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Abstract

Prediction is one characteristic of the human mind. But what does it mean to say the mind is a
“prediction machine” and inherently forward looking as is frequently claimed? In natural languages,
many contexts are not easily predictable in a forward fashion. In English, for example, many frequent
verbs do not carry unique meaning on their own but instead, rely on another word or words that follow
them to become meaningful. Upon reading take a the processor often cannot easily predict walk as
the next word. But the system can “look back” and integrate walk more easily when it follows take a
(e.g., as opposed to *make|get|have a walk). In the present paper, we provide further evidence for the
importance of both forward and backward-looking in language processing. In two self-paced reading
tasks and an eye-tracking reading task, we found evidence that adult English native speakers’ sensitivity
to word forward and backward conditional probability significantly predicted reading times over and
above psycholinguistic predictors of reading latencies. We conclude that both forward and backward-
looking (prediction and integration) appear to be important characteristics of language processing. Our
results thus suggest that it makes just as much sense to call the mind an “integration machine” which
is inherently backward ‘looking.’
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1. Introduction

In human communication, the speech signal dissipates as soon as it is produced or heard.
And while printed words sit as static percepts on a page, fluent reading is a fast incremental
process, with the average silent reading rate for adults in English fiction prose being esti-
mated at 260 words per minute (Brysbaert, 2019). The inherent fleeting nature of language
processing suggests that the human brain recruits mechanisms efficiently tuned to processing
sequential information. One way that such mechanisms may work is to predict language, such
that words are processed faster when they are more predictable in a given context. Accord-
ingly, considerable evidence has accumulated over the last few decades that people often use
context to implicitly predict how an utterance might continue, thus making comprehension a
fluent process. Beyond language, the prediction has been proposed as a general mechanism
of human information processing (e.g., Clark, 2013; Friston, 2005). Many current cognitive
theories of language reflect this trend by placing an important role on prediction for language
learning and comprehension (Altmann & Mirković, 2009; Dell & Chang, 2014; Federmeier,
2007; Ferreira & Chantavarin, 2018; Hale, 2001; Hickok, 2012; Huettig, 2015; Kuperberg
& Jaeger, 2016; Levy, 2008; Norris, McQueen, & Cutler, 2016; Pickering & Gambi, 2018;
Pickering & Garrod, 2013; Van Petten & Luka, 2012). It is important to note that the term
prediction (or anticipation, expectation, context effects, top-down processing) has been used
in different ways by different researchers and fields. Here, we refer to prediction as the pre-
activation of (linguistic) representations before bottom-up input has had a chance to activate
them. It avoids arbitrary decisions about what constitutes prediction and what does not (cf. the
distinction between expectation and prediction, e.g., Van Petten & Luka, 2012) and reflects
the common language sense that prediction is about what may happen in the future (Huettig,
Audring, & Jackendoff, 2022).

A considerable amount of experimental evidence consistent with the notion that preactiva-
tion is an important aspect of language processing comes from electrophysiological studies
measuring the N400 ERP component, a negative-going and centro-parietally distributed com-
ponent occurring approximately 400 ms after the predicted target word onset (e.g., Brothers,
Swaab, & Traxler, 2015; Camblin, Gordon, & Swaab, 2007; Federmeier & Kutas, 1999;
Federmeier, McLennan, De Ochoa, & Kutas, 2002; Hintz, Meyer, & Huettig, 2020; Laszlo,
Stites, & Federmeier, 2012; Metusalem et al., 2012; Otten & Van Berkum, 2007, 2008;
Rommers, Meyer, Praamstra, & Huettig, 2013; Van Berkum, Brown, Zwitserlood, Kooijman,
& Hagoort, 2005). However, an interpretation of N400 modulation on the target word as a
“direct” measure of prediction (or anticipation) is problematic, because it is difficult to estab-
lish whether N400 deflections index prediction of upcoming words (or representations), ease
of integration of incoming words with preceding context, or both (see Baggio & Hagoort,
2011; DeLong, Urbach, & Kutas, 2005; Huettig, 2015; Lau, Phillips, & Poeppel, 2008;
Mantegna, Hintz, Ostarek, Alday, & Huettig, 2019; Nieuwland et al., 2020; Nieuwland et al.,
2018; Rabovsky, Hansen, & McClelland, 2018; Van Berkum et al., 2005; Wicha, Moreno,
& Kutas, 2004 for further discussion). Indeed, integration is increasingly considered in addi-
tion to prediction in theories and electrophysiological models of language processing (see
Bornkessel-Schlesewsky & Schlesewsky, 2008; Brouwer & Crocker, 2017; Brouwer, Delogu,
Venhuizen, & Crocker, 2021; Brouwer, Fitz, & Hoeks, 2012; Kuperberg, 2007 for review).
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The distinction between (lexical) prediction (i.e., “top-down” activation) and (lexical)
integration (i.e., “bottom-up” activation) is not only important for the interpretation of ERP
N400 modulations in language processing, but also for general theoretical importance.
Despite the contemporary trend to interpret experimental findings in language processing
within a predictive framework, recent work (Frisson, Harvey, & Staub, 2017; Huettig, 2015;
Huettig & Guerra, 2019; Huettig & Mani, 2016; Luke & Christianson, 2016; Nieuwland
et al., 2018; Staub, 2015) has proposed that much of language may actually proceed on
integrative processes that link linguistic material just heard or read to what is already known
or established (Ferreira & Chantavarin, 2018). Moreover, it has been noted that key evidence
for prediction in language processing is often limited to circumscribed stimuli and task
settings. Huettig and Mani (2016), for example, pointed out that the visual stimuli presented
in visual-world eye-tracking experiments (another frequently used method in prediction
research) provide critical scaffolding for the finding of such effects, because the visual
referents of predicted words, which show anticipatory eye gazes, have been primed during
the visual preview (see McQueen & Huettig, 2014, for experimental evidence supporting this
claim). Similarly, Brothers, Swaab, and Traxler (2017) provide evidence that the task in ERP
experiments influences the extent to which readers engage in lexical prediction.

