-BCGS-PIP ◦ gl-GMRES 9.96e-02 21.14 2 20 20 60 22

cl-BMGS-ICWY ◦ CholQR-GMRES 9.77e-02 22.67 2 20 22 62 24

cl-BCGS-PIP ◦ CholQR-GMRES 8.55e-02 32.29 2 20 20 60 22

Table 7 Results for rajat03 example

Configuration Time % Cycle Iter. A V Sync

(s) Accel. Ct. Ct. Ct. Ct. Ct.

gl-BCGSI+LS ◦ gl-GMRES 9.54e-02 0.00 1 9 10 37 11

gl-BMGS-ICWY ◦ gl-GMRES 8.55e-02 10.41 1 9 10 28 11

gl-BMGS-CWY ◦ gl-GMRES 8.11e-02 14.96 1 9 10 28 11

gl-BMGS ◦ gl-GMRES 7.67e-02 19.58 1 9 9 18 55

cl-BMGS-ICWY ◦ CholQR-GMRES 7.16e-02 24.91 1 8 9 25 10

cl-BMGS ◦ CholQR-GMRES 6.91e-02 27.60 1 8 8 16 45

cl-BCGSI+LS ◦ CholQR-GMRES 6.66e-02 30.21 1 8 9 33 10

gl-BCGS-PIP ◦ gl-GMRES 6.09e-02 36.19 1 9 9 27 10

cl-BMGS-CWY ◦ CholQR-GMRES 5.26e-02 44.92 1 8 9 25 10

Table 8 Results for Kaufhold example

Configuration Time % Cycle Iter. A V Sync

(s) Accel. Ct. Ct. Ct. Ct. Ct.

gl-BCGSI+LS ◦ gl-GMRES 7.24e-01 0.00 6 55 61 226 67

gl-BMGS-ICWY ◦ gl-GMRES 6.65e-01 8.22 6 55 61 171 67

gl-BMGS-CWY ◦ gl-GMRES 6.61e-01 8.73 6 55 61 171 67

gl-BMGS ◦ gl-GMRES 6.21e-01 14.21 6 55 55 110 351

gl-BCGS-PIP ◦ gl-GMRES 5.29e-01 26.93 6 55 55 165 61

cl-BMGS ◦ CholQR-GMRES 2.36e-01 67.47 2 19 19 38 121

cl-BCGSI+LS ◦ CholQR-GMRES 2.02e-01 72.13 2 19 21 78 23

cl-BMGS-CWY ◦ CholQR-GMRES 1.89e-01 73.95 2 19 21 59 23

cl-BMGS-ICWY ◦ CholQR-GMRES 1.86e-01 74.27 2 19 21 59 23

cl-BCGS-PIP ◦ CholQR-GMRES 1.60e-01 77.84 2 19 19 57 21

760



Numerical Algorithms (2023) 93:731–764

Table 9 Results for t2d q9 example

Configuration Time % Cycle Iter. A V Sync

(s) Accel. Ct. Ct. Ct. Ct. Ct.

gl-BCGSI+LS ◦ gl-GMRES 2.02e+00 0.00 15 144 159 591 174

cl-BMGS ◦ CholQR-GMRES 1.86e+00 7.51 14 139 139 278 913

gl-BMGS-ICWY ◦ gl-GMRES 1.84e+00 8.53 15 144 159 447 174

gl-BMGS-CWY ◦ gl-GMRES 1.84e+00 8.83 15 144 159 447 174

gl-BMGS ◦ gl-GMRES 1.71e+00 15.17 15 144 144 288 939

cl-BCGSI+LS ◦ CholQR-GMRES 1.65e+00 18.09 14 139 153 570 167

cl-BMGS-ICWY ◦ CholQR-GMRES 1.54e+00 23.67 14 139 153 431 167

cl-BMGS-CWY ◦ CholQR-GMRES 1.49e+00 25.86 14 139 153 431 167

gl-BCGS-PIP ◦ gl-GMRES 1.43e+00 28.92 15 144 144 432 159

cl-BCGS-PIP ◦ CholQR-GMRES 1.26e+00 37.64 14 139 139 417 153

Table 10 Results for lapl 2d example

Configuration Time % Cycle Iter. A V Sync

(s) Accel. Ct. Ct. Ct. Ct. Ct.

