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Deep learning framework for uncovering compositional and
environmental contributions to pitting resistance in passivating
alloys
Kasturi Narasimha Sasidhar1✉, Nima Hamidi Siboni1,2, Jaber Rezaei Mianroodi 1,2, Michael Rohwerder 1, Jörg Neugebauer 1 and
Dierk Raabe 1

We have developed a deep-learning-based framework for understanding the individual and mutually combined contributions of
different alloying elements and environmental conditions towards the pitting resistance of corrosion-resistant alloys. A fully
connected deep neural network (DNN) was trained on previously published datasets on corrosion-relevant electrochemical metrics,
to predict the pitting potential of an alloy, given the chemical composition and environmental conditions. Mean absolute error of
170mV in the predicted pitting potential, with an R-square coefficient of 0.61 was obtained after training. The trained DNN model
was used for multi-dimensional gradient descent optimization to search for conditions maximizing the pitting potential. Among
environmental variables, chloride-ion concentration was universally found to be detrimental. Increasing the amounts of dissolved
nitrogen/carbon was found to have the strongest beneficial influence in many alloys. Supersaturating transition metal high entropy
alloys with large amounts of interstitial nitrogen/carbon has emerged as a possible direction for corrosion-resistant alloy design.
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INTRODUCTION
Degradation of metallic components by corrosion has been a
long-standing problem in metallurgy and construction1, with
annual worldwide economic losses being estimated to be USD 2.5
trillion2. The availability of corrosion-resistant alloys, therefore,
plays a crucial role in sustaining not only the longevity but also the
safety and integrity of key engineering applications including
energy conversion systems, nuclear waste disposal, bio-medical
implants, civil infrastructures, food industry, and transportation
industries to name but a few sectors3. The design of alloys that are
inherently resistant to dangerous forms of localized corrosion
(such as pitting), that can lead to catastrophic part failure, is
essential in many applications.
The essential characteristic of such alloys is their ability to form

protective, passive oxide films on their surface which are adherent,
robust for inhibiting corrosion, and resistant to localized failure by
pitting4,5. Systematic investigations have been carried out over the
last decades to understand the role of different compositional and
microstructural characteristics on the passive film formation and
stability in different alloys6–8. Microstructural homogeneity (pre-
ferably single-phase microstructures)9, second-phases with tai-
lored galvanic potentials10, defect-free passive oxide film
formation11, and higher reactivity of salt films relative to the
passive oxide film7,12 are among the properties identified to be
most important for improved corrosion resistance. However, alloys
such as ferritic/austenitic stainless steels, Ni-Cr alloys, and Al alloys,
which exhibit superior corrosion resistance properties, have been
in use for many years before the underlying protection mechan-
isms were identified. Their applicability was realized often by
accident, intuition, experience, and trial and error experimenta-
tion. It has been understood only in hindsight that their superior
properties come from the above-mentioned phenomena.

While our advanced scientific understanding of the phenom-
enon of passivation has allowed the development of a rigorous
evaluation scheme for determining the corrosion resistance of a
newly developed alloy grade, it does not provide a method to
predict suited alloy compositions with desired corrosion resistance
properties3. Reliable rules do not exist for predicting the corrosion
resistance properties as a function of alloying additions. Conse-
quently, we still have to rely on trial-and-error experimentation
and experience to design new alloys that can exhibit the required
corrosion resistance in different applications, specifically, under
different chemical environments. Empirical design parameters
such as the pitting resistant equivalence number (PREN) have
been developed for specific alloy classes such as austenitic
stainless steels13. However, the scope and applicability of such
empirical design parameters seem severely limited in view of the
vast parameter space of possible alloy compositions and
environmental conditions. With the advent of high entropy alloys,
which seem to show promising corrosion resistance14,15, the
compositional parameter space has expanded drastically. Thus, it
is clear that both, trial and error experimentation and the available
design parameters are not the best strategies to design optimal
alloy compositions. Moreover, reaching increasing levels of
circularity in alloy production is inevitable in the long run, which
translates into having increasing amounts of tramp elements in
commercial alloys16,17. There exists no framework at hand, that
can inform us of the qualitative/quantitative influence of such
elements.
Machine learning-based methods exploiting the large amounts