Taken together, this casts considerable doubts on claims that humans are “prediction
machines” and that forward looking is the default characteristic of human information pro-
cessing (e.g., Clark, 2013; Friston, 2005). Backward looking and integration may be (at least)
as important for language comprehension as forward-looking and prediction. As contempo-
rary empirical investigations of language processing tend to predominately focus on predic-
tion, there is a need to further explore empirically the respective contributions of forward
looking and backward looking in language comprehension.

1.1. The current study

In this article, we aim to further contribute to this endeavor by assessing both forward-
looking and backward-looking processes during a word-to-word reading of sentences in real-
time. As a proxy for backward looking, we use a simple measure of lexical integration that can
be easily derived from large language corpora and is a direct counterpart of a common mea-
sure of probabilistic prediction (namely forward surprisal). Then, we assess how these proxy
measures of forward looking (prediction) and backward looking (integration) contribute to
explaining sentence reading times. It is important to stress here again that our measures of for-
ward looking (prediction) and backward looking (integration) are proxies only. They are not
meant to be taken as “perfect” indexes of prediction and integration processes. Forward sur-
prisal is typically considered a reasonable proxy for forward looking and prediction because
it scales linearly with word reading times (Goodkind & Bicknell, 2018; Smith & Levy, 2013),
and the size of N400 effects (Yan & Jaeger, 2020).

To understand our lexical integration proxy and framing of backward-looking as a form of
integration, consider the case of the many lexical restrictions (or collocations) that English
speakers implicitly master and which involve determiners and modifiers. For example, mod-
ifying verbs like do and make are near synonymous and can precede several nouns, so their
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predictive power is limited. But looking back, these modifiers appear to be selected largely
based on the following words, as in make some noise, but not *do some noise, and do away
with but not *make away with. Likewise, many adjective–noun combinations appear to be
more backward-looking (i.e., being more informative when integrating preceding context)
than predictive (i.e., involving preactivation of upcoming words), as in strong tea but not
*powerful tea, or powerful resources but not *strong resources. In the above cases, what dis-
tinguishes the acceptability (and processability, see Onnis & Huettig, 2021) of a multiword
sequence may not be so much the forward conditional probability, which is sensibly low
for noise given both do some or make some. This happens because numerous words in the
language can follow verbs like do and make, and thus the forward probability values can be
empirically estimated in a corpus of language to be low. Rather, it is the backward conditional
probability (e.g., P(make some | noise) that is higher in the nonstarred examples, compared to
the starred examples (e.g., P(do some | noise)). Such backward-looking may not be limited to
a handful of examples, or to certain classes of lexical items or verb phrases. In noun phrases,
an adjective like green can be followed by many nouns, making the future unpredictable, but
green often precedes the noun papaya, which could thus receive a processing boost when it is
integrated. Likewise, in prepositional phrases, one is under attack but not ∗below attack, and
something is at work, or in place, but not ∗in work or ∗at place. Here again, the first words
in the phrases above appear to be selected largely based on the following words, and not vice
versa.

Language users do appear to make use of backward looking in many experimental settings,
for example, to fill in words they have missed in comprehension (Gwilliams, Linzen, Poeppel,
& Marantz, 2018; Lieberman, 1963), to repeat words that help to access upcoming words
(Harmon & Kapatsinski, 2021), or to fill in acoustically ambiguous words. For example, in the
classic experiment of phoneme restoration by Warren (1970), subjects heard spoken sentences
in which a word mid-sentence had been partly covered by a cough (signaled here by a *), and
thus was made acoustically ambiguous. The lexical context following the ambiguous word
was manipulated as follows:

1. It was found that the *eel was on the axle
2. It was found that the *eel was on the shoe
3. It was found that the *eel was on the orange
4. It was found that the *eel was on the table

As an effect of this manipulation, subjects restored the ambiguous word *eel with ease
contextually based on the following final word context, often not even realizing the presence
of the cough (they had the perception that they had heard the correct word whole). An integra-
tion explanation of this effect is that participants implicitly assessed the backward probability
of the ambiguous word, activating the one that yielded the highest backward probability. For
instance, P (heel was on the | shoe) is more likely than P (peel/wheel/eel was on the | shoe).

We conjecture that backward looking and integration is not limited to compensatory pro-
cesses that aid to disambiguate noisy signals in the preceding context but is part and parcel
of linguistic inference more broadly during natural language processing, even when the sig-
nal is clear. Likewise, we conjecture that backward-looking processes are crucial beyond
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specifically crafted examples of psycholinguistic experiments, and thus its effect should
extend to naturalistic samples of natural language sentences more broadly. Specifically, we
expect that sentence reading times should be impacted by both forward and backward types of
contextual information. While prediction-based models of language––that is, those explicitly
based on estimating forward conditional probabilities, from n-gram to the popular class of
recurrent neural networks (RNNs) (Goldstein et al., 2022)––engage exclusively on predictive
inference, here we assessed the extent to which human reading times can also be explained by
a model that explicitly tracks backward conditional probabilities, which we take as a proxy
measure of backward looking and integration. We also test two-way interactions between pre-
diction, integration, and position of a word in the sentence to investigate possible temporal
dynamics emerging from the interaction of these variables.

