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ABSTRACT: High-density (HDA) and low-density amorphous ices (LDA) are
believed to be counterparts of the high- and low-density liquid phases of water,
respectively. In order to better understand how the vibrational modes change during
the transition between the two solid states, we present infrared spectroscopy
measurements, following the change of the decoupled OD-stretch (vOD) (∼2460 cm−1)
and OH-combinational mode (vOH + v2, vOH + 2vR) (∼5000 cm−1). We observe a
redshift from HDA to LDA, accompanied with a drastic decrease of the bandwidth.
The hydrogen bonds are stronger in LDA, which is caused by a change in the
coordination number and number of water molecules interstitial between the first and
second hydration shell. The unusually broad uncoupled OD band also clearly
distinguishes HDA from other crystalline high-pressure phases, while the shape and
position of the in situ prepared LDA are comparable to those of vapor-deposited
amorphous ice.

Water molecules in ice can be either arranged in a
crystalline lattice or appear disordered in an amorphous

solid. Such amorphous ices can be found naturally in outer
space1,2 and in very cold mesospheric clouds in Earth’s
atmosphere3 but also have found application in cryo-electron
microscopy.4 Water’s ability to form at least two different
forms of amorphous ice5 is connected to our fundamental
understanding of water’s phase diagram and represents the
most famous case of polyamorphism in a one-component
system.6 This is, when hexagonal ice Ih is compressed to 1.6
GPa at 77 K, it forms high-density amorphous ice (HDA),7

which can transform to low-density amorphous ice (LDA)
when decompressed at around 140 K8 or heated at ambient
pressure.9 This polyamorphic transition is suggested to be
linked to a liquid−liquid transition (LLT) at 140 K and
above6,8,10,11 between high- (HDL) and low-density liquid
(LDL). This scenario observed in computer simulations of
different water models10,11 was accessed in slow decom-
pression experiments at 140 K just below the crystallization
line8 and became recently experimentally accessible also at
higher temperatures by ultrafast laser heating, allowing to
probe the LLT by X-ray scattering at slightly elevated pressure
and temperatures where usually crystallization occurs.12 At
ambient pressure and low temperatures, the metastable
amorphous states and their conversion have been intensively
studied using different experimental methods such as X-
ray8,13,14 and neutron diffraction,15,16 calorimetry,8,17,18 broad-
band dielectric relaxation,17,19 and deuteron and 17O NMR20,21

spectroscopy. The vibrational spectrum of amorphous ices was
previously accessed using Raman spectroscopy22,23 and
incoherent inelastic neutron scattering.24−26 Additionally,

infrared spectroscopy allows studying amorphous ices at the
molecular level by measuring vibrational states of hydrogen
bonds.27,28 This is of particular interest for a comparison with
astrophysical data.1,29 The low-density amorphous state of
water grown by vapor deposition is studied intensively using
infrared spectroscopy.30−34 However, no IR data of the high-
density forms obtained by pressure induced amorphization
have so far been reported. Water unlike other liquids absorbs
strongly in the mid-IR region. This property limits the
thickness of water samples in the transmission geometry
down to a few micrometers. We have overcome these
experimental challenges by preparing HDA ice samples as
free-standing 50−80 μm thick layers that can be measured at
cryogenic temperatures in vacuum, without protecting
windows.

Here, we present Fourier transform mid-infrared spectrom-
etry (FTIR) spectroscopy measurements in transmission
geometry and measurements in diffuse reflection geometry
using a Fourier transform near-infrared spectrometer
(FTNIR).35 For this, we prepared equilibrated HDA
(eHDA)36 through a well-established thermal annealing
pathway at elevated pressures.12,17,37 Samples have been
prepared in a piston-cylinder setup as bulk samples for the
measurements in diffuse reflection geometry, while for the

Received: July 3, 2022
Accepted: August 10, 2022
Published: August 18, 2022

Letterpubs.acs.org/JPCL

© 2022 The Authors. Published by
American Chemical Society

7965
https://doi.org/10.1021/acs.jpclett.2c02074
J. Phys. Chem. Lett. 2022, 13, 7965−7971

D
ow

nl
oa

de
d 

vi
a 

M
PI

 P
O

L
Y

M
E

R
FO

R
SC

H
U

N
G

 o
n 

Se
pt

em
be

r 
8,

 2
02

2 
at

 1
1:

23
:5

2 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aigerim+Karina"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tobias+Eklund"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christina+M.+Tonauer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hailong+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+Loerting"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katrin+Amann-Winkel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katrin+Amann-Winkel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpclett.2c02074&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpclcd/13/34?ref=pdf
https://pubs.acs.org/toc/jpclcd/13/34?ref=pdf
https://pubs.acs.org/toc/jpclcd/13/34?ref=pdf
https://pubs.acs.org/toc/jpclcd/13/34?ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c02074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org/JPCL?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


transmission measurements, a 100 μm thick copper grid is used
to support the ice film (Figure 1). X-ray measurements confirm

that eHDA is formed inside the grid-holes;12 the measured
structure factor S(Q) is identical to the one measured from
bulk samples. From X-ray studies on bulk and grid
samples,38−40 it is well-known that HDA upon warming
transforms to the low-density state; the development of S(Q) is
identical for both sample types. The process is exothermic16

and involves a volume change8 of 20%; for the grid samples,
the expansion can take place perpendicular to the grid, as no
windows restrain the motion. Here, we now follow this
transition using FTIR.

Figure 2 shows the recorded FTIR spectrum (blue) of the
eHDA sample at 80 K. Absorbance A at a certain wavenumber
ν is, according to Beer’s Law, a logarithmic ratio of initial
power of radiation I0 to the radiant power transmitted I
through the sample

=A
I
I

( ) ln
( )
( )

0

(1)

Due to the still relatively thick sample, the OH stretch
region around 3200 cm−1 is saturated. We used an isotopically
diluted solution41 of 1 wt.% HOD in H2O to look at decoupled
OD-stretching bands in the range of 2400−2600 cm−1. Due to
the small amount of deuterium, the OD mode appears as a

small peak on the high-frequency wing of the combinational
mode of the HOH bending mode (v2) and water libration (vR).
Background subtraction is discussed in Figure S2. The
combinational modes vOH + v2 and vOH + 2vR, at around
5000 cm−1 are much weaker than the OH stretch mode, so
they are not saturated in spite of the thickness of the sample.
This provides us information about the OH-stretch mode. This
region has been additionally studied by using a diffuse
reflectance geometry in an FTNIR spectrometer (red line).
Reflectance was converted to Kubelka−Munk or remission
function (F R( )),42 according to eq 2

=F R R R( ) (1 ) /(2 )2 (2)

where R∞ denotes the measured reflectance of a sample thick
enough that transmission is negligible. Both spectra are in very
good agreement, even though taken with different exper-
imental methods. The band position is found to be at 5048
cm−1 for the absorbance measurements and at 5082 cm−1 for
the diffuse reflectance data. The broad line shape of the
decoupled OD-stretch band of eHDA, with a full width at half-
maximum (fwhm) of 118 cm−1 is similar�in terms of width
and shape�to liquid water.31 The HDA band is clearly
distinguished from other high-pressure ice phases (see Figure
S1). Even though its center position is similar to the IR spectra
of ice V and VI, the eHDA spectrum does not contain any
subpeaks, as the crystalline ices. Also, the fwhm is significantly
broader compared to the hydrogen disordered crystalline ices
V and VI, a feature which had been reported to indicate a
broad range of OH frequencies and bond lengths (Figure S1).
For eHDA, this appears to be even more pronounced,
consistent with both oxygen and hydrogen disorder.

Subsequently, we recorded spectra while heating eHDA
from 80 to 160 K in steps of 5−10 K, as shown in Figure 3. All
spectra are collected after quenching back to 80 K. For the
OD-stretch FTIR spectra of eHDA at different temperatures,
we first subtracted a linear baseline and normalized the spectra
to the peak maximum (Figure S2), while for the OH-
combinational (vOH + v2, vOH + 2vR) mode, we subtracted
individual linear baselines and normalized the spectra to the
peak maximum (for details, see SI). In Figures 3A,B, we can
visually observe that curves obtained after heating to 90−115

Figure 1. (A) High-pressure cell setup for the eHDA sample
preparation. (B) Pictures of ice in the copper grid-holes made by an
Infinity K2/DistaMax Long Distance microscope.

