Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514)

MPG-Autoren
/persons/resource/persons37156

Giorgetta,  Marco A.       
Wave Driven Circulations, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37141

Esch,  Monika
Wave Driven Circulations, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons253023

Franke,  Henning
Wave Driven Circulations, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37214

Kornblueh,  Luis
Computational Infrastructure and Model Development (CIMD), Scientific Computing Lab (ScLab), MPI for Meteorology, Max Planck Society;

/persons/resource/persons37300

Rast,  Sebastian
Global Circulation and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37322

Schnur,  Reiner       
Computational Infrastructure and Model Development (CIMD), Scientific Computing Lab (ScLab), MPI for Meteorology, Max Planck Society;

/persons/resource/persons37326

Schulzweida,  Uwe
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37347

Stevens,  Bjorn       
Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

gmd-15-6985-2022.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giorgetta, M. A., Sawyer, W., Lapillonne, X., Adamidis, P., Alexeev, D., Clement, V., et al. (2022). The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514). Geoscientific Model Development, 15, 6985-7016. doi:10.5194/gmd-15-6985-2022.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-EC35-1
Zusammenfassung
Classical numerical models for the global atmosphere, as used for numerical weather forecasting or climate research, have been developed for conventional central processing unit (CPU) architectures. This hinders the employment of such models on current top-performing supercomputers, which achieve their computing power with hybrid architectures, mostly using graphics processing units (GPUs). Thus also scientific applications of such models are restricted to the lesser computer power of CPUs. Here we present the development of a GPU-enabled version of the ICON atmosphere model (ICON-A), motivated by a research project on the quasi-biennial oscillation (QBO), a global-scale wind oscillation in the equatorial stratosphere that depends on a broad spectrum of atmospheric waves, which originates from tropical deep convection. Resolving the relevant scales, from a few kilometers to the size of the globe, is a formidable computational problem, which can only be realized now on top-performing supercomputers. This motivated porting ICON-A, in the specific configuration needed for the research project, in a first step to the GPU architecture of the Piz Daint computer at the Swiss National Supercomputing Centre and in a second step to the JUWELS Booster computer at the Forschungszentrum Jülich. On Piz Daint, the ported code achieves a single-node GPU vs. CPU speedup factor of 6.4 and allows for global experiments at a horizontal resolution of 5 km on 1024 computing nodes with 1 GPU per node with a turnover of 48 simulated days per day. On JUWELS Booster, the more modern hardware in combination with an upgraded code base allows for simulations at the same resolution on 128 computing nodes with 4 GPUs per node and a turnover of 133 simulated days per day. Additionally, the code still remains functional on CPUs, as is demonstrated by additional experiments on the Levante compute system at the German Climate Computing Center. While the application shows good weak scaling over the tested 16-fold increase in grid size and node count, making also higher resolved global simulations possible, the strong scaling on GPUs is relatively poor, which limits the options to increase turnover with more nodes. Initial experiments demonstrate that the ICON-A model can simulate downward-propagating QBO jets, which are driven by wave–mean flow interaction.