To establish robust results from our analyses, we analyzed three separate datasets of human
sentence reading tasks, involving three subject samples reading the same set of sentences.
Common to the three datasets is the fact that they involve reading whole natural language
sentences, which, unlike many psycholinguistic experiments, do not present a well-crafted
manipulation at a specific point in the sentence. Thus, the first advantage of the sentence set
we used is that the obtained results can be said to have broad coverage, being applicable
to whole sentences in natural language (Frank, Monsalve, Thompson, & Vigliocco, 2013).
A second advantage of using the same sentence pool with different subjects is that it allows
replicability of results, an aspect that has become critical to validate psychological science
(Anderson et al., 2015; Munafò et al., 2017; Simons, 2014). In particular, the first and sec-
ond datasets use the same self-paced reading task in which native speakers of English read
sentences one word at a time, with words appearing centrally and sequentially on a screen,
and word-level reading times were collected. The third dataset is an eye-tracking study in
which the third sample of English native speakers read sentences naturally on a computer
display and their reading patterns were recorded via an eye-tracker. While the third dataset is
not a direct replication of the first two, it can be used to assess whether the findings from a
self-paced reading task extend to a form of sentence processing that is closest to naturalistic
human reading behavior. For clarity, the first and third datasets come from Frank et al. (2013),
while the second dataset was collected afresh by us.

Across the three datasets, for each word read in a sentence, we measured predictive and
integrative relations in corpus-derived forward and backward probabilities from n-gram mod-
els. We hypothesized that higher sensitivity to backward probability will significantly reduce
reading latencies, such that words are read faster when the immediately preceding words can
be more easily integrated with the current target word.

2. Method

2.1. Stimuli

For all three datasets in this study, English sentences came from the 361-sentence UCL
corpus Frank et al. (2013) explicitly created to evaluate language models on word reading
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times. These sentences were drawn from original English narratives. For 166 of the sentences,
yes/no comprehension questions were constructed and used to keep participants on task.

2.2. Dataset 1: Frank et al. (2013)’s self-paced reading study

The original dataset from Frank et al. (2013) contains data from all 175 first-year students
(92 females, 70 native English speakers, mean age = 18.9 years) of psychology at University
College London. In the dataset, sentence stimuli had been selected at random without replace-
ment for each subject from the 361 experimental sentences until 40 min had elapsed. Subjects
read on average 212 sentences, ranging from a minimum of 65 to a maximum of 349.

2.3. Dataset 2: Replication of Frank et al. (2013)’s self-paced reading task

2.3.1. Participants
As a near replication of the Frank et al. dataset, we recruited 48 novel young adult native

speakers of English (35 women: age M = 22.6, SD = 6.0) at a large university in the United
Kingdom. They were tested individually in a quiet room at their university and were compen-
sated a small monetary token for their participation.

2.3.2. Procedure
Each participant was randomly assigned to one of 10 groups, each containing 36 unique

test sentences in English from the University College London UCL corpus and five practice
sentences. Test sentences were presented in random order. As in the original Frank et al.
data, the words were displayed one at a time, progressing across the screen in their natural
position with successive presses of the spacebar. Approximately half of the sentences were
followed by a yes-no question regarding the content of what was just read to maintain the
attention of the participants. In terms of comparison with Dataset 1, the difference between
our data collection and Frank et al. is that in collecting Dataset 2, we exposed participants
to a fixed number of sentences (n = 36), while in Dataset 1, participants were exposed to a
variable number of sentences until 40 min had elapsed. Other than that, both studies sampled
sentences within-subject from the same pool of sentence stimuli, both shuffled the order of
sentences, both asked the same comprehension questions, and both presented the stimuli on
screen in the same way.

2.4. Dataset 3: Frank et al. (2013)’s eye-tracking study

2.4.1. Materials and subjects
The original eye-tracking data from Frank et al. (2013) contain 43 subjects (27 females,

37 native English speakers, mean age = 25.8 years). Of the original 361 sentence stimuli, the
subjects had read the 205 that fit on a single line of the display to be used in the eye-tracking
study. The dataset contains word-level information about the first fixation time on the current
word (or 0 if word not fixated), first-pass reading time (or 0 if word not fixated), right-bounded
reading time (or 0 if word not fixated), and go-past reading time (or 0 if word not fixated).
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Following Frank et al. (2013), words attached to punctuation (including all sentence-final
words) and nonfixated words were not included in the analysis.

2.5. Variables predicting reading times

Processes of word reading in a sentence, as measured by reading times and eye move-
ments, are known to be affected by basic word properties, among which are base frequency,
word length in the number of characters, and position in the sentence. We considered these
variables to model our three datasets. In addition, a more efficient reader may adapt her read-
ing times to the words’ probability of occurrence given its context, such that more probable
words are read more quickly (Levy, 2008; Smith & Levy, 2013). To assess whether process-
ing involves both prediction and integration, we considered two measures of sensitivity to a
word probability given its immediate context––forward and backward probabilities, as esti-
mated using the 2019 version of the Google Books Ngram corpus, 200 billion words of data
in both the American and British English datasets (Michel et al., 2011), between years 1900
and 2009. We present analyses based on trigram statistics, for the simplicity and reliability
of their empirical measurement given available mega corpora, and because a vast literature
points to them as robust and ubiquitous predictors of psycholinguistics processes, ranging
from learning to memory and retrieval, across the lifespan. After splitting the sentences from
the dataset into 1- to 3-grams, from the corpora we obtained three lexical statistics for each
n-gram in the dataset: (1) the frequency of each n-gram; from which we derived (2) the for-
ward conditional probability related to the last word of each n-gram, and (3) the backward
conditional probability related to the last word of each n-gram.

