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assignments of individual author contributions and a concluding summary.
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Planck Society in Berlin under the supervision of Prof. Dr. Karsten Reuter. A research
stay hosted by Prof. Dr. Gabor Csényi at the Engineering Laboratory at the University of
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Abstract

For a systematic discovery of molecular crystal structures with customized properties, efficient
search strategies are desired. Conveniently, these structure searches can be delegated to
a machine by means of computational chemistry. Its tools allow to quantify the stability
of an atomistic structure by computing its energy and experimentally observed crystals
are associated with the most stable structural arrangements. As a consequence of this,
successful in silico molecular crystal structure predictions (CSP) are associated with the
solution to a global optimization problem. For a given molecule, reliable predictions of the
most stable structural arrangements face a major challenge, though, which arises from the
vast search spaces that need to be explored and the computationally expensive high levels
of theory that need to be applied to resolve the typically small stability differences between
crystal candidates.

To arrive at corresponding solutions in an efficient way structure-energy relationships need
to be evaluated with both high accuracy and low computational costs. On that account, an
approach has been developed in this work to generate accurate hybrid models for molecular
crystals that feature short evaluation times. These hybrid models are composed of a
computationally inexpensive physics-based description of long-range interactions at the
density-functional tight-binding (DFTB) level and a short-range correction to reproduce
highly accurate first-principles target methods (based on density-functional theory or
wavefunction methods). The generation of the latter is achieved by a kernel-based supervised
machine learning (ML) strategy developed to yield system-specific A-ML corrections that
augment the DFTB baseline description.

Accounting for considerable computational costs associated with the evaluation of reference
structures, the developed training procedure for A-ML models is characterized by a high
data-efficiency. In this regard, the training benefits from the applied DFTB baseline as its
description captures significant parts of interactions relevant to molecular crystals which
circumvents the need to explicitly learn them from data. A diversity-driven selection of
appropriate structures further reduces the number of required reference data representative
for the intended application of the model to molecular CSP.

For single-component molecular crystals, the obtained hybrid models are shown to
accurately reproduce the description of the high-level reference method at a fraction of the
computational costs. Beyond that the models are differentiable which allows for efficient local
structure optimization and, thus, gives rise to a significant reduction of the computationally
most expensive part in typical molecular CSP studies. Conveniently, the approach has been
shown to be broadly applicable to various types of single-component molecular crystals and
corresponding interactions.

A developed extension of this approach provides a generalization to (neutral) multi-
component crystals which are of great practical relevance for well-directed searches of
materials featuring application-specific properties. In this context, the robustness of
corresponding A-ML models is substantiated inter alia by performing molecular dynamics
simulations at ambient conditions on co-crystal structures outside the scope of the reference
structures used for their generation. Here, the obtained predictions of co-crystal densities
have been verified by direct comparison with experimental measurements.

Apart from this, the versatile applicability of kernel-based unsupervised learning for
gaining insights into data sets of atomistic structures and associated attributes has been
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illustrated. Here, atomic environments and entire structures have been described by a
sophisticated representation while mutual relations between them have been measured and
projected to a low-dimensional space by means of kernel principle component analysis. Tools
for performing these mappings, subsequent visualization and interactive exploration are
conveniently provided in course of the presented work along with illustrative examples to
showcase various fields of application such as the analysis of molecular dynamics trajectories,
the results of a crystal structure search or information associated with atomic environments
in a well-established molecular database.
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Zusammenfassung

Fiir ein systematisches Auffinden molekularer Kristallstrukturen mit bedarfsgerechten Ei-
genschaften werden effiziente Such-Strategien benétigt. Praktischerweise ist es moglich
derartige Suchen nach geeigneten Strukturen auf Computer auszulagern indem Werkzeuge
der berechnenden Chemie herangezogen werden. Da diese es ermdglichen die Stabilitét
einer atomistischen Struktur durch Berechnung der zugehorigen Energie zu quantifizieren
und gleichzeitig die stabilsten Anordnungen mit experimentell beobachtbaren Kristall-
strukturen assoziiert werden, erfolgt deren in silico Vorhersage durch Losen eines globalen
Optimierungsproblems. Fiir ein gegebenes Molekiil sehen sich zuverlassige Vorhersagen iiber
die stabilsten Anordnungen im Festkorper allerdings mit der bedeutenden Herausforderung
konfrontiert, dass enorm grofe Such-Rdume erkundet werden miissen und gleichzeitig der
Einsatz rechenintensiver, hochgenauer Methoden der theoretischen Chemie nétig ist, um
die iiblicherweise geringen Stabilitédtsunterschiede zwischen potentiellen Kristallstrukturen
aufzulGsen.

Fiir die effiziente Losung des globalen Optimierungsproblems ist es daher nétig den
Struktur-Energie-Zusammenhang fiir molekulare Kristalle mit hoher Genauigkeit und gleich-
zeitig schnell auszuwerten. Zu diesem Zweck wurde im Rahmen der vorliegenden Arbeit
ein Vorgehen zur Erzeugung hybrider Modelle ausgearbeitet, welche die genannten Eigen-
schaften vereinen. Diese hybriden Modelle bestehen zum einen aus einer mit geringem
Rechenaufwand verbundenen und auf physikalischen Gesetzmaéfigkeiten beruhenden Be-
schreibung von langreichweitigen Wechselwirkungen auf Basis der dispersionskorrigierten
density-functional tight-binding (DFTB) Methode, sowie einer kurzreichweitigen Korrektur,
zur Nachbildung der Beschreibungen hochgenauer Methoden der theoretischen Chemie
(basierend auf der Dichtefunktionaltheorie oder Wellenfunktionsmethoden). Fiir die Model-
lierung dieser Korrektur wurde, unter Verwendung einer Kernel-Methode des iiberwachten
maschinellen Lernens (ML), eine Strategie ausgearbeitet, welche system-spezifische A-ML
Modelle zur Verbesserung der DFTB Basislinienbeschreibung erzeugt.

Um dem erheblichen Rechenaufwand entgegenzutreten, der fiir die Auswertung von Refe-
renzstrukturen benotigt wird, zeichnet sich das entwickelte Vorgehen zur Erzeugung von
A-ML Modellen durch eine hohe Dateneffizienz aus. Diesbeziiglich profitiert die Modellerzeu-
gung insbesondere von der verwendeten DF'TB Basislinie, in deren Beschreibung bedeutende
Anteile der fiir molekular Kristalle wichtigen Wechselwirkungen bereits enthalten sind und
die folglich nicht mehr aus Daten gelernt werden miissen. Indem auf eine breite Diversifika-
tion bei der Auswahl von Referenzstrukturen geachtet wird, konnte die Anzahl an Daten
zudem nochmals reduziert werden, die benotigten wird um die beabsichtigte Anwendung
der Modelle zur Vorhersage von molekularen Kristallstrukturen reprasentativ abzubilden.

Fiir molekulare Kristalle, die aus einer Komponente aufgebaut sind, konnte aufgezeigt
werden, dass die erhaltenen hybriden Modelle in der Lage sind die exakten Beschreibungen
der Referenzmethoden mit hoher Genauigkeit und einem Bruchteil des Rechenaufwands
nachzubilden. Dariiber hinaus sind die Modelle differenzierbar und erméglichen daher die
effiziente Durchfithrung von lokalen Strukturoptimierungen, wodurch sich der benétigte
Rechenaufwand des {iblicherweise kostenintensivsten Aspekts der molekularen Kristallstruk-
turvorhersage erheblich reduzieren lisst. Fiir die Anwendung bei Kristallstrukturvorhersagen
glinstig ist zudem, dass das Vorgehen eine breite Einsetzbarkeit aufweist hinsichtlich un-
terschiedlichster Arten von molekularen Einkomponenten-Kristallen und den zugehdrigen



Wechselwirkungen.

Durch die Weiterentwicklung dieses Vorgehens konnte zudem eine Verallgemeinerung
auf (neutrale) Mehrkomponenten-Kristalle erreicht werden, welche von grofer praktischer
Bedeutung sind bei der gezielten Suche nach Materialien mit anwendungsspezifischen Eigen-
schaften. In diesem Zusammenhang konnte auch die Robustheit derartiger A-ML Modelle
nachgewiesen werden, indem diese unter anderem zur Durchfiihrung von Molekulardynamik
Simulationen bei Umgebungsbedingungen an Co-Kristallstrukturen auferhalb der zur Mo-
dellentwicklung verwendeten Referenzstrukturen eingesetzt wurden. Dabei konnte verifiziert
werden, dass sich die erhaltenen Dichten der Co-Kristalle in guter Ubereinstimmung mit
entsprechenden experimentellen Messergebnissen befinden.

Zuséatzlich dazu wurde die vielseitige Einsetzbarkeit aufgezeigt fiir die Verwendung von
Kernel-Methoden des uniiberwachten Lernens, um Einblicke in Datensétze von atomistischen
Strukturen und entsprechenden Attributen zu gewinnen. Dabei wurden atomare Um-
gebungen, sowie gesamte Strukturen mit Hilfe einer hochentwickelten Reprasentation be-
schrieben, wihrend deren gegenseitige Beziehungen mittels Kernel-Hauptkomponentenanalyse
gemessen und in niedrig-dimensionale Rdume projiziert wurde. Entsprechende Hilfsmittel zur
praktischen Durchfiihrung dieses Verfahrens, sowie der anschlieffenden Visualisierung und
interaktiven Erkundung der Daten wurden im Zuge dieser Arbeit bereitgestellt, gemeinsam
mit veranschaulichenden Beispielen, welche verschiedene Anwendungsgebiete herausstellen,
wie die Analyse von Trajektorien aus Molekulardynamik Simulationen, den Ergebnissen aus
Kristallstruktur-Suchen oder der Untersuchung der verschiedenen atomaren Umgebungen
in einer gangigen molekularen Datenbank.
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1 Introduction

Discovery and development of novel materials with tailored properties facilitates innovations
and is fundamental for many technological advancements [4-6]. For this reason sophisticated
strategies enabling systematic searches for materials with desired properties are among
the perennial objectives in both academia and various sectors of industry. Approaches to
achieve these targets take advantage of the close relation between structure and property [5].
For molecular crystals this relation enables searches for customized materials by exerting
influence on the supramolecular assembly of its building blocks [7].

The atomistic structure of a molecular crystal is dependent on the nature of the molecule it
is composed of [8] and in case of multi-component systems such as co-crystals [9], hydrates [10]
and salts [11] also the relative proportion of involved molecular types. Moreover, the packing
arrangement of molecules in the solid state is often subject to crystallization conditions
which gives rise to the phenomenon of polymorphism [12] where multiple structures are
found for crystals of identical composition. By taking advantage of the various influencing
factors well-directed searches are able to discover molecular crystal structures that feature
tailored properties for a certain applications |13, 14]. Experimental screening studies for
such materials, however, tie up significant amounts of resources owing to the cost- and
time-intensive process for synthesis and characterization [15].

Computational assistance for this process is therefore highly desired to enhance the
efficiency of a targeted discovery of novel molecular crystal structures. Molecular crystal
structure prediction (CSP) [16] based on information about its compounds solely can be
accomplished by means of computational chemistry and its capability to model atomistic
systems. The description of these systems is based on the Schrédinger equation and
approximations to it [17-19] which are capable of relating structural arrangements with
stabilities by means of the potential energy surface (PES) [20]. This relation provides
guidance in revealing the actual supramolecular assemblies in the solid state which are
associated with the global—or at least low-lying—minima on the respective landscape of the
PES [21]. In simple terms, molecular CSP is concerned with a global optimization problem
of the functional relation between the stability of a crystal and its underlying structure.

However, major challenges linked to these in silico structure predictions make it a
long-standing issue in molecular modeling [22, 23]. Difficulties in minimizing the energy
landscape of molecular crystals arise from the vast search spaces to be explored. These
spaces are spanned by the coordinates of each atom and the lattice parameters defining
the periodic cell used to represent crystal structures. Despite the existence of sophisticated
search algorithms for navigating the complex landscape with its numerous minima the
number of trial structures to be considered and locally optimized is still enormous [24—
28]. This applies in particular to crystals composed of flexible molecules and co-crystals
where the stoichiometric ratio constitutes an additional search dimension. At the same
time, the supramolecular assembly in these systems is in many cases subject to a delicate
balance between weak interactions such that sophisticated descriptions are required to



reliably resolve low-lying minima on the energy landscape [29, 30]. Advanced methods
like dispersion-corrected density-functional theory (DFT) are suitable for this task, but
accompanied by significant computational demands [31, 32|. In molecular CSP this induces
a trade-off between the accuracy to describe the landscape of the search space and its
exploration which constitutes a current limitation in the predictive capability of practical
search strategies [16].

Highly promising in this respect are opportunities offered by present achievements in
adapting machine learning (ML) strategies to issues in modeling atomistic systems [33-35].
Most notably, supervised ML methods based on kernels [36, 37| or neural networks [38—
42| feature outstanding interpolation strengths which enables the generation of accurate
machine-learned interatomic potentials with an unrivaled accuracy/cost ratio [43]. These
potentials generalize information about the energetic landscape from a representative set
of training structures which have been evaluated at reference levels of theory appropriate
for an intended application. Moreover, the success of ML strategies applied to chemical
systems is greatly supported by the emergence of sophisticated representations of atomistic
structures such as the smooth overlap of atomic positions (SOAP) [44] which are physically
inspired and have certain fundamental aspects directly integrated [45].

This situation provides the basis for the cumulative dissertation at hand. In Ref. 1 we
present a kernel-based supervised ML approach to generate accurate hybrid models for
molecular crystals by augmenting the description of a low-cost semi-empirical baseline
method with ML models trained on high-quality ab initio reference data and substantiate
the additional value of these hybrid models in molecular CSP. The broad applicability of
the approach is verified on a representative set of single-component molecular materials and
with this confidence a generalization to co-crystal systems in presented in Ref. 2. Moreover,
in the work published in Ref. 3 we combine kernel-based unsupervised learning strategies
and structural representations to obtain low-dimensional projections of atomistic data sets
suitable for visualization, exploration and analysis of the ever-increasing amount of data
available.

The following chapters are intended to provide an overview of central concepts and methods
employed in this thesis. Chapter 2 captures hierarchical simplifications to fundamental
concepts of quantum mechanics that yield approximate practical methods suitable for an
application to chemical systems. A clear focus will be on methods based on electron densities
starting with the main aspects related to density-functional theory and established strategies
for incorporating dispersion interactions into its description which are well-known to be
crucial for molecular crystals. Afterwards, the chapter concludes with further approximations
and concepts that yield the density-functional tight-binding method. Machine learning
strategies for atomistic systems comprise various interconnected compounds which are
presented in chapter 3 with focus on kernel-based methods. At first, the importance of
appropriate representations for atomistic structures is discussed followed by corresponding
similarity measurements based on kernel-functions. After that the integral parts of supervised
learning strategies for interatomic potentials are presented. At last, the description of a
kernel-based unsupervised learning strategy for dimensionality reduction and subsequent
visualization of atomistic data sets ultimately concludes the methodological part. Chapter 4
comprises comprehensive summaries of the publications associated with this cumulative
thesis together with assignments of contributions to the individual authors. Finally, the
work concludes in chapter 5 summarizing the achieved contributions to the field.



2 Electronic Structure Theory

The treatment of atomistic systems on a fundamental level is possible by means of ab initio
methods relying on the basic laws of quantum mechanics [46]. Interactions between the
positively charged nuclei and negatively charged electrons of such systems are captured by
the (non-relativistic) Hamiltonian

H=1T,4Tx + Vie + Vax + Wxe. (2.1)

This operator represents the total energy of a system with kinetic energy contributions of the
electrons (7,) and nuclei (7x) and potential energy contributions arising from electrostatic
interactions between electrons and electrons (Ve ), nuclei and nuclei (Vay), and nuclei and
electrons (Vxe).

In principle, solving the time-independent Schrédinger equation

H ) = E |3) (2.2)

leads to a wave function 1 for the system containing all information about it. Unfortunately,
directly solving Eq. (2.2) becomes too complicated for all but the simplest systems which
makes the development of approximate practical methods desirable.

A fundamental assumption valid for a large part of chemistry, solid-state physics and
materials science is the Born-Oppenheimer approximation [20] which exploits the tremendous
mass difference between nuclei and electrons. This difference gives rise to a significant
discrepancy in timescales for their respective motion which lets the nuclei appear static
from the electronic point of view. Within the approximation the electrons are therefore
assumed to adjust instantaneously to any change in nuclear coordinates by relaxing to the
respective ground state. Eq. (2.2) therefore simplifies to the electronic Schrodinger equation
with

ﬁel = Te + Vee + VNey (2'3)

where the kinetic energy operator for the nuclei and the nuclear-nuclear interaction potential
have been removed and the nuclei positions now enter as parameters instead of variables.
Repeatedly solving the electronic Schrédinger equation for different configurations of the
nuclei in a system gives rise to the so-called potential energy surface (PES).

These surfaces represent the central function of many studies—and the present dissertation
in particular—which rely on atomistic simulations of chemical systems. Stable and meta-
stable configurations, for instance, are associated with global and local minima on these
surfaces (as depicted in Fig. 2.1) which enables in silico predictions about—potentially not
yet synthesised—chemical structures. Directly solving the electronic Schrodinger equation is,
however, still too complex for most applications. Thus, further approximations are required
in order to arrive at practical methods [17-19].
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Fig. 2.1: Exemplary potential energy surface

2.1 Density Functional Theory

In density functional theory (DFT) the electron density p(r)—a function of three spatial
coordinates only—constitutes the central quantity and, thus, replaces the high-dimensional
wave function from above. A theoretical foundation for relying solely on the electron density
is provided by the Hohenberg-Kohn theorems [47]. The first theorem states a one-to-one
mapping between the ground state electron density pg(7) and the electronic Hamiltonian
and, thus, any ground-state property that can be derived from it. Most importantly, it is
possible to write the electronic energy K, of the ground state in terms of a functional of the
ground state density. According to the second Hohenberg-Kohn theorem this functional is
minimized by the ground state electron density which constitutes a variational principle

Elp(r)] = Eglpg(r)] (2.4)

with great practical consequences.

2.1.1 Kohn-Sham Approach

The energy in terms of a functional of the electron density can be separated into individual
contributions

Elp(r)] = Te[p(r)] + Veelp(r)] + VNe[p(r)]- (2.5)

While an explicit density-based expression can be derived for the nuclei-electron interac-
tions Ve, corresponding expressions for the kinetic energy of the electrons T, and the
electron-electron interaction V., are unknown.

On account of this situation, the approach by Kohn and Sham [48] is to separate out
those parts from the two terms for which explicit expressions can be found. Although the



remaining part is still unknown the fact that it represents a minor contribution to the
overall energy allows for adequate results even if simpler approximations are applied to it.
The separation reads as

Elp(r)] = Tl + 5 [ A7 arar’ 4 o)) + Bl 2:6)

where the first term represents the kinetic energy of non-interacting electrons (discussed in
more details below) and constitutes a large fraction of the corresponding term for interacting
electrons in Eq. (2.5). Similarly, the second term expresses classical electron-electron
Coulombic interaction and captures major parts of the interaction in Vee. The last term in
Eq. (2.6) is called exchange-correlation (XC) functional. It comprises everything not yet
included in the others and, thus, approximations have to be developed for it.

An expression for Tg can be found by constructing a fictitious reference system of non-
interacting electrons. The individual electrons in this system are subject to an effective
potential veg such that its overall electron density is identical to the real, interacting system.
With a description based on wave functions it is possible to compute the exact kinetic
energy by utilizing concepts known from Hartree-Fock (HF) [18] theory for the N electrons
in the reference system with a Hamiltonian expressed as

N

N
. N 1
Hgs = E hks,i = E (-2 VA +veﬁ(7’)> ; (2.7)

i

where v/ is a differential operator. The difficulty of finding a solution to the many-body
problem of the real system has, thus, been converted into a single particle picture in the
reference system. Individual particles in this system are described by the Kohn-Sham (KS)
equations

PKs,i) - (2.8)

his.i |PKs.) = eKs.i

In contrast to single-particle orbitals obtained from HF theory, the resulting KS-orbitals of
the fictitious system from Eq. (2.8) are not associated with a strict physical meaning, but
represent mathematical objects solely. However, the electron density expressed as

N
p(r) = Z |pks.il, (2.9)

is constructed to match with the real system.
Having obtained the single-particle wave functions of the non-interacting electrons the
corresponding kinetic energy can be found by

N

Ts=> —é (sl Vi |#ks,i) - (2.10)

%

A problem that still persists is that the effective potential in Eq. (2.7) itself depends on the
entire electron density. Based on the second part of the Hohenberg-Kohn theorem—the
variational principle—a self-consistent procedure can be applied to arrive at a solution.