gl-BCGSI+LS ◦ gl-FOM 5.34e+01 0.00 47 1162 1209 4695 1256

gl-BMGS-ICWY ◦ gl-FOM 4.60e+01 13.92 47 1162 1209 3533 1256

gl-BMGS-CWY ◦ gl-FOM 4.57e+01 14.41 47 1162 1209 3533 1256

cl-BMGS-SVL ◦ MGS-SVL-FOM 4.39e+01 17.77 45 1121 1121 3363 34890

cl-BMGS-LTS ◦ MGS-LTS-FOM 4.29e+01 19.63 45 1121 1121 3363 34890

gl-BCGS-PIP ◦ gl-FOM 4.07e+01 23.70 47 1162 1162 3486 1209

cl-BCGSI+LS ◦ CholQR-FOM 4.06e+01 23.91 45 1121 1166 4529 1211

cl-BMGS ◦ CholQR-FOM 3.97e+01 25.60 45 1121 1121 2242 15697

gl-BMGS-SVL ◦ gl-FOM 3.94e+01 26.21 47 1162 1162 3486 3533

gl-BMGS ◦ gl-FOM 3.89e+01 27.15 47 1162 1162 2324 16237

gl-BMGS-LTS ◦ gl-FOM 3.88e+01 27.24 47 1162 1162 3486 3533

cl-BMGS-CWY ◦ CholQR-FOM 3.72e+01 30.25 45 1121 1166 3408 1211

cl-BMGS-ICWY ◦ CholQR-FOM 3.66e+01 31.44 45 1121 1166 3408 1211

cl-BCGS-PIP ◦ CholQR-FOM 3.41e+01 36.12 181 2162 2162 6486 2343

Acknowledgements The author is indebted to Stéphane Gaudreault, Teodor Nikolov, and Erin Carson
for stimulating discussions that inspired this work. The author is also grateful to Jens Saak and Martin
Köhler for answering questions about the Mechthild cluster and multithreading in MATLAB and to two
anonymous reviewers for their constructive feedback.

Author contribution K. Lund is the sole author of the manuscript and associated code.

761



Numerical Algorithms (2023) 93:731–764

Funding Open Access funding enabled and organized by Projekt DEAL. K. Lund is a contracted
employee of Max Planck Institute for Dynamics of Complex Technical Systems and did not receive any
additional funding to support this project.

Availability of supporting data All code and scripts to reproduce plots can be found at https://gitlab.
mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi.

Declarations

Ethics approval and consent to participate The author certifies that this manuscript has been submitted
to only one journal at this time, that the work is original, and that the results are not fabricated or skewed.
The work is entirely the author’s own, and to the best of the author’s ability, the work is complete in its
own right and without error or misappropriation.

Consent for publication As the sole author, K. Lund provides consent for publication.

Human and animal ethics Not applicable

Competing interests The author declares no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Barlow, J.L.: Block modified Gram-Schmidt algorithms and their analysis. SIAM J. Matrix Anal.
Appl 40(4), 1257–1290 (2019). https://doi.org/10.1137/18M1197400

2. Świrydowicz, K., Langou, J., Ananthan, S., Yang, U., Thomas, S.: Low synchronization Gram-
Schmidt and generalized minimum residual algorithms. Numer. Lin. Alg. Appl., 28(2), https://doi.org/
10.1002/nla.2343 (2020)

3. Yamazaki, I., Thomas, S., Hoemmen, M., Boman, E.G., Świrydowicz, K., Eilliot, J.J.: Low-
synchronization orthogonalization schemes for s-step and pipelined Krylov solvers in Trilinos. In:
Proceedings of the 2020 SIAM conference on parallel processing for scientific computing (PP),
pp. 118–128, https://doi.org/10.1137/1.9781611976137.11 (2020)

4. Thomas, S., Carson, E., Rozložnı́k, M., Carr, A., Świrydowicz, K.: Iterated-gauss-seidel GMRES.
arXiv:2205.07805v2 (2022)

