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ABSTRACT

In this thesis, we study a posteriori error estimation and adaptivity with the goal of
automatic model order reduction of large-scale systems. We propose efficient offline
adaptive techniques that are aimed at (a) bringing down the significant offline cost
often associated with generating reduced-order models and (b) minimizing the user
interference in obtaining efficient reduced-order models. We consider adaptivity in two
aspects: adaptive basis enrichment and adaptive training set sampling. The adaptive
techniques we propose are enabled by efficient and sharp a posteriori error estimators.
The error estimators not only guide the offline generation of reduced-order models, but
also provide error certification for their online use. Starting with the class of parametric
linear steady, time-harmonic, and dynamical systems, we introduce an inf-sup-constant-
free error estimator targeted towards systems with small or vanishing inf-sup constant.
This is especially true for many systems arising in electromagnetics. We incorporate
the error estimator within a greedy algorithm to adaptively enrich the projection basis.
We iteratively compute a data-driven surrogate model of the error estimator in order
to enable the adaptive sampling of the training set. Following this, the adaptive tech-
niques are then extended to the class of (parametric) nonlinear dynamical systems. We
introduce an improved a posteriori error estimator for the output variable and employ
it within a greedy algorithm to obtain a compact reduced-order model. Our improved
error estimator is able to additively decompose the error contribution arising from the
approximation of the state vector and the nonlinear vector via hyperreduction. Making
use of this, we adaptively and simultaneously add/remove basis vectors to/from the
two projection matrices. To address the curse of dimensionality often associated with
parametric problems, we introduce two separate strategies to adaptively sample the
training set. The first is a bottom-up sampling where a data-driven surrogate of the im-
proved error estimator is utilised to iteratively add/remove parameter samples to/from
a coarse training set. The second is a top-down approach in which we start from a fine
training set and iteratively identify the most important samples to be retained. As a
final contribution, the combined adaptive basis enrichment and adaptive training set
sampling approach is extended to coupled systems. Throughout the thesis, we validate
our theoretical results and algorithms by performing numerical experiments on several
large-scale examples chosen to represent a wide range of applications.
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ZUSAMMENFASSUNG

In dieser Arbeit untersuchen wir a posteriori-Fehlerabschätzung und Adaptivität mit
dem Ziel der automatisierten Modellordnungsreduktion von Systemen mit großer Zu-
standsraumdimension. Wir stellen effiziente offline-adaptive Verfahren vor, die darauf
abzielen, (a) die beträchtlichen offline-Rechenkosten zu senken, die oft mit der Erzeu-
gung von Modellen reduzierter Ordnung verbunden sind, und (b) den Einfluss des Be-
nutzers bei der Generierung effizienter Modelle reduzierter Ordnung zu minimieren. Wir
betrachten zwei Aspekte des Konzepts der Adaptivität genauer: die adaptive Basisanrei-
cherung und die adaptive Auswahl der Trainingsmengen. Die von uns vorgeschlagenen
adaptiven Verfahren werden durch effiziente und genaue a posteriori-Fehlerschätzer er-
möglicht. Die Fehlerschätzer werden nicht nur für die offline-Generierung von Modellen
reduzierter Ordnung benötigt, sondern liefern auch eine Fehlerzertifizierung für deren
Nutzung in der online-Phase. Ausgehend von der Klasse parametrischer linearer, steti-
ger, zeitharmonischer und dynamischer Systeme führen wir einen inf-sup-Konstanten-
freien Fehlerschätzer ein, der auf Systeme mit einer sehr kleinen oder verschwindenden
inf-sup-Konstante ausgerichtet ist. Dies gilt insbesondere für viele Systeme aus der
Elektromagnetik. Wir integrieren den Fehlerschätzer in einen Greedy-Algorithmus zur
adaptiven Anreicherung der Projektionsbasis. Wir berechnen iterativ ein datengetrie-
benes Ersatzmodell des Fehlerschätzers, um die adaptive Auswahl der Trainingsmenge
zu ermöglichen. Im Anschluss daran werden die adaptiven Verfahren auf die Klasse
der (parametrischen) nichtlinearen, dynamischen Systeme erweitert. Wir führen einen
verbesserten a posteriori-Fehlerschätzer für die Ausgangsvariable ein und verwenden
ihn in einem Greedy-Algorithmus, um ein (kompaktes) Modell reduzierter Ordnung zu
erhalten. Unser verbesserter Fehlerschätzer ist in der Lage die Beiträge, die sich aus
der Approximation des Zustandsvektors und des nichtlinearen Vektors ergeben, mit-
hilfe von Hyperreduktion additiv zu zerlegen. Auf dieser Grundlage fügen wir adaptiv
und simultan Basisvektoren zu den beiden Projektionsmatrizen hinzu bzw. entfernen
sie. Um den “Fluch der Dimensionalität” zu umgehen, der oft mit parametrischen Pro-
blemen verbunden ist, führen wir zwei separate Strategien zur adaptiven Auswahl der
Trainingsmenge ein. Bei der ersten handelt es sich um ein Bottom-up-Sampling, bei
dem eine datengesteuerte Approximation des verbesserten Fehlerschätzers verwendet
wird, um iterativ Parameterproben zu einer groben Trainingsmenge hinzuzufügen oder
daraus zu entfernen. Der zweite ist ein Top-Down-Sampling-Ansatz, bei dem wir von ei-
ner feinen Trainingsmenge ausgehen und iterativ die wichtigsten Proben identifizieren,
die beibehalten werden sollen. Als letzter Beitrag wird der kombinierte Ansatz der ad-
aptiven Basisanreicherung und der adaptiven Trainingsmengenauswahl auf gekoppelte
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Systeme erweitert. Während der gesamten Arbeit validieren wir unsere theoretischen
Ergebnisse und Algorithmen durch numerische Experimente an mehreren groß ange-
legten Beispielen, die ein breites Spektrum von Anwendungen repräsentieren.
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1.1. Motivation