of already measured/existing data have shown tremendous
potential to expedite the tedious trial and error processes and
accelerate materials discovery/evaluation in several applica-
tions18–20. This has been facilitated by the mechanisms offered
by these methods, beyond conventional statistical approaches,
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that automate the process of hypothesis generation, case-based
and instance-based reasoning21. However, the efficacy of tradi-
tional machine learning algorithms including support vector
machines, random forest, k-nearest neighbors, conventional
(shallow) neural networks and others depends on painstakingly
created handcrafted features. This tedious process of manual
feature engineering has been greatly alleviated with the advent of
deep learning/deep neural networks with their capability to
automate this process of feature extraction and training22,23.
In the area of corrosion research, machine learning models have

been significantly used lately, primarily as a tool for modeling/
predicting the behavior of individual materials systems in specific
experimental conditions24. Some examples include works predict-
ing the atmospheric corrosion rate of steels25,26, high temperature
oxidation of alloys27,28, interpreting electrochemical impedance
spectroscopy data29 and understanding corrosion in the presence
of inhibitors30,31. However, machine learning has not been
exploited, to our knowledge, as a tool for alloy design in general.
The need for the same has nevertheless been recognized by the
corrosion community, marked by the recent publication of the
dataset on the corrosion-relevant electrochemical metrics of a
wide range of passivating alloys32.
As a step in this direction, here we employed a deep learning

method and developed a framework that helps understand the
individual and mutual contributions of alloying elements to
localized pitting resistance in a wide range of alloys. This
knowledge could facilitate the efficient discovery of corrosion-
resistant alloys. For this purpose, we first trained the deep neural

network algorithm over the pitting potential dataset to solve a
regression problem (predicting the pitting potential for a given set
of environmental conditions and alloy composition across all of
the included alloy classes). We then performed a multi-
dimensional gradient descent optimization over the trained deep
neural network to arrive at compositions across different alloy
classes that could be increasingly resistant to pitting.

RESULTS AND DISCUSSION
Training
The mean absolute error of network predictions on the training
and testing dataset (termed ‘loss’ and ‘validation loss’, respec-
tively) as a function of training history were evaluated for all the 6
random dataset splits (i.e. the sixfolds). Both loss measures were
observed to evolve in a similar manner in all cases. A
representative result corresponding to 10,000 epochs of training
is presented in Fig. 1. A validation loss close to 170mV has been
obtained at the end of training, i.e. at the final epoch (Fig. 1a).
Further, the R-square coefficient (averaged over the sixfolds)
turned out to be 0.61 ± 0.04. The negligible difference between
the training and validation losses over the course of training
history (Fig. 1a) implies that no overfitting occurs. This is attributed
to the use of a dropout fraction of 0.5 at each layer in the network.
Mean of the absolute errors in predictions of the trained DNN

model over the test data within each alloy class along with their
respective distributions (in the form of their 95% confidence
limits) are shown in (Fig. 1c) In addition, the statistical