In order to assign an empirically grounded probability to word sequences, we used the
equation for forward conditional probability of any word wt given its previous two-word con-
text wt−2, wt−1 based on n-gram frequencies, as follows:

P (wt |wt−2, wt−1) = Freq (wt−2, wt−1, wt )

Freq (wt−2, wt−1)
(1)

Likewise, we assessed the probability of prior context wt−2, wt−1 given the current word wt

using the equation for backward conditional probabilities as follows:

P(wt−2, wt−1|wt ) = Freq(wt−2, wt−1, wt )

Freq(wt )
(2)

In line with recent psycholinguistic work, we converted probabilities into bits of informa-
tion, through the information-theoretic function of surprisal (Hale, 2001; Levy, 2008). Con-
ceptually, surprisal estimates how unexpected a given event is. Improbable events carry more
information than expected ones and should be perceived as more “surprising,” so that surprisal
is inversely related to probability, through a logarithmic function. In the statistical analyses
that follow, we refer to the amount of surprisal derived from forward conditional probabilities
as prediction surprisal:

effort (t ) ∝ prediction surprisal(wt ) = −log(P(wt |wt−2, wt−1)) (3)
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Consistently, we use log-transformed backward conditional probabilities to refer to lexical
integration:

effort (t ) ∝ lexical integration(wt ) = −log(P(wt−2, wt−1|wt )) (4)

In psycholinguistics, higher prediction surprisal values have been shown to be associated
with longer reading times (Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & Keller,
2008; Smith & Levy, 2013). However, it has been less investigated to what degree lexical
integration is also predictive of reading times. We investigate this question in a series of
statistical regression models where forward surprisal and lexical integration are entered as
independent variables of sentence reading times.

3. Analytical pipeline

Our data, scripts for statistical analyses, and results are digitally available and repro-
ducible on the Open Science Framework (OSF) repository: https://osf.io/q6zep/wiki/home/
?view_only = 9f2f22dffcaf45ef86608e635b24f19f (blinded temporarily for peer review). The
original experimental materials from Frank et al. (2013) are available as supplementary mate-
rial in the online version of their article (https://doi.org/10.3758/s13428-012-0313-y).

3.1. Exclusion criteria

Following Frank et al. (2013), words attached to punctuation (including all sentence-final
words) and nonfixated words (in the eye-tracking dataset) were not included in the analysis
(the percentage of nonfixated words was 34.0% overall but varied widely among subjects,
from 5.5% to 60.4%). Also, following Frank et al. (2013), we discarded data from subjects
who had an error rate above 25% on the yes/no comprehension questions. We also did not
consider self-paced reading times that were extreme (below 80 ms or above 3000 ms). In
Dataset 3, we excluded eye tracking first pass times above 1000 ms. Finally, because we
report results based on 3-grams as the basis for context effects, we considered reading times
starting from the third word in any sentence.

For the three datasets, to investigate how readers’ sensitivity to various language prop-
erties, including context surprisal, is related to their online reading, the collected data were
analyzed by generalized additive mixed models (GAMMs) performed and computed with
R version 4.1.0 (R Core Team, 2021). The fitting engine used for all models was the mgcv
package v1.8-35 (Wood, 2011). GAMMs are an extension of the linear mixed model that
make it possible to model a response variable as a nonlinear function of one or more predictor
variables, using, for example, thin plate regression splines. GAMMs have recently been
applied to various linguistic and psycholinguistic data (R. H. Baayen & Linke, 2019; Coupé,
2018; Murakami, 2016; Sóskuthy, 2017).

The software available in the mgcv package for R by Wood (2011) provides statistical tools
for the modeling of both fixed-effect factors, random effects, covariates, and their interactions.
For consistency, all three datasets were analyzed using the same statistical modeling workflow
described below.
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3.1.1. Dependent variables
The dependent variable was the Word reading times log transformed to improve normality

of distribution, according to standard practice in reading tasks (though the figures display
them in the original metric). Upon suggestion by a Reviewer, we also report separate regres-
sion analyses on the word following the critical word (wt+1), to account for possible spillover
effects. This relates to the ongoing processing of the previous word, for example, when a
reader has not yet fully processed a word but he/she already reads the next word. In other
words, the processing of one word spills over to the next word. Finally, all continuous pre-
dictors were centered and scaled to improve model convergence, and to allow for comparison
of variable estimators.

3.2. Inferential statistics

To predict word reading times in each dataset, the degree of autocorrelation (AR) in the
data (H. Baayen, Vasishth, Kliegl, & Bates, 2017; R. H. Baayen, van Rij, de Cat, & Wood,
2018) was first established empirically by fitting each data to a null model that contained only
the intercept. The value of AR Rho was established for each dataset and included in more
complex models. This AR model did not contain random and fixed effects. Visual inspection
of residuals’ distribution confirmed that including an AR for the previous word effectively
eliminated AR from the models in Datasets 1 and 2.

We then fitted a full model that considered AR and added the following random and fixed
effects.

3.2.1. Random effects structure
We included random effects (intercepts) for Subject, Item, and Sentence Position in the

sequence of trials. The latter was expected to capture variance due to fatigue or changes in
attention to the stimuli as the task progressed. We also included random slopes for subjects
for the terms of theoretical importance, namely single word surprisal, forward surprisal, and
lexical integration. These terms were specified as nonlinear terms.

3.2.2. Fixed effects structure
Fixed effects included the following item-specific effects: a fixed smooth predictor for

Word Position in the sentence and for Word Length in characters; fixed tensor products (and
by-subject random slopes) for unigram surprisal, forward surprisal, and lexical integration.
Finally, we included linear interactions of forward surprisal by lexical integration, the inter-
action of word position by forward surprisal, and the interaction of word position by lexical
integration. Theoretically, adding unigram surprisal to the model estimated the effect on read-
ing times based on the surprisal of the word being read (i.e., the negative log of its probability
in a corpus), as if each word was read independenty of its context of occurrence. Adding for-
ward surprisal tested whether reading times are affected by the probability of the immediately
preceding context. Adding lexical integration tested whether the probability of the immedi-
ately preceding context given the target word influences reading times on the target word.
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10 of 28 L. Onnis et al. / Cognitive Science 46 (2022)

Finally, interaction terms tested whether forward surprisal and lexical integration interacted
with each other, and independently with the position of the word in a sentence.