5. Bielich, D., Langou, J., Thomas, S., Świrydowicz, K., Yamazaki, I., Boman, E.G.: Low-synch gram–
schmidt with delayed reorthogonalization for krylov solvers. Parallel Comput. 112, 102940 (2022).
https://doi.org/10.1016/j.parco.2022.102940

6. Carson, E., Lund, K., RozloCznı́k, M.: The stability of block variants of classical Gram-Schmidt.
SIAM J. Matrix Anal. Appl. 42(3), 1365–1380 (2021). https://doi.org/10.1137/21M1394424

7. Carson, E., Lund, K., Rozložnı́k, M., Thomas, S.: Block Gram-Schmidt algorithms and their stability
properties. Linear Algebra Appl. 638(20), 150–195 (2022). https://doi.org/10.1016/j.laa.2021.12.017

8. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn., p. 528. SIAM. https://doi.org/10.1137/
1.9780898718003 (2003)

9. Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole
selection. GAMM-Mitteilungen 36(1), 8–31 (2013). https://doi.org/10.1002/gamm.201310002

762

https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi
https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/18M1197400
https://doi.org/10.1002/nla.2343
https://doi.org/10.1002/nla.2343
https://doi.org/10.1137/1.9781611976137.11
http://arxiv.org/abs/2205.07805v2
https://doi.org/10.1016/j.parco.2022.102940
https://doi.org/10.1137/21M1394424
https://doi.org/10.1016/j.laa.2021.12.017
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1002/gamm.201310002


Numerical Algorithms (2023) 93:731–764

10. Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic
Riccati equations. SIAM J. Matrix Anal. Appl. 37(4), 1655–1674 (2016). https://doi.org/10.1137/16M
1059382

11. Carson, E.: Communication-Avoiding Krylov Subspace Methods in Theory And Practice. Ph.D. The-
sis, Department of Computer Science. University of California, Berkeley (2015). http://escholarship.
org/uc/item/6r91c407

12. Hoemmen, M.: Communication-avoiding Krylov subspace methods. Ph.D. Thesis, department of
computer science university of california at berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2010/EECS-2010-37.pdf (2010)

13. Grigori, L., Moufawad, S., Nataf, F.: Enlarged Krylov subspace conjugate gradient methods for reduc-
ing communicaiton. SIAM J. Matrix Anal. Appl. 37(2), 744–773 (2016). https://doi.org/10.1137/1409
89492

14. Balabanov, O., Grigori, L.: Randomized block Gram-Schmidt process for solution of linear systems
and eigenvalue problems. arXiv:2111.14641 (2021)

15. Higham, N.J.: Accuracy and stability of numerical algorithms, 2nd edn. Appl. Math., p. 663. SIAM
Publications, https://doi.org/10.1137/1.9780898718027 (2002)

16. Huckle, T., Neckel, T.: Bits and Bugs: a scientific and historical review of software failures in
computational science. Softw. Environ. Tools, vol. 29. SIAM Publications, https://doi.org/10.1137/1.
9781611975567 (2019)

17. Giraud, L., Langou, J., Rozložnı́k, M., Van Den Eshof, J.: Rounding error analysis of the classical
Gram-Schmidt orthogonalization process. Numer. Math. 101, 87–100 (2005). https://doi.org/10.1007/
005-0615-4

18. Smoktunowicz, A., Barlow, J.L., Langou, J.: A note on the error analysis of classical Gram-Schmidt.
Numer. Math. 105(2), 299–313 (2006). https://doi.org/10.1007/s00211-006-0042-1

19. Carson, E.: The adaptive s-step conjugate gradient method. SIAM J. Matrix Anal. Appl. 39(3), 1318–
1338 (2018). https://doi.org/10.1137/16M1107942

20. Carson, E.C.: An adaptive s-step conjugate gradient algorithm with dynamic basis updating. Appl.
Math. 65, 123–151 (2020). https://doi.org/10.21136/AM.2020.0136–19

21. Frommer, A., Lund, K., Szyld, D.B.: Block Krylov subspace methods for functions of matrices.
Electron. Trans. Numer. Anal. 47, 100–126 (2017)