Fig. 1 Results of deep neural network training. a Mean absolute error in pitting potential of network predictions on the training and testing
datasets (termed as loss and validation loss respectively) in course of training history. b Plot of the DNN predictions over the test dataset after
training. c Absolute prediction errors of pitting potential (both the mean and distribution in the form of 95% confidence limits) from the
trained DNN model within each alloy class are plotted in black along the axis on the left. The statistical representation of each alloy class
within the training and test dataset is represented by the bar chart in blue along the axis on the right.
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representation of each alloy class in the training and test datasets
is plotted in the form of a bar chart. It can be seen that the model
performance (both in terms of the mean of the absolute errors
and error uncertainty) is better for NiCr-based, miscellaneous and
Fe-based alloys as compared to Al-based and high entropy alloys.
This can be understood on the basis of the amount of data and
the compositional variation existing within the data for each alloy
class. For example, the high entropy alloys class can be seen to
have a relatively much smaller statistical representation within the
dataset. Consequently, the training data is not sufficient to capture
the variation offered by the large and diverse composition space
within the high entropy alloys, making the test errors high and
also uncertain. In case of Al-based alloys class, although it has a
considerably larger statistical representation within the dataset,
the corresponding compositional variation within the data is also
higher than in other material classes. There exist different binary
alloy systems within the Al-based alloy class, such as Al-Cu, Al-Mg,
Al-Si etc. each of which have their own characteristic corrosion
properties. In other words, because of different precipitates,
second phases and their respective galvanic potentials, each of
the Al-based binary alloy systems functions like a distinct material
class of its own within the broad Al-alloys class. This could be the
reason for the poor test accuracy within the Al-based alloys class.
On the contrary, Fe-based and NiCr-based alloys data is primarily
composed of compositions belonging to one broad ternary/
quaternary system with their property being a function of minor
alloy additions of N, Mo, W etc. Consequently, the amount of
available training data is reasonably sufficient, resulting in higher
test accuracies.

Maximizing pitting potential using the trained DNN
The pitting potential was first maximized with respect to the entire
composition and test-specific parameter space. The increasing
pitting potential (i.e. increasing resistance to pitting) as a function
of the optimization iterations, for different representative initial
input conditions, has been plotted in Fig. 2. The most significant
variation in the input-feature space causing an increase in the
pitting potential was observed to be due to a decrease in
the chloride ion concentration. The corresponding variations in
the chloride ion concentrations as a function of the optimization
iterations for the same initial input conditions are plotted in
Fig. 2b. Changes in the alloy composition in the initial iterations
until the chloride ion concentration dropped to zero were rather
negligible (less than 0.5 wt. %). The deep neural network can thus
be seen to have ‘learned’ the significantly detrimental effect of
chloride ions on the resistance of passive films towards pitting in
all alloys. Due to the decreasing trend of chloride ion concentra-
tion during optimization, it does not require any extrapolation
beyond the training data (consisting of chloride ion concentra-
tions in the range of 0–4 molar).

Maximizing pitting potential under constant chloride
concentration conditions
To identify composition variables (i.e. alloying elements) that are
most effective in improving the pitting-resistance of alloys,
maximization of the pitting potential was carried out with the
exclusion of the chloride ion concentration variable from the
optimization variables, i.e. keeping the chloride ion concentration
constant as in the respective initial conditions during optimization.
The results of such optimization sequences, with different initial
conditions, are presented in Fig. 3. Representative initial
compositions from each alloy class have been randomly chosen
for this purpose. Due to the complexity involved with the 23-
dimensional composition-variable space, only those parameters
which exhibited significant variations during the optimization are
discussed here. All other elements (not shown in the plots)
exhibited a variation below 0.5 wt. % (with respect to their

respective values in the initial alloy composition) during the entire
optimization sequence. Major alloying elements in each of the
alloy and the solution pH have been shown in all cases regardless
of their magnitude of variation during optimization.
The striking feature that can be seen in all the optimization

sequences in Fig. 3 is that the interstitial alloying elements (i.e.
either one or both of C and N) exhibit an increasing trend in all
alloy classes. N can be observed to be rapidly increasing in the
stainless steel, Ni-Cr alloy and Al-Cr alloy (Fig. 3a–c) while C can be
seen to be particularly important in the Ni/Co containing high
entropy alloys (Fig. 3d, e). These interstitial elements, with their
highest rate of change in comparison to all other alloying
elements, thus turn out to be the most effective elements in
increasing the pitting resistance of alloys belonging to all the
classes tested. In other words, the DNN model trained over the
current dataset primarily points us in the direction of working
towards maximizing the interstitial content within the different
broad alloy classes, rather than any other substitutional alloying
element, to most effectively improve their corrosion resistance.
It must be taken into account that the artificial intelligence