Mathematical modelling and numerical simulations have become indispensable tools in
many areas of science and technology. An increasing number of scientific disciplines
are realising the benefits of using computer-aided simulations as the preferred design
and analysis tool, in place of expensive real-world laboratory experiments. The rise
of numerical simulation to prominence has thrown up several challenges. On the one
hand, there is a demand for high-performance computing hardware to enable faster,
more efficient simulations of complex mathematical models. An example of this sce-
nario is in the field of machine learning and artificial intelligence where newer hardware
architectures being introduced, for example, the graphics processing units (GPUs) are
enabling more efficient training of large models. On the other hand, there has been
a growing emphasis on developing faster, more computationally efficient software or
algorithms that offer good performance at a modest computational cost. Parallel to
the dominance of numerical experiments, there has also been a trend of increasingly
complex mathematical models in many areas of science. To support a detailed descrip-
tion of physical phenomena, models are now highly nonlinear, coupled and often involve
multiple physics.
In most cases, analytical solutions of the models are not available, or when avail-

able, they are simply intractable. Numerical solutions of these complex models are
realized by discretizing the governing set of ordinary differential equations (ODEs) or
partial differential equations (PDEs) with standard techniques such as the finite element
method (FEM), finite difference method (FDM) or the finite volume method (FVM).

1



1. Introduction

To achieve good approximation, usually a fine discretization is considered, resulting in
a large number of degrees of freedom and hence a large number of equations. In recent
years, the order of a discretized model, defined as the number of equations (differential
or algebraic) that need to be solved during a simulation, has risen dramatically. Two
areas where even the existing high-end computer infrastructure finds it difficult to cope
with the rising complexity of mathematical models are real-time and multi-query ap-
plications. Real-time computing is of importance in fields such as optimal control that
involve feedback control systems. The microcontrollers that actuate a system need to
provide controlling signals in real-time, subject to varying operating conditions of a
device. To enable this, a mathematical model of the system that the controller seeks
to control, needs to be solved in real time. Given the limited computing power and
storage available in microcontrollers, this task is often impossible when the models are
large-scale. Multi-query applications involve repeated simulation of a mathematical
model, usually during the design or optimization stage of modelling, or for uncertainty
quantification. An engineer may wish to study the system and its response subject to
variations in one or several physical/geometrical parameters. However, this task is of-
ten not easily achievable, unless specialized computing hardware is used. Owing to this
limitation of hardware-based solutions in the above situations, a variety of algorithmic
solutions have been considered.
One such solution to the aforementioned demand for efficient computational methods

to speed up numerical simulations is Model Order Reduction (MOR), an area that has
been under active development over the past three decades [11, 12, 26, 32, 33, 34, 36,
167, 168, 183]. MOR is a dimension reduction technique, with the goal to generate a
surrogate model for the large-scale, complex mathematical model (hereafter referred to
as full-order model (FOM)). This surrogate model, commonly called the reduced-order
model (ROM), has the same structure as the FOM but brings significantly reduced
computational cost. Therefore, it enables rapid simulation both in the real-time and
multi-query scenarios mentioned above. Moreover, the system response resulting from
solving the ROM is nearly identical to the one produced by simulating its FOM. Ac-
tually, the key concepts underlying MOR were introduced across different fields, under
different names. It is only recently, that there has been a unification of the differing
ideas under the framework of MOR.
The most widely used MOR approaches include: Balanced Truncation (BT) [141],