22. Frommer, A., Lund, K., Szyld, D.B.: Block Krylov subspace methods for functions of matrices II:
modified block FOM. SIAM J. Matrix Anal. Appl. 41(2), 804–837 (2020). https://doi.org/10.1137/
1255847

23. Ballard, G., Carson, E., Demmel, J.W., Hoemmen, M., Knight, N., Schwartz, O.: Communication
lower bounds and optimal algorithms for numerical linear algebra. Acta Numer. 23(2014), 1–155
(2014). https://doi.org/10.1017/S0962492914000038

24. Anzt, H., Boman, E.G., Falgout, R., Ghysels, P., Heroux, M., Li, X., Curfman McInnes, L., Mills, R.T.,
Rajamanickam, S., Rupp, K., Smith, B., Yamazaki, I., Yang, U.M.: Preparing sparse solvers for exas-
cale computing. Philos. Trans. Royal Soc. A 378(2166), 20190053 (2020). https://doi.org/10.1098/
rsta.2019.0053

25. Baker, A.H., Dennis, J.M., Jessup, E.R.: On improving linear solver performance: a block variant of
GMRES. SIAM J. Sci. Comput. 27(5), 1608–1626 (2006). https://doi.org/10.1137/040608088

26. Birk, S.: Deflated Shifted block Krylov subspace methods for hermitian positive definite matrices.
Ph.d. Thesis, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal.
http://elpub.bib.uni-wuppertal.de/servlets/DocumentServlet?id=4880 (2015)

27. Dreier, N.-A.: Hardware-oriented Krylov methods for high-performance computing. Ph.D. the-
sis, Fachbereich Mathematik und Informatik der Mathematisch-Naturwissenschaftlichen Fakultät
der Westfälische Wilhelms-Universität Münster. https://www.proquest.com/docview/2607316034/
abstract/A334B3B058D24AF2PQ/1 (2020)

28. Dreier, N.-A., Engwer, C.: Strategies for the vectorized block conjugate gradients method. In: Ver-
molen, F.J., Vuik, C. (eds.) Numerical mathematics and advanced applications ENUMATH 2019. Lec-
ture notes in computational science and engineering, vol. 139, pp. 381–388. Springer, https://doi.org/
10.1007/978-3-030-55874-1 37 (2020)

29. Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., Fukaya, T.: Roundoff error analysis of the Cholesky
QR2 algorithm. Electron. Trans. Numer. Anal. 44, 306–326 (2015)

763

https://doi.org/10.1137/16M1059382
https://doi.org/10.1137/16M1059382
http://escholarship.org/uc/item/6r91c407
http://escholarship.org/uc/item/6r91c407
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf
https://doi.org/10.1137/140989492
https://doi.org/10.1137/140989492
http://arxiv.org/abs/2111.14641
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9781611975567
https://doi.org/10.1137/1.9781611975567
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1007/s00211-006-0042-1
https://doi.org/10.1137/16M1107942
https://doi.org/10.21136/AM.2020.0136--19
https://doi.org/10.1137/19M1255847
https://doi.org/10.1137/19M1255847
https://doi.org/10.1017/S0962492914000038
https://doi.org/10.1098/rsta.2019.0053
https://doi.org/10.1098/rsta.2019.0053
https://doi.org/10.1137/040608088
http://elpub.bib.uni-wuppertal.de/servlets/DocumentServlet?id=4880
https://www.proquest.com/docview/2607316034/abstract/A334B3B058D24AF2PQ/1
https://www.proquest.com/docview/2607316034/abstract/A334B3B058D24AF2PQ/1
https://doi.org/10.1007/978-3-030-55874-1_37
https://doi.org/10.1007/978-3-030-55874-1_37


Numerical Algorithms (2023) 93:731–764

30. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential
QR and LU factorizations. SIAM J. Sci. Comput. 34(1), 206–239 (2012). https://doi.org/10.1137/080
73.1992

31. Mori, D., Yamamoto, Y., Zhang, S.L.: Backward error analysis of the AllReduce algorithm for house-
holder QR decomposition. Jpn. J. Ind. Appl. Math. 29(1), 111–130 (2012). https://doi.org/10.1007/s13
160-011-0053-x