Within the so-called self-consistent field (SCF) method a trial electron density is iteratively
improved until a convergence criterion is reached. In principle, this strategy allows for
obtaining the true ground state energy assuming an exact expression for the XC functional
is available. This is, however, not the case—and probably never will be [49]—such that the
method quality depends on adequate approximations for Exc.

2.1.2 Approximate Exchange-Correlation Functionals

Various approximations for the XC functional exist which can roughly be organized in
terms of associated computational complexity into local density approximations (LDA),
generalized gradient approximations (GGA), meta-GGA and hybrid functionals. Details
about the individual approximation strategies can be found in Refs. 18, 19 and 49.

Of particular relevance in context of the present dissertation are GGA and hybrid
functionals employed in Refs. 1 and 2. GGA functionals take into account the (local)
electron density, as well as its gradient which is important for the description of atomistic
structures with an inhomogeneous electronic density such as molecular systems. An
important representative of GGA functionals is the one developed by Perdew, Burke
and Ernzerhof (PBE) [50]. Hybrid functionals make use of the fact that exact exchange
energies can be obtained from HF theory. This energy is evaluated for the (occupied)
KS-orbitals and used to augment the expressions of explicit XC functional. With this
strategy hybrid functionals are capable of—at least approximately—curing deficiencies of
these XC functionals, specifically the non-vanishing electron self-interaction that originates
from an approximate treatment of the exchange energy. The improvements, however, are
accompanied with significantly increased computational demands, particularly for periodic
systems. A prominent hybrid functional is PBEO [51] with a mixing according to

EXBEY — 0.75 - EXBE +0.25 . EXF 4 EEBE, (2.11)

where the exchange energy obtained with PBE (E;IEBE) is partially replaced with the
corresponding KS-HF value (EXY) and the correlation energy (EEPY) is still completely
described by PBE.

The exchange-correlation functionals that have been referred to in this section differ in
terms of information included into the corresponding description. Additionally to the local
electron density used in LDA computationally more complex models take into account less
local information such as the corresponding gradient (GGA) and the Laplacian (meta-GGA).
Nevertheless, the derived exchange-correlation functions still rely on (semi-)local information

only and are, hence, not capable of providing proper descriptions of nonlocal effects.

2.1.3 Dispersion-Correction

Dispersion interaction is a nonlocal effect that arises from the correlation of electrons in
motion which induce charge polarizations in the electron density. It leads to long-range
attractive forces crucial for an accurate treatment of noncovalently bonded or condensed
phase systems such as molecular crystals. Thus, dispersion-correction schemes have been
developed to describe these interactions and couple their expression to an approximate DFT
functional. Although it is possible to directly develop nonlocal density functions which are
capable of describing these interactions—so-called dispersion-inclusive exchange-correlation



functionals [52]—many popular schemes are post-SCF corrections that augment the results
of underlying DFT calculations with dispersion contributions. A detailed insight into the
conceptual understanding of dispersion interactions and mathematical frameworks for their
modeling can be found in Ref. 53.

In the simplest form a pairwise interatomic model according to

1 Cs.4
Eaisp = —5 > %fdamp(RAB) (2.12)
A,B AB

is employed where dispersion contributions are described by dipole-dipole dispersion coef-
ficients (Cg ap) and distances (Rap) between pairs of atoms (A, B). The RS-dependency
of the potential describes the well-known asymptotic attraction at large distances [54—56]
while an empirical damping function is used to couple the long-range dispersion contri-
bution to the short-range electron correlation captured by (semi-)local DFT functionals.
More elaborate descriptions can be obtained by extending Eq. (2.12) for multipolar (e.g.
dipole-quadrupole) and higher-order (e.g. three-body) dispersion contributions. Moreover,
the Cg ap coefficients are system-dependent and various approaches for obtaining them
have been developed. A mathematical expression for calculating the dispersion coefficient
between atom A and B is provided by the Casimir-Polder relation [57]

Ce,AB = i/ dway (iw)ap(iw), (2.13)
0

where the dynamic polarizabilities at imaginary frequencies «(iw) of the involved atoms are
again system-dependent. This provides the basis for the three dispersion-correction schemes
presented in the following.

For obtaining the Cg ap coefficients the D4 correction scheme developed by Grimme and
co-workers [58, 59| relies on dynamic polarizabilities—pre-computed via time-dependent
DFT [60]—of element specific reference systems and incorporates a dependency on the
explicit chemical environment in two major steps. First, the atomic reference polarizabilities
are scaled based on the environment dependent partial charges obtained for the system
of interest (for instance from classical electronegativity equilibration [61]). These scaled
reference polarizabilities are used in a second step to incorporate a geometric dependency
based on the fractional coordination numbers (CN) of atoms. The CN of an atom in
the system of interest is compared with element specific CNs in the reference systems by
means of a Gaussian weighting function which further modifies the (charge-scaled) reference
polarizabilities. Numerical integration of Eq. (2.13) finally yields system-dependent Cg ap
coefficients.

An alternative way for obtaining system-dependent Cs 4p coeflicients is proposed by
Tkatchenko and Scheffler [62]. In the so-called TS approach Eq. (2.13) is used to derive an
expression for Cg ap coefficients which depends only on homonuclear parameters (Cg A4,
Cs pp and static polarizabilities aOA, a%) for which free-atom reference values can be
pre-computed—as in D4 via time-dependent DFT. Exploiting the direct relation between
polarizability and volume, system-dependent homonuclear Cg 44 coefficients are obtained by
scaling the free-atom reference value based on the ratio of volumina associated with atom A
in the system of interest and the free atom. Hirshfeld partitioning [63] allows to obtain
volumina from the ground-state electron density such that the scaling can be performed by
exploiting information from the underlying DFT calculations.



The many-body dispersion (MBD) [64] approach builds on TS and accounts for two
additional effects. First of all, an atom located in a particular chemical environments will
be affected by mutual interactions between fluctuating dipoles and the surrounding atoms
will lead to an electrostatic screening of atomic polarizabilities. In the short-range XC
effects are included in TS effective atomic polarizabilities by construction, but long-range
electrostatic screening is not incorporated. In the MBD approach atomic polarizabilities
containing both short- and long-range electrostatic screenings are obtained by modeling the
surrounding in terms of a dipole field and solving the corresponding classical electrodynamic
self-consistent screening (SCS) equations [65-67]. In a second step, the MBD approach uses
the SCS results to construct a Hamiltonian that represents the atoms in a system by a
collection of coupled isotropic three-dimensional quantum-harmonic oscillators, followed by
(numerically) solving the Schrédinger equation [68, 69]. The fully nonadditive many-body
dispersion contributions are then obtained as the difference between the zero-point energy of
the coupled and uncoupled oscillators. Similar to the other approaches also MBD involves
a damping function to couple the dispersion contribution to a (semi-)local DFT functional.

In noncovalently bonded systems each of the three approaches is capable of significantly
improving the results of underlying DFT calculations. Individual characteristics, however,
can make a certain approach more suitable for specific types of applications. The sophisti-
cated description of MBD yields generally the most accurate results and has, thus, been used
by us for a high-level treatment of molecular crystal structures in Refs. 1 and 2. Besides
that both MBD and TS avoid introducing empiricism into the ab initio computations since
all information is extracted from the electron density of the underlying DFT calculation
(apart from the XC functional-dependent parameters required in the damping function). In
contrast, there are numerous parameters entering the D4 framework, but evaluating the
dispersion contribution is independent from the underlying electronic structure of a system.
This characteristic makes it generally more suitable for coupling to methods other than
DFT such as density-functional tight-binding.

2.2 Density-Functional Tight-Binding

The DFT approach presented in the previous section undoubtedly constitutes an eminent
advancement for obtaining solutions to the Schrodinger equation in an efficient way. Nonethe-
less, substantial computational effort needs to be spent when screening vast databases or
simulating large systems. Practical methods that allow to conduct such studies as well
have been developed by introducing further approximations. Representatives of so-called
semi-empirical methods are roughly three orders of magnitude faster than DFT owing
to various approximations—such as relying on a small basis, and neglecting multi-center
terms—and are still capable of yielding reasonable results as empirical tuning recovers
most of the lost accuracy. While HF-based semi-empirical methods can be found in the
literature [70-72|, the purpose of this section is to provide insights into the DFT-based
density-functional tight-binding (DFTB) method in its third order expansion as described
in great detail in Refs. 73-78.

The development of DFTB models builds on a Taylor series of the total (KS) DFT energy
expanded around a properly chosen reference density. Over the years, these models became
more and more sophisticated by including higher order terms of the expansion. A compact



expression that underlies the most recent extension to third order [78] is provided by
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Here, the density of the ground state p(r) is represented by the reference density po(r)
perturbed by density fluctuations §p(r). For details about the terms E°-E3 and their
derivation the reader is referred to the corresponding literature, for instance Refs. 73-75.
Aiming for expressions of the individual terms that allow for a preferably fast evaluation
of Eq. (2.14) the developers integrated several (further) approximations into the model.
The derived simplified expressions EHo, E7, ET and E™P will be discussed in the following
together with the main aspects of the underlying concepts.

The main part of the computational savings—responsible for 2-3 orders of magnitude
compared to full DFT [75]—is related to the E™0 term and realized by the interplay of
several approximations applied in DFTB models. The derived simplified term reads

BT =>"3"3">"nicuicyiHo (2.19)
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where KS-orbitals 1; (compare Eq. (2.16)) are represented using a valence-only minimal

basis ¢,

P = Z C/u'd),u (2'20)
m

in a linear-combination of atomic orbitals ansatz. The orbital basis set is obtained from
numerical DF'T calculations of individual atoms. In this case, the KS equations are, however,
typically solved by applying an additional confinement potential which yields compressed
atomic orbitals and, thus, atomic densities. The procedure is motivated by results of more



sophisticated calculations on molecules and solids where it was found that electron densities
can roughly be approximated as a superposition of compressed atomic densities [73]. Thus,
without the confinement potential the resulting orbitals would be too diffuse to constitute
an optimal basis. Moreover, a two-center approximation |79] is applied to the Hamiltonian

6freeatom if U=rv
Hoyw = § (@ul = 5V + Vipo,a + popl @) if A# B (2.21)
0 ifA=B,u#v

where corresponding matrix elements can be pre-computed as function of interatomic
distances between atom A and B for all element pairs. The numerical value related to the
specific orientation of a dimer within an atomistic structure can be obtained by applying
the Slater-Koster [80] combination rules which omits explicit evaluations of matrix elements
during the runtime of a program.

For the term

1
EY = 3 % AgaAgpyig(RAB) (2.22)

density fluctuations are decomposed into atomic contributions, which in turn are approxi-
mated by applying multipole expansions where only the monopole terms are kept. As a
result of this simplification the derived expression in Eq. (2.22) shows a dependency on
atomic net charges Aq of individual atoms. These charges are obtained by employing a
Mulliken charge analysis [81] based on the expansion coefficients of Eq. (2.20) defining the
wave function vp;. This dependency triggers a self-consistent procedure to find the minimum
of the overall DF'TB energy which is enabled by applying the variational principle. By means
of the obtained charges the function VEB is taking account for electron-electron interactions
in E7 and comprises two major aspects. For A = B the function describes electron-electron
interactions within one atom, namely on-site self-repulsion. This is expressed by means
of the element-specific Hubbard parameter Uy (computed from DFT) which is twice the
chemical hardness. This relationship can be understood using general concepts from atomic
physics described in Ref. 82. In contrast, for A # B and large distances ’yEB describes pure
Coulomb interactions between two point charges Aga and Agp by reducing to basically
R}, ie. contributions arising from the (semi-)local XC functional (compare Eq. (2.17))
are assumed to vanish. Moreover, the deviation from RZ}a is modelled by the covalent radii
of the involved atoms which are determined by exploiting an inverse relationship to the
corresponding Hubbard parameter. This relation is intuitive in that it implies a smaller
chemical hardness for more diffuse atoms. An overall inverse relationship—as assumed by
the DFTB framework—is obtained only for elements within one period though. Since the
deviation is largest for hydrogen the 723 function is modified in case hydrogen is involved
(indicated by the superscript H).
The simplified expression of the third order term (Eq. (2.18)) reads

1
E' = 3 > A¢iAqeT ap(Ras) (2.23)
AB

where the function I'4p corresponds to the derivative of ’yHB with respect to charge. Its
incorporation into the DF'TB methods induces a dependency on the charge state of an

10



atom for the respective Hubbard parameter. Taking part in nyB (as discussed above)
introduces a corresponding charge-dependency also to the E7 term. Moreover, since the
Hubbard parameter is related to the chemical hardness this enables a customized treatment
dependent on the appearance of an atom as cation, anion or neutral species. Thus, the
third order term improves the model applicability to systems with large net charges where
local densities deviate significantly from the reference density.

The E™P term comprises approximations of multiple terms (compare Eq. (2.15)), but is
typically referred to as the repulsion term due to the dominating ion-ion repulsion at small
distances. The collective contributions are expressed by

re 1 re
E"P = o > ViR (Rap) (2.24)
AB

in terms of short-ranged repulsive potentials V% between atom pairs which are specific

to the combination of involved atom types. Dependency on the atom pair distance R4p
is obtained by fitting to experimental or high-level ab initio data—such as atomization
energies, geometries, atomic forces and vibrational stretching frequencies—of representative
reference systems. As a result of this practical aspect for constructing the repulsion term
it bears a resemblance to XC functionals in DFT in that it effectively comprises multiple
complex physical effects and uses simple functions for their description.

Besides the parameters required for constructing the repulsive potentials several other
parameters entering the presented semi-empirical DFTB framework need to be determined.
While some of the parameters (e.g. Hubbard parameters) can be obtained from atomic
DFT calculations others are determined by means of specific parametrization schemes [83—
85]. The 3ob parameter set, for instance, has been optimized for organic and biological
application and was used in our studies on molecular crystals in Refs. 1 and 2.

Finally, since DFTB is derived from (semi-)local DFT it also inherits its deficiencies.
As a result, dispersion interactions are not accounted for and correction schemes have
been developed to introduce these effects. Recently, DFT dispersion-corrections schemes
have been adapted to DF'TB and a posteriori corrections according to D4, TS and MBD
(discussed in the previous section) could be realized [78, 86]. The computational overhead
of the dispersion-correction—which is typically negligible when combined with DFT—
becomes more pronounced, however, when coupled with DFTB caused by the strongly
reduced evaluation times of the underlying method. Aiming for a computationally efficient
qualitative description of molecular crystal structures in Refs. 1 and 2 we therefore combined
DFTB with TS and D4, respectively.

11






3 Machine Learning
for Atomistic Systems

Approximate electronic structure methods like DFT and DFTB for modeling atomistic
systems are physically or mathematically motivated. The applied approximations aim
for a reduced level of complexity and associated computational costs which is typically
achieved at the expense of predictive quality. An alternative way that allows to shortcut
computational complexity is provided by means of machine learning (ML) and much effort
has been spent to adopt the ML machinery to atomistic systems in the past two decades. In
a more general sense, ML subsumes statistical algorithms whose performance enhance with
supplied experience in a sense that regularities and patterns that underlie a data set can
be learned and generalized. Owing to their universal formulation ML algorithms feature a
broad spectrum of applications. On the other hand, this universal formulation induces the
need for application-specific adjustment in order to use ML algorithms to full capacity and
the endeavor of researchers in this respect enabled the realization of various applications for
atomistic systems. An extensive overview about the current state of the field is provided
in Refs. 33, 34, 45, 87. The following sections will focus on so-called kernel-based ML
algorithms by introducing the most important (often interconnected) ingredients. This
includes the construction of appropriate structural representations for their input, the
definition of kernel-functions for corresponding similarity measurements and its subsequent
application for modeling and revealing structure-property relationships in atomistic systems.

3.1 Representations

The way of representing chemical structures to ML algorithms plays a central role for their
success. Dependent on the application at hand a suitable representation facilitates the model
generation for structure-property mappings or the discovery of structure-related patterns
in a data set. The process of converting information about atomic positions, chemical
identities and lattice vectors into a suitable representation is called feature engineering [88].

This process can be used to provide additional information and incorporate some funda-
mental principles that apply to chemical systems which results in more robust, transferable
and data-efficient ML models [38, 45|. Integrating known invariances directly into the
representation, for instance, makes this information immediately available to the model.
For the potential energy as one of the central properties corresponding invariances with
respect to translation, rotation, as well as permutations of atoms of the same element can
be incorporated in structural representations. Also other physical requirements such as
smoothness for the structure-property mappings can be integrated.

Atom-centered representations—in contrast to global representation—describe a chemical
structure by a set of local atomic environments. The physical significance of this represen-
tation lies in the assumption that properties of the chemical system can be constructed
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from individual atomic contributions. The validity of this additivity assumption is often
justified as many properties are extensive in nature and contributions associated with a
particular atom are mainly determined by its local environment. Moreover, the assumption
offers several advantages for ML models such as a strongly reduced diversity within local
environments—compared to the vast spaces associated with global structural arrangements—
which decreases the required supply of corresponding training data (vide infra), as well as
the risk of entering extrapolative regions. In addition to that the concept of locality increases
the transferability as models can be applied to systems of different size and compositions
more readily. A comprehensive overview of successfully applied representations is provided
in Ref. 45.

The central representation used in the present dissertation is the so-called smooth overlap
of atomic positions (SOAP) [44]. Here, the atomic environment x around a central atom is
described by Gaussian functions located on each atom A in x via the neighborhood density

2
pxa(R) = exp ( RA’ ) + feut (| R]), (3.1)

where the cutoff function f.,; ensures a smooth transition to zero at r.,; and the meaning
of the involved length-related parameters (rcyt and o) allows for a physically intuitive
specification. An exemplary illustration of the neighborhood density is provided in Fig. 3.1.

Fig. 3.1: Visual depiction of a neighborhood density in SOAP for oxygen environments in an ozalic
acid dimer. Red spheres: O, gray spheres: C, white spheres: H.

Rotational invariance is achieved by expanding the neighborhood density in a basis of
orthogonal radial functions and spherical harmonics and constructing the power spectrum

nn’l \l 2l 1 Z Cnlm Cn’lm (32)

for the obtained expansion coefficients ¢,;,,. The spatial resolution of the neighborhood
density is defined by the maximum values for I, n and n’, respectively, used to construct
the vector @ = {0,,,;}. While vectors obtained in this way are suitable for representing
single-component systems, multi-component systems can be described by separately con-
structing densities for each species [, computing power spectra 955:1()() for each pair of
elements and concatenating the obtained values [33]. The resulting SOAP vectors are
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multi-body representations of atomic environments which are smooth with respect to atomic
displacements and incorporate the invariances with respect to physical symmetries discussed
above.

3.2 Kernel

Various ML applications applied in the context of chemical structures and corresponding
local atomic environments are based on kernel functions. Generally, a kernel function
k(x,x") fulfills the requirement of being positive semidefinite and symmetric to swapping
of its arguments x,x’. In context of chemical systems the arguments correspond to
structural representations and the kernel function is used to measure the similarity between
them. Similarities between passed arguments are returned by means of their inner product.
The computation of the inner product, however, is performed (implicitly) in some higher
dimensional space—called reproducing kernel Hilbert space (RKHS)—which is defined by the
chosen kernel function. Based on this, so-called kernel trick it is possible to systematically
introduce non-linearity in otherwise linear ML algorithms. An excellent tutorial introduction
to kernel-based ML algorithms and its application to properties of small organic molecules
is provided in Ref. 89.