Moment Matching (MM) or Krylov-subspace methods [101, 202], Proper Orthogonal
Decomposition (POD) [77, 117, 189], and Reduced Basis Method (RBM) [112, 167].
These methods can be characterized as projection-based MOR methods since the un-
derlying philosophy is to identify a low-dimensional subspace of the solution space asso-
ciated with the discretized FOM and to project the FOM onto this subspace. The first
two techniques, BT and Krylov-subspace methods, are mainly used in frequency-domain
applications where models are obtained by applying suitable integral transforms such
as the Laplace or Fourier transform to the governing ODE. They are often the methods
of choice in systems and control theory owing to the advantage of input-independence.
The latter two techniques POD, RBM are usually (though not always) preferred for
time-domain applications. In addition to projection-based MOR methods, there also
exist data-driven methods, such as the Loewner method [14, 138] and the operator-
inference method [161]. These methods do not require access to the model of the
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system, instead yield an approximation purely from data, by means of interpolation or
least-squares data fitting. More recently, techniques originating in the fields of artifi-
cial neural network and deep learning have also been successfully applied to generate
surrogate models [89, 95, 114, 128].
While many MOR methods were initially suggested for non-parametric systems, a

major research topic in the past decade has been the extension of such methods to
parametric systems, which is called parametric MOR (PMOR) [35]. Among frequency-
domain methods, BT was extended recently to linear parametric systems in [194], while
many other Krylov-subspace methods such as the Iterative Rational Krylov Algorithm
(IRKA) [102], MM have also been extended [82, 118, 153]. Within time-domain MOR
methods, the POD-greedy method has emerged as the most successful PMOR tech-
nique. For a more complete list and a general overview of PMOR techniques, we refer
to the survey [35] and also to the recent books [12, 32, 33].
To achieve computational efficiency, all PMOR methods follow the offline-online

paradigm. The offline stage involves solving several FOMs in order to obtain solution
snapshots, from which a good linear subspace is identified for projection. This stage is
usually computationally demanding. Once the ROM is built up by projection, it can be
solved for any new parameter instance, cheaply, at the online stage. It is ensured that
the computational complexity at the online stage scales only with the reduced order of
the ROM.
Despite many successes of applying MOR methods to a variety of real-world prob-

lems, there remain persistent issues that limit the widespread adoption of ROMs. These
include: reliable and cheap error estimation for parametric nonlinear systems [35], accu-
rate error estimation for systems having resonance behaviour [91], offline-efficient algo-
rithms to construct the ROMs, efficient MOR for convection-dominated problems [157],
MOR methods preserving passivity, stability, etc. Another major issue particular to
PMOR methods is the curse of dimensionality associated with the sampling of param-
eters [105, 113].
This thesis aims at addressing some of these issues faced by the current MOR tech-

niques. In particular, we will consider the problem of a posteriori error estimation, for
both frequency- and time-domain MOR methods and propose two novel error estima-
tors. Using these error estimators, we aim to propose efficient techniques of adaptivity:
in the context of basis enrichment and training set sampling.

1.2. Error Estimation for MOR: state-of-the-art

An important consideration that arises during MOR is the quantification of the error
resulting from the ROM approximation. For time-domain MOR methods, the interest
is either estimating the error in approximating the state variable or the output quan-
tity of interest (QoI). For frequency-domain MOR methods, the error in approximating
the transfer function in different norms is studied [11] and some a priori error bounds
are introduced. Not all MOR methods come with a priori error bounds, therefore, a
posteriori error bounds are derived. Such error bounds (or estimates) are crucial for
providing guarantees to the end-user about the reliability of MOR methods. Addition-
ally, they also play a role in adaptively improving the quality of the ROMs and this
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shall be one of the main foci of this thesis.

Frequency-domain MOR There exist a number of works covering a posteriori er-
ror estimation for non-parametric systems. For frequency-domain MOR methods, an
hierarchical error estimator, that uses two different ROM approximations to compute
the error was proposed in [101] for Krylov-subspace methods applied to non-parametric
systems; residual-based error estimators were considered in [81, 116]. A bound for the
transfer function approximation error in the H2-norm was introduced in [208]. Error
bounds for parametric systems, inspired from those used in the RBM were proposed
in [81]. More recently, error estimators for linear parametric systems were introduced in
[83, 85]. The efficient application of error estimation to systems involving many param-
eters or systems whose parameters cover a wide range of values is still an open issue.
For such systems, computing the error estimator for many parameters is hampered by
the curse of dimensionality. Error estimation for electromagnetic systems is another
challenging topic. Many electromagnetic systems such as antennas often exhibit large
oscillatory or resonant behaviour at certain frequencies. As a result, some existing error
estimators that need the so-called inf-sup constant turn out to be inaccurate at and
around resonant frequencies (see Chapter 3 for a formal introduction).