32. Simoncini, V.: Ritz and Pseudo-Ritz values using matrix polynomials. Linear Algebra Appl. 241-243,
787–801 (1996). https://doi.org/10.1016/0024-3795(95)00682-6

33. Simoncini, V., Gallopoulos, E.: Convergence properties of block GMRES and matrix polynomials.
Linear Algebra Appl. 247, 97–119 (1996). https://doi.org/10.1016/0024-3795(95)00093-3

34. Simoncini, V., Gallopoulos, E.: A hybrid block GMRES method for nonsymmetric systems with
multiple right-hand sides. J. Comput. Appl. Math. 66, 457–469 (1996). https://doi.org/10.1016/0377-
0427(95)00198-0

35. Gutknecht, M.H.: Block Krylov space methods for linear systems with multiple right-hand sides:
an introduction. In: Siddiqi, A.H., Duff, I.S., Christensen, O. (eds.) Mod. math. model. methods
algorithms real world syst, pp. 420-447. Anamaya New Delhi (2007)

36. Gutknecht, M.H., Schmelzer, T.: Updating the QR decomposition of block tridiagonal and block Hes-
senberg matrices. Appl. Numer. Math. 58(6), 871–883 (2008). https://doi.org/10.1016/j.apnum.2007.
04.010

37. Gutknecht, M.H., Schmelzer, T.: The block grade of a block Krylov space. Linear Algebra Appl. 430,
174–185 (2009). https://doi.org/10.1016/j.laa.2008.07.008

38. Schreiber, R., Van Loan, C.: A storage-efficient WY representation for products of householder
transformations. SIAM J. Sci. Statist. Comput. 10(1), 53–57 (1989). https://doi.org/10.1137/0910005

39. Balabanov, O., Grigori, L.: Randomized Gram–Schmidt process with application to GMRES. SIAM
J. Sci. Comput. 44(3), 1450–1474 (2022). https://doi.org/10.1137/20M138870X

40. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw.
38(1), 1–25 (2011). https://doi.org/10.1145/2049662.2049663

41. Boman, E.G., Higgins, A.J., Szyld, D.B.: Optimal size of the block in block GMRES on GPUs: com-
putational model and experiments. e-print 22-04-30, department of mathematics, Temple University,
Philadelphia, PA. https://www.math.temple.edu/szyld/reports/BGMRES GPU rev.report.pdf (2022)

42. Parks, M.L., Soodhalter, K.M., Szyld, D.B.: A block recycled GMRES method with investigations
into aspects of solver performance. arXiv:1604.01713v1 (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

764

https://doi.org/10.1137/08073.1992
https://doi.org/10.1137/08073.1992
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1016/0024-3795(95)00682-6
https://doi.org/10.1016/0024-3795(95)00093-3
https://doi.org/10.1016/0377-0427(95)00198-0
https://doi.org/10.1016/0377-0427(95)00198-0
https://doi.org/10.1016/j.apnum.2007.04.010
https://doi.org/10.1016/j.apnum.2007.04.010
https://doi.org/10.1016/j.laa.2008.07.008
https://doi.org/10.1137/0910005
https://doi.org/10.1137/20M138870X
https://doi.org/10.1145/2049662.2049663
https://www.math.temple.edu/ szyld/reports/BGMRES_GPU_rev.report.pdf
http://arxiv.org/abs/1604.01713v1

	Adaptively restarted block Krylov subspace methods with low-synchronization skeletons
	Abstract
	Introduction and motivation
	Background
	Communication in high-performance computing
	Generalized block inner products
	Block Gram-Schmidt
	Block Krylov subspace methods
	Block full orthogonalization methods with low-rank modifications
	Static restarting and cospatial factors


	Low-synchronization variants of block Arnoldi
	BCGS-PIP and BCGS-PIO
	BMGS-SVL and BMGS-LTS
	BMGS-CWY/BMGS-ICWY
	BCGSI+LS

	Adaptive restarting
	Numerical benchmarks
	tridiag
	1138_bus
	circuit_2
	rajat03
	Kaufhold
	t2d_q9
	lapl_2d

	Conclusions and outlook
	Appendix A Raw data from tests
	Declarations
	References