Numerous kernel functions exist and appropriate choices are tailored to the learning task
at hand. The SOAP kernel [35] is a prominent example for application to chemical systems
and can be obtained from SOAP vectors (see previous section) as

2

BN ) =00 = [ an| [ R (R i) (33)
ReSO(3)

The equivalence to the overlap of neighbor densities integrated over 3D rotations emphasizes
where the name SOAP has its origin. While Eq. (3.3) corresponds to a linear kernel many
successful applications of the SOAP kernel employ low-order polynomial versions of it by
raising the inner product to the power of (. The value selected for  defines the body order
of the SOAP kernel and also influences the ability of the kernel to emphasis differences
between atomic environments.

3.3 Machine Learning Interatomic Potentials

A subfield of ML are so-called supervised learning strategies which are capable of deriving
functional relationships between inputs and outputs from underlying patterns in data sets.
Dependent on the nature of the outputs a general distinction is made between classification
for categorical values and regression for a continuous space of values. Machine-learned
interatomic potentials (MLIP) [33-35| corresponds to the latter aiming for the mapping
between representations of chemical systems and its potential energy surface.

3.3.1 Reference Data

Modern ML strategies achieve this mapping by generalizing information from a reference
database {(yr°f; i)} storing representations of M input training structures =™ along
with associated labels y™f such as energies and forces. The database represents therefore a
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central component which is at the same time highly application specific. Its quality crucially
impacts the effectiveness of the MLIP trained on it.

A model’s capability to reproduce physical effects is defined inter alia by the level of
theory employed to compute the labels. Numerical values are typically obtained from a
computationally expensive high-level reference method. Alternatively, also energy and
force differences between a high-level reference and a computationally much more efficient
low-level method can be employed. Instead of modeling the PES directly such a A-ML [90,
91] approach provides a correction to be applied in combination with the low-level method
which acts as a physical baseline. In the work we published in Refs. 1 and 2 we followed
this strategy and present A-ML models of molecular crystals where the baseline resolves
a conflict that arises from representing structures in terms of local atomic environments
which complicates incorporating important long-range interactions (compare section 2.1.3)
directly.

The computational expenses associated with evaluating the labels for the structures and
related local environments stored in the reference database is a limiting factor. At the same
time, however, these structures should correspond to a comprehensive representation for
intended applications of the final MLIP as for extrapolative regions unphysical behaviour is
expected. The generation of reference data is therefore a challenge on its own and several
sampling strategies exist. Exploring the PES by means of molecular dynamics simulations
at higher temperatures, for instance, prevents that models trained on such data enter
extrapolative regions during production runs at lower temperatures. These samplings can be
driven by ab initio methods, a computationally less expensive lower-level methods or in an
iterative scheme with a preliminary MLIP initially trained on a small reference database [34].
In case a large pool of potential training structures is readily available a common task is
to extract a concise set of structures from it for which computing labels on the reference
level of theory is then performed. A reduction of redundant structural information to arrive
at a set of diverse motifs can be achieved by applying a so-called farthest point sampling
(FPS) [92, 93|. In FPS a maximization of structural diversity is accomplished by employing
a kernel function (compare Section 3.2) to measure similarities and iteratively selecting
the sample from the pool showing the greatest dissimilarity with respect to already drawn
structures.

3.3.2 Loss Function

In search of a model capable of reproducing a target function the ultimate objective is to
detect the function f from the space of all possible functions F where predicted output
values y of related inputs x are in agreement with the target function at every single point
in space [33], i.e.

A~

F=orgin | [ Lao (@) p)d(e.0)] (3.4)
feF

where £ measures deviations between predicted and actual function values. In consequence

of the finiteness of available reference data and, thus, incomplete information about the

target function the requirements on the model function f need to be modified. Besides

predicting values in agreement with the provided reference data an optimal model function

properly interpolates between them.
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Predictions in agreement with the reference data is ensured for all ML models that mini-
mize the function £. The construction of ML models, however, starts from a highly general
model class using so-called universal approrimators with only minimal restrictions—such as
smoothness—on the final functional form. Without taking countermeasures the learning
process will therefore lead to overly complex models that provide a perfect description only
for the reference data, but are virtually unusable for reliable predictions of any other input.
In order to obtain models with a higher degree of generality loss functions are typically
augmented by an additional term according to

M
f=argmin | > Loy (f(@}F), 55) + AR | | (3.5)
feF ;

where the regularization R is used to penalize complexity and, thus, restrict the space of
optimal solutions to simpler functions which are more likely to provide general models. As
an example, Tikhonov regularization [94] favours solutions that will not heavily rely on
individual input features and is achieved by means of the L2-norm of coefficients defining
the ML model (vide infra). The balance between the two terms in Eq. (3.5) critically
influences the final model and can be controlled by A > 0 which constitutes a hyperpa-
rameter. Insufficient regularization strength results in overfitted models showing a large
variance between errors on training data and any other data. In contrast, disproportionate
regularization causes biased or underfitted models which are too simplistic to provide reliable
predictions. A graphical representation to visualize the effect of regularization is provided in
Fig. 3.2. During model generation the bias-variance trade-off can by monitored by splitting
a so-called validation set off from the training set and computing the prediction error on
both sets. For a more general discussion on setting hyperparameters the reader is referred
to Section 3.3.4.

ffffff Model Function f ~—— Target Function « Reference Data

Output y

Input x

Fig. 3.2: The influence of reqularization on modeling a target function with a strongly regularized,
underfitted model (left), a model with reasonable reqularization (middle) and an overfitted
model (right).

3.3.3 Regression Tools

The process of modeling the functional relationship between inputs and outputs such that
the loss function is minimized can be accomplished in various ways. A suitable strategy is
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to express the solution of this optimization problem in terms of kernel functions which has
its theoretical basis in the representer theorem [95, 96]. It gives reason for approximating a
target function in terms of a linear combination of kernel functions centered on the inputs
of the training data and, thus, gives rise to the development of kernel-based methods. These
methods are capable of describing complex nonlinear relationships between data points by
means of the kernel-trick. Its application enables the conversion of any linear ML algorithm
into a nonlinear version of it as long as outputs can be written in terms of inner products of
the inputs. In this way, inputs are implicitly mapped to a higher-dimensional space (the
RKHS) where the linear algorithm is applied and the result mapped back to original space
is returned.

Gaussian process regression (GPR) is a prominent representative of kernel-based methods
and in Refs. 1 and 2 we demonstrate its applicability to model the PES of molecular crystals
and co-crystals by means of a A-ML scheme. This was accomplished by employing the
Gaussian Approximation Potential (GAP) [36] developed by Bartok et al. which constitutes
a general framework for GPR-based MLIPs. Insights into GPR will be provided in the
following by means of two equivalent views on it (denoted as weight- and function-space
view) that emphasise different aspects of the regression tool |34, 35, 89, 97, 98].

In weight-space view the starting point is to express the target function fi(x)—according
to the representer theorem—in terms of scaled kernel functions

fi(x) Z sik (il x) (3.6)

where the sum iterates over the number of training set samples. Here, the kernel functions
k(xt, ) can be viewed as basis functions which are centered at the training inputs and
measure the similarity to any new input x. The coefficients s; associated with each of the

M basis functions are obtained by minimizing the loss function

L= Z ref ref —I-O'QZS k ref wref) (37)
,J

‘Cdev )?7r2

where the training set samples {(y!f; 21°1)}M enter the first term (Lgey), Tikhonov reg-

ularization is applied by means of the second term (R) and the hyperparameter () for
controlling the balance between the terms is denoted by o2 (to facilitate comparison with
function-space view later on). Note that in the regularization term coefficients of the
nonlinear model are weighted by corresponding kernel elements which arises from penalizing
complexity of the linear model in RKHS. Owing to the convexity of this optimization
problem there exist a single solution to it and an analytical expression can be obtained by
setting the derivative of £ with respect to the coefficients to zero and re-arranging its terms
for the coefficients. Written in matrix form this yields

s= (K + %) 1y, (3.8)

where the kernel matrix K € RM*M comprises similarities between training inputs and
> € RMXM i a diagonal matrix with elements o2. The elements in ¥ can in principle also
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differ from one another with an associated meaning that is best understood from considering
GPR in function-space view.

The function-space view corresponds to a probabilistic perspective on GPR where basis
functions—in contrast to the weight-space view—are independent of the training data and
will be used solely for defining a probability distribution of functions:

H
fi(z) =~ f(a:) = thfbh(m). (3.9)
h

This is achieved by considering each of the weights wy to be drawn independently from a
Gaussian probability distribution

P(wp) < N(0,02). (3.10)

The resulting probability distribution over functions is called a Gaussian process where o2

expresses prior beliefs about the overall variance of f(x). In general, a Gaussian process
corresponds to a collection of random variables with the characteristic that any finite
number of it has a joint Gaussian distribution [97]. The function-space view employs this
characteristic to infer predictions of new data points & based on the probability distribution
of the reference observations {y!*}M . The derivation of expression Eq. (3.8) from this
perspective will provide additional insight into GPR and starts by considering the covariance
between two observations

H
(f@f)) = [ dwrw th@h th@h/ ) =023 By ()04 ().
h
(3.11)

The final expression in Eq. (3.11) is obtained from exploiting properties of the weights as
drawing samples independently according to Eq. (3.10) gives rise to 026, when evaluating
the integral. The scalar product of basis functions in this expression is used to define a
kernel according to

H
k(@) =00, (@) Pp(a). (3.12)
h

which induces kernel matrices build from scalar products in RKHS and corresponding
properties that follow from its definition such as positive semidefiniteness. Moreover, for
GPR only the kernel itself will be required to carry out the regression such that explicit
knowledge about the basis functions is not essential. At the same time every basis gives rise
to a different kernel such that the regression can be customized by choosing an appropriate
kernel function.

The potential existence of noise on the reference observations {yref M 2, is introduced by
writing
<y;efy;ef > = k(a}", ") + 5,507 (3.13)

with the assumption that it is drawn independently for each sample from a Gaussian

distribution with zero mean and variance a? . The possibility for applying (potentially)

19



sample specific noise enables uncertainty to be assigned to individual training samples
which allows for an imperfect fit to the data. The probability distributions for all reference
observations is therefore expressed as multivariate Gaussian

P(y™) o N(0, K + ). (3.14)

where the mean of the distribution is set to zero for notational simplicity (in accordance
with the literature [35, 97] and justified since a prior guess for it could be subtracted from
training data before fitting and added back after prediction). Predictions on new data
points & are made by writing the joined Gaussian distribution with the training data and
conditioning on the latter by means of Bayes’ rule [99]

Py, y)
P(y)

which again yields a Gaussian distribution with mean m(x) and variance var(x) according
to

P(yly™) = (3.15)

m(x) = kT (K + )"y and (3.16)
——
var(x) = k — kT (K + X) "'k, (3.17)
ref \ M

where k contains the kernel functions evaluated between @ and the reference inputs {x;* };,.
The function-space view on GPR therefore yields via Eq. (3.16) an expression for making
predictions on a new data point in accordance with the weight-space view (compare Eq. (3.8))
and additionally delivers a measure for the uncertainty about this prediction by means of
Eq. (3.17). Moreover, comparing both perspectives reveals an alternative interpretation for
the hyperparameter o2 —regularization strength in weight-space and (potentially sample-
resolved) uncertainty of reference observations in function-space—which provides guidance
for its specification in practical applications.

Moreover, for modeling MLIPs with local atomic environments and, thus, local energies
while ab initio methods provide energies for entire structures a customization of the general
GPR process from above is required as described in detail in Refs. 35, 93 and 98. These
citations additionally explain the incorporating of further information about the target
function into the process which is typically available in terms of derivatives (forces and
stresses) and is technically realized by means of kernel function derivatives.

Another aspect that needs to be considered in practical applications is the scaling
behaviour in GPR. The scaling of full GPR (as presented above) with the number of
training samples is (formally) cubic in terms of computational time and quadratic in terms
of memory requirements, which makes it expensive for large data sets. Sparse GPR therefore
pre-selects a representative set of samples for defining the locations of the kernels used as
basis functions (in weight-space view). This reduces the number of coefficients that need to
be determined (via matrix inversion in Eq. (3.8)) and, thus, regularized (Eq. (3.7)) and for
predictions the kernel functions that need to be evaluated for each new sample (Eq. (3.16)).
Ref. 35 provides a detailed description about sparse GPR and efficient strategies for practical
implementation.

Finally it should be noted that besides kernel-based methods neural networks (NN)
constitute another highly popular regression tool for generating MLIPs. In NNs a complex
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nonlinear function (e.g. the PES) is decomposed into a series of transformations which can
be depicted by layers of connected neurons. An input (e.g. a structural representation)
passing through these networks gets transformed by weights and biases that correspond
to edges connecting the neurons. A neuron takes these weighted results, passes it through
a nonlinear activation function and sends the obtained value to subsequently connected
neurons. In this way, the original input gets mapped to several intermediate representations
until a final output (e.g. an energy) is obtained. Optimal values for both types of parameters
(weights and biases) need to be learned during the training process. Minimization of the
loss function in NNs is typically carried out by random initialization of the parameters and
subsequent optimization using stochastic gradient descent. Based on Behler and Parinello’s
work on high-dimensional neural networks potentials [38] numerous successful realization of
MLIPs have been achieved such as ANI [39], PhysNet [40], GemNet [41] and SchNet [42] to

name but a few.

3.3.4 Hyperparameters

Besides the model parameters to be determined by the regression algorithm during the
learning process, ML models are typically accompanied by various hyperparameters. Values
for these parameters are chosen beforehand and can be used to express prior beliefs about
the data [33, 34]. In this way, the effectiveness of the model—its capability to generalize
for instance—can be tuned. Consequences arising out of a particular value assigned to a
hyperparameter strongly depend on its type. As an example, the regularization strength
in a loss function is a hyperparameter that affects the complexity of a model (by affecting
the magnitude of obtained regression coefficients). Others influence the composition of the
model itself, for instance through choices about the type of kernel in GPR or the number of
neurons and corresponding layers in a NN.

Interdependencies between hyperparameters and restrictions to a bound range or integers
typically results in a rather complex space of values. Moreover, gradient-based methods for
detecting optimal values for them is often not possible in an effective way due to the lack of
analytical derivatives and the computational demands for numerical evaluations caused by
the induced re-training of the model. At the same time, however, the model performance
is typically fairly robust to small value changes for many hyperparameters. This allows
for defining heuristics that are found to work reasonably well across different data sets.
Alternatively, optimal values can be detected by means of random or grid searches combined
with educated guesses for the search ranges.

When optimizing values for hyperparameters, each trial combination is used to train a
separate model and subsequently selecting the one showing the best performance. Its quality
is judged by the so-called generalization error obtained from predictions on a validation
set which has been split off before training. More advanced methods such as k-fold cross-
validation can be used to obtain better statistics on the generalization error. Here, multiple
models are generated for each trial combination of hyperparameters by splitting the training
data in k folds and performing the corresponding number of training rounds using k — 1
folds while the remaining one servers as validation set.
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3.4 Kernel Principal Component Analysis

Gaining a higher-level understanding about chemical data sets is often difficult, due to the
high dimensionality of structural representations like SOAP which complicates a visual
representation and detecting underlying patterns. Preserving such patterns in a few
meaningful dimensions is the goal of dimensionality reduction techniques which transform
the original data in a way that keeps some relationship between points in high and low
dimensional space intact. The scalar product between data points, for instance, constitutes
the relationship preserved in principal component analysis (PCA) [100].

In PCA the initial step constitutes the construction of a covariance matrix from feature
vectors of the data in original space. Based on the obtained matrix a new coordinate system
for representing the data points is defined by taking advantage of associated eigenvalues
and -vectors. While the eigenvectors constitute the axis of the new basis its eigenvalues
serve as a measure for the associated information content which allows to arrange the axis
accordingly. Eigenvectors corresponding to large eigenvalues point along directions with
high variance and, thus, are assumed to be particularly suited for representing the data while
the information content along directions with low variance is assumed to be insignificant.
Most of the total variance in a data set is often explained by just a few directions. These
so-called principal components—Ilinear combinations of the axes of the original space—are
then used to gain insight into the data set while remaining dimensions are typically ignored.

Since PCA is a linear technique, but relies on scalar products between feature vectors,
it is possible to arrive at a non-linear version of it by applying the kernel trick (compare
Section 3.2). Kernel principal component analysis (KPCA) [101] therefore uses the kernel
matrix between data points—instead of the covariance matrix—for obtaining meaningful
axes. Depending on the type of kernel applied in KPCA the resulting principal components
will then be capable of revealing non-linear relationships in the set.

In the present dissertation both PCA and KPCA have been used to illustrate how low-
dimensional projections of chemical structures and subsequent visualization can be utilized
to gain insights in corresponding data sets. A reproduced example from Ref. 3 is shown in
Fig. 3.3 for which KPCA has been applied in conjunction with the SOAP kernel. Finally,
note that apart from the techniques presented in this section also others are frequently
used for representing data sets of chemical structures such as t-distributed stochastic
neighbor embedding [102], sketch-map [103] and the uniform manifold approximation
and projection [104].
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Fig. 3.3: (top) The two boxes show the commands used in combination with the ASAP code—uwhich

has been developed in conjunction with our work in Ref. 3—to generate the corresponding
plots. (Left) KPCA map of gas-phase oxalic acid conformers (large points) that served
as initial structures to sample configurations from various molecular dynamics (MD)
stmulations at 500 K (small points). Transparent points refer to configurations of MD
simulations without transitions to other basins. (right) Randomly initialized crystal struc-
tures for ozalic acid (small yellow circles) along with its fully relazed counterparts (large
colored circles). The two visual representations of crystal structures correspond to the
experimentally known « [105] (lower) and B [106] (upper) polymorph. Although structure
initialization was conducted from the same gas-phase conformer for all trial crystals
conformational changed upon relaxation have been observed in some cases (indicated by
arrows across the panels). Reprinted with permission from Ref. 3. Copyright ©) 2020
American Chemical Society
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4.1 Data-efficient machine learning for molecular crystal
structure prediction

Simon Wengert, Gabor Csanyi, Karsten Reuter and Johannes T. Margraf

Chem. Sci. 12, 4536 (2021)
DOI: https://doi.org/10.1039/D0SC05765G

4.1.1 Content

We present a data-efficient workflow to generate A-ML models for molecular crystals that
feature high accuracy/cost ratios. To achieve this we enhance the description of a low-cost
physical baseline by applying GPR-based ML corrections trained on high-quality ab initio
reference data, most notably obtained from dispersion-corrected DFT (DFT+MBD). For
the baseline we find DFTB in combination with TS dispersion-correction (DFTB+TS)
to constitute an appropriate method for our approach since short evaluation times allow
for extensive search space explorations in molecular CSP while reasonable descriptions of
long-range interactions are provided.

This is of particular relevance since these interactions are important for an accurate
description of molecular crystals, but are outside the range of our ML corrections where
structures are represented in terms of local atomic environments using SOAP. Reference
environments for generating ML corrections are based on a concise set of crystal structures
obtained from a large pool by diversity-driven selections using FPS. These structures serve
as templates to create training sets of two separate ML models for correcting intra- and
intermolecular interactions, respectively. While the former is trained inter alia on the
individual molecular conformations comprised in the crystal templates, extracted molecular
clusters of varying size enter the training process of the latter. Separating the overall target
function into regression problems for intra- and intermolecule interactions facilitates the
generation of the individual models, while the complete avoidance of periodic reference
structures enables a training on high-level methods also beyond DFT which would otherwise
be computationally prohibitive. This is demonstrated by employing spin-component-scaled
second-order Mgller—Plesset theory (SCS-MP2) as the high-level reference in one case.

Moreover, we could show that our approach is broadly applicable to different molecular
materials by considering various representative test systems. For each test system we verify
the overall accuracy of obtained A-ML models for both crystal stabilities and relative
stability rankings. Additionally, we demonstrate that our approach yields models that allow
for reliable structure relaxations which can be conducted with a computational effort orders
of magnitude smaller than the high-level target method even taking training costs into
account.