Figure 2. Uncorrected FTIR spectra of eHDA in a copper grid (blue) in the range of 1000−5700 cm−1 at 80 K. The OH-combinational region of
the thin eHDA sample is compared to the diffuse reflectance measurements of a thick, powdered eHDA sample, depicted as a Kubelka−Munk or
remission function spectrum (red).

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c02074
J. Phys. Chem. Lett. 2022, 13, 7965−7971

7966

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c02074/suppl_file/jz2c02074_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c02074/suppl_file/jz2c02074_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c02074/suppl_file/jz2c02074_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c02074/suppl_file/jz2c02074_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c02074/suppl_file/jz2c02074_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c02074/suppl_file/jz2c02074_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02074?fig=fig2&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c02074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


K (blue curves) have similar broadness and peak positions,
which show that eHDA can be kept stable at these
temperatures.

Above 120 K, we observe a shift of the maximum toward
lower wavenumbers for the OD-stretch and OH-combination
bands, respectively, visible also from the peak positions in
Figure 3C,D. For the OD-stretch band, the peak shift is
accompanied by a narrowing of the spectrum, while the low-
frequency wing at around 2400 cm−1 remains. The sample
remains metastable in the low-density state at 125−140 K.
This temperature range is consistent with recent X-ray data
taken on similarly prepared eHDA samples.38,39 At the
crystallization temperature, the peak maximum is shifted
further toward lower wavenumbers, an indication of stronger
hydrogen bonds. IR spectroscopy probes the local environ-

ment; from the measured O−H stretching frequencies, the
hydrogen bond length in crystals and minerals can be
calculated.43,44 The vibrational frequency of an uncoupled
O−D bond is strongly correlated to the distance of the nearest
neighbor hydrogen-bonded oxygen atoms. The correlation is
well-established empirically45,46 and theoretically;47,48 there-
fore, the vibrational frequency vOD can be converted to the
average O−H···O distance R by the following equation49

= i
k
jjj y

{
zzz

i
k
jjjjj

i
k
jjj y

{
zzz

y
{
zzzzzv A R R

1560.1exp
1.474

269251.6exp
0.9938OD

2

(3)

where A is the O−D frequency of the isolated HDO molecule
(2782.1 cm−1). We calculated the average hydrogen-bonded
O−O distances for eHDA (2.816 Å) and LDA (2.771 Å). The

Figure 3. (A) Baseline-corrected FTIR spectra of the OD-stretch mode and (B) OH-combinational mode of the eHDA sample normalized to the
peak maximum. The circles represent raw data (colorful dots), and the gray solid lines are results of a Savitzky-Golay filter application. (C,D) Peak
positions of OD-stretch and OH-combinational mode signals as a function of temperature. (C) Additionally, the average distance of the hydrogen-
bonded pair of oxygen atoms is presented on the right axis. *Measurements are taken at 80 K after heating to corresponding temperatures and
annealing for 10 min.

Table 1. OD-Stretch Modes Measured at around 80 K by FTIR and OH-Combination Modes Measured by FTIR and Diffuse
Reflectance NIR in Comparison with the Literature

vOD peak position (cm−1) vOD fwhm (cm−1)
v2 + vOH, vR + vOH peak position

(cm−1) v2 + vOH, vR + vOH fwhm (cm−1)

Ice-Ih 2420 (Bergren et al., 1978); 2422
(±2) (this work)

20 (Bergren et al., 1978); 35
(±2) (this work)

4983 (Grundy et al., 1998); 4971
(Tonauer et al., 2021)

600 (±40) (Grundy et al., 1998); 566
(Tonauer et al., 2021)

Ice-Isd (from
eHDA)

2418 (±2) 33 (±2) 4925 (±10) 418 (±10)

Ice-Isd (from
ASW)

2418 (±2) (Li et al., 2021) 32 (±2) (Li et al., 2021) - -

ASW 2439 (Bergren et al., 1978) 70 (Bergren et al., 1978) 4998 (Mastrapa et al., 2008) 380 (±10) Mastrapa et al., 2008
LDA

(Absorption)
2432 (±2) 73 (±2) 4966 (±10) 427 (±10)

LDA (Diff.
reflectance)

- - 4997 (±10) 513 (±10)

eHDA
(Absorption)