Time-Domain MOR Similar to the frequency-domain, error bounds (or estimators)
have also been proposed for time-domain MOR methods. The most prominent among
them is the RBM, where an a posteriori error bound or estimator is an essential part
of the greedy algorithm. Error bounds for both state and output quantities have been
proposed for linear and nonlinear elliptic PDEs, for both coercive and non-coercive sys-
tems [133, 177, 200, 201]; these were later extended to linear parabolic time-dependent
systems [100] and then to non-affine, nonlinear systems [97, 98]. All these error bounds
were derived for systems arising from a weak formulation of the PDE in the function
space setting. More generally, error bounds for systems arising from other discretization
techniques such as the finite volume method, were considered in the Euclidean vector
space in [71, 214]. While reliable error bounds exist for nonlinear and non-affine sys-
tems, they are often computationally involved and not sharp. For the RBM, the usual
rule-of-thumb is to consider a finely sampled training set consisting of many parameter
samples. This makes the evaluation of the existing error bounds inefficient, consuming
a large percentage of the offline training time.

1.3. Adaptivity for MOR: state-of-the-art

Adaptivity in MOR has received considerable attention recently in several works such
as [8, 61, 96, 126, 151, 158] and [9, 46, 71, 87, 105, 124, 125, 157, 160]. It is hard to
give a single definition of what constitutes adaptivity, since it has been used in many
contexts. Roughly, it can be described as a set of techniques that tailor a certain MOR
method to the particular problem under consideration. The goals include, but are not
limited to: (a) obtaining a compact ROM with an optimally small order, (b) reducing
the offline training time for the ROM and improving ROM accuracy, (c) reducing the
online evaluation time for the ROM and improving online accuracy. While some of these
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objectives may seem opposing, adaptive MOR approaches aim for a balance amongst
them. At the offline stage, many works have considered adaptivity in the context of
snapshot generation [96, 126, 151], basis generation [8, 61, 158], parameter and training
sampling [105, 124, 125], basis enrichment [87]. At the online stage, adaptivity has
been proposed to interpolate among ROMs defined for different operating regimes and
parameters [9] and also to adaptively enrich the basis [46]. There exist methods that
incorporate new data available online to improve ROM quality [160].
Among offline adaptive methods, there is still considerable room for improvement

with regards to adaptive basis enrichment and adaptive parameter sampling since ex-
isting methods are still rather heuristic or require complex implementation. Moreover,
the issue of adaptive basis enrichment for nonlinear systems, balancing the approxima-
tion quality of the state and nonlinear terms is not yet fully addressed.

1.4. Objectives

This thesis is devoted to addressing two outstanding problems in MOR: a posteriori
error estimation and adaptivity. We aim to propose sharp and cheap a posteriori error
estimators with a broad focus on (parametric) linear and nonlinear systems. Within lin-
ear parametric systems, we take up both steady and time-dependent dynamical systems.
We also pay special attention to linear time-harmonic systems exhibiting resonances,
such as those occurring in electromagnetics. The nonlinear systems we consider are
time-dependent. For both types of linear and nonlinear systems, we consider adaptive
generation of ROMs at the offline stage. We consider adaptivity in the context of basis
enrichment and parameter sampling. The adaptive strategies aim at reducing the high
offline training costs often associated with generating ROMs. Leveraging a posteriori
error estimation and adaptivity, our ultimate goal is to perform automatic model order
reduction.

1.5. Contributions

The main contributions of this thesis include:

1. A posteriori error estimation for frequency-domain MOR: We have developed an
inf-sup-constant-free a posteriori state error estimator for general linear, para-
metric systems. We use this error estimator in an adaptive greedy algorithm to
generate accurate ROMs at a reduced offline computational cost compared to ex-
isting approaches. One specific application we target is electromagnetic systems
that exhibit resonance behaviour.

2. Adaptive parameter sampling for frequency-domain MOR: Using existing a pos-
teriori error estimators for the reduced transfer functions of linear parametric
systems, we propose a new adaptive algorithm to generate the ROM. The algo-
rithm incorporates a data-driven surrogate of the error estimator. The surrogate
model keeps offline computational costs low and paves the way for efficient pa-
rameter sampling.
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3. A posteriori error estimation for time-domain MOR: We propose an a posteri-
ori output error estimator based on a modified output term, that exploits an
approximate solution to a discrete-time dual problem to achieve sharp error es-
timation. When the dual problem is parametric, the approximate solution to
the dual problem is computed simultaneously with the ROM construction for
the original model. For a non-parametric dual problem we use Krylov-subspace
methods to solve the dual system.

4. Adaptive basis enrichment for time-domain MOR: Using the time-domain out-
put error estimator as a ‘feedback’, we propose an adaptive greedy algorithm to
iteratively and simultaneously enrich the projection bases for approximating the
state and nonlinear variables.

5. Bottom-up adaptive parameter sampling for time-domain MOR: We build a data-
driven surrogate model for the proposed output error estimator and incorporate
its construction within a greedy algorithm. We use the surrogate error model to
adaptively update the parameter training set, bottom-up, starting from a training
set with small cardinality. This approach is tailored for problems that have many
parameters or whose parameters vary in wide ranges. The proposed strategy is
combined with the adaptive basis enrichment scheme to achieve a higher level of
adaptivity.