3.2.3. Model selection
One important advantage of GAMMs fitted with the mgcv function is that there is in prin-

ciple no need to conduct separate step-wise variable selection (Marra & Wood, 2011). Model
estimation and model selection are integrated into mgcv. The penalization procedure avail-
able for regression/smoothing splines leaves a simple linear term or reduces it to zero if not
justified (this is achieved practically by specifying select = TRUE in the model formula in
R code).

To assess the model fit for each dataset, we compared deviance explained for the full
model with deviance explained for a null model (intercept only) in the following way: Overall
deviance explained for the full model was estimated by:

Overall deviance = deviance(null model) − deviance(full model)

deviance(null model)
(5)

Likewise, partial deviance explained by each variable in the full model was estimated by:

Partial deviance = deviance (model without target variable) − deviance (full model)

deviance(null model)
(6)

4. Results from Dataset 1: Frank et al. (2013) self-paced reading task

As a first indication that forward and backward probabilities should be considered as inde-
pendent predictors of language processing, the correlation between forward and backward
log-transformed probabilities for the trigrams composing the sentences in the self-paced read-
ing task was small: r(3818) = –.11, p < .001.

Table 1 reports the fixed effects from the GAM models when fitted to predict the current
word as well as the subsequent word (for spillover effects). As the shape of the regression line
is not interpretable from the summary table, visualization is an important tool for interpreting
nonlinear regression models. Fig. 1 reports partial effects, that is, the isolated effects of one
predictor, or interaction (Fig. 2).

The colored area around the regression curves indicates 95% confidence intervals. The
model predicting current word latencies yielded significant nonlinear effects such that words
were read slower when they appeared in mid-sentence. Importantly, lexical integration mea-
sured as sensitivity to backward trigram probabilities also decreased reading times, while
neither single word suprisal nor prediction surprisal was significant. Note that when interpret-
ing surprisal as a value, higher values represent more surprising (i.e., unpredictable) n-grams.
The model also indicated a Word position by Prediction surprisal interaction, and a Word
position by Word surprisal interaction, such that these effects were stronger later rather than
earlier in the sentence.
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L. Onnis et al. / Cognitive Science 46 (2022) 11 of 28

Fig. 1. Plots of fixed effects for the GAMM terms predicting word reading times (RT) in Dataset 1: Data from the
original Frank et al. (2013) study. The left-hand column reports predictors of current word RT, while the right-hand
column reports predictors of spillover effects on the next word.
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12 of 28 L. Onnis et al. / Cognitive Science 46 (2022)

Table 1
Summary of nonlinear trigram models with parametric interactions of Dataset 1: Self-paced reading times col-
lected by Frank et al. (2013)

RT(wt) RT(wt+1)

(Intercept) 5.57** 5.57**
(258.85) (260.52)

Prediction Surp. X Lex. Integration −0.00 0.00
(−0.78) (0.28)

Word Pos. X Prediction Surp. 0.00** −0.00
(3.26) (−0.59)

Word Pos. X Lex. Integration −0.00 −0.00*
(−1.33) (−2.56)

Word Pos. X Word Surp. −0.00* −0.00
(11.74) (3.93)

Word Length 3.05 3.18
(34.41) (28.30)

Word Position 2.73** 1.29**
(10.23) (5.58)

Word Surprisal 2.44 2.06
(24.64) (28.97)

Prediction Surprisal 0.19 1.99**
(0.12) (118.04)

Lexical Integration 3.18** 2.60**
(503.02) (60.77)

AIC −13,152.33 −17,110.44
BIC −2278.33 −5986.19
Log Likelihood 7630.80 9644.39
Deviance 13,709.50 12,131.38
Deviance explained 0.53 0.53
Dispersion 0.06 0.06
R2 .53 .53
GCV score −5529.57 −7522.91
Num. obs. 222,063 201,507
Num. smooth terms 11 11

Note: The table presents linear interactions first, with beta indicating the standardized regression weights, and
t-values in brackets. For nonlinear main effects, the table reports the estimated degrees of freedom (EDF), which
is an estimate of the “wigglyness” of the relationship (EDF = 1 corresponds to a straight line), and F-values in
brackets. Asterisks indicate the significance level: *p < .025, **p < .005.

The model testing spillover effects revealed similar effects, with the exception that predic-
tion surprisal also reduced time latencies, and the effect of lexical integration was stronger
later in the sentence. Table 2 reports the partial deviance explained by each term in the model.

5. Results from Dataset 2: New data from the self-paced reading task

Table 3 reports fixed effects, while Figs. 3 and 4 show visualizations of significant partial
smooth effects and interactions, respectively. The model predicting current word latencies
yielded a significant effect on word length, such that longer words were read more slowly.
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Fig. 2. Dataset 1: Plots of two-way interaction effects for current word RT and spillover effects.

Nonlinear effects were obtained such that words were read slower when they appeared in
mid-sentence. Importantly, lexical integration measured as sensitivity to backward trigram
probabilities also decreased reading times, while prediction surprisal was not significant.

The model testing spillover effects revealed similar effects, but with a significant linear
effect of word surprisal and a nonsignificant effect of integration surprisal. Table 4 reports the
partial deviance explained by each term in the model.