2464 (±2) 118 (±2) 5048 (±10) 418 (±10)

eHDA (Diff.
reflectance)

- - 5082 (±10) 496 (±10)
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calculated values are consistent with values obtained from
Raman measurements.23,49,50 The O−O distance as a function
of the temperature is presented in Figure 3C on the right axis.
Please note that the redshift on the polyamorphic transition
goes together with a decrease in O−O distance. This
counterintuitive observation of shorter, stronger H-bonds in
the less dense material observed at lower vibrational energies
can be explained by the density-distance paradox.13,23 In
essence, the O−O distance is longer in HDA because a
molecule moves from the second coordination shell to the
space interstitial between the first and second shell, where the
first shell needs to provide some more space to accommodate
the additional neighboring molecule. The same trend was
observed when calculating the O−O distance from X-ray
measurements35 on protonated eHDA samples, where the
distance to the first nearest oxygen neighbor was extracted
from the first maximum in the pair distribution function (PDF)
to increase from r = 2.750 Å for LDA to 2.780 Å for HDA. The
ratio of the first and second maxima in the PDF instead
provides information for the tetrahedrality and is for LDA
found to be very close to 1.633, the tetrahedral O−O−O angle.
The coordination number can be calculated by integrating the
PDF, and X-ray35 and neutron scattering15 data both show a
change in coordination number of 4 + 1 in HDA to 4 in LDA.
This causes the redshift in the FTIR data and a sharpening of
the band to an fwhm of 33 cm−1. How do the vibrational
modes of the so-derived LDA and crystalline ice compare to
vapor-deposited amorphous solid water (ASW) and other
crystalline ices? A comparison of the different states and
references 30, 33, 51, and 52 of ice Ih and amorphous solid
water (ASW) is given in Table 1. Most importantly, the peak
position and fwhm of the derived LDA are identical to ASW, as
also visible in Figure S4. This is consistent with X-ray and
neutron data, demonstrating that ASW is a structural analogue
to LDA.16,33 This finding is in contrast to work by Kolesnikov
et al.,24 who observed considerable differences between the
vapor deposits and the LDA obtained from HDA. The
difference in their study might actually be due to the
microporous nature of ASW, resulting in many molecules
that are not tetrahedrally coordinated, as compared to the
compact nature and perfect tetrahedral coordination in LDA.
That is to say that it needs to be clarified how porous or how
compact the vapor deposit actually is�only well-annealed
ASW samples (e.g., at 120 K) are similar to compact LDA.53

We further discuss differently prepared crystalline ices,
namely cubic ice crystallized here from LDA at 160 K and
hexagonal ice obtained by directly freezing water in such a
copper grid, freezing water between CaF2 windows, and from
crystallizing ASW at 160 K.33 Both hexagonal ice samples,
hence prepared directly from freezing liquid water, have peak
maxima at 2422 cm−1 (see also Figure S5). The peak
maximum of cubic ice obtained after the transition eHDA →
LDA and annealing ASW is located at 2418 cm−1. We relate
this to the so-called stacking disordered ice (Isd) formation,
which has a slightly different OD-stretch vibrational frequency
than hexagonal ice.54 Formation of Isd from heating LDA or
ASW was already reported in several works18,39,53−55 and is
consistent with recent X-ray data taken at such grid samples.56

We here find a O−O distance for ice Isd of R = 2.755 Å. This
is, we observe eHDA to be stable in the range 80−115 K as
well sa LDA in the range 125−140 K and observe
crystallization at 150 K.

An interesting observation in this series of measurements is
the signal of the sample annealed to 120 K. The spectrum at
120 K represents a mixture of eHDA as the initial state and
LDA as the final state of the transformation. We show a linear
combination (black dashed line) of eHDA at 80 K (blue) and
LDA (quenched from 130 K) (red) of different proportions.
The results are compared with the sample annealed to 120 K,
and the best matches are presented in Figure 4A,B. Analyzing
the OD-stretch band, we find 60% LDA and 40% eHDA at 120
K, while 40% LDA and 60% eHDA is found comparing the
OH-combination band at the same temperature. This differ-
ence could simply be related to the overlapping contributions
in the combinational band but still represents an approximate
50% coexistence of the two states at this temperature.