4.1.2 Individual Contributions

The ideas underlying the presented workflow have been jointly conceived and constantly
further developed by Johannes T. Margraf, Gdbor Csanyi and myself. Johannes T. Margraf
and I wrote the manuscript which has been further edited by Gabor Csanyi and Karsten
Reuter. Gabor Csanyi contributed particularly with substantial support regarding the
GAP framework and SOAP. Johannes T. Margraf provided an early version of the code
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for gas-phase molecular dynamics simulations which has been further modified by myself
to generate the molecular configurations that augment the intramolecular training set.
Moreover, I created all additional code necessary to conduct the presented workflow. This
includes inter alia the python-based MLtools package used to perform large parts of
the workflow related to fitting the GAP models and the farthest point sampling, as well
as extracting both single molecules and (unique) sets of molecular clusters from crystal
structures. Additionally, I wrote an ASE-based calculator to combine the baseline method
with the intra- and intermolecular ML corrections and to perform single-point calculations
and structure optimizations with these A-ML models. Finally, I conducted all model
generations, the subsequent analysis—including the timings—and created the figures.
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4.2 A Hybrid Machine Learning Approach for Structure
Stability Prediction in Molecular Co-crystal Screenings

Simon Wengert, Gabor Csanyi, Karsten Reuter and Johannes T. Margraf

J. Chem. Theory Comput. 18, 4586 (2022)
DOLI: https://doi.org/10.1021 /acs.jctc.2c00343

4.2.1 Content

On the basis of our approach described in Ref. 1 for single-component crystals we present
an extended workflow that enables the generation of A-ML models for structure predictions
in molecular co-crystal screenings. We demonstrate the applicability of this approach for
co-crystals of variable composition consisting of a representative active pharmaceutical ingre-
dient (paracetamol) and various co-former candidates (oxalic acid, naphthalene, phenazine
and theophylline).

For each molecular type a separate model for intramolecular ML corrections is trained,
while intermolecular interactions are corrected with a common ML model which captures
the individual pairs between central pharmaceutical and co-formers including variations of
the respective stoichiometric ratio. Both types of ML corrections are trained on energy and
force differences using the GAP framework with dispersion-corrected hybrid DFT (denoted
as PBE(0)+MBD) as the high-level reference method, while in final models (denoted as
A-GAP) the combination with the dispersion-corrected DFTB baseline (DFTB+D4) delivers
corrected energies, forces, as well as stresses.

We show that these A-GAP models reliably yield energies and forces in agreement with
PBE(0)+MBD by means of a comprehensive set of test crystals. We further substantiate the
robustness of our approach by explicit investigation of structures beyond the scope of the
training set—in terms of packing density and stability—Dby considering the experimentally
known co-crystals of our test systems. For each system we optimize atomic positions as well
as unit cell parameters and find A-GAP structures reproducing PBE(0)+MBD results with
high accuracy at a much lower computational cost. Moreover, we apply our A-GAP models
to perform molecular dynamics simulations at ambient conditions and obtain co-crystal
densities in agreement with experimental measurements.

4.2.2 Individual Contributions

The idea for extending the approach for single-component crystals presented in Ref. 1
to co-crystals has been jointly conceived by all contributing authors and Johannes T.
Margraf, Gabor Csanyi and myself have been involved in the realization process. Johannes
T. Margraf and I wrote the manuscript which has been further edited by Gabor Csanyi
and proofread by Karsten Reuter. I created all code necessary for extending the workflow
to co-crystals. This includes an ASE-based calculator for PBE(0)+MBD (defined in the
manuscript) single-point calculations and structure optimizations. Moreover, based on
the ASE calculator that has originally been written for single-component A-ML models, I
implemented the enhancements required for co-crystal systems, as well as application of
intra- and intermolecular ML corrections to stresses for performing simulations that involve
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variations in lattice parameters. Finally, I conducted all model generations, the subsequent
analysis and created the figures.
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4.3 Mapping Materials and Molecules

Bingqing Cheng, Ryan-Rhys Griffiths, Simon Wengert, Christian Kunkel, Tamas Stenczel,
Bonan Zhu, Volker L. Deringer, Noam Bernstein, Johannes T. Margraf, Karsten Reuter,
and Gabor Csanyi

Acc. Chem. Res. 53, 1981 (2020)
DOI: https://doi.org/10.1021 /acs.accounts.0c00403

4.3.1 Content

This work focuses on the combination of unsupervised learning with atomic structure
representations for visualization and analysis of molecular and materials data sets. With
the ever-growing computational power the extent of such sets is constantly increasing and
our work, thus, addresses the associated desire for exploring such data efficiently, thereby
revealing underlying patterns and gaining physical and chemical insights.

In our work we rely on SOAP for describing local atomic environments and averaged
versions of it for a global representation of entire systems. After having converted the
entries of a data set accordingly, we couple these representations to PCA and KPCA in
order to measure corresponding similarities with subsequent projection to low-dimensional
spaces suitable for visualizations. We conveniently provide an automated and user-friendly
command-line tool for these mappings via the Automatic Selection And Prediction tools for
materials and molecules (ASAP) code. Complementary to it, we provide a web-browser
based viewing tool that allows for interactive explorations of obtained maps by additionally
displaying the 3D-structures along with attributes associated with a selected data point.
Moreover, in the course of this work universal heuristics for setting SOAP hyperparameters
have been formulated that are applicable to systems of arbitrary chemical composition
which further facilitates an efficient exploration of atomistic structure data sets.

To showcase the usefulness of the data-driven framework presented we provide examples
for a wide variety of systems along with the corresponding data which allows to reproduce
the obtained maps readily. These example systems comprise crystalline and amorphous
materials, as well as interfaces and data sets of organic molecules and cover fields of
application such as exploring the results of random structure searches, inspecting the
composition of training sets in ML and the analysis of molecular dynamics trajectories.

4.3.2 Individual Contributions

The idea underlying this collaborative work emerged from discussions between the authors
that all work on machine learning and need to deal with large data sets of atomistic
structures. In the course of preparing this manuscript all contributing authors jointly
took part in improving on it by providing ideas, code or data sets of illustrative examples,
as well as writing and editing the individual sections. Thus, a distinct assignment of all
contributions to individual authors is generally not appropriate for this work. Nevertheless,
the browser-based visualizer for atomistic structure data sets was written by Christian
Kunkel (who also provided the basis for the code), Tamas Stenczel and myself. Additionally,
I contributed with a section on visualizing molecular dynamics trajectories of oxalic acid
molecules and full unit cell relaxations of corresponding crystal structures and partially
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contributed to the section on visualizing the well-established molecular QM9 data set,
specifically the carbon environments part of it.
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5 Summary, Conclusion and Outlook

In summary, in the work published in Ref. 1 we developed a kernel-based supervised
learning approach to generate hybrid models for molecular crystals by augmenting a low-
cost physics-based description of long-range interactions with short-range ML models trained
on high-quality ab initio reference data. The approach features a high data-efficiency for
generating these hybrid models for which, in turn, a large accuracy/cost ratio has been
verified with computational demands mainly concerned with the applied semi-empirical
baseline method. We could substantiate the applicability of these hybrid models to CSP
by verifying the agreement with the high-level method in terms of stability and molecular
arrangements upon structure optimization. The complete avoidance of periodic reference
structures enables reference methods even beyond DFT which paves the way for applying
correlated wave function methods in molecular CSP studies. Moreover, we showed that the
presented approach is broadly applicable to different single-component molecular materials.

On this basis, extensions to our approach have been presented in Ref. 2 with focus on
co-crystal systems which are predestined for property-driven screenings through a systematic
variation of components. With this in mind, we combined a representative pharmaceutical
with several co-forming molecules in various stoichiometric ratios to demonstrate the
predictive capability of corresponding hybrid models. We could show that predictions agree
with the high-level reference method even beyond the scope of the training structures and
by means of molecular dynamics simulations at ambient conditions also with experimental
measurements.

Additionally, we have been investigating the applicability of kernel-based unsupervised
machine learning for dimensionality-reduction and subsequent visualization in Ref. 3. Com-
bining (kernel) principal component analysis with sophisticated representations of atomistic
structures based on SOAP could be shown to be applicable in an automated fashion and
with great versatility by means of illustrative examples such as examining molecular dynam-
ics trajectories, exploring results from crystal structure searches or revealing underlying
patterns associated with atomic environments in an established molecular database.

To conclude, at the center of the dissertation at hand are kernel-based machine learning
methods and their application to atomistic structures with strong focus on molecular
systems, particularly molecular crystals. In the course of this work significant contributions
have been made in obtaining accurate and computationally efficient models for application
in molecular crystal structure prediction and associated global optimization problems by
developing supervised learning schemes for their generation. The advanced capability of these
models to explore the vast configurational spaces with high energetic precision, including
the efficient optimization of all relevant degrees of freedom can be employed to facilitate
the reliability of in silico structure predictions and ultimately corresponding screening
studies for a well-directed discovery of novel materials. Here, the ongoing developments
towards accounting for long-range interactions in machine learning models directly are highly
promising since it provides a basis for reliable models without additional costs for the baseline
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method and, thus, a further enhanced efficiency in the assessment of crystal stabilities.
Moreover, the emergence of differential models with high accuracy/cost ratio makes reliable
stability comparisons based on free energies and the incorporation of experimental conditions
into the assessment more readily accessible. On another note, considering the reduced
demands for generating large data sets of atomistic structures the resulting desire for a
simplified exploration and analysis has been addressed by demonstrating the applicability
of kernel-based unsupervised learning to atomistic structure data sets and the development
of convenient tools for their exploration and analysis. Altogether, the work underlying
the present dissertation provides a valuable contribution to the rapidly evolving field of
machine learning in computational chemistry which is expected to (further) enable numerous
advances that have previously been out of reach.
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of Chemistry The combination of modern machine learning (ML) approaches with high-quality data from quantum
mechanical (QM) calculations can yield models with an unrivalled accuracy/cost ratio. However, such
methods are ultimately limited by the computational effort required to produce the reference data. In
particular, reference calculations for periodic systems with many atoms can become prohibitively
expensive for higher levels of theory. This trade-off is critical in the context of organic crystal structure
prediction (CSP). Here, a data-efficient ML approach would be highly desirable, since screening a huge
space of possible polymorphs in a narrow energy range requires the assessment of a large number of
trial structures with high accuracy. In this contribution, we present tailored A-ML models that allow
screening a wide range of crystal candidates while adequately describing the subtle interplay between
intermolecular interactions such as H-bonding and many-body dispersion effects. This is achieved by
enhancing a physics-based description of long-range interactions at the density functional tight binding
(DFTB) level—for which an efficient implementation is available—with a short-range ML model trained on
high-quality first-principles reference data. The presented workflow is broadly applicable to different
molecular materials, without the need for a single periodic calculation at the reference level of theory.
We show that this even allows the use of wavefunction methods in CSP.
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unparalleled CSP accuracy/efficiency ratio to explore the vast
configuration spaces with highest energetic precision.

1 Introduction

The capability to reliably predict the structure of molecular
crystals is considered one of the holy grails of molecular
modeling."” Applications for such crystal structure prediction
(CSP) methods range from finding new drugs with improved
dissolution properties (and thus bioavailability) to organic
semiconductors with novel optoelectronic properties.** CSP for
these molecular materials is so elusive because both their
properties and stabilities are critically determined by the
interactions of their molecular building blocks in the
condensed phase. Indeed, the competition of different inter-
action types (e.g. dispersion and hydrogen bonding) within
molecular crystals often leads to the coexistence of multiple
similarly stable crystal structures—so-called polymorphs—each
exhibiting different physical properties.>® The ability to predict
these polymorphs from simulations would therefore allow the
efficient exploitation of the great technological potential
inherent in this structural diversity, but requires an
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In practice, this search requires the reliable assessment of
the relative stability of different structures, as measured by the
lattice energy:

Elatt = Ecrys/N - Eiso, (1)
where E.y is the total energy of the crystal per unit cell, N is the
number of molecules in the unit cell and Ej, is the energy of an
isolated molecule in its most stable conformation. Here, the
main challenge lies in the large number of possible polymorphs
and the small energy differences between them.>”® In practice,
there is thus a trade-off between the ability to screen a wide
range of candidates (which requires a fast evaluation of free
energy or other stability measures) and applying higher levels of
theory that adequately describe the subtle interplay between
different intermolecular interactions such as H-bonding, elec-
trostatic, induction and dispersion effects. Many CSP
approaches are therefore structured hierarchically using
a computationally less demanding stability assessment for
screening a large set of candidates, while more advanced
methods (typically based on density-functional theory, DFT) are
used for the final ranking of the most promising structures.>*’

In recent years, a range of methods have been developed for
the approximate stability assessment in the initial screening
step. Li et al™ for instance evaluate stabilities of trial

© 2021 The Author(s). Published by the Royal Society of Chemistry
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configurations by applying the Harris approximation to DFT,
with crystal electron densities constructed from the superposi-
tion of frozen single molecule densities. Tailor-made empirical
potentials have also been successfully used for the screening
step, as demonstrated for instance by Neumann et al.** in the
blind tests of organic crystal structure prediction organized by
the Cambridge Crystallographic Data Center® (CCDC). Finally,
semiempirical electronic structure methods like density-
functional tight-binding (DFTB) have also emerged as prom-
ising tools to efficiently rank the stabilities of molecular crystal
structures.’>'* Note that the initial screening can itself be
hierarchical, so that the overall CSP workflow often resembles
a funnel of increasingly narrow and accurate selection schemes.
Nevertheless, regardless of how the most promising candidates
are selected, the final step of a hierarchical CSP workflow
requires an accurate first-principles method that allows
resolving the subtle stability differences between competing
polymorphs, presently typically semi-local or hybrid DFT with
a many-body dispersion correction (DFT+MBD).*

There are essentially two sources of error in such hierar-
chical CSP schemes. First, the initial screening may either not
consider the true lowest-energy structure in the first place or
discard it erroneously. Second, the high-level method in the
final layer may not produce the correct ranking of the remaining
candidates. Unfortunately, the obvious solutions to these issues
preclude each other: on the one hand, the selection issue can be
mitigated by starting with a larger set of candidates and less
severe filtering. On the other hand, better ranking can be ach-
ieved with more elaborate methods, at a higher computational
cost per evaluation. For a fixed computational budget one
cannot do both of these things. What is worse, in general it is
not clear at the outset which of the two is more critical.

A potential way out of this conundrum is offered by modern
machine-learning (ML) techniques, which have been found to
combine the accuracy required in many chemical applications
with affordable computational costs (most of which is associ-
ated with the generation of training data rather than the actual
application of the potential).’*"” In particular, much progress
has recently been made in the development of ML-models for
high-dimensional potential energy surfaces such as Neural
Network Potentials (NNPs) via the Generalized Neural-Network
Representation of Behler and Parrinello® or the Gaussian
Approximation Potentials (GAP) framework developed by Bartok
et al.*® A more comprehensive overview of ML techniques for the
generation of interatomic potentials can be found
elsewhere.”*?

The high flexibility of ML models—which can be considered
the reason of their success—can also lead to unphysical results,
however, if the model is forced to extrapolate beyond its
training set. Consequently, robust and accurate ML potentials
are often trained on tens of thousands of configurations, for
which accurate reference data is required.* Fortunately, inter-
atomic potentials need not necessarily be created from scratch.
Instead, ML models have also been used to improve the
description of an underlying baseline.”*** Ramakrishnan et al.>
coined the expression A-ML for this approach and showed that
one needs significantly fewer training examples in this case,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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compared to learning a complete interatomic potential. In the
context of CSP, there is a further strong argument for A-ML:
most ML potentials are inherently local, meaning that the
energy is composed of atomic contributions that only depend
on the immediate environment of each atom. Yet, intermolec-
ular interactions like electrostatics and (many-body) dispersion
can be quite long ranged. A local ML potential will neglect those
contributions, whereas a A-ML approach can incorporate them
in the baseline model without altering the ML framework.

In this paper we therefore develop a A-ML approach to CSP,
yielding accurate models for the description of individual
molecules and the corresponding molecular crystals. The
approach is characterized by high data efficiency, meaning that
the workflow is designed to keep the computational effort for
training data generation as low as possible. This is achieved by
using a robust and computationally efficient baseline method,
a diversity-driven selection of training points and the complete
avoidance of periodic calculations at the target level of theory
(here full-potential DFT with a many-body dispersion correction
or spin-component-scaled second order perturbation theory).

2 Theory

2.1 Levels of theory

Baseline method. We begin by defining an appropriate
baseline method for our approach. Most importantly, this
method should be computationally efficient (to allow applica-
tion to a large set of test structures) and adequately describe the
relevant intra- and intermolecular interactions (so as to mini-
mize the required A-ML correction). In particular, it should
provide a reasonable description of long-range interactions that
are outside the range of the ML model. In our experience
dispersion-corrected DFTB methods, in particular using the 3ob
parameterization,* fulfill these criteria.

3ob is based on the expansion of the DFT total energy up to
third-order in density-fluctuations (DFTB3), which provides
a sophisticated description of electrostatics, charge transfer and
polarization.”® This leads to marked improvements in the
description of organic and biomolecular systems and hydrogen
bonding, compared to earlier variants. Since DFTB uses
a minimal basis set and tabulated matrix elements, it provides
speedups up to three orders of magnitude compared with semi-
local DFT. We further apply the Tkatchenko-Scheffler (TS)
correction,'»* which allows for an accurate incorporation of
dispersion interactions at virtually no additional computational
cost. Our baseline method is thus defined as DFTB3(30b)+TS
(called DFTB+TS in the following).

Target method. The primary high-level target method in this
study will be semi-local DFT (using the PBE functional®) with
a many-body dispersion correction.*"** This method (DFT+MBD
in the following) is known to generate lattice energies in good
agreement with experiment for the targeted molecular crystals.
This can, e.g., be seen by its excellent performance for the X23
database, which contains the experimental lattice energies of 23
crystals (obtained by back-correcting experimental enthalpies of
sublimation).* Since X23 covers van der Waals (vdW)-bonded,
hydrogen-bonded and mixed molecular crystals, this shows

Chem. Sci,, 2021, 12, 4536-4546 | 4537
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that DFT+MBD offers a balanced description of all interactions
relevant for CSP. Moreover, relative stabilities of different
polymorphs are also described well, as recently demonstrated
by Shtukenberg et al.** for the rich polymorphism of coumarin.
For comparison, the presented scheme is finally also applied to
spin-component-scaled second-order Mpgller-Plesset theory
(SCS-MP2) in one case.*

A-ML method. We now aim to learn a correction that fixes
the shortcomings of our baseline method relative to the target
method. This entails, among other things, multi-center contri-
butions to the Hamiltonian, many-body dispersion effects and
exchange-correlation contributions inadequately described by
the two-center repulsive potential of DFTB.***” To this end, we
use Gaussian Process Regression via the Gaussian Approxima-
tion Potential (GAP) framework.'® Kernel methods like GAP use
a similarity measure between atomic configurations (the kernel)
to infer the interatomic potential. Here, we use the smooth
overlap of atomic positions (SOAP),*® which is an inherently
many-body representation of atomic environments, in line with
the types of contributions we want to describe. As noted above,
SOAP and related methods use a local representation, meaning
that in the final A-ML model, all long-range physics are still
described at the baseline level of theory. Full details about the
fitting procedure are provided in the ESL

With the above definitions of the target (DFT+MBD) and
baseline (DFTB+TS) methods and the A-ML approach (GAP)
used to connect the two, the lattice energy as measure of crystal
stability is written as:

target __ p-baseline+GAP __ p-baseline aseline AP
Elattg =~ Elutt - Ecrys IN — E})so + AEG (2)

where AE®*® is the learned A-ML correction.

In the following, we further separate this A-ML contribution
into intra- (AESAP("")) and intermolecular (AEAP™eD) contri-
butions. This has both theoretical and practical reasons. Firstly,
the energetic contribution of, e.g., stretching a covalent bond is
orders of magnitude larger than the contribution of changing
the distance between two molecules in a crystal by the same
amount. Nonetheless, the intermolecular contributions are
arguably much more important for CSP and final polymorph
ranking, as evidenced by the wide application of CSP protocols
with completely rigid molecules.'**** By fitting separate
models, the intermolecular contributions are not overshadowed
by the intramolecular ones. Secondly, data generation for an
intramolecular correction is very cheap, as it only requires
calculations on the gas-phase molecule. It is therefore practical
to separate the two training processes.