approach does at this stage not take the respective solubility limits
of these interstitial atoms in the respective alloys into considera-
tion. This has not been part of the present training information.
Exceeding the solubility limits could lead to the formation of
carbides or nitrides, respectively, which in turn could worsen the
pitting potential, due to the formation of additional local galvanic
elements. That is, the artificial intelligence approach used in this
section can essentially detect this trend of improvement of the
pitting potential by these elements, but not their thermodynamic
solubility limits. However, this secondary alloy design aspect can
be readily supplemented by further training based on correspond-
ing thermodynamic data. Also, below we show that the prediction
ranges regarding the alloys’ compositional variation can be

Fig. 2 Effect of chloride ion concentration. Variation in pitting
potential (target variable) during the optimization, starting from
different initial conditions and the corresponding change in chloride
ion concentrations during the respective optimization sequence
(the legend is applicable for both plots).
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confined to the composition ranges covered by the training data,
so as to avoid thermodynamically unreasonable extrapolations.
Further details of this aspect are discussed below.
In addition, the optimization results presented in Fig. 3 also

reveal the existence of coordinated transitions in the rate of
change of some of the feature-space variables during the
optimization sequences. For instance, the change in the slope of
the increasing Mo content in the stainless steel and the NiCr-
based alloy (i.e. at around 220 and 400 optimization steps in
Fig. 3a, b, respectively) can both be seen to be correlated with
decreasing pH value. In addition, this transition in the Ni-Cr-Mo
alloy (Fig. 3b) can also be seen to be accompanied by an increase
in the slope of the N content. A similar correlation in slope-
transitions of C and Co contents can be seen in (Fig. 3e).

Maximizing pitting potential only in composition space
In the next set of optimization sequences, maximizing the pitting
potential has been carried out while varying composition
parameters alone and maintaining the test/specific parameters
including chloride ion concentration, pH, and test temperature
constant at their respective initial conditions. An additional
restriction of not extrapolating the compositions beyond the
respective limits of each of the parameters within the training
dataset has been imposed. With the maximum C and N contents
in the training dataset being 0.2 wt. % and 0.8 wt. % respectively,
this serves as a severe restriction for the interstitial elements, in
comparison to the values predicted in the previous optimization
sequences (Fig. 3). This was done to see if such a restriction
triggers the substantial increase of any other substitutional
element during optimization. The same sets of the initial

Fig. 3 Compositional change during different optimization sequences carried out while keeping the respective chloride ion
concentrations fixed. The initial conditions for each optimization sequence have been indicated. a Fe-25Cr-4Ni-4Mo ferritic stainless steel.
b FCC Ni-28Cr-5Mo alloy. c Al-4.5Cr alloy. d FCC Ni-20Fe-20Cr-20Co high entropy alloy and e FCC equiatomic Fe-Ni-Cr-Co high entropy alloy.

K.N. Sasidhar et al.

4

npj Materials Degradation (2022)    71 Published in partnership with CSCP and USTB



compositions considered in (Fig. 3) have been utilized. The results
of these optimization sequences are presented in (Fig. 4).
The results can be seen to be qualitatively similar to those

presented in Fig. 3, but also reveal some important differences.
Firstly, despite the strong restriction on the maximum interstitial
element content during optimization, the variation in substitu-
tional element contents in all cases is largely similar to that in
Fig. 3. No rapid increase in any of the substitutional elements has
been triggered. The interstitial element content variations are also
similar to that in Fig. 3, in the sense that they can be seen to
rapidly increase at the beginning of the optimization, and reach
their respective imposed limits. However, this is true only for the N
increase in the stainless steel (Fig. 4a) and Al-Cr alloy (Fig. 4c), and
the N or C increase in the high entropy alloys (Fig. 4d, e). On the
contrary, the Ni-Cr alloy (Fig. 4b) can be seen to deviate from such

a behavior, with the N composition during optimization increasing
only marginally and remaining distinctly lower than the imposed
N concentration limit. This indicates that the extent to which N
alloying can improve the pitting resistance in this alloy is
especially dependent on the pH value, which has not been
allowed to vary during these optimization sequences.
Another distinct difference in comparison to the results in Fig. 3

is that the slope change corresponding to an increase in Mo
content in Fig. 3a, b are absent in the corresponding Fig. 4a and b,
respectively, where no pH variation is permitted. This indicates
that the slope changes of Mo in the stainless steel and in the Ni-Cr
alloy observed in the former set of optimizations are indeed
correlated with decreasing pH values. In other words, it can be
inferred that while Mo generally increases the pitting resistance in