6. Results from Dataset 3: Frank et al. (2013) eye-tracked reading task

We report results based on two separate dependent variables: (1) First-fixation time (the
duration of only the first fixation on the current word), and (2) Go-past time (the summed
duration of all fixations from the first fixation on the current word up to (but not including)
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14 of 28 L. Onnis et al. / Cognitive Science 46 (2022)

Fig. 3. Plots of fixed effects on reading times (RT) for current word (left-hand column) and following word
(right-hand column), for Dataset 2: Newly collected self-paced reading times.
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Table 2
Partial deviance explained by each term entered in the generalized additive model predicting word reading times
for Dataset 1: the original data from Frank et al. (2013)

Term RT(wt) RT(wt+1)

Random effects
Sentence Position 11.45 11.614
Subject 26.79 26.901
Word 0.241 0.334
Word Surprisal by Subject 0.049 0.021
Prediction Surprisal by Subject 0.04 0.033
Lexical Integration by Subject 0.092 0.053
Fixed effects
Word Length 0.006 0
Word Position 0.017 0.001
Word Surprisal 0.011 0
Prediction Surprisal 0.012 0.012
Lexical Integration 0.013 0.007
Prediction Surp. X Integration 0.012 0
Word Pos. X Prediction Surp. 0.013 0
Word Pos. X Lex. Integration 0.011 0.002
Word Pos. X Word Surp. 0.014 0.002

Note: Partial deviance is the deviance explained by all terms minus the deviance in the submodel in which the
term of interest is removed.

the first fixation on a word further to the right. Go-past time is also known as regression-
path time, and often includes fixations on words to the left of the current word. For this
reason, it may be a particularly indicative index of integration processes. The outcomes of
the analyses for the two dependent variables are reported side-by-side for easier comparison
in Table 5. The outcome of the analyses involving first-fixation time and go-past time was
very similar and thus we report it jointly. Longer words and words at the end of a sentence
were read slower. Both prediction surprisal and lexical integration were significant, such that
more informative word relations forward and backward lead to faster reading times (see the
visualization of main partial smooth effects in Fig. 5). In addition, significant interactions
(Fig. 6) indicated that the effect of lexical integration on reading times was larger later in the
sentence, and when Prediction surprisal was highest. This last interaction can be interpreted as
readers relying more on integration when predicting is unreliable. Table 6 reports the partial
deviance explained by each term in the model.

7. Discussion

Mainstream views of prediction posit that the mind is in stable “predictive mode,” attempt-
ing to constantly anticipate sensory input. The question that we have been addressing in this
study is whether forward-looking processes are the one central characteristic of real-time
language processing as is frequently claimed (e.g., Clark, 2013; Friston, 2005) or just one,
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16 of 28 L. Onnis et al. / Cognitive Science 46 (2022)

Table 3
Summary of nonlinear trigram models with parametric interactions of Dataset 2: Newly collected self-paced read-
ing times in replication of Dataset 1

RT(wt) RT(wt+1)

(Intercept) 5.78*** 5.80**
(162.31) (162.72)

Prediction Surp. X Lex. Integration 0.01 −0.00
(2.07) (−0.41)

Word Pos. X Prediction Surp. 0.01 −0.01
(1.34) (−2.11)

Word Pos. X Lex. Integration 0.00 −0.00
(0.72) (−0.56)

Word Pos. X Word Surp. −0.00 0.01
(0.64) (0.53)

Word Length 0.97** 1.94**
(6.18) (2.03)

Word Position 2.80** 2.62**
(137.59) (82.86)

Word Surprisal 1.53 1.51**
(2.69) (8.07)

Prediction Surprisal 0.00 0.29
(0.00) (0.12)

Lexical Integration 1.54** 1.24
(12.87) (0.78)

AIC 12,804.13 11,873.81
BIC 14,261.77 13,282.14
Log Likelihood −6215.83 −5754.68
Deviance 2244.82 2049.11
Deviance explained 0.35 0.34
Dispersion 0.12 0.12
R2 .34 .33
GCV score 6557.59 6083.64
Num. obs. 18,523 16,792
Num. smooth terms 11 11

Note: The table presents linear interactions first, with beta indicating the standardized regression weights, and
t-values in brackets. For nonlinear main effects, the table reports the EDF and F-values in brackets. Asterisks
indicate the significance level: *p < .025, **p < .005, ***p < .0005.

albeit important, processing principle among others. We have provided additional experi-
mental evidence that points to an important role for backward-looking and integration, which
is understudied (or at least currently underappreciated, cf. Ferreira & Chantavarin, 2018;
Ferreira & Qiu, 2021) in the psycholinguistic literature in favor of purely forward models.
Indeed, given the prevalent view that the brain is a “prediction machine” (Clark, 2013),
we conjecture that our findings are of general theoretical importance for reevaluating the
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Fig. 4. Dataset 2: Plots of two-way interaction effects for current word RT and spillover effects.

relative contribution of prediction and integration to processing, or at the very least, call for
considering integration more explicitly in contemporary models of language processing (cf.
Aurnhammer & Frank, 2019; Bornkessel-Schlesewsky & Schlesewsky, 2008; Brouwer &
Crocker, 2017; Brouwer et al., 2021; Kuperberg, 2007). To put this differently, our findings
suggest that the brain is also an “integration machine” and inherently backward looking.

One strength of our study is that we assessed language processing not just on specific target
words, but over entire sentences sampled from authentic sources. In addition, we carried out
similar statistical analyses independently on three different linguistic datasets and involving
two distinct dependent measures (reading times and eye-tracked fixations). We believe that
in using this approach, the observed effects of forward-looking and backward-looking are
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18 of 28 L. Onnis et al. / Cognitive Science 46 (2022)

Fig. 5. Dataset 3: Plots of effects first fixation and go-past reading times (RT) for current word. Error bands
represent 95% confidence intervals.
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Table 4
Partial deviance explained by each term in the nonlinear model used for Dataset 2

Term RT(wt) RT(wt+1)

Random effects
Sentence Pos. 5.873 5.648
Subject 24.709 24.883
Word 0.337 0.549
Word Surprisal by Subject 0.004 0
Prediction Surprisal by Subject 0.082 0.029
Lexical Integration by Subject 0.101 0.157
Fixed effects
Word Length 0 0.069
Word Position 2.057 1.264
Word Surprisal 0.008 0.051
Prediction Surprisal 0 0
Lexical Integration 0.014 0.021
Prediction Surp. X Lex. Integration 0.031 0
Word Pos. X Prediction Surp. 0.004 0
Word Pos. X Lex. Integration 0.005 0
Word Pos. X Word Surp. 0.003 0