Using this separation, we can rewrite eqn (2) as

N
Eﬁ;i\’[L = <Ega;sseline + AEC(E)/,\SP(imer) + ZAES;‘\LI:(mtra)> /N
i

_ (Ebaseline + AEGAP(imra)) (3)

iso iso

where the sum runs over all molecules i in the unit cell, and only
intramolecular corrections AEZAT("™) appear, of course, for the

isolated molecule.
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2.2 Training data

The generation of training data is a crucial part of constructing
any ML model. This data represents all knowledge about the
target function that will be integrated into the fit. The required
calculations at the target level of theory, however, typically also
make this the most expensive part of any ML workflow. It is
therefore essential to strike a balance between covering a wide
range of configurations and requiring a manageable number of
calculations.

To address this issue, we generate a large pool of trial
configurations and subsequently select a maximally diverse
subset using the farthest point sampling (FPS) method.>*** This
entails the iterative selection of configurations so that each new
datapoint is maximally dissimilar to the previously selected
structures. In this context, the similarity between configura-
tions is measured using the averaged SOAP kernel.**

Clearly, the most straightforward training data for the A-ML
correction would be obtained from periodic calculations on the
FPS crystals at the target level of theory (DFT+MBD in this case).
However, these are precisely the kinds of expensive calculations
that we would like to avoid by fitting a A-ML model. Further-
more, it would in principle be interesting to use even higher
levels of theory (e.g. Coupled Cluster or Symmetry Adapted
Perturbation Theory) as the target method, for which periodic
calculations are either impossible or extremely demanding.

Fortunately, we found that it is possible to fit accurate A-ML
models without using periodic calculations at the target level of
theory at all. Specifically, we use crystal structures as templates
to generate molecular clusters (called X-mers in the following),
which reflect the diverse relative orientations of the molecules
in a crystal, in addition to providing realistic monomer
configurations (see Fig. 1).

The idea of using X-mer training data is reminiscent of
a many-body expansion (MBE) of the lattice energy.** This is,
however, notoriously difficult to converge for (polar) organic
crystals and liquids, both in terms of length-scale and body-
order.**¢ For this reason, highly accurate MBE-based water
models separate the description of long-range electrostatics
from short-range interactions.*” It is therefore highly beneficial
to work in a A-ML framework herein, where long-range inter-
actions are covered by the baseline method. Indeed, a ML
correction for force-field lattice energies based solely on two-

Intramolecular

Intermolecular

pV

Fig. 1 Schematic separation of a crystal into monomers (entering the
GAP(intra) learning workflow) and X-mers of various sizes (entering the
GAP(inter) learning workflow).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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body terms was recently reported by Day and coworkers.*® In our
work, we found that a pure two-body correction still displays
significant errors in predicted lattice energies, and thus opted
for the X-mer approach.

To this end, an initial pool of crystals is generated via the
Genarris package." Subsequently, we apply FPS to select 500
maximally diverse structures from this pool. These structures
are then relaxed at the baseline level of theory, with fixed unit
cells. Afterwards, a second FPS selection is performed on the
relaxed crystals to obtain 250 training structures, while the rest
are used for testing. Further details about training and test sets
are given in the ESIL.{ Note that the training data for the intra-
molecular model is, inter alia, further supplemented with
monomer configurations obtained from gas-phase MD simu-
lations (see ESIT for details).

2.3 Model fitting

Using the above defined training data, we can now train sepa-
rate GAP models for the intra- and intermolecular corrections.
Specifically, we train the intramolecular correction on energy
and force differences:

GAP(intra) _ pDFT+MBD _ pDFTB+TS
AE =E. E

mol ( 4)
GAP(intra) __ DFT+MBD DFTB+TS
AF =F mol - F mol

The intermolecular correction is trained on differences in X-
mer interaction energies:

X
GAP(inter) __ DFT+MBD __ DFT+MBD | _ DFTB+TS
AE - EX-mer E :Emol,i EX-mer

i
X

DFTB+TS

- § :Emol.i (5)

i

The index i runs over all X molecules that constitute a cluster.

Details about the underlying concepts of SOAP and GAP are
provided in the original literature.***** A detailed listing of all
hyperparameters and computational settings used in this work
can be found in the ESL.}

3 Results and discussions

To illustrate the accuracy and efficiency of our A-ML approach,
we will first separately discuss the accuracy reached for the
intra- and intermolecular corrections, relative to their training
targets. We then consider the accuracy of predicted lattice
energies. For this we employ a representative set of four mole-
cules and their molecular crystals, namely water (H,O), pyrazine
(C4Ny,), oxalic acid (C,04H,) and tetrolic acid (C,0,H,).

3.1 Model performance: intramolecular A-ML

The accuracy of the intramolecular correction is assessed on
monomer configurations extracted from the test and training
crystals. Fig. 2 (top) shows the mean absolute error (MAE) of
relative energies, compared to the high-level target method
(DFT+MBD). For the DFTB+TS baseline, this MAE can be as high
as 150 meV (for oxalic acid). This is a serious liability for CSP,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Mean absolute error (MAE) of relative energies—with respect to
the individual gas-phase global minimum—obtained with the baseline
(DFTB+TS) and A-ML corrected (DFTB+TS+GAP) methods, against the
DFT+MBD reference for monomer conformations from training and
test crystals (top). Mean absolute error of intermolecular energies per
molecule obtained with DFTB+TS and DFTB+TS+GAP against
DFT+MBD for training and test X-mers (center). Mean absolute error
for lattice energies of crystals entering the training and test crystals
against the DFT+MBD reference (bottom). For details see text.

where energy differences between polymorphs are often only
tens of meV. In contrast, after the A-ML correction, the MAEs
are reduced by orders of magnitude. Even in the most chal-
lenging case (oxalic acid) the corrected MAE is below 2 meV.

Chem. Sci., 2021, 12, 4536-4546 | 4539
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Moreover, the good agreement between training and test errors
shows that the models are not overfitted. For the analysis on the
accuracy of forces the reader is referred to the ESL¥

As a case in point, the excellent performance of the A-ML
correction is confirmed when analyzing the seven predicted
conformers of oxalic acid in detail. Indeed, conformer searches
are themselves an integral part of molecular CSP studies, as gas-
phase geometries are typically used as building blocks for the
generation of trial crystals. Furthermore, the globally most
stable gas-phase conformer is of special interest as the lattice
energy is measured relative to it. Fig. 3 compiles the ranking of
these seven conformers obtained at the different levels of
theory, where we follow the nomenclature proposed in the
literature®® and refer to the conformers with a capital C (cis) or T
(trans) depending on the relative orientation of the carboxylic
acid groups, framed by lowercase c or t indicating whether the
hydrogen atoms point to the inside or the outside. For the
twisted conformer, where this nomenclature is not applicable,
we use the symbol X.

For this highly sensitive test case, the A-ML method fully
reproduces the energetic ordering of the target DFT+MBD
method—which in turn is in agreement with the literature.’**
In contrast, the baseline DFTB+TS energies differ significantly
and not even the lowest-energy conformer is correctly identified
(reflected by the negative relative energy). In particular,
DFTB+TS erroneously predicts most conformers to be rather
close in energy, which could have severe consequences for an
intended use as an initial screening method.

It is further revealing to consider the quality of the predicted
geometries (see Fig. 3, bottom). For each conformer, the
differences between geometries optimized with the low-cost
methods (DFTB+TS or DFTB+TS+GAP) and the respective
DFT+MBD reference is measured in terms of their root-mean-

DFTB+TS BN DFTB+TS+GAP

DFT+MBD * Reference Basin

8001 Oxalic Acid

g i
N—

LXLEXLX

cTe Tt tTt X tCt cCt cCe
4 4 oo

Fig. 3 Relative energies (top) and RMSDs (bottom) for oxalic acid gas-
phase configurations relaxed with the DFTB+4TS baseline, the
DFTB+TS+GAP A-ML correction and the DFT+MBD reference.
Structural overlays (right) for three conformers comparing the
geometries predicted at the different levels of theory (see text).
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square deviation (RMSD). Similarly to the energies, the GAP-
correction strongly improves the RMSD of all conformers—in
most cases by more than an order of magnitude. At the same
time it can be seen that DFTB+TS alone already provides quite
accurate geometries in most cases. Here, the GAP correction
cures only some subtle structural differences with respect to the
DFT+MBD reference, as can be seen from the cTc overlay in
Fig. 3, where the C-O-H angle in DFTB+TS is slightly too large.
The exception to this is the tCt conformer. Here, DFTB+TS
predicts a considerably different structure, which is brought
into excellent agreement with the reference by the GAP-
correction. This is again illustrated by the overlayed geome-
tries, where DFT+MBD and DFTB+TS+GAP are almost
indistinguishable.

3.2 Model performance: intermolecular A-ML

To evaluate the accuracy of the intermolecular A-ML contribu-
tion, we consider the intermolecular energies of X-mers, which
are the training targets of this correction (see ESIT for a corre-
sponding analysis of crystals). To this end, we consider X-mers
of various sizes, again obtained from the training and test
crystals. Fig. 2 (center) summarizes these results, in terms of the
MAE, normalized by the number of molecules per X-mer. The A-
ML method yields MAEs between 3 and 5 meV per molecule for
test systems and slightly lower values for the training systems
(1-2 meV per molecule). Again, the good agreement between
test and training errors indicates that the proposed workflow
yields A-ML models which generalize well beyond the training
set.

Interestingly, tetrolic and oxalic acid show slightly larger
MAEs, compared to pyrazine and water. We speculate that this
is due to the higher flexibility of these molecules (see e.g. the
oxalic acid conformers of Fig. 3), which causes a more diverse
range of intermolecular arrangements. Overall, the GAP
correction nevertheless improves the MAE per molecule by an
order of magnitude (except for the tetrolic acid case, where the
pure DFTB+TS description already yields a low MAE of around
20 meV per molecule).

3.3 Lattice energies

So far, we have analysed the accuracy of the intra- and inter-
molecular corrections on their respective training targets, and
found large improvements relative to the baseline. However, the
goal of the proposed method is to improve the description of
crystal lattice energies. To evaluate this, we now benchmark the
baseline and A-ML methods against the DFT+MBD target
method for the lattice energies of molecular crystals. We again
consider the crystals used to generate training and test sets
separately. Note however, that even for the “training” crystals,
the lattice energies were not used to fit the models. In this
sense, all predictions in this section can be considered a vali-
dation of the A-ML model. Note that the lattice energies are
referenced to the global gas-phase minimum of the molecule,
calculated with the respective method. In the case of oxalic acid,
the DFTB+TS lattice energies are therefore given with respect to
a different gas-phase geometry.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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The results are summarized in Fig. 2 (bottom). This figure
shows that the improved description of intra- and intermolec-
ular interactions also translates to an improved description of
lattice energies, as expected. Specifically, the MAEs of the A-ML
model lie between 12 and 24 meV per molecule, which in most
cases corresponds to about an order of magnitude improve-
ment. The exception is again tetrolic acid, which is already well
described at the DFTB+TS level (but still improved by the GAP
correction). These small MAEs also confirm our initial
assumption, namely that the DFTB+TS baseline we employ
adequately describes long-range interactions. This is further
substantiated by considering the intermolecular contributions
to the lattice energy separately, as shown in the ESL

From a CSP perspective, the lattice energies are arguably less
important than the energetic ordering of the crystal structures,
since we are more interested in which is the most stable crystal,
rather than how stable it is in absolute terms. Fig. 4 therefore
also includes the coefficients of determination (R*) for the
ranking order of the structures, which maps the correlation
between reference and predicted data in a range between 0 (no
correlation) and 1 (perfect correlation). Again, these are signif-
icantly improved by the GAP correction, with values between
0.967 and 0.995 indicating an excellent correlation between the
energetic orderings of our A-ML model and the DFT+MBD
target.

Importantly, errors for test crystals and the ones that
(implicitly) enter the training are also in excellent agreement.
This indicates a good generalization of the A-ML models
beyond their training sets, also for the application to periodic
systems. It is further notable that the MAEs for the baseline
method are consistently larger for the training than the test set.
This confirms that the workflow for training data selection leads
to a set of particularly challenging and diverse systems. This can
also be seen from the lattice energy correlation plots in Fig. 4,
where the training structures cover the full range of lattice
energies. In this context, it should be noted that the sampled
range covers both negative and positive lattice energies.
Although the focus of CSP is obviously on the systems with the
most negative lattice energies, there are many trial crystals that
need to be evaluated in the process. As these are not necessarily
stable, creating a model that covers both ranges is actually
desired, not least to be able to confidently discard unstable
structures.

Fig. 4 provides more detailed insight into the performance of
the baseline and A-ML models for the individual systems. As
mentioned above, the baseline already provides a reasonable
description of tetrolic acid. Nonetheless, there is significant
scatter in the DFTB+TS correlation plot, which is also reflected
in the energy ranking. Here, the GAP correction accounts for the
subtle differences between baseline and target, leading to
significant improvement.

In contrast, the lattice energy correlation plot for pyrazine
displays a large systematic error, reflected in an erroneous slope
(and consequently a large MAE). This deviation can be traced
back to the fact that, for this system, unfavourable intermo-
lecular interactions are less repulsive at the baseline level,
compared to DFT+MBD (see ESIt). These systematic errors do
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Fig. 4 Correlation plot for lattice energies of crystals entering the
training and test crystals (left) and ranking order of test crystals (right),
both with respect to DFT+MBD.

not affect the ranking, however, which is in good agreement
with DFT+MBD (R*> = 0.944). The GAP correction is able to
correct the systematic error in the lattice energies, leading to
a strongly improved MAE. Importantly, however, the correction
also further improves the energy ranking (R*> = 0.989).

For water and oxalic acid, we observe both systematic errors
and significant scatter in the predictions of the baseline
method. Here, the GAP corrections need to account for
a mixture of different effects simultaneously. The lattice energy
correlation plots indicate different types of systematic devia-
tions for these systems. While the slope for the water lattice
energies is too small, oxalic acid additionally shows an offset of
roughly 200 meV with respect to the DFT+MBD values. As with
pyrazine, the erroneous slopes are explained by a systematic
underestimation of repulsive intermolecular interactions (see
ESIt). Meanwhile, the offset for oxalic acid is due to differences
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in intramolecular interactions at the baseline and target levels
(compare Fig. 3). Here, the different predicted global minimum
conformers result in a discrepancy of the intramolecular
contributions to the lattice energy. As shown in Section 3.1 the
GAP correction is very well suited to account for this situation.
More generally, the GAP corrections lead to strongly improved
lattice energies and ranking orders for both systems.

To quantify the error introduced by the X-mer approach, we
further created an alternative set of A-ML models (see ESIT).
Here, the intermolecular corrections were trained on FPS-
selected crystals instead of the X-mers. Compared to the X-
mer approach, these models display slightly improved lattice
energies for most cases (by 4-6 meV per molecule) and are
slightly worse in one case. The error incurred by the X-mer
approach is thus small or non-existent for the systems consid-
ered herein.

3.4 Crystal structure prediction

To allow for a pointwise comparison of interaction potentials,
the lattice energies in the previous section were computed via
single point energy evaluations for frozen geometries (relaxed at
the baseline level). Indeed, this strategy has also been employed
in ‘real’ CSP applications.'* However, the results in Section 3.1
show that the DFTB+TS baseline used herein can yield signifi-
cantly erroneous geometries. This is an uncontrolled source of
error, which will propagate through the entire CSP workflow.
Fortunately, GAP models are differentiable, so that geometry
relaxations at the A-ML corrected DFTB+TS+GAP level are also
possible, at essentially no added cost. In this section, we will
illustrate the benefit of this feature.

For this purpose, we consider target XXII of the most recent
blind test of organic CSP.° It corresponds to the crystallized
form of the tricyano-1,4-dithiino[c]-isothiazole (CgN,S) mole-
cule. Notably, the six-membered ring in this molecule can be
hinged, which induces a chiral-like character to the molecule
and, thus, affects the number of space groups allowed in the
solid state.

A A-ML model for target XXII was generated following the
method detailed in Section 2. All results discussed in the
following are for randomly generated trial crystal structures not
included in the training process. Additionally, the known
experimental crystal structure of the molecule is included,* to
test whether it would have been correctly identified. Unlike in
the previous section, all trial structures are relaxed at the
baseline DFTB+TS and A-ML corrected DFTB+TS+GAP levels of
theory, and validated with single point calculations at the target
DFT+MBD level (see ESIt for an analysis as in Section 3.3). Fig. 5
shows the corresponding lattice energy correlation plot, as well
as the ranking order.

The most striking feature of the lattice energy plot is a large
offset between the baseline and target predictions. Similar to
the oxalic acid case, this is—at least partly—explained by devi-
ations in the intramolecular descriptions. DFT+MBD favours
the two symmetry-equivalent conformations that exhibit a kink
in the six-membered ring. Fig. 6 shows the DFT+MBD minimum
energy path for the interconversion of these structures,
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Fig. 5 Correlation plot for lattice energies of XXII crystals relaxed with
the DFTB+TS baseline and the A-ML corrected DFTB+TS+GAP
method against the respective DFT+MBD target level values (top) and
corresponding ranking order (bottom) with separation into the four
parts True-Positive (TP), True-Negative (TN), False-Positive (FP) and
False-Negative (FN) — see text.

obtained from a nudged elastic band (NEB) calculation. Here,
the flat conformation of the molecule is found to be a saddle
point, in agreement with previous reports.’

This profile changes dramatically when the minimum energy
path is reevaluated with the baseline DFTB+TS method: the
barrier turns into a broad valley. In fact, the gas-phase optimum
found with DFTB+TS corresponds to the flat conformer, as can
be seen from the overlay on the right-hand of Fig. 6. In
combination with additional geometric deviations (e.g. a more
acute C-S-N angle of the five-membered ring), this causes an
energy difference of 670 meV between the gas-phase minima of
the baseline and target methods (when evaluated at the
DFT+MBD level). As can be seen in Fig. 5 and 6, the A-ML
correction cures these discrepancies and largely eliminates the
offset. More importantly, the correction also strongly improves
the correlation in the energy ranking and correctly identifies the
experimental structure to be the most stable.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(right) obtained with DFT+MBD (green), DFTB+TS (gray) and
DFTB+TS+GAP (blue).

In the CSP context, the most pertinent comparison of the two
methods is provided by the ranking order plot in Fig. 5. Here,
the baseline method displays a large scatter, with some struc-
tures that are deemed among the most stable by DFT+MBD
being assigned high ranks (and vice versa). This results in a low
coefficient of determination of 0.483. In contrast, the energetic
ordering predicted by the A-ML model correlates very well with
the DFT+MBD reference (R*> = 0.907). This good agreement
makes DFTB+TS+GAP a very promising method for CSP,
particularly as a pre-screening method in hierarchical schemes.
In this context, the most stable structures from the pre-
screening would be further investigated with highly accurate
(and expensive) methods, e.g. including vibrational contribu-
tions to the lattice free energy at the DFT+MBD level.

To illustrate the benefits of the GAP correction for this
purpose, the ranking plot in Fig. 5 is divided in the style of
a confusion matrix for the selection of the 35 most stable
candidates. The resulting sectors indicate the true positive (TP),
true negative (TN), false positive (FP) and false negative (FN)
predictions. The quality of the selections made with the base-
line and A-ML methods can now by visualized by the pop-
ulations of the four sectors. DFTB+TS+GAP populates the most
important sector, TP, with 32 out of 35 crystals. Uncorrected
DFTB+TS, on the other hand, only yields 16 samples in this
block. Furthermore, out of the three false positive predictions of
DFTB+TS+GAP, two are very close to the dividing line.

As mentioned above, the experimentally determined crystal
structure is indeed found to be the most stable structure at the
A-ML level. Furthermore, the corresponding A-ML geometry is
also found to be the most stable at the DFT+MBD level. In
contrast, the baseline method predicts several other structures
to be more stable than the experimental one. Critically, the
experimental structure is not even the lowest energy one when
DFT+MBD single point calculations are performed on DFTB+TS
geometries. This is again due to significant deviations in the
predicted geometries of DFTB+TS. Meanwhile there is excellent

© 2021 The Author(s). Published by the Royal Society of Chemistry
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agreement between the predicted DFTB+TS+GAP crystal struc-
ture, and the one relaxed at the DFT+MBD level (see ESIT).