In summary, we have demonstrated by IR measurements
how the strength of the hydrogen bonds increases within the
course of the transformation from eHDA to LDA and ice Isd.
This becomes visible through the redshift of the decoupled
OD-stretch peak and a decrease in the fwhm of the spectra
from 118 cm−1 for eHDA to 73 cm−1 for LDA, while the low-
frequency wing remains at a similar position. Through the
empirical link between vibrational frequency and O−O
distance, we showed that a shortening of the O−O distance
is observed at the polyamorphic transition, consistent with X-
ray data.35 Comparing the decoupled OD-modes of hexagonal
ice and liquid water,31,57 the here observed spectral features of
the decoupled OD-stretch band of HDA are more similar to

Figure 4. (A) Comparison of the FTIR spectrum of the OD-stretch mode after annealing eHDA to 120 K and the linear combination of eHDA and
LDA signals. (B) Comparison of the FTIR spectrum of the OH-combinational mode after annealing eHDA to 120 K and the linear combination of
eHDA and LDA signals. *Measurements are taken at 80 K after heating to corresponding temperatures.
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warm liquid water58 rather than other high-pressure ice phases
(Figure S1), indicating more disorder. For liquid water, a low-
frequency band shift accompanied by an increase in intensity
and narrowing of the OH stretch (∼3200 cm−1) mode was
observed in experiments and simulations when water is
supercooled.57−59 Likewise, also the X-ray PDF of HDA is
more similar to water at 365.9 K, while the PDF of LDA is
more similar to supercooled water,35 interpreted with an
increase of tetrahedrality.6 This is, our IR data are consistent
with the hypothesis that warm water is more of a high-density
structure, while fluctuations of low-density structures appear at
lower temperatures.6 Shape and position for vOD of LDA are
found to be identical to a well-annealed vapor-deposited ASW
after the collapse of micropores. Highly microporous ASW
samples deposited at <100 K show different spectra due to the
high surface area and a large fraction of molecules that are not
fully coordinated, with much more dangling OH bonds. Phase
coexistence of eHDA and LDA is observed at around 120 K,
where the intermediate spectrum can be reconstructed by a
linear combination of the two pure states, here demonstrated
for the OD-stretch band as well as the combinational mode
around 5000 cm−1. This coexistence has already been reported
in optical studies by Mishima60 and later demonstrated in
decompression experiments through neutron61 and X-ray
diffraction.8 Here, we present that IR spectra from different
intermediate temperatures can be fitted by a linear
combination of starting and final state. This adds another
important feature demonstrating the first-order-like nature of
the HDA → LDA transition, while recent X-ray experiments
have also confirmed their diffusive nature.14

■ EXPERIMENTAL METHODS
Samples were prepared in a piston-cylinder setup, as powder
samples for the diffuse reflectance measurements, while for the
measurements in transmission geometry, a 100 μm thick
copper grid is used to support the ice film (Figure 1). The
copper grid samples were prepared at Stockholm University.
The grid with holes of 1.5 mm in diameter is dipped in
ultrapure water, which is subsequently frozen to hexagonal ice
before being assembled to the piston cylinder. The bulk eHDA
sample was prepared at University of Innsbruck, using 600 μL
of ultrapure water pipetted to an indium container following
the same T-P pathway. Powder made from the bulk sample
with 1 mm thickness was used for near-infrared spectroscopy
measurements.

The absorbance infrared measurements were obtained with
an FTIR spectrometer (Frontier, PerkinElmer) in a range of
6000−1000 cm−1 with a resolution of 2 cm−1. Each spectrum
was collected for 1 min and six scans. The sample had been
mounted in a temperature-controlled liquid nitrogen cryostat
(VPF 100, Janis) and measured through IR-polished CaF2
optical windows. The reported temperatures are not measured
directly at the sample itself but rather at the cryostat head and
are therefore assumed to have a slight offset. For the
measurements in diffuse reflectance geometry, a Büchi NIR
Flex N-500 benchtop Fourier transform near-infrared spec-
trometer (10 000−4000 cm−1) was utilized. At least three
independently prepared samples of the two polyamorphs were
analyzed, adding up to at least 20 cumulative spectra per ice
polyamorph. One cumulative spectrum was recorded within 16
s and represents a sum of 32 single spectra at a resolution of 8
cm−1.
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