6. Top-down adaptive parameter sampling for time-domain MOR: In contrast to the
bottom-up adaptive parameter sampling, we propose a top-down parameter sam-
pling approach that starts with a large, finely sampled training set and identifies
a small set of important samples through a sparse sampling strategy. We pro-
pose several variants of a two-stage adaptive algorithm, which utilize different
sampling criteria. The approach is applicable to systems with a large number of
parameters and those with vector-valued quantities of interest. This top-down
parameter sampling approach can also be used in conjunction with the adaptive
basis enrichment scheme.

7. Adaptive MOR for Coupled Systems: We extend the proposed adaptive basis
enrichment scheme and the adaptive parameter sampling strategy to coupled
systems.

1.6. Outline

The organization of the thesis is as follows:
To lay a common ground for the kind of systems and MOR techniques we consider,

Chapter 2 reviews several basic concepts which will be used throughout this thesis.
We start with the mathematical settings of the systems of interest. These include
parametric steady, time-harmonic, and dynamical systems. Following this, we briefly
review projection-based MOR methods. Then, some frequency- and time-domain MOR
methods are reviewed, based on which the algorithms in this thesis are developed.
Following this, we discuss hyperreduction in the context of MOR. The chapter ends
with a discussion on Radial Basis Functions (RBFs) and RBF-based data interpolation.
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1.6. Outline

Chapter 3 concerns one of the main contributions of this thesis. In this chapter,
the focus is on MOR of linear steady/time-harmonic and dynamical systems. We first
propose a new inf-sup-constant-free approach for a posteriori state error estimation,
then incorporate the estimator within an adaptive greedy ROM construction procedure.
We briefly analyse the computational costs of this greedy procedure. Then, two real-
life models of electromagnetic circuits are used to illustrate our approach. The second
part of the chapter focusses on a posteriori output error estimation for frequency-
domain methods. We review existing approaches and propose an efficient RBF-based
surrogate model that learns an inf-sup-constant-free output error estimator. We then
integrate the surrogate error estimator within an adaptive greedy procedure to construct
ROMs efficiently. The significant computational gains and accuracy of the method are
demonstrated on several benchmark examples.
In Chapter 4, we introduce another major contribution of this thesis, viz., a posteriori

error estimator for general parametric nonlinear dynamical systems. We review the
existing approaches on error estimation and point out some of the drawbacks. Following
this, we propose the a posteriori error estimator based on a modified output term and
discuss its computational aspects and advantages. Then, we briefly highlight a fast
approach for computing the inf-sup constant involved in the error estimator using RBF
interpolation. In the second part of the chapter, we turn our attention to adaptivity.
There, we introduce a comprehensive adaptive enrichment scheme for the POD and
RBM methods, that simultaneously enriches the projection matrices for both the state
and the nonlinear term of the given problem. We discuss its computational aspects and
illustrate its performance through numerical examples involving both non-parametric
and parametric problems.
To address the non-trivial choice of training set for the RBM, in Chapter 5 we pro-

pose two adaptive approaches. The first approach is an extension of the RBF-based
adaptive sampling method proposed in Chapter 3 for frequency-domain systems. We
show the efficiency of this approach through well-known benchmark examples. Our
second approach is based on a subsampling approach, where sparse sampling strategies
are used to identify the most important samples in a fine training set with large car-
dinality. We again illustrate the merits of this approach through examples involving
parametric linear and nonlinear dynamical systems.
As a final contribution, in Chapter 6 we apply the adaptive basis enrichment and

adaptive training set sampling schemes to parametric coupled systems. While the
extension is straightforward, we detail some computational aspects that improve effi-
ciency. The method is illustrated using the model of batch chromatography in process
engineering.
We summarize this thesis in Chapter 7. Based on our experience, we highlight several

promising directions and ideas for future research.
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MATHEMATICAL PRELIMINARIES
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In this chapter, we review the mathematical fundamentals and existing MOR meth-
ods considered in this thesis. We begin by introducing the setting of the differential
equations that describe the large-scale models we consider. Our focus is on systems both
in the frequency- and the time-domain. In the frequency-domain, we consider linear
parametric steady, time-harmonic, and time-dependent/dynamical systems, while in
the time-domain we consider parametric nonlinear dynamical systems. In general, our
approaches also apply to linear dynamical systems as special cases. Next, we introduce
concepts of projection-based MOR and the formulations of ROMs for the different types
of systems considered in the thesis. This is followed by two subsections devoted to high-
lighting the particular MOR techniques used in the thesis. In the frequency-domain,
we offer an overview of the available methods but focus more on the Multi-moment
Matching (MMM) method and its computational aspects. Among time-domain MOR
methods, we discuss the POD method and the RBM and sketch the state-of-the-art
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2. Mathematical Preliminaries

algorithms. We then discuss the notion of hyperreduction concentrating on its general
formulation. We detail the algorithms of two hyperreduction methods: Empirical In-
terpolation Method (EIM) and Discrete Empirical Interpolation Method (DEIM). We
conclude this chapter with an overview of radial basis interpolation techniques.