Finally, we return to the question of computational effi-
ciency. As stated above, the main motivation for the presented
A-ML approach is to avoid the large computational effort of
calculations at the target level of theory. Most importantly, the
savings of the A-ML model at prediction time should signifi-
cantly outweigh the cost of generating the training data. To this
end, the computational effort for generating the A-ML models
and performing 10 000 crystal relaxations (a reasonable number
for a CSP application)® is shown in Fig. 7. It can be seen that the
cost of the training procedure is almost exclusively determined
by reference calculations at the target level of theory (in
particular for the X-mers).

For comparison, a A-ML model that exclusively uses the
underlying crystals instead of X-mers requires ca. 5000 CPU
hours for performing DFT+MBD reference calculations. At this
level of theory, the cost for training with periodic crystal data is
thus actually somewhat lower than with the X-mer approach.
Note, however, that the accuracy of this model is actually
slightly inferior to the X-mer approach (see ESIt). Furthermore,
the growth in computational costs when including more
training data will be steep, especially when considering higher
reference levels of theory, as shown below.

Fig. 7 further shows that (once trained), the savings of the A-
ML model at prediction time are substantial: 10 000 crystal
relaxations at the target level of theory would require a stag-
gering 30 million CPU hours, compared to just 80 000 CPU
hours with the A-ML model. Furthermore, the costs for training

Intramolecular Intermolecular
DFT+MBD: 400 s DFT+MBD: 4,000 s
DFTB+TS: 0.08 s DFTB+TS: 0.6
GAP: 0.1s GAP: 05s
Monomers: #1,000 | X-mers: #20,000
DFT+MBD data: ~500 h | DFT+MBD data: ~20,000 h
GAP training: ~10h | GAP training: ~6h
Crystal Relaxation
— DFT+MBD: 3,000 h
DFTB+TS: 6h
GAP: 0.1h
Crystals: #10,000
DFT+MBD: ~30,000,000 h
- DFTB+TS+GAP: ~80,000 h

Fig.7 Timings for generating the (intra- and intermolecular) model for
XXII'and crystal relaxations (as obtained on a Intel® Xeon® CPU E5-
2697 v3 @ 2.60 GHz processor). The upper part in each of the tree
sections illustrates timings for a single unit (monomer, X-mer or
crystal), while the lower part corresponds to the time required for the
specified number of training configurations (top) and an exemplary
number of crystal relaxations (bottom). The costs for relaxations are
included in the intramolecular timing (see text). Values are rounded to
one significant digit (both in terms of time and number of geometries).
For details see ESI.{
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the A-ML models are roughly equivalent to the cost of explicitly
relaxing just seven crystals at the DFT+MBD target level—an
insignificant number compared to the requirements of a full-
blown CSP study.

3.5 Crystal structure prediction beyond density functional
theory

Dispersion corrected semi-local DFT is known to be quite
accurate for noncovalent interactions, but it nevertheless
displays some pathologies that can be problematic for CSP.>
Most prominently, the self-interaction error in most functionals
causes the over-delocalization of electrons, which leads to
errors in the description of electrostatic potentials and charge
transfer.>

In contrast, correlated wavefunction (WF) methods do not
suffer from this problem. Furthermore, with these methods
convergence to the exact result is, at least in principle,
possible. Consequently, there has been much interest in
applying WF theory to molecular crystals. This has been
prohibitively expensive until recently, but new algorithms
and hardware have made some benchmark calculations
possible.’** In this context, highly accurate (sub-kJ mol™")
lattice energy predictions have been demonstrated, e.g. by
Yang et al.*® via a fragment strategy and by Zen et al. via
diffusion quantum Monte Carlo.*® While this highlights their
potential for CSP, applying such methods to periodic systems
is still far from routine and will not be feasible in a high-
throughput context for the foreseeable future. The X-mer
approach presented herein does not require periodic refer-
ence calculations, however, and thus opens the door to WF-
based CSP.

To illustrate this, a modified version of the model from the
previous section was developed, for which the intermolecular
GAP was trained using spin-component-scaled second-order
Mpller-Plesset theory (SCS-MP2).*>* This highlights an addi-
tional feature of the presented approach, namely that different
reference methods can be used for the intra- and intermolecular
models. This can be particularly useful for flexible molecules,
where an accurate prediction of torsional barriers, e.g. at the
CCSD(T) level, may be required.*®

To evaluate the new intermolecular model, the interaction
energies for a test set of X-mers was considered. This reveals
a MAE of 7 meV, slightly lower than the one obtained with the
DFT+MBD reference (see ESIT for details). The corresponding
full model was then used to relax the 251 trial crystals used in
Section 3.4. While no periodic MP2 data is available for
benchmarking in this case (for the reasons outlined above), the
model correctly identifies the experimental geometry to be the
most stable (see ESIt for details). The possibility of crystal
relaxations with the ML model is particularly attractive in the
context of WF methods, where gradients are much more
expensive than single-point energy evaluations.®

As a final note, it should be mentioned that SCS-MP2 is
not necessarily more accurate than DFT+MBD for this
application. While the former offers a better description of
electrostatics and Pauli repulsion (because the method is
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self-interaction free), the latter offers a true many-body
description of dispersion, which is lacking at the (SCS-)
MP2 level.®® Nonetheless, this example demonstrates that
the presented scheme can be used to apply correlated
wavefunction methods in a CSP context. The computational
costs to produce the SCS-MP2 X-mer training data lies at
190 000 CPU hours, while the direct application of SCS-MP2
for crystal relaxations in a molecular CSP study is simply not
feasible.

4 Conclusions

In this work, we have presented a computationally efficient and
accurate A-ML approach to CSP, using a low-cost baseline
(DFTB+TS) that adequately describes long-range interactions.
The method is characterized by addressing intra- and inter-
molecular corrections separately and features a high efficiency
in terms of training costs. In particular, this is achieved by
selecting diverse training configurations and completely
avoiding periodic calculation for training data generation. The
overall accuracy of lattice energies and relative stability rank-
ings has been demonstrated on a representative set of test
systems. Importantly, the approach yields models that allow for
reliable structure relaxations, with a computational effort that is
orders of magnitude smaller than the high-level target method
(PBE+MBD or SCS-MP2), even taking training costs into
account. To the best of our knowledge, this is the first generally
applicable ML approach that allows structure relaxations in the
context of CSP. This opens the door to a CSP workflow that
allows screening large candidate pools with unprecedented
accuracy.

We further note that the accuracy of the A-ML can, in prin-
ciple, be further refined by including more data. Beyond this,
the fact that no periodic calculations are required means that
higher levels of theory, such as hybrid DFT or (correlated)
wavefunction methods, can be used as the target method.
Finally, having a differentiable model also allows the calcula-
tion of vibrational zero-point and free energy contributions to
the crystal stability. This will be explored in future work.

5 Computational details

All DFT calculations were performed with FHI-aims,** using
the PBE functional,®® tier2 basis sets, tight integration grids
and the MBD dispersion correction. DFTB3 calculations were
performed using DFTB+* together with the 3ob parametri-
zation” and TS dispersion correction.'*** For periodic
calculations at both levels of theory, the k-grids were
converged to obtain energetic accuracies of 1.5 meV per
atom. SCS-MP2 (ref. 35 and 59) calculations were performed
with ORCA®*® using the resolution of identity approxima-
tion.®® GAP potentials were trained and evaluated with the
QUIP package.* Candidate crystal structures were obtained
with the Genarris package." Additional tasks such as FPS and
hyperparameter optimization were performed with the
MLtools package available at https://github.com/
simonwengert/mltools.git.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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ABSTRACT: Co-crystals are a highly interesting material class as varying their
components and stoichiometry in principle allows tuning supramolecular assemblies
toward desired physical properties. The in silico prediction of co-crystal structures
represents a daunting task, however, as they span a vast search space and usually
feature large unit cells. This requires theoretical models that are accurate and fast to
evaluate, a combination that can in principle be accomplished by modern machine-
learned (ML) potentials trained on first-principles data. Crucially, these ML
potentials need to account for the description of long-range interactions, which are
essential for the stability and structure of molecular crystals. In this contribution, we
present a strategy for developing A-ML potentials for co-crystals, which use a
physical baseline model to describe long-range interactions. The applicability of this
approach is demonstrated for co-crystals of variable composition consisting of an
active pharmaceutical ingredient and various co-formers. We find that the A-ML
approach offers a strong and consistent improvement over the density functional

Intramolecular Intermolecular|
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QQ'
e

tight binding baseline. Importantly, this even holds true when extrapolating beyond the scope of the training set, for instance in

molecular dynamics simulations under ambient conditions.

1. INTRODUCTION

The physical properties of a molecular crystal are strongly
dependent on the arrangement of its building blocks in the
solid state.! In aggregate-induced emission, for instance,
interactions in the crystalline phase (or even in concentrated
solution) cause otherwise non-luminescent molecules to
become emissive.” Similarly, piezochromic luminescent
materials change the color of their emission when
intermolecular arrangements in the solid state are altered by
external mechanical stimuli.” Beyond these specific examples,
the large variety of crystal forms detected and characterized for
certain molecules reveals that the crystal structure impacts
many other properties as well, such as aqueous solubility,*
charge transport,” or plastic deformation® to name but a few.

Being able to control molecular arrangements in the solid
state, consequently, enables tuning materials toward desired
properties.” The design of multi-component molecular crystals,
so-called co-crystals, is promising in this respect as it provides a
versatile route to this goal.® Here, the molecule of interest
crystallizes in the presence of another compound, a so-called
co-former. Co-crystallization has garnered interest in both
academia and industry as a strategy for the design of materials
with improved performance. Applications include non-linear
optics,g energetic materials,'® and, most notably, pharmaceut-
icals.'" Here, active pharmaceutical ingredients are often
combined with co-formers to improve their bioavailabilty
(e.g., by tuning the dissolution rate, solubility, compressibility,
and thermal stability of the co-crystal).'>"?

© XXXX The Authors. Published by
American Chemical Society
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The space of possible co-formers is generally quite large. For
pharmaceuticals, the “generally regarded as safe” (GRAS) list is
often used, which contains hundreds of molecules considered
as safe for human consumption. The synthesis of multi-
component crystals thus provides a large design space.
Unfortunately, the successful formation of a co-crystal from
its compounds is by no means trivial."* Indeed, recrystalliza-
tion is actually a common technique for purifying compounds,
i.e., to separate them from one another. Moreover, the stability
and structure of a potential co-crystal are hard to predict as
they result from a delicate balance between relatively weak
interactions.”” Unlike conventional covalent chemistry, the
synthesis of co-crystals is thus much more difficult to plan and
often a game of trial and error. A more targeted approach
would therefore be highly desirable. Here, computational
methods could play an important role, e.g, by predicting
whether a given co-former will lead to stable co-crystals and
which structural motifs are likely to be formed for a given
combination. This would allow narrowing the list of potential
co-formers down to a few promising candidates and thus
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dramatically reduce the number of necessary experiments and
associated costs.

The in silico search for molecular crystal structures faces
some major challenges, however.'® On one hand, the large
search space of potential structures requires evaluating the
stability of a large number of trial crystals. On the other hand,
highly accurate (and thus computationally expensive) levels of
theory need to be applied for a reliable prediction of crystal
lattice energies.'” Even for single-component crystals, this leads
to a difficult trade-off between adequately exploring the space
of possible structures and using sufficiently accurate methods
to evaluate their stability. This situation is exacerbated on
several fronts when screening for appropriate co-formers. First,
a separate crystal structure search needs to be performed for
each potential co-former. Second, the unit cells of co-crystals
are typically significantly larger than those of single-component
crystals as quantified by the number of molecules in the unit
cell (Z) and the number of symmetry independent molecules
(Z'). This means that there are more degrees of freedom to
optimize (Z' > 1), while each energy evaluation is also more
expensive (large Z). Finally, the stoichiometry of the stable co-
crystal is typically unknown, which adds an additional
dimension to the search space. As a consequence, computa-
tionally efficient and accurate potentials for crystal structure
search and co-crystals in particular are highly desirable.

Owing to their outstanding accuracy-to-cost ratio, modern
machine-learned (ML) potentials are in principle highly
promising in this context. Challenges arise, however, from
the importance of long-range contributions due to electro-
statics or dispersion. Although recent advances in long-range
ML potentials'®"** bear good prospect for modeling
condensed molecular systems, short-ranged ML potentials
are still prevalent and, thus, generally less frequently applied in
this context than for gas-phase molecules or ionic solids. As a
notable exception, Montes-Campos et al. have nonetheless
developed accurate ML potentials for molecular multi-
component s;fstems and applied them to the related field of
ionic liquids.” In this case, they benefited from the fact that
the dynamics of liquids are only weakly influenced by long-
range interactions, as is also the case for ion mobilities in solid
electrolytes.”* The importance of long-range interactions for
the relative stabilities of molecular crystal polymorphs is well
established, however.”®

Kapil and Engel overcame this issue by using short-ranged
ML potentials for sampling, in combination with additional ab
initio calculations for stability ranking.”® This allowed them to
obtain highly accurate thermodynamic stabilities incorporating
the combined effects from the electronic structure, quantum
nuclear effects, and thermal contributions. In contrast, a A-
ML* ansatz bypasses the need for subsequent ab initio
calculations by combining local ML models with appropriate
(long-ranged) baselines. This has proven to be hi%hly useful for
molecular crystal structure prediction (csp).>®?

In a previous study, we presented a framework for the data-
efficient generation of A-ML models for single-component
molecular crystals, which benefits from a separate treatment of
inter- and intramolecular interactions.”” In this contribution,
we present recent advances in extending this approach to co-
crystals. Our approach is designed with the co-former
screening setting in mind.”’ Consequently, we will consider a
single active pharmaceutical ingredient (paracetamol) com-
bined with four different co-formers, as shown in Figure 1.
These systems have been proposed and extensively charac-

Oxalic Acid Naphthalene

o (Oxa) (Nap)
2 S

% o &)
Q - Paracetamol
o) (Pca)
Phenazine Theophylline
o _— -
(V] DS (Phe) (Thp)

Figure 1. Central active pharmaceutical ingredient paracetamol (Pca)
and the co-formers oxalic acid (Oxa), naphthalene (Nap), phenazine
(Phe), and theophylline (Thp). Gray spheres: C, blue spheres: N, red
spheres: O, white spheres: H.

terized by Karki et al.'> Being one of the most common
pharmaceuticals worldwide, paracetamol is a prototypical
active pharmaceutical ingredient, while the co-formers oxalic
acid (Oxa), naphthalene (Nap), phenazine (Phe), and
theophylline (Thp) cover a wide range in terms of polarity,
functional groups, and molecular shapes, inducing various
types of intermolecular interactions and arrangements in the
solid state.

2. METHODS

2.1. General Approach. The approach we previously
developed™ for single-component crystals has two main
features. First, it combines a short-ranged ML potential with
a longranged physical baseline (A-ML). Second, the ML
potential is split into an intramolecular and intermolecular
correction. The same idea was also used in local approximate
models®" for lattice energy minimizations of molecular crystals.
We found this splitting to be advantageous because these
interactions occur on different length scales. Additionally,
reference data for the intramolecular correction can be
generated cheaply from gas-phase calculations. It is even
possible to use a different level of theory for this purpose.
Below, we briefly summarize the main points of the method,
highlighting the extensions that were developed for co-crystals.

2.2. Baseline Method. The dispersion-corrected density
functional tight binding (DFTB) method represents an ideal
baseline for CSP. First, it is efficient enough to be applied in a
setting where several thousands of organic crystal structures
need to be optimized.”” In addition, the modern third-order
variant of DFTB*’ combined with the 30b>* parameterization
provides an accurate description of electrostatics, charge
transfer, and polarization. Finally, the missing dispersion
contributions can be corrected efficiently, e.g, via the D4
method.*>*® The baseline method in this work is thus defined
as DFTB3(30b)+D4 (DFTB+D4 in the following).

2.3. Machine Learning Method. The intra- and
intermolecular corrections to the baseline will be defined as
Gaussian approximation potentials (GAP)*”*® using the
smooth overlap of atomic position (SOAP)® representation.
These GAP models are fitted to both energies and forces. To
account for the presence of different molecular building blocks
in co-crystals, a separate intramolecular correction is fitted for
each. In contrast, a single intermolecular correction is used to
describe the interactions among paracetamol and the four co-
formers. The energy expression of the combined DFTB+D4
and GAP model (termed A-GAP in the following) thus reads

https://doi.org/10.1021/acs.jctc.2c00343
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Nipes N,
A-GAP __ - DFTB+D4 inter intra,t
E - Ecrystal + AEcrystal + Z Z AEt
£ (1)

where for each of the N, possible components, the
corresponding intramolecular GAP correction is applied to
each molecule i (in which N, is the number of molecules of
type t present in the given unit cell). Note that intra- and
intermolecular corrections are applied to energies, forces, and
stresses. The models can thus be used for full unit cell
relaxations and constant pressure molecular dynamics.

2.4. Target Method. The high-level target method to
which the correction is fitted will be hybrid DFT (using the
PBEO0" functional) with a many-body dispersion””*' (MBD)
correction. PBE0O+MBD provides a sophisticated description of
the interactions relevant to organic solids. The importance of
MBD contributions and hybrid functionals for the stability
assessment of molecular crystals has been highlighted by Hoja
and Tkatchenko.” For the X23 database, containing van der
Waals (vdW)-bonded, hydrogen-bonded, and mixed molecular
crystals, this combination has been shown to yield lattice
energies within chemical accuracy (43 meV) when compared
to (back-corrected) experimental enthalpies of sublimation.*’
Moreover, LeBlanc et al. found in their studies on multi-
component acid—base crystals that the exact-exchange mixing
employed in hybrid DFT is essential to cure significant
geometry errors introduced by the delocalization error of semi-
local functionals.** Due to the prohibitive computational and
memory requirements of PBEO+MBD with large basis sets, we
define the target method—called PBE(0)+MBD hereafter—as
a composite scheme: The intramolecular part is fully described
by PBEO+MBD with a tightly converged basis of numerical
atomic orbitals (NAO). The intermolecular part is described
by PBE+MBD™ with the same basis, plus the difference PBE
+MBD to PBEO+MBD in a smaller NAO basis. A similar
scheme was used by Hoja et al,'” who found it to yield lattice
energies in excellent agreement with converged PBE0+MBD
calculations.

2.5. Training Data. The structures entering the training set
ultimately define the information that is available about the
target function. In the context of co-crystal screening studies,
the training set should thus include combinations of the
molecule of interest with all co-formers. To train the
intermolecular model, we selected samples from a pool of ca.
10,000 trial structures created with the PyXtal package.” In
this initial pool, a wide range of compositions was considered
for each combination to span all possible stoichiometries.
These trial candidates were locally relaxed at the DFTB+D4
level of theory. To obtain a diverse set of training structures
from this pool, we then employed the farthest point sampling
(EPS)*” heuristic. Here, the SOAP kernel was used as a
similarity measure between atomic environments and
structures were sequentially added to the training set by
selecting the most dissimilar structures to the current training
set at each iteration. Note that there are several possibilities to
define global similarity metrics between structures, given a
local similarity metric like SOAP.** Herein, we simply used the
maximal dissimilarity between any two atomic environments.*’
From this process, 1000 training structures were obtained, 250
for each crystal/co-former pair (including the corresponding
single-component crystals).

We further included 77 structures corresponding to the
experimentally known single-component crystals and randomly

perturbed structures derived from them. The rationale behind
this is that the experimental information about the single-
component crystals is usually available in co-crystal studies.
This allows us to include some additional information on
highly stable interactions, though not for the important
paracetamol/co-former contacts. The consequences of this
bias in the training set will be discussed in detail below.

In contrast to the intermolecular correction, the training
data for the intramolecular model is computationally cheap to
generate as it only requires single-point calculations on
monomer configurations in the gas phase. To obtain these
configurations, monomer geometries were extracted from the
training crystals. These were further supplemented, with
configurations from gas-phase molecular dynamics simulations
and local relaxations, to extensively cover the configurational
space of each building block. Further details on the training
sets and all training data are provided in the Supporting
Information.