Fig. 4 Compositional change during different optimization sequences carried out while keeping the test-specific parameters fixed and
not allowing N or C composition extrapolation beyond the training data. The initial conditions for each optimization sequence have been
indicated. a Fe-25Cr-4Ni-4Mo ferritic stainless steel. b FCC Ni-28Cr-5Mo alloy. c Al-4.5Cr alloy. d FCC Ni-20Fe-20Cr-20Co high entropy alloy and
e FCC equiatomic Fe-Ni-Cr-Co high entropy alloy.
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stainless steels and Ni-Cr alloys, it is increasingly effective in acidic
environments.

Cr content optimization in Fe-Cr and Ni-Cr alloys
Cr is one of the most important alloying elements in Fe-based
(stainless steels) and Ni-based alloys exhibiting passivation
characteristics. Critical amounts of Cr close to 12 at. % and 15
at. % are required to achieve effective passivation in the two alloy
systems, respectively33,34. Here, we evaluate if the network
effectively learned this critical transition in corrosion resistance
with Cr content in the two alloy systems. For this purpose,
maximizing the pitting potential was carried out, with pure Fe and
pure Ni respectively as the initial compositions, while allowing
variation of the Cr content alone during optimization. The results
are presented in Fig. 5. In the course of the optimization sequence,
transitions in the pitting potential from largely negative to largely
positive values can be observed in both the Fe-Cr and Ni-Cr alloy
systems at 12 wt. % and 15 wt. % Cr, respectively. This implies that
the trained network has indeed successfully learned the active-
passive transition of these alloys at their respective critical Cr
contents.
However, lack of any significant variation in the pitting potential

of Ni-Cr alloys up to the critical Cr content of 15 wt. %, followed by
the extremely sharp transition, as predicted by the model can be
seen as artificial. This could have arisen due to the limited training
data for Ni-based alloys in the pertinent composition range.

Compositional correlations predicted by the trained DNN and
understanding from literature
The above-identified features of the compositional trajectories
evolving during the different optimization schemes can be seen to
be in agreement with known correlations between composition
and the corrosion resistance of alloys. The ability of the network to

learn the active-passive transition in Fe-Cr and Ni-Cr alloy systems
at the respective critical Cr contents (Fig. 5) is significant. In
relation to the increasing interstitial N or C content during
optimization, the presence of N is known to significantly improve
the corrosion resistance of stainless steels. In fact, N has the
strongest weighting coefficient in the PREN of the stainless
steels13. Mo, which is shown to increase the pitting potential in
Figs. 3 and 4, is also known to enhance pitting resistance in
stainless steels7,35 and NiCr-based alloys36,37. In particular, detailed
investigations have revealed that Mo is particularly effective in
improving the pitting resistance in acidic environments. In fact, a
synergistic effect of Mo and N addition has been shown to
improve pitting resistance in acidic environments38. Correlation in
the slope-transition for Mo increase with a decreasing pH value
during optimization (Fig. 3) and absence of such a slope change
when pH variation is not allowed (Fig. 4a) is in agreement with this
understanding. The optimizations carried out with and without
allowing pH variation indicate a similar pH dependence (Figs. 3b
and 4b respectively) for the beneficial influence of interstitial N in
NiCr-based alloys. It is interesting to note that while acidic
environments are usually detrimental for pitting resistance, the
network predicts a decrease in pH for specific alloy compositions
(Fig. 3a, b and e). This is because the multi-dimensional gradient
descent algorithm attempts to optimize all the feature space
variables simultaneously. The decreasing pH predicted in these
cases is specific to those alloy compositions (with Mo and N) and
should not be interpreted to be a general trend.