Before discussing the concrete mathematical details, we highlight the notations used
and also the styles used for the algorithms and figures.

General Notations We denote scalar-valued quantities with lower- and upper-case
letters (e.g., t, T ) or lower-case Greek alphabets (e.g., α, ω). We employ bold, lower-
case letters to represent vectors (e.g., x = [x1, . . . , xn]) where x1, . . . , xn represent the
components of the vector. Bold, upper-case letters denote matrices (e.g., A). Moreover,
A = [a1, . . . , aN ] with a1, . . . , aN being the vectors forming the columns of the matrix.
Upper case letters written in the script style (e.g., A ) stand for linear or nonlinear
operators. Sets and spaces are described with calligraphic letters (e.g., A) with the
exception of the L2 space, for which we use the upper-case alphabet. The calligraphic
letter L is reserved for the Laplace transform. We reserve upper-case Fraktur letters for
the Laplace-transformed variables (e.g., F(s)) For real- and complex-valued Euclidean
spaces of appropriate dimensions, we use blackboard letters Rn and Cn, respectively.

Algorithmic Notations Throughout the following chapters, we present the pseu-
docodes/algorithmic sketches of various methods that are either being used or pro-
posed in this thesis. To enable easy representation, we will often call an algorithm (say
Algorithm A) from within another (Algorithm B), with appropriate inputs. The
resulting output from the call to Algorithm A will be used subsequently in Algo-
rithm B. Where needed, we shall clarify the particular method/algorithm being called
with appropriate comments.
In all pseudocodes, we denote the variables associated with the loop, such as error,

iteration indices, etc. with italicized lower case letters or words (e.g., k, j, err_max,
indx_start, indx_end, iter etc.)

Figures In order to avoid the legends obstructing details of the plots, we have uni-
formly placed legends outside their corresponding figures, for all the figures in this
thesis.

2.1. Parametrized PDEs

In this thesis, we focus on large-scale systems arising from the discretization of parametrized
PDEs. The general form of the PDEs we consider is

∂

∂t
g(z, t,µ) = R[g(z, t,µ),u(t),µ]. (2.1)
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2.2. Discretized Systems

The quantity g : Ω×R≥0×P→ R is the field variable - the physical quantity modelled by
the PDE1. We consider the spatial domain Ω ⊂ Rd with d ∈ {1, 2, 3} and z ∈ Ω ⊂ Rd

denotes the spatial variable. Let V be a suitable Hilbert space of functions on the
domain Ω, such as L2(Ω) and we have g ∈ V. We assume that the boundary of
the spatial domain ∂Ω = Γdir

⋃
Γneu is endowed with appropriate boundary values

decomposed into Dirichlet and Neumann conditions, with Γdir denoting the parts of the
boundary with Dirichlet conditions and Γneu is the part with Neumann conditions. The
variable t ∈ [0, T ] ⊂ R≥0 denotes time and µ = [µ1, . . . , µNp ]

T ∈ P ⊂ RNp is the vector
of parameters characterizing the PDE and can be physical, material or geometrical
parameters. It can also represent additional source or boundary terms. R[·, ·, µ] is
a parametrized linear/nonlinear differential operator with three arguments, viz., the
field variable, a time-dependent input u : R≥0 → RNI and the parameter µ. We allow
the operator to be nonlinear with respect to (w.r.t) the state variable. Additionally, it
can be non-affine w.r.t the parameter µ. In many practical situations, some quantity
(quantities) obtained as a function of the field variable is (are) of interest. For instance,
in the context of control systems, this could be the value of the field variable over
some region of space where it needs to be controlled; in aeronautical systems, the
lift and drag coefficients are typical output quantities. We consider output quantities
y : R≥0×P→ RNO , where the output variable is a linear functional of the field variable,
i.e., y(t,µ) = o(g(z, t,µ),µ) ∈ RNO .
In applications such as electromagnetics, linear, time-dependent PDEs (for example,

the Maxwell’s equations) are first represented in a time-harmonic form using the Laplace
or Fourier transform of the field variable. We formally introduce the Laplace transform
in Definition 2.2. The general system of time-harmonic PDEs is shown below

H [G(z, s,µ),U(s),µ] = 0. (2.2)

Here, G : Ω×C×P→ V is the field variable after an integral transform. V now denotes
a complex Hilbert space on the domain Ω. The variable s ∈ C is the Laplace variable
and the input in the complex domain is given by U : C → CNI . For such systems the
output variable is y(s,µ) = o(G(z, s,µ),µ) ∈ CNO with y : P× C→ CNO .

2.2. Discretized Systems

In order to perform numerical simulations, the PDE needs to be discretized in space
and/or time domain. In the following section, we first consider discretization in space,
which results in differential-algebraic equations (DAEs), ordinary differential equations
(ODEs) for time-dependent problems, or algebraic equations for steady problems. Fol-
lowing that, we consider further discretization of DAEs or ODEs in the time domain.