3. RESULTS AND DISCUSSION

To validate the presented approach, we will first test its
performance on a diverse set of crystal structures as one would
encounter in a CSP workflow. To this end, a test set of 1000
structures was generated in an analogous procedure to the
training set generation. Here, the FPS selection included the
training set to maximize the distance between test and training
structures (see the Supporting Information for details). All test
structures were subsequently relaxed at the A-GAP level.
Lattice energies and force errors for this test set are
summarized in Figure 2. For lattice energy calculation, we used

latt
Eciystal = (Ecrystal - nAEgas,A - nBEgaS,B)/(nA + nB) (2)

where the difference between the energy of the crystal, E .
and the energies, E,, of its optimized molecular compounds is
computed first and then normalized by the total number of
compounds in the crystal unit cell. Note that lattice energies of
single-component crystals have been calculated in the same
way using ng = 0.

In Figure 2 (top), A-GAP and DFTB+D4 predicted lattice
energies are shown in comparison with the PBE(0)+MBD
target values. The reference energies cover a broad range of ca.
1 eV per molecule and are mostly negative. This indicates that
the random search in general leads to reasonable candidate
structures, which are stable with respect to sublimation. The
DFTB+D4 lattice energies are reasonably well correlated with
this reference but display significant scatter. Furthermore, the
lattice energies are systematically underestimated, leading to a
mean absolute error (MAE) of 183 meV. Applying intra- and
intermolecular corrections to this baseline in the A-GAP
scheme strongly improves the agreement with the target,
resulting in an overall MAE of only 34 meV. This is achieved
both by eliminating the systematic underestimation of the
lattice energies and by reducing the scatter in the predictions,
as indicated by the significantly smaller standard deviation
(STD) of the A-GAP errors (32 meV vs 83 meV). Indeed, the
A-GAP energies actually show a slight offset toward more
negative values due to the fact that the structures are minima
on the A-GAP potential energy surface.

An even more substantial improvement is observed for force
predictions (see Figure 2, bottom). Here, DFTB+D4 displays a
broad error distribution and a correspondingly large MAE of
324 meV/A. In contrast, the error distribution of predicted A-

https://doi.org/10.1021/acs.jctc.2c00343
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Figure 2. Correlation plot for the DFTB+D4 baseline and A-GAP
lattice energies per molecule of PcaOxa, PcaNap, PcaPhe, and PcaThp
test crystals (both single-component and co-crystals) against the
PBE(0)+MBD target level of theory (top) and the corresponding
differences in force components (bottom). Note that the slight shift of
the A-GAP lattice energy distribution toward lower values compared
to PBE(0)+MBD is due to the fact that the test set structures are
minima on the A-GAP potential energy surface, while the training
structures are minima on the DFTB+D4 surface (see text). The spike
in the distributions of force component differences results from
certain force components being zero by symmetry at all levels of
theory.

GAP force components is much narrower and the MAE almost
an order of magnitude lower. Importantly, while the lattice
energy error of DFTB+D4 is fairly systematic, the force error
cannot be corrected in a simple way and will lead to substantial
deviations in the predicted structures. This is of particular
relevance in the context of CSP, where accurate structure
relaxations are often by far the most expensive component.
Due to their small force errors, A-GAP relaxations should
provide near PBE(0)+MBD quality structures at a fraction of
the computational costs.

While the above results are promising, it should be
emphasized that the training and test structures used herein
are merely local minima. In particular, they are somewhat less

dense and less stable than the known experimental structures
for these co-crystals (see the Supporting Information). In
future applications, this should be mitigated by using a more
advanced CSP search algorithm (ideally together with an
accurate ML potential as proposed herein) to generate more
realistic structures. From the perspective of this paper, there is
also a positive aspect to this discrepancy between training and
experimental structures though, as it creates an opportunity to
test the extrapolative capabilities of the presented approach. To
this end, we test the accuracy of our method on the known
experimental structures of each co-crystal.

For all experimental co-crystal structures, atomic positions
and unit cell parameters were fully relaxed using the DFTB
+D4 baseline, A-GAP model, and the PBE(0)+MBD target.
For comparison, we also performed calculations at the PBE
+MBD level, which is often used for relaxations instead of the
more expensive hybrid PBEO functional. These results are
summarized in Figure 3.

Relative density deviations with respect to the
PBE(0)+MBD geometry are shown in Figure 3a. We find
that the DFTB+D4 structures are significantly contracted, in
agreement with previous studies where this was attributed to
insufficient Pauli-repulsion at longer distances.’”*” In contrast,
the A-GAP structures are in much better agreement, with only
slightly higher densities. For comparison, PBE+MBD shows
slightly larger but more systematic density deviations of around
3%. In contrast to A-GAP and DFTB+D4, this is due to
systematically lower densities, which are likely a consequence
of differences in the molecular electrostatic potentials
predicted by semi-local and hybrid functionals.

On an atomistic level, crystal structures are typically
compared with the RMSD 5 metric,” as shown in Figure 3b.
To this end, the root mean square deviation of the positions of
non-hydrogen atoms in 15-molecule clusters extracted from
the relaxed crystal structures is calculated. We again use the
PBE(0)+MBD structures as the reference. As for the densities,
the DFTB+D4 baseline displays the most significant structural
discrepancies with the target. These are mostly due to reduced
intermolecular distances, such as the spacings in the layered
structures PcaOxa, PcaNap, and PcaThp and variations in
molecular orientation (see Figure 4 and the Supporting
Information for further examples). For PcaNap, additional
discrepancy is caused by the intramolecular adjustment of
paracetamol to the crystal environment. Here, the DFTB+D4
baseline predicts a weaker out-of-plane rotation of the C=0
group, as highlighted in the inset. In all cases, these deviations
are mitigated by the ML correction, though the effects are less
distinct for PcaThp, which is already reasonably well described
by the baseline. Finally, PBE+MBD is slightly more accurate
and systematic than A-GAP, albeit at a much higher
computational cost (by roughly 3 orders of magnitude, see
the Supporting Information). Indeed, the structural discrep-
ancies are in this case entirely due to the aforementioned
density deviations, whereas the relative positions and
orientations of the molecules are in good agreement with the
PBE(0)+MBD relaxed structures.

In addition to these geometric comparisons, the relaxed
structures were also evaluated from an energetic perspective.
This is relevant when structures from the approximate method
are used as inputs for single-point calculations or relaxations
with higher level methods. Here, small structural deviations—
bond distances for instance—can significantly impact
predicted energies and energy differences. To evaluate the

https://doi.org/10.1021/acs.jctc.2c00343
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Figure 3. Comparison between PBE+MBD, the DFTB+D4 baseline, and A-GAP results on experimental co-crystals for PcaOxa, PcaNap, PcaPhe,
and PceThp against the PBE(0)+MBD target level of theory in terms of the absolute values for percentage density deviations (a), the RMSDs
between overlaying 15-mers sliced from crystal structures (b), lattice energies per molecule relative to PBE(0)+MBD optimized structures obtained
from single-point calculations on structures optimized on the approximate levels of theory specified in the figure (c), and the corresponding

maximum remaining PBE(0)+MBD forces (d).
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Figure 4. Overlay of the PBE(0)+MBD (green) optimized
experimental PcaNap co-crystal with DFTB+D4 (gray) and A-GAP
(blue). For DFTB+D4, a separate overlay is shown for paracetamol
conformers extracted from the crystal environment.

quality of the structures in this context, single-point
PBE(0)+MBD calculations were performed on the geometries
predicted by the approximate levels of theory. Figure 3c
illustrates the errors in lattice energies obtained from these
calculations, while Figure 3d shows the corresponding
maximum force. Here, the A-GAP values are lowest in all
cases, indicating that they are closest to the PBE(0)+MBD
minimum from an energetic perspective. The deviations of
PBE+MBD are similarly systematic but significantly higher.
Finally, the DFTB+D4 results are more scattered and generally
poorer with maximum forces of up to 3 eV/A for the putative
minima and lattice energy errors of up to 250 meV.

Overall, the A-GAP model is thus a robust and significant
improvement on DFTB+D4, even when applied outside the
range of the training set. Perhaps surprisingly, it is even an
improvement over the much more expensive PBE+MBD
method in many respects, when comparing with the
PBE(0)+MBD target. Of course, the ultimate test is
comparison with experimental structures, however. Here, we
somewhat unexpectedly found that the PBE+MBD densities
are actually closer to the experimental values than the ones

predicted by PBE(0)+MBD (and consequently also by A-
GAP, see Figure §).

These apparent deviations can be resolved by considering
thermal effects, however. Computationally relaxed crystal
structures correspond to the 0 K limit, whereas crystallographic
experiments are usually performed at finite temperature and
pressure. The over-contraction of PBE(0)+MBD will thus be
counteracted by thermal expansion. An advantage of computa-
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Figure 5. Percentage deviations from experimental measured densities
for PcaOxa, PcaNap, PcaPhe, and PceThp co-crystals optimized with
the DFTB+D4 baseline, PBE+MBD, the PBE(0)+MBD target level of
theory, and A-GAP, as well as for densities obtained from A-GAP
NPT simulations (298 K and 1 bar). For NPT, results corresponding
to standard errors of the deviations are illustrated.
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tionally efficient approaches like A-GAP is that they allow for
including such effects in a straightforward manner by
performing molecular dynamics in the NPT ensemble (at
298 K and ambient pressure). As shown in Figure S, the
average densities across these trajectories are indeed in very
good agreement with the experiment. This also indicates that
the PBE+MBD (0 K) densities are in fact fortuitously close to
the experiment as the inclusion of thermal expansion effects
would likely also cause them to decrease by ca. 5%.
Importantly, such finite temperature simulations would be
computationally prohibitive on the hybrid DFT level. Being an
efficient surrogate for PBE(0)+MBD, A-GAP thus allows
performing simulations that would otherwise be impossible.
These results also further underscore the robustness of our ML
approach, given that the experimental structures are outside
the scope of the training set and no crystal MD data was used
for training at all. This is thanks to the strong physical prior
that the DFTB+D4 baseline provides and the smoothness of
the GAP correction. Additional improvements could be
obtained by combining the current ap})roach with more
advanced structure search algorithms™* ™" and by iteratively
refining the GAP correction in an active learning workflow.

4. CONCLUSIONS

We have presented an approach for A-ML potentials
applicable to both pure crystals and co-crystals of variable
composition. This A-GAP approach enables efficient global
crystal structure searches with near hybrid DFT accuracy, at a
much reduced cost. Building on a previous approach for single-
component crystals, we fit separate intramolecular corrections
for each component and a single intermolecular correction for
all active molecule/co-former pairs. Our approach strongly
reduces energy and force errors with respect to the baseline
model.

Notably, the training structures used herein were generated
with a simple random search procedure and consequently
display markedly lower densities and stabilities than the known
experimental co-crystals. Nevertheless, the A-GAP potentials
are able to predict the structures of experimental polymorphs
with high accuracy, outperforming PBE+MBD at a much lower
computational cost. This shows that this approach is highly
robust in an extrapolative regime. In future work, we aim to
combine these potentials with more advanced CSP search
algorithms.>*~>*

Finally, it should be noted that many-body dispersion can be
rather long-ranged in some cases,”® while our baseline method
relies on the D4 correction, which lacks these effects. Since the
intermolecular ML contributions are by construction short-
ranged due to the use of a local representation, long-range
many-body dispersion effects are thus currently neglected in
our approach. This could be mitigated by including a physical
many-body dispersion model in the baseline. An efficient ML-
based MBD implementation that makes this computationally
feasible has recently been reported.’>*’

5. COMPUTATIONAL DETAILS

DFT calculations were performed with the all-electron code
FHI-aims,”® using the PBE" and PBEO"’ functionals. A post-
SCF dispersion correction was applied using the MBD***'
method. Two accuracy levels with a large or small basis set
have been used (compare Section 2). Large basis set
calculations correspond to tier2 settings and tight integration

grids, while small basis set calculations correspond to tierl
settings and light integration grids. DFTB3™ calculations were
performed using DFTB+°" together with the 3o0b’* para-
metrization and the D4***° dispersion correction without non-
additive effects. For periodic calculations, the number of k
points (n) in each direction is chosen as the smallest integer
satisfying the relation n-a > x, where a is the unit cell length
along that direction and x = 30. GAP potentials were trained
and evaluated using the QUIP® package. Candidate crystal
structures were created with the PyXtal*® package.
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CONSPECTUS: The visualization of data is indispensable in scientific
research, from the early stages when human insight forms to the final step of
communicating results. In computational physics, chemistry and materials
science, it can be as simple as making a scatter plot or as straightforward as
looking through the snapshots of atomic positions manually. However, as a
result of the “big data” revolution, these conventional approaches are often
inadequate. The widespread adoption of high-throughput computation for
materials discovery and the associated community-wide repositories have
given rise to data sets that contain an enormous number of compounds and
atomic configurations. A typical data set contains thousands to millions of
atomic structures, along with a diverse range of properties such as formation
energies, band gaps, or bioactivities.

It would thus be desirable to have a data-driven and automated framework
for visualizing and analyzing such structural data sets. The key idea is to construct a low-dimensional representation of the data,
which facilitates navigation, reveals underlying patterns, and helps to identify data points with unusual attributes. Such data-intensive
maps, often employing machine learning methods, are appearing more and more frequently in the literature. However, to the wider
community, it is not always transparent how these maps are made and how they should be interpreted. Furthermore, while these
maps undoubtedly serve a decorative purpose in academic publications, it is not always apparent what extra information can be
garnered from reading or making them.

This Account attempts to answer such questions. We start with a concise summary of the theory of representing chemical
environments, followed by the introduction of a simple yet practical conceptual approach for generating structure maps in a generic
and automated manner. Such analysis and mapping is made nearly effortless by employing the newly developed software tool ASAP.
To showcase the applicability to a wide variety of systems in chemistry and materials science, we provide several illustrative
examples, including crystalline and amorphous materials, interfaces, and organic molecules. In these examples, the maps not only
help to sift through large data sets but also reveal hidden patterns that could be easily missed using conventional analyses.

The explosion in the amount of computed information in chemistry and materials science has made visualization into a science in
itself. Not only have we benefited from exploiting these visualization methods in previous works, we also believe that the automated
mapping of data sets will in turn stimulate further creativity and exploration, as well as ultimately feed back into future advances in
the respective fields.
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computational power available, advances in electronic structure
methods and algorithms, and community-wide data reposito-
ries. Exploiting the “big data” efficiently and effectively using
traditional tools is not easy: data sets often contain thousands
to millions of atomistic structures, along with diverse
properties. Consequently, machine learning (ML) methods
are increasingly employed to handle the large and complex
data sets.”*™® Often, data visualization is an initial and a final
step of these data-driven studies. A low-dimensional map
shows a condensed view of the data set and reveals underlying
patterns, such as clusters, outliers, and correlations, allowin,
researchers to gain first insights from visual inspections.”’
During the final stage, visualization is essential and efficient in
communicating results.

However, most of these papers focus on data generation or
ML predictions while displaying visualizations without much
interpretation or explanation. This is somewhat unsatisfactory,
as many chemical representations and embedding methods for
generating these maps are available. Furthermore, it may be
unclear in what ways the maps are helpful and what kind of
physical insights they provide. To fill in this gap, this Account
summarizes the underlying principles of the visualization and
showcases its applicability to a wide variety of physical systems.

To largely automate the mapping task, we have developed
user-friendly software packages: the Automatic Selection And
Prediction tools for materials and molecules (ASAP) is a
Python-based command-line tool that enables automatic
analysis and mapping using just a couple of simple commands
and options. We display such commands in snippets below
when showing figures generated using the ASAP. To explore a
data set interactively, we rely on a web-browser based viewing
tool that can display the 3D-structure corresponding to each
data point, together with its attributes.

B ESSENTIAL CONCEPTS AND METHODS FOR
MAPPING ATOMIC STRUCTURE

Low-Dimensional Embedding

The geometrical configuration of a molecule or material is
intrinsically high dimensional, 3n for n atoms. To visualize the
relationship between the structures in a data set, we need to
represent each structure as a point in a low-dimensional space,
typically the two dimensions of paper or a computer screen.
This high (3n) to low dimensional transformation is called
dimensionality reduction or embedding. Such embedding is
common and crucial for analyzing simulation results or
structural databases. Traditionally, it usually requires human
insights for selecting appropriate low-dimensional coordinates,
often referred to as collective variables (CVs). A textbook
embedding example is the Ramachandran plot that visualizes
energetically favorable regions for backbone dihedral angles (®
and ¥) of amino acid residues in a protein structure. The plot
in Figure la illustrates an alanine dipeptide molecule with 66
geometric degrees of freedom using just two torsion angles.
Most configurations concentrate in three distinct clusters,
associated with common secondary structure elements (the a-
helix, f-sheet, and left-handed a-helix).

The Ramachandran and similar plots provide powerful
insight into high-dimensional structural data, but they typically
require domain knowledge to hand-craft the CVs for every
specific system. In contrast, automatic and system-agnostic
embedding methods for atomistic structures do not rely on
system-specific information. In general, embedding procedures
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Figure 1. (a) Ramachandran plot of S000 configurations of an alanine
dipeptide selected from a molecular dynamics trajectory,'" with
respect to the two dihedral angles indicated in panel c. The snapshots
are classified according to the canonical structural motifs. (b,d,e)
KPCA projections using the SOAP descriptors, colored according to
classifications, @, and ¥, respectively.

preserve some relationships between the points in high and
low dimensional space. Loosely speaking, points that are
“close” to each other in high dimension should remain so on
the low-dimensional map. Embedding methods differ in the
definition of “closeness”, whether calculated for all points or
just a subset, and in the numerical algorithms employed. A
particularly simple method is principal component analysis
(PCA), which defines closeness as the scalar product between
the vectors pointing to the points.'> Consequently, the axes of
the low-dimensional map are just the first few eigenvectors of
the design matrix, formed by concatenating the high dimen-
sional coordinates. Alternatively, if the closeness is defined
using pairwise Euclidean distances, the method is called
multidimensional scaling.'* Other definitions of closeness yield
t-distributed stochastic neighbor embedding (t-SNE),'*
sketch-map,'> the uniform manifold approximation and
projection (UMAP),"® etc.

Therefore, the critical first step in designing a successful
embedding method for materials and molecules is to decide
how to compare atomic structures, that is, by defining a
distance metric. Several methods have been proposed over the
past decade to describe structures, primarily for predicting
atomic scale properties using machine learning.'’~** They all
respect the appropriate physical symmetries; many are based
on atomic densities, and these are essentially equivalent in
some limit, differing only in the basis onto which the density is
projected.”® Here we focus on the Smooth Overlap of Atomic
Positions (SOAP) descriptor,” coupled with kernel PCA
(KPCA),*® which defines a scalar product in high dimensions
with respect to a metric, as given by a user-supplied kernel
function.

The computational cost of the whole process of constructing
a map, computing descriptors, and then using PCA or a sparse
version of KPCA as implemented in ASAP scales linearly with
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the total number of atoms in the data set. The workflow
usually takes only a few seconds on laptops for moderately
sized data sets, and less than a few minutes even for the largest
set considered in this Account. To make the method suitable
for even larger sets, the ASAP code is made parallelizable and
contains tools to sparsify data sets (i.e., select a representative
subset) as well.

Returning to the first example, an automatic mapping of the
alanine dipeptide configurations using this method is shown in
Figure 1b. Similarly to the standard Ramachandran plot in
Figure la, the structures with different motifs are clearly
separated on the KPCA map. (Note that in PCA or KPCA the
first few eigenvectors of the design matrix, which form the axes
of the plot, are also called “principal components”, PCs.)
Panels d and e show the same KPCA projection but with the
points colored according to @ and ¥. The strong horizontal
color gradient in panel e suggests that PCI is essentially
equivalent to ¥, with the additional advantage that the f
cluster does not split. The vertical (PC2) axis is well correlated
with the @ angle at the top of the plot, where the La cluster is
separated from the others. As such the KPCA map provides
the same or even improved view compared with the
conventional Ramachandran plot, but without relying on the
prior domain knowledge.