Experimentally unverified predictions—assessing their
applicability
The ability of the network to learn the above-mentioned
experimentally known correlations (i.e. the role of N or Mo in
stainless steels and Mo in Ni-Cr alloys) is motivating and justifies
the necessity to pursue experimental investigations to verify some

Fig. 5 Optimizations allowing variation of Cr content alone. Variation of Cr content and pitting potential during optimization history have
been plotted. Initial compositions are a pure Fe c pure Ni. The pitting potential predicted by the trained network as a function of Cr content is
plotted for b BCC Fe-Cr alloys and d FCC Ni-Cr alloys. The active-passive transitions at the respective critical Cr contents in both the alloy
systems can be seen to have been successfully predicted by the trained network.
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of the unknown predictions (i.e. large N or C contents in Ni-Cr
alloys and transition metal high entropy alloys). However, the
results of optimization, especially in terms of the large N or C
contents predicted (Fig. 3), must be interpreted with caution. For
instance, the beneficial influence of increasing bulk N contents in
stainless steels (as given by the PREN) is known to be restricted by
the solubility limit of N in the matrix, as briefly discussed above.
Precipitation of N-enriched second phases beyond the critical N
content leads to a deterioration of corrosion resistance in those
alloys39. The dataset employed herein primarily consists of N
contents within the solubility limit. Therefore, due to lack of
training data beyond the N-solubility limit, it is reasonable that the
DNN model is unable to learn the deleterious effects of excess
N-induced precipitates. Highly exaggerated amounts of N content,
much beyond the solubility limit, are thus predicted upon
optimization without restrictions (Fig. 3).
Nevertheless, the results of optimization with restriction on

interstitial content extrapolation (Fig. 4) confirm the fact that the
beneficial influence of interstitial N or C content far outweighs any
other substitutional element in the respective alloys. This follows
from the observation that despite this restriction, no substantial
increase in any other substitutional element is predicted, beyond
that predicted in the unrestricted optimization (Fig. 3). Thus, the
very high rate of change in N or C content predicted by the
optimization sequences could be considered as a direction for
alloy design. It provides motivation to work on developing
strategies, especially for the relatively unexplored transition-metal
high entropy alloys, which can introduce large amounts of N or C,
much beyond the solubility limit, into solid solution.
For instance, in stainless steels, such large N or C super-

saturations can be achieved by low-temperature/plasma-based
thermochemical treatments (such as nitriding/carburizing). Experi-
mental investigations show that controlled nitriding/carburizing
treatments of austenitic/PH stainless steels can lead to a so-called
colossal supersaturation of N or C, without triggering secondary
phase precipitation40,41. The austenite phase formed with the
colossal N or C -supersaturation, also called the N-expanded or
C-expanded austenite, is in fact known to exhibit superior
corrosion resistance (pitting resistance in particular) in comparison
to conventional austenitic stainless steels39,42. While the physical
basis behind this is not fully understood39, a recent work43 has
shown that large interstitial C contents in solid solution can
drastically increase the covalent character of bonds between
matrix elements. This is expected to reduce the metal dissolution
rate in a pit environment. Based on the predictions of the
optimization for similar effects of N or C in other alloy systems
(such as NiCr-based alloys and transition metal high entropy
alloys), strategies to develop N or C-supersaturated solid solution
phases in these systems could turn out worthwhile44–46.
The improvement in pitting resistance of both the N-expanded

and C-expanded austenite is governed by the extent of
metastable N or C-supersaturation (upon suppression of carbide/
nitride phases) that can be achieved. This extent of super-
saturation is governed strongly by the substitutional alloy
composition. CALPHAD based models have been developed to
quantitatively estimate such a metastable N or C supersaturation
that can be attained for a given alloy composition during low-
temperature thermochemical treatments47,48. Figure 6 shows the
limits of such N or C supersaturation as a function of composition,
calculated for the representative austenitic stainless steels,
austenitic (FCC) NiCr alloys, and FCC FeCrNiCo high entropy
alloys. The methodology for the calculations (explained in detail in
the ref. 47) essentially involves estimating the N or C content in the
solid solution phase necessary to realize an equivalence of N/C
chemical potential with the nitriding/carburizing atmosphere.
Formation of equilibrium nitrides/carbides and any variation in
substitutional element content is suppressed, making the
estimated N solubilities metastable in nature.