2.2.1. Discretization in Space

In applications such as systems and control theory, (non)linear, time-dependent parametrized
PDEs are first spatially discretized using numerical discretization techniques such as

1For PDEs with more than one field variable we have g : Ω × R≥0 × P → Rm with m denoting the
number of field variables; see Chapter 6 for a detailed discussion.
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the FEM, FVM, etc. This results in a semi-discrete system of nonlinear DAEs/ODEs:

E(µ)
d

dt
x(t,µ) = A(µ)x(t,µ) + f(x,µ) + B(µ)u(t), x(0,µ) = x0(µ),

y(t,µ) = C(µ)x(t,µ).
(2.3)

Here, x(t,µ) ∈ RN , with N being the number of degrees of freedom. x0(µ) is the
parameter-dependent initial condition for the ODE. E(µ) ∈ RN×N is a matrix arising
from the spatial discretization employed (for example, E(µ) is the mass matrix when
using the FEM). Further, A(µ) ∈ RN×N is the matrix arising from discretization of
the linear part of the operator R[·, ·,µ] in Eq. (2.1). The nonlinear term f(x,µ) with
f : RN ×P −→ RN is the discretization of the nonlinear part of the operator R[·, ·,µ] in
Eq. (2.1). u(t) ∈ RNI is the time-dependent input vector, while B(µ) ∈ RN×NI is the
input matrix. y(t,µ) ∈ RNO×NI is the discretized output (matrix) and C(µ) ∈ RNO×N

is the discrete representation of the output functional o(·,µ).
When Eq. (2.1) is a linear problem, the f in Eq. (2.3) disappears, resulting in a linear

dynamical system:

E(µ)
d

dt
x(t,µ) = A(µ)x(t,µ) + B(µ)u(t), x(0,µ) = x0(µ),

y(t,µ) = C(µ)x(t,µ).
(2.4)

We assume the system matrices E(µ),A(µ),B(µ) and C(µ) possess the following
parameter affine representation:

E(µ) = E0 +

QE∑

i=1

θiE(µ)Ei, (2.5a)

A(µ) = A0 +

QA∑

i=1

θiA(µ)Ai, (2.5b)

B(µ) = B0 +

QB∑

i=1

θiB(µ)Bi, (2.5c)

C(µ) = C0 +

QC∑

i=1

θiC(µ)Ci. (2.5d)

where Ei ∈ RN×N , i = 0, . . . , QE; Ai ∈ RN×N , i = 0, . . . , QA; Bi ∈ RN×N , i =
0, . . . , QB and Ci ∈ RN×N , i = 0, . . . , QC. The quantities θiE, i = 1, . . . , QE, θiA, i =
1, . . . , QA, θiB, i = 1, . . . , QB and θiC, i = 1, . . . , QC are scalar-valued functions of the
parameters.

Remark 2.1:
The assumption of affine parameter dependence of the system matrices is not true in
general. However, there exists techniques such as hyperreduction which can be utilized
to obtain such a representation. A detailed discussion is postponed to Section 2.6. ♦
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In order to obtain a faithful representation of the PDE, a very fine discretization of
the spatial domain is generally preferred. Therefore, the number of degrees of freedom,
N , is usually large, and can be up to O(107) or greater. Such a large order of the
system poses a major computational challenge, especially when Eq. (2.3) (or Eq. (2.4))
needs to solved repeatedly, or when the system needs to be simulated over a long time
interval.
Equation (2.4) is called linear time-invariant (LTI) system in systems and control

theory. In the parametric case, we denote it as parameterized LTI (P-LTI) system.
When NI = NO = 1, such systems are called single-input single-output (SISO) systems.
They are termed multiple-input multiple-output (MIMO) systems when NI , NO > 1.
Usually, for many systems, the number of inputs and outputs is much smaller than the
state-space dimension, i.e., NI , NO � N .
An important tool in the analysis of LTI and, more generally, P-LTI systems is

their frequency-domain representation. The frequency domain representation of P-LTI
systems is obtained by applying suitable integral transforms, such as Laplace transform
or Fourier transform. Here, we use the Laplace transform.

Definition 2.2 (Laplace Transform):
Let q : R≥0 −→ Rn be a locally integrable, vector-valued function. Its one-sided Laplace
transform is given by L : q 7→ Q with

Q(s) := L[q(t)](s) :=

∞∫

0

e−s t q(t) dt, s ∈ C

where s = α + ω,  is the imaginary unit and ω := 2πf is the angular frequency with
units radians/s with f being the ordinary frequency with units Hz. ♦

The strength of the frequency domain representation is that it allows transforming linear
differential equations to linear algebraic equations, resulting in a simplified solution
through (shifted) matrix inversion operations. For a fixed parameter µ, let the one-sided
Laplace transforms of x(t),u(t),y(t) be X(s),U(s) and Y(s), respectively. Assuming
zero initial condition x0(µ) = 0 and applying the Laplace transform to Eq. (2.4) yields

sE(µ)X(s,µ) = A(µ)X(s,µ) + B(µ)U(s), (2.6a)
Y(s,µ) = C(µ)X(s,µ). (2.6b)

Eliminating X(s,µ), we obtain

Y(s,µ) =
(
C(µ)(sE(µ)−A(µ))−1B(µ)

)
U(s).