Describing and Comparing Atomic Environments

The automatic comparison and mapping of materials and
molecules starts with describing each atomic environment, X,
which consists of the atoms (chemical species and position)
within a sphere of radius r, centered at a specific atom. A
good descriptor of X should be invariant to translation,
rotation, and permutation of atoms of the same species,
because these operations do not change physical properties.
Many traditional descriptors used in cheminformatics are
based on the covalent connectivity of atoms, such as simple
valence counting and common neighbor analysis,”’ the
presence or absence of predefined atomic fragments (e.g,
the Morgan fingerprints™), or orientational order parame-
ters.”” These are relatively low dimensional descriptors and
lose much geometric information. We opt to retain all
geometric information when representing atomic environ-
ments and structures, and then rely on the dimensionality
reduction of the embedding to arrive at a low-dimensional
map.

To construct SOAP descriptors, first consider an atomic
environment X that contains only one atomic species, and
place a Gaussian function of width ¢ centered on each atom i
in X to make an atomic density function:

2
P = X e~ | (i)
, ieX 20 (1)
where r denotes a point in Cartesian space, r; is the position of
atom i relative to the central atom of X, and the cutoff
function, f.,, smoothly decays to zero beyond the radius r.
This density representation ensures invariance with respect to
translations and permutations of atoms of the same species, but
not rotations. To obtain a rotationally invariant descriptor, we
expand the density in a basis of spherical harmonics, Y;,(£), and

a set of orthogonal radial functions, g,(r), as

() = 2 cung, (KX, (F)

nlm

@)
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and construct the power spectrum of the density using the
expansion coefficients,

8
l//rm’l(X) = a+1 ; (Cnlm)*cn’lm (3)

Then we obtain a vector of descriptors ¥ = {w,,;} by
considering all components ! < I, and n, n’ < n,,,,, which act
as band limits, controlling the spatial resolution with which the
atomic density is resolved. The generalization to more than
one chemical species is straightforward:* we construct separate
densities for each of ng, species @, and compute power spectra

aa’

l//n",l((\’) for each pair of elements a and o', where the two

species indices correspond to the c¢* and ¢ coefficients,
respectively. The ng,(ng, + 1)/2 vectors corresponding to
each of the a—a’ pairs are then concatenated to obtain the
descriptor vector of the complete environment. In some cases,
we might choose to neglect the cross terms (a # a’) and
obtain a much shorter descriptor vector. The ASAP tool uses
the DScribe python library to compute the SOAP
descriptors.™

Subsequent dimensionality reduction needs a distance
metric to compare atomic environments or, equivalently, a
positive semidefinite similarity kernel K (the latter should take
its maximum value for a pair of identical environments and be
smaller but positive for different environments). A natural
similarity kernel between atomic densities is the overlap
integrated over all 3D rotations, and it turns out that
computing it is easy once we have the SOAP vectors,”’

KX x)= [ 4k ’ [ @@y ()

ReSO(3)

2
=y'y
(4)
When considering a large number of atomic environments,
we collect their descriptor vectors into a design matrix, ¥,
whose rows are the descriptor vectors y. For N environments,
each described by a descriptor vector of length D, the design
matrix has size N X D. From the design matrix, we can form
the kernel matrix of size N X N, whose elements are given by
the similarity kernel between each environment. The simplest
linear kernel is K = WW7, for which PCA and KPCA are
equivalent; other options are available."> A common choice
together with the SOAP representation is to raise the above
kernel elements to a small integer power, giving rise to a
polynomial kernel. If ones needs an explicit distance between
two environments, it can be defined by

dX, X)=\J@w-y)

= JK(X, X) + K(X', X') — 2K(X, X')

Notice that for nonlinear kernels, one can thus define the
distance using just the kernel, bypassing explicit descriptors
entirely.

Universal SOAP Hyperparameters

The length-scale hyperparameters (r, and 6) for constructing
the SOAP vectors can be fine-tuned for any given
application.”’ While to date this was done case by case, we
have now formulated general heuristics for choosing the SOAP
hyperparameters for a system with arbitrary chemical
composition. The radial resolution is related to ¢ and rq/
Nmaw and the angular resolution is determined by 27/, as
well as 6/r at each shell of radius r. As such, using a set of fixed

https://dx.doi.org/10.1021/acs.accounts.0c00403
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Figure 2. (a) Snapshot of an amorphous carbon thin film.** (b—d) KPCA projections of the atomic environments from S0 snapshots of the system
with 125 carbon atoms,* colored according to coordination number (b), average bond length (c), and the logarithm of the relative probability of
each atomic environment (d). The rightmost point is absent in panel c, as the corresponding atom has no neighbors.

hyperparameters is inefficient, because different systems have
distinct length scales and varying spatial complexity.
Furthermore, a system with many different chemical elements
can contain a wide range of length scales, so using multiple sets
of SOAP descri%)tors with different hyperparameters can be
advantageous."”’

Our universal heuristics are based on the characteristic bond
lengths in the system, which in turn depend on the chemical
species involved. For each atomic species Z, we calculate six
structures (dimer, graphite, diamond, -Sn, body-centered
cubic, and face-centered cubic) spanning coordination from 1
to 12, minimizing the total energy with respect to uniform
isotropic strain of each structure. The bond length in the

rép, and the shortest bond
length of any local minimum structure is rZ . We then use
these species-specific bond lengths to choose the SOAP
hyperparameters for a given system with a set of species. The
specific rules for doing this and the resulting length scales for
two examples are included in the Supporting Information. In
the ASAP tool, the usage of these hyperparameters is simply

«

activated by the “—universal” or “-u” flag.

lowest energy structure is defined as

Comparing Molecules and Crystal Structures

So far we have described how to represent atomic environ-
ments. Frequently, however, we would like to represent,
compare, and map entire structures. This requires descriptors
for whole structures instead of environments. To do this, for
structure A, one can combine all the descriptors for the
environments X; of all N, atoms, and the most straightforward
way is to simply take the average,

3 ()

i€A

O(4) = —
N, (s)
Alternative constructions that lose less information are
described elsewhere.”** In the presence of multiple chemical
species, one can apply a single sum or first average separately
for each species and then concatenate the species-specific
averaged vectors. From the descriptor vector for each structure,
one can then construct the design matrix and the kernel matrix,
analogously to the procedure for environments.

B EXAMPLES

Amorphous Carbon

Here we show an example application on tetrahedral
amorphous carbon (fa-C) films, which have intricate local
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Figure 3. Snapshot of a Lennard-Jones system of 23328 atoms
containing a solid nucleus surrounded by undercooled liquid. Atoms
are colored according to the similarity of their environment to fec*”*’
(yellow means very similar, black and purple mean dissimilar). (a)
Real space view; (b) PCA map for the atomic environments. In
addition, we show the location of the bcc atomic environments (from
perfect bece crystals at a range of molar volumes) on the PCA map.

environments.”*"*® The KPCA maps in Figure 2b—d show 2D
projections based on the atomic SOAP descriptors of local
environments in ta-C (illustrated in Figure 2a). Carbon atoms
with different coordination numbers are automatically

separated into clusters on the maps, reminiscent of the
29

» o«

traditional classification of carbon environments as “sp”, “sp~”,
and “sp*”. In addition, the KPCA maps show continuous
distributions of different environments within the sp and sp*
clusters: there is significant variability in bond lengths that is
strongly correlated to the vertical axis. The implication of such
variability is discussed in-depth by Caro et al. in terms of
reactivity (hydrogenation energy) and the classification of
carbon bonds.” KPCA does not further separate the points
within the coordination clusters as shown by the single density
peak of each cluster in Figure 2d, which suggests there is no
clear-cut way to subdivide the sp and sp* clusters.

The Nucleation of a Crystal from the Liquid State

We now show the use of the automatic mapping in
understanding the structural heterogeneity of nucleation.
Solidification of materials starts with a small crystal nucleating
from the melt. Despite a multitude of atomistic simulation
studies, it is still a matter of debate whether body-centered
cubic (bcc) ordering exists at the surface of the nuclei of face-
centered cubic (fcc) crystals.”” This controversy arises because
the physical definition of bce ordering is somewhat ambiguous
and also because the commonly used local bond order
parameters®® do not distinguish between bcc and interface
atoms.

https://dx.doi.org/10.1021/acs.accounts.0c00403
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Figure 4. KPCA maps of liquid water configurations (1000 classical
and 593 quantum mechanical structures) from a training set,”
colored according to volume (upper panel) and the relative energy of
each configuration (lower panel).

In Figure 3, we show the PCA map based on SOAP
descriptors of each atom-centered environment inside a
Lennard-Jones system consisting of a solid nucleus surrounded
by undercooled liquid. Environments are colored according to
how similar they are to fcc using a conventional fcc order
parameter that was used for enhanced sampling.””*® Figure 3
reveals a smooth and gradual transition between the center of
the nucleus and the bulk liquid, with two blobs of data points
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Figure 6. PCA map for 1332 STO/CeO, (100)/(110) interface
structures relaxed from randomly generated structures.*” These
structures consist of four layers on each side of the interface with a
mirror plane at the middle. The red ovals indicate two distinct lowest-
energy groups.

corresponding to the fcc and liquid-like motifs. There is no
clear indication of an extra density peak that is associated with
the bec local ordering. Furthermore, the reference bcc
environments are clearly separated on the map. The
embedding thus severely questions the existence of bcc
ordering at the surface of the forming nuclei.

Liquid Water Structure

The compositions of training sets are crucial for the quality of
machine learning models for chemistry and materials. Mapping
atomic structures is useful for examining and understanding
the training configurations, particularly when curating or
expanding an existing data set. One such task is the fitting of
machine learning interatomic potentials, which are increasingly
popular as they can be both accurate and efficient.*'

Here we visualize the training set of a recent potential for
bulk liquid water.** First 1000 structures of liquid water were
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Figure 5. KPCA map for TiO, structures generated from random structure searches at 20 GPa:” each dot indicates a crystal structure, with the
known and new phases found in ref 2 shown using blue or green markers, respectively, and annotated by their names. If a certain phase is found in
the search, it is marked as a solid symbol and otherwise a hollow symbol (e.g,, C2¢, TiO,B, and ramsdellite). Only the space groups of structures
that have low energy and have appeared multiple times are indicated. The plot is generated using a Python notebook, by importing ASAP as a

library.
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Figure 7. KPCA maps of the QM9 database using a global SOAP kernel. The frames are color-coded according to structural descriptors (b, ¢, d, g)

and quantum mechanical properties (a, e, f).

harvested from classical molecular dynamics simulations at
1000 K and densities between 0.7 and 1.2 g/mL, and
augmented with lower energy configurations obtained after a
few steps of geometry optimization. The remaining config-
urations were extracted from path-integral molecular dynamics
(PIMD) simulations at ambient pressure and 300 K, which
account for the quantum mechanical nature of hydrogen
nuclei. The difference between classical and quantum
mechanical water is not apparent from inspecting atomic
snapshots by eye, cannot be captured using conventional
metrics such as oxygen radial distribution functions,"* and has
only subtle manifestation in hydrogen bond analysis.*

However, in the KPCA maps of the training set (Figure 4),
the distinction is obvious: the classical and quantum water
form two well-separated clusters. It is further revealed that the
classical water configurations have a relatively wide spread in
both energy and molar volume, and both quantities are
correlated with the axes of the plot. Such spread in the training
set is important for constructing a potential that is stable at a
range of pressures and elevated temperatures.

Crystal Structure Search: Titanium Dioxide

Ab initio random structure search** is a very productive tool of
materials discovery. To demonstrate the use of visualization in
this domain, we show an example of mapping the TiO,
crystalline polymorphs” that were produced from random
searches.”* This data set includes thousands of distinct TiO,
structures with different atomic coordinates, cell shapes, and
numbers of formula units in the cell. Even though the
knowledge of space groups, molar volumes, and energies of the
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structures provides hints on how to classify them, it is still a
formidable task to sort through them manually. The KPCA
map in Figure S instead directly gives an overview of the
structural similarities between 4690 locally stable structures of
titanium dioxide. Properties such as the relative enthalpy or
unit cell volume vary smoothly across the figure, and regions of
high density or stability are revealed. We project the known
(marked in blue) and newly discovered phases (marked in
green) of TiO, on the map,” so one can immediately spot if a
particular phase has been found in the random search, instead
of having to rely on the traditional identifications such as the
space groups. Indeed, as also shown on the map, different
structures can adopt an identical space group, while atomic
configurations that are structurally similar were classified to
have distinct symmetries.

Structure of Heterogeneous Interfaces

Structure searches can be extended to systems with interfaces
to reveal the stable configurations that are hard to obtain
otherwise.” The data analysis for this is even more challenging
compared with bulk phases, because the presence of the
interface breaks the crystallographic symmetry, so the tradi-
tional space group analysis is often ineffective. The extended,
often low-symmetry nature of interfaces also makes visual
inspections more difficult. Hence, automatic maps become
extremely desirable in this case.

Figure 6 shows the PCA map of SrTiO; and CeO, (STO/
Ce0,) (100)/(110) interface structures. Each point represents
a configuration at a local energy minimum. The relative
energies, used as the color scale, strongly correlate with the

https://dx.doi.org/10.1021/acs.accounts.0c00403
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Figure 8. KPCA maps of carbon atom environments in the QM9 database. Maps are color-coded according to Mulliken charges (a), hybridization
(b), whether the atoms are in rings (c), and local energies predicted by a machine learning potential (d).

horizontal axis of the map. This means that while the interfacial
energies are not used to construct the map, PCA identifies
them automatically, presumably just from the distortion of the
interface regions. We identified two clusters with low energies:
group A consists of structures similar to the ideal interface that
forms by simply joining the bulk phases, while group B
contains the reconstructed structures.

Organic Molecules

The QM9 data set,*® which contains 133885 organic
molecules composed of H and up to nine heavy atoms (C,
N, O, and F), has become a standard benchmark for ML-based
property prediction. Here we compare molecular structures
using average SOAP descriptors (eq S) and then use a sparse
version of KPCA for dimensionality reduction as the data set is
large. We use the resulting map (Figure 7) to navigate the
QM9 set and exploit the interactive viewer to observe
molecules along various “paths” through the map (illustrated
in Figure 7a).

Color-coding the points on the map using elemental
compositions (Figure 7b) shows that pure hydrocarbons and
other compositions (e.g, C, H, O or C, H, N, O) form
separate clusters. Together panels ¢ and d of Figure 7 show
that different carbon and total atom counts cause further
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splitting of these clusters. The key features of the map are thus
mainly defined by molecular composition. Furthermore,
systems with different numbers of rings also form distinct
clusters across the map (Figure 7g).

Molecular properties correlate both with the axes of the map
and with the molecular compositions. The atomization energy
per atom (Figure 7a) scales inversely with the total number of
atoms (Figure 7d)."*” The reason is that most molecules in
QM09 contain 9 non-hydrogen atoms, so molecules with fewer
overall atoms tend to have more double and triple bonds. This
also explains the trend in the HOMO-LUMO gap, €,
(Figure 7e): unsaturated compounds tend to have lower
gaps. On the other hand, HOMO energies, cgopo (Figure 7e),
are less systematic, presumably because the electronegativities
of the contained elements and structural features like -
conjugation have a strong influence.

As a complementary way to visualize QM9, we consider the
atomic environments of all the carbon atoms (Figure 8). Upon
inspection, the clusters of environments are found to reflect
different numbers of neighboring carbon and hydrogen atoms
(strongly correlated with the vertical and horizontal axes of the
plot, respectively). The clusters thus correspond to atom-types,
reflecting the fundamental concept behind classical bio-organic

https://dx.doi.org/10.1021/acs.accounts.0c00403
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Figure 9. (left) KPCA map of oxalic acid conformers in the gas-phase (large points) and configurations from different MD simulations at 500 K
initialized at the conformer geometries (small points). Configurations belonging to the MD for which no transitions to other basins are observed
are shown as transparent points. (right) Randomly generated oxalic acid unit cells (small yellow circles) and the corresponding fully relaxed crystals
(large colored circles). The experimentally known ** (lower structure) and #*° (upper structure) polymorphs are highlighted. All random
structures were initialized from the same gas-phase conformer, but in some cases, the conformer changed upon relaxation (highlighted by arrows

across the panels).

force-fields, which define different atom-types according to the
basic bonding topology of a molecule. Each cluster displays a
fairly homogeneous Mulliken charge, with a large number of
hydrogen neighbors leading to a negative partial charge on the
carbon atom (and vice versa). Within each cluster, different
realizations of the C/H neighborhoods cause further difference
in the charges. For example, both a carboxylic acid and a —CF;
group attached to a hydrocarbon contain a central carbon atom
with a single carbon and no hydrogen neighbors. Such
subclusters are illustrated in Figure 8b,c according to the
hybridization and whether a carbon atom is part of a ring. This
also serves as a warning that dimensionality reduction may
obscure some relevant structural features of the data. In this
case, carbon and hydrogen are the most abundant elements in
the data set so they dominate the embedding, whereas the role
of heteroatoms is not immediately clear. Color-coding using
additional properties and inspecting representative structures
can fill this gap.

Visualizing atomic environments also helps understand and
interpret ML potentials. We consider a SOAP-based GAP
model trained on QM9 energies," in which total energies are
expressed as the sums of local atomic energies. Figure 8d is
color-coded using these local energies and shows systematic
trends of similar energies within each cluster and a smooth
variation of energies between clusters. This shows how the
local energies are related to the specific environments.

Polymorphs and Conformers of Oxalic Acid Crystals

KPCA maps can also be used to emphasize differences in
conformations or crystal polymorphs for systems with fixed
composition. This is illustrated for oxalic acid (OA) in Figure
9. In the left panel, seven conformers of OA (each a (meta-
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)stable structure on the potential energy surface) are shown.
The map intuitively arranges these structures according to the
orientation of the protons (from left to right, in—in, in—out,
and out—out), and its vertical axis correlates with the relative
energy.

Additionally, configurations sampled from a series of MD
trajectories initialized from each conformer geometry are
shown. Note that the highest energy conformer is not
thermally stable and almost immediately rearranges during
the MD. These configurations are arranged in larger basins
separated by energetic barriers, while conformers within a
basin are connected by low energy paths. In particular, the
leftmost conformer (with corresponding points indicated by
partial transparency) does not rearrange during the MD
simulation due to the high kinetic stability afforded by the two
intramolecular hydrogen bonds, whereas all other conformers
are connected by the MD trajectories.

In the right panel, a similar KPCA plot is shown for 48 bulk
crystal structures of OA, which were generated using random
structure search. The initial random structures (small yellow
circles) and the corresponding fully relaxed configurations
(large colored circles) are connected by gray lines. All
molecules in the structure search were initialized from the
bottom-right conformer (out—out, trans) in the left panel, but
in some cases the monomers in the relaxed structures belong
to a different conformer (indicated by dashed arrows between
the two panels). The random and optimized crystal structures
stay on distinct regions of the plot. Almost all optimized
structures are well-separated, indicating that there are many
stable minima for the crystal, unlike in the gas-phase. Besides
the two experimentally formed polymorphs, several other
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crystalline structures of OA with comparable energies are also
found. This multitude of low energy local minima makes
organic crystal structure prediction difficult.

The two maps in Figure 9 highlight different aspects of
molecular structure: the intramolecular aspects (mainly proton
orientation) on the left, and the differences in intermolecular
interactions on the right. Considering both thus allows a more
complete understanding of the structural factors underpinning
molecular crystal formation.

B CONCLUSION

Automating the mapping of diverse classes of materials and
molecules yields physical and chemical insights, saves human
effort, and provides a data-driven perspective on large atomistic
data sets. Because of this utility and the software packages that
are now available, we believe that these maps will become a
standard tool for the wider computational chemistry and
materials science community. From the perspective of
methodology, there is certainly room for improvement. For
example, a systematic comparison of the maps produced using
different descriptors and dimensionality reduction algorithms
would be useful, as would be the development of new schemes
that have better scaling with respect to the number of atomic
species in the data set. As in most works using ML for
chemistry and materials to date, we have neglected long-range
interactions and correlations. Incorporating descriptions of
these may improve the ability of maps to discern and tease out
such effects, for example, in ionic solutions and large protein
complexes.

All in all, beyond visualization being a valuable tool for
molecular modeling, it is also becoming a science in itself.
Without any doubt, this Account will not be the final word in
this new science, and we anticipate exciting new developments.
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