Note: Calculated as the deviance explained by all terms minus the deviance in the submodel in which the term
of interest is removed.

robust and generalizable. The pattern of results obtained supports the notion that backward
information that estimates how much preceding context is likely given the current word being
read (or to put it differently how likely it is that I read the preceding context given the current
word)–may effectively reduce reading effort on the current word, in fact, at least in the present
investigation, more so than forward information that estimates how much the current word is
likely given preceding context. One interpretation of the results and arguably an intriguing
(or to some provocative) possibility is that if readers rely more on backward than forward
distributional cues, this suggests that it is more efficient to be engaged in integration than in
prediction. Be that as it may, and we explicitly encourage further work on this, the important
point is not to deny that prediction is one important part of language processing but rather that
currently too little empirical emphasis is paid to the investigation of backward-looking in lan-
guage processing. Such evidence is important to evaluate computational models of language
electrophysiology such as the one by Brouwer and colleagues (2017, 2021) which explic-
itly includes an integrative component. It is also important for detailed mechanistic accounts
about the interplay of prediction and integration and the notion that integration is a prereq-
uisite for prediction (cf. Hale, 2001; Levy, 2008; Venhuizen, Crocker, & Brouwer, 2019a,
2019b).

What then is the relationship between context and backward looking? One (psychological
level) candidate mechanism for backward looking is a form of integration whereby the pro-
cessing system “waits” for a given perceptual input (a word in this case) and then processes
it faster if the preceding context is a good fit (or, to put it probabilistically, it is more likely to
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Table 5
Summary of fixed effects in generalized additive models for Dataset 3: First fixation and Go-past reading times

First Fix RT Go-Past RT

(Intercept) −0.11* 0.03
(−2.37) (0.83)

Prediction Surp. X Lex. Integration 0.02* 0.02*
(2.35) (2.60)

Word Pos. X Prediction Surp. −0.01 0.01
(−1.03) (0.53)

Word Pos. X Lex. Integration −0.03** −0.03**
(−3.23) (−3.44)

Word Pos. X Word Surp. −0.00 0.02
(0.98) (0.95)

Word Length 1.60** 1.00**
(316.59) (2641.84)

Word Position 3.01** 2.94**
(144.76) (519.38)

Word Surprisal 0.39 0.17
(4.93) (3.34)

Prediction Surprisal 0.92** 1.34*
(49.23) (37.98)

Lexical Integration 2.32** 3.07**
(127.41) (176.77)

AIC 87,938.61 100,028.71
BIC 92,489.70 106,580.75
Log Likelihood −43,430.41 −49,248.77
Deviance 25,183.12 29,120.43
Deviance explained 0.19 0.26
Dispersion 0.74 0.77
R2 .18 .25
GCV score 44,305.13 50,655.53
Num. obs. 34,380 38,494
Num. smooth terms 11 11

Note: The table presents linear interactions first, with beta indicating the standardized regression weights, and
t-values in brackets. For nonlinear main effects, the table reports the EDF and F-values in brackets. Asterisks
indicate the significance level: *p <.025, ** p <.005.

precede it). Prediction and integration are of course related but, we believe, can be dissociated
in useful ways. We consider prediction to be akin to the preactivation of upcoming words
(or representations, e.g., semantic, phonological, though in the present paper, we focus on
the “word level”) ahead of time. Integration, in contrast, we define as the combination of
incoming words into a higher order (e.g., sentential) representation in absence of such preac-
tivation. According to our view then, context can modulate both prediction and integration.
More precisely, context and prediction are straightforwardly related because context can
preactivate upcoming words. Importantly, context can also affect integration because even
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Fig. 6. Dataset 3: Plots of two-way interaction effects for first fixation and go-past reading times (RT).

without preactivation a word may be easier or more difficult to integrate with the preceding
context after it has become activated (e.g., on reading the word) in a “bottom-up” fashion.
This is in line with evidence that language input is often fast and suboptimal and may in some
situations “afford” a little forward-looking (cf. Huettig & Mani, 2016). It is important to
stress here again that prediction and integration are necessarily related, for example, because
predicted words can be more easily integrated than nonpredicted words.

To our knowledge, the way we measured lexical integration is different from studies that
have incorporated backward conditional probabilities in language processing. For example,
McDonald and Shillcock (2003a, 2003b) defined a backward probability over the target word
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Table 6
Partial deviance explained by each term in the generalized additive model for Dataset 3

Term First Fix RT Go-Past RT

Random effects
Sentence Pos. 0.166 0.236
Subject 8.803 4.895
Word 5.338 12.596
Word Surprisal by Subject 0.453 0.245
Prediction Surprisal by Subject 0.183 0.108
Lexical Integration by Subject 0.068 0.053
Fixed effects
Word Length 0 0
Word Position 0.07 0
Word Surprisal 0 0.011
Prediction Surprisal 0 0.001
Lexical Integration 0 0.016
Prediction Surp. X Integration 0.028 0.029
Word Pos. X Prediction Surp. 0.002 0
Word Pos. X Lex. Integration 0.028 0.017
Word Pos. X Word Surp. 0 0

Note: Calculated as the deviance explained by all terms minus the deviance in the submodel in which the term
of interest is removed.

and the next one:

Backward T P(wt , wt+1) = P(wt |wt+1) = Freq (wt , wt+1)

Freq (wt+1)
(7)

The fact that readers are sensitive to this latter type of backward probability has been inter-
preted as evidence that they can extract lexical information parafoveally when reading text.
This type of “successor surprisal” has also been found in settings where preview is unavail-
able (Angele et al., 2015; Van Schijndel & Linzen, 2018). However, it is important to note
that successor surprisal is a distinct effect from lexical integration as we intend it here, as it
is assessed using a different metric. Thus, to our knowledge, none of the previous studies that
attempt to capture comprehension effort in sentence processing have measured explicitly the
contribution of backward-looking in the way we do here.