It can be seen that increasing amounts of Cr facilitate higher
extents of N or C supersaturation in all the alloy systems. On the
contrary, Ni and Co have the opposite influence. In particular, the N
supersaturation limit can be seen to decrease very rapidly with
increasing Ni and Co contents in comparison to C. In other words,
the thermodynamic calculations imply that Ni and Co prefer C in
solid solution in comparison to N. This is in line with predictions
from the optimization sequences. Figure 3 shows increasing C
content (either alone or together with N) in high Ni/Co containing
high entropy alloys, as opposed to the predominantly increasing N
content in the high Cr-containing stainless steels and NiCr-based
alloy. In summary, compositional predictions arrived at using the
trained DNN model consist of several features that corroborate
existing knowledge from corrosion research. At the same time, the
predictions also offer thermodynamically reasonable, definite
design guidelines that can direct actual experimental efforts for
developing effective corrosion-resistant alloy compositions. Devel-
opment of alloy compositions and strategies capable for achieving
large interstitial N or C supersaturation could be considered as a
direction for corrosion-resistant alloy design from the current work.

METHODS
Dataset description and adaptation
We have utilized an open-source data base on the corrosion-relevant
electrochemical metrics for metals and alloys published recently32. It consists
of a compilation of a total of 1274 records spanning over 8 corrosion metrics
(pitting potential, repassivation potential, corrosion current density, passive
current density, corrosion potential, crevice corrosion potential, pitting
temperature and crevice corrosion temperature) and 5 alloy classes (Fe-
based, Al-based, NiCr based, high entropy alloys and other miscellaneous
alloys). In this work, we have only used data pertaining to the pitting
potential (reported with respect to the standard calomel electrode potential
(SCE)). This has been chosen considering the enormous importance of pitting
as one of the most critical forms of localized corrosion. The dataset consists of
810 records (obtained from 85 literature ref. 32) spanning over all five alloy
classes. The feature space in the dataset can be broadly divided into two
categories, namely material-specific variables and electrochemical test-
specific variables. The former includes the major alloy classes, alloy
composition (24 elements, all in wt. %), microstructural information (in
terms of the major matrix phase, precipitate distribution, etc.), and alloy
processing conditions. On the other hand, test temperature, chloride ion
concentration, pH value of the test solution and the test method applied are
the documented electrochemical test-specific variables.
For training the deep neural network towards solving the regression

problem, it is essential to have numerical input. All the 23 independent
compositional variables, test temperature, pH, and chloride ion concentra-
tion of the test solution, being numerical in nature, were taken as such.
However, the categorical input features such as microstructural character-
istics and alloy class were transformed into numerical features by simply
replacing each category within a feature with a unique positive integer.
Such a transformation was particularly used in preference to other
methods such as one-hot encoding due to the relatively small size of the
dataset and a tremendous increase in input-dimensionality that would be
introduced by one-hot encoding [There are 5 categories (alloy classes)
within the material class feature and the microstructural information
feature was divided into 8 categories. One-hot encoding would replace
two of these features with 13 new features]. The test method, scan rate
and details of alloy processing, as documented in the dataset being used,
consist of textual information with significant variation. In order to
transform this into numerical data, an elaborate natural language
processing (NLP) based approach involving text vectorization, followed
by word embedding and encoding would be essential. In this first attempt
to develop a machine-learning based model, such a complication has been
avoided and thus these features were not included for training. The
missing values in the dataset have been treated as follows. In the case of
major alloying elements such as Ni, Mo, W, C, and N, missing values were
replaced with values compatible with the commercial alloy grade
mentioned in the comments. Missing values of S, P, Mn, and Si (elements
that are not added intentionally for alloying in most cases) were replaced
by their respective most frequently occurring values. Missing values in
others were replaced by zero. Samples reported as ‘transpassive’ instead of
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having an exact value for the pitting potential were omitted from the
database. The adapted dataset which includes 769 records, was divided
into the training and testing datasets in a 4:1 ratio, while ensuring random
sampling in both. The random sampling is reflected by the fact that data
instances from all material classes are represented in the training and test
datasets with the same probability as in the original dataset.