Note that in the present study, we used forward and backward probability as correlates of
forward and backward looking, respectively, we did not consider these measures to provide
any “pure reflection” of prediction and integration. We explicitly acknowledge the proxy
aspect of both forward surprisal and lexical integration measures. It is also conceivable that
both measures index to varying degrees prediction and integration processes. We do conjec-
ture, however, that forward surprisal is a better proxy for forward-looking and prediction than
our lexical integration measure. Similarly, we believe that lexical integration as measured
in the present study is a better proxy for backward-looking and integration than forward
surprisal.
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In the current study, we have provided a crucial piece of evidence that backward looking
and integrating linguistic context is an important part of language processing in real-time, at
least in English. This in turn raises the possibility, to be investigated in future studies, that the
prevalent word order of a given language fosters different habits of processing that maximize
the informativeness of information. As such, our results raise intriguing questions for more
cross-linguistic research (cf. Evans & Levinson, 2009; Henrich, Heine, & Norenzayan, 2010).
Currently, the majority of psycholinguistic research is still carried out on English or closely
related Indo-European languages. One promising avenue is then to test the hypothesis that
the relative importance of forward versus backward-looking processing is partly language-
specific, specifically by directly comparing the role of prediction and integration in speakers
of left- and right-branching languages. For example, a straightforward prediction is that real-
time sentence comprehension in speakers of left-branching languages, such as Korean or
Hindi, should rely more heavily on predictive processes than in right-branching languages.

There are several other ways in which future work could build on the current results. First,
in this study, we have modeled prediction and integration on language processing using a
proxy for context based on trigrams. There exist arguably more powerful language models,
for example, those based on contemporary RNNs, and which predict self-paced reading
times better than n-gram models (Goodkind & Bicknell, 2018; Wilcox et al., 2020). Indeed,
a trigram model cannot capture several important dependencies, including the example of
ambiguity resolution in noise offered by Warren (1970) (which would require a 5-gram
model). One of the reasons our trigram-based measures contributed little variance in the
regression models may be attributable to the fact that readers make use of longer stretches of
contextual information to reduce reading times. This could be tested using RNN models. One
of the reasons why we did not rely on such models here is that they are intrinsically predictive,
and thus cannot explicitly model integrative processes explicitly. And even if they did, their
architecture may not be able to separate the contribution of prediction and integration. In
other words, RNNs focus on the accumulation of a memory context in the forward direction
only. There exists a class of bi-directional RNNs used in artificial intelligence (known as
bi-directional long-short-term memory, LSTM) which improve target word prediction based
on left and right contexts, however, this procedure can be applied successfully to words
for which the entire sentence is available at once, and not incrementally as in a self-paced
reading task where the right side of the context relative to any target work is still unavailable:

[left_context]
[
target_word

] [
right_context

]

When left and right contexts are available, for example, to a computer that can access
an entire sentence at once, bi-directional LSTMs can integrate their forward estimate of P
(Target | left_context) = x with information of P (Target | right_context) = y. For instance, in a
sentence such as “Today several … came out of school early,” it is possible for bi-directional
RNNs to guess the word “pupils” with more certainty using (un)certainty from both right
context and left context concurrently.

Arguably, a bi-directional language model may be a good candidate to assess successor
effects, but not the case of the partial unfolding of language in real-time where the system
can only rely on the preceding context for any given target word. Our measure of lexical
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integration is thus different from the measure that current bi-directional RNNs can offer.
Rather, it corresponds to assessing P (left_context | Target) = z, and to our knowledge, it
has no equivalent implementation in current neural language models.

Thus, so far, n-gram models represent an accessible source of estimation of probabilistic
information in a forward and backward way, and in the context of the partial unfolding of
the previous context alone. Furthermore, if the effects of prediction and integration on human
reading times can be estimated even with simple n-gram models, this finding can be taken
as a lower bound that more sophisticated and realistic language models are likely to improve
upon, capturing language statistics even more accurately (e.g., Frank et al., 2013). However,
we do not expect such language models to yield results that would obliterate or reverse our
findings.

In future studies, it may also be possible to assess the independent contribution of forward
surprisal and lexical integration on multiple real-time processing tasks, such as self-paced
reading, repetition, and phrase recognition, by selectively manipulating the informativeness of
each cue. For example, it is possible to sample from a large representative corpus multiword
sequences that are matched in forward surprisal but differ in lexical integration, and vice
versa. Based on our findings, we predict facilitatory effects of processing (e.g., faster reading
times, more accurate repetitions, and faster recognition) for both types of stimuli.

Future work could also integrate and extend the metric of lexical integration to quantify the
expectancy of a word with other information-theoretic metrics proposed to explain word infor-
mativity. For example, entropy refers to the uncertainty of a particular outcome, the greater
the number of possible outcomes, the greater the entropy value. In the context of incremental
sentence processing, the more possible continuations for a given part of the sentence at any
given time, the more effort is expected to process the sentence continuation. In line with this
prediction, experimental evidence suggests that the degree of uncertainty about an upcom-
ing structure (Linzen & Jaeger, 2016) or the next word (Lowder, Choi, Ferreira, & Hender-
son, 2018) correlated with longer reading times. Relatedly, the entropy reduction induced by
a word, measured as the difference between entropy and surprisal, quantifies the extent to
which a word decreases the amount of uncertainty about what is being communicated (Frank,
2013).

Finally, it is important to note that the measure of entropy discussed above is a type for-
ward, that is, prediction entropy, as it measures the number of possible word continuations
given an initial sentence fragment. Just as suprisals based on forward and backward condi-
tional probabilities can be distinct predictors, a measure of integration entropy (how many
different words can precede a target word being read) might turn out to explain reading times
variance independent of prediction entropy. An open empirical question is thus how several
information-theoretic measures calculated in the backward direction looking at previous con-
text will be relevant predictors of processing difficulty along known forward measures.
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