Network description and training
The deep neural network (DNN) has been implemented, trained, and tested
using Keras49, an application programming interface (API) written in Python,
running on top of the machine learning platform TensorFlow50. A simple fully
connected deep neural network with the following structure was arrived at,
after performing hyperparameter tuning by manual trial and error [The
different hyperparameters varied and their ranges in all the trials include
number of hidden layers (varying from 2 to 4), number of nodes in the
hidden layers (varying from 16-256), activation functions (ReLU, sigmoid, tanh
and leaky ReLU) and dropout fraction (0.1–0.6). The network finally used had
shown the optimal combination of minimum error and computational time
required for training.]. The network has one input layer of size 28, followed by
3 hidden layers of sizes 64, 64, and 32 respectively followed by an output
layer of size 1 (Fig. 7). For the hidden layers we have used the ReLU activation
function, and also initialized all the weights in conjunction with the glorot
uniform initializer51 and the biases set to zero. The Adam optimization
algorithm52 was used during training with a step size (learning rate) of 0.001.
Given the small size of the available dataset, we also included a dropout

fraction of 0.5 for each of the hidden layers to combat overfitting. The DNN
model was trained 6 times, each time using a different random dataset split
(i.e. 6-fold cross validation).

Optimization
After training, multi-dimensional optimization within the input parameter
space was performed to maximize the pitting potential using the gradient
descent method53. It is worth noting that the maximization of the pitting
potential refers here to property improvement, i.e. to an alloy’s increasing
resistance to pitting. To obtain the gradient of the output with respect to
the inputs, we have relied on the automatic differentiation method (AD)54

which is already implemented in the Tensorflow package (https://
www.tensorflow.org/guide/autodiff). Indeed, AD is the central principle
behind some machine learning algorithms such as backpropagation,
where the derivative of the loss function is calculated with respect to the
weights and biases of the network55. In this work, we have gone beyond
the derivatives with respect to weights and biases, and calculated the
derivatives with respect to the inputs as well; this is equivalent to one more
step of backpropagation where the derivatives are made with respect to
the activation of the input layer. For convenience and reproducibility
purposes, we have created an augmented version of the Keras model class,
which is exactly like the default Keras model class but augmented with an
additional method that returns the Jacobian of the network. We refer to
this class as AugNet, and it can be used: (i) to create, compile, and train a
network from scratch, or (ii) to load a trained network (which does not

Fig. 6 Maximum allowed metastable N or C supersaturation by suppressing nitrides/carbides in different alloys (with compositions in at.
%). a Austenitic Fe-xCr-10Ni alloy. b FCC Ni-xCr alloy. c Austenitic Fe-20Cr-xNi alloy. d FCC Fe-20Cr-20Ni-xCo high entropy alloy. Calculated for
typical nitriding/carburization conditions at 450 °C using N activity of 3 × 10−4 and C activity of 1 (with respect to standard element reference
state (SER)). Commercially available thermodynamic databases (TCFE11 for steels and TCHEA4 for other alloys) along with the Thermo-Calc v.
2021(b) software package have been used for the calculations.
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necessarily need to be an AugNet itself). The implementation of this class,
together with its installation, two minimal examples, and performance
analysis, is available in the Github repository56. In all the gradient descent
optimizations, a step size (learning rate) of 0.0001 was used.
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