Hereafter, we denote by µ̆ := [s µ]T ∈ CNp+1 the augmented set of parameters.

Definition 2.3 (Parametric Transfer Function):
With the shifted matrix R(µ̆) := (sE(µ) − A(µ)) being invertible ∀ s ∈ C\P , ∀µ,
and P being the set of eigenvalues of R(µ̆) ∀ µ̆, the matrix-valued rational function
H : CNp+1 −→ CNO×NI defined as

H(µ̆) := C(µ)R(µ̆)−1B(µ) (2.7)
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u(t) ∈ RNI x(t) ∈ RN y(t) ∈ RNO

Figure 2.1.: Input-Output System.

is the parametric transfer function corresponding to the P-LTI state-space representa-
tion in Eq. (2.4). ♦

We assume that for any parameter, the spectrum of the matrix pencil (sE(µ)−A(µ)) ≡
R(µ̆) falls strictly within the open left-half of the complex plane denoted by C−. This
ensures the asymptotic stability of Eq. (2.7). The transfer function encodes the dynam-
ical behaviour of the system and its major advantage is that it is input-independent.

One way to understand transfer functions is to see them, for a fixed parameter µ̆,
as a map from the input to the output, i.e., H : RNI → RNO that passes through a
high-dimensional intermediate state in RN (see Figure 2.1). The transfer function in
Eq. (2.7) may be equivalently written as

H(µ̆) :=
(
C(µ)R(µ̆)−1

)
R(µ̆)

(
R(µ̆)−1B(µ)

)
.

From this, we can define the following two shifted linear systems:

Definition 2.4 (s-Primal System):
The shifted linear system that maps the input to the state vector, given by

R(µ̆)Xpr(µ̆) = B(µ) (2.8)

is called the frequency-domain primal system or s-primal system with Xpr(µ̆) ∈ CN×NI .
Note that the s-primal system is nothing but the frequency-domain system in Eq. (2.6)
with U(s) = 1. ♦

Definition 2.5 (s-Dual System):
The shifted linear system that maps the state vector to the output, given by

R(µ̆)TXdu(µ̆) = C(µ)T (2.9)

is called the frequency-domain dual system or s-dual system with Xdu(µ̆) ∈ CN×NO . ♦

We will utilize the s-primal and s-dual systems in the context of a posteriori error esti-
mation of input-output systems in Chapter 3.
In many applications, such as electromagnetics or circuit simulation, the preferred

approach for solving linear PDEs (e.g., the Maxwell’s equations) is somewhat different.
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2.2. Discretized Systems

The time-dependent PDE Eq. (2.1) is first transformed to a time-harmonic PDE by
using the Laplace transform. Following this, it is discretized using standard FEM
techniques in a complex vector space CN . This process results in the following time-
harmonic system:

A(µ̆)X(µ̆) = B(µ̆),

Y(µ̆) = C(µ̆)X(µ̆).
(2.10)

We do not offer any detailed discussion here and instead refer to [140] for a complete
description. In the above equation, X(µ̆) ∈ CN×NI is the discretized solution matrix
for the time-harmonic PDE (such as Eq. (2.2)) and Y(µ̆) ∈ CNO is the output quan-
tity of interest. The matrices A(µ̆) ∈ CN×N ,B(µ̆) ∈ CN×NI result from the spatial
discretization of the operator H in Eq. (2.2). In Eq. (2.10) above, the first equation is
similar in form to Eq. (2.8). Depending on the context, we will use the term s-primal
system to denote either of these equations.

Remark 2.6:
The use of a complex vector space to discretize the Maxwell’s equations is not a lim-
itation. In fact, the discretized system can be reformulated as a real system with
real-valued matrices and solution vector with dimension 2N , by using the isomorphism
between C and R2. This issue will be further detailed in Chapter 3. ♦

Remark 2.7:
For the case of µ̆ = µ, Eq. (2.10) is the discrete form of an elliptic PDE such as

R[g(z,µ),µ] = 0

which is a special case of Eq. (2.1), i.e., we call Eq. (2.10) with µ̆ = µ the steady
system. ♦

2.2.2. Discretization in Time

Time-discretization is needed for numerically simulating the semi-discretized systems
Eqs. (2.3) and (2.4). To this end, we discretize the time variable t into Nt := K + 1
parameter-independent time instances 0 =: t0 < t1 < · · · < tk < · · · < tK := T with
tk = k∆t, k = 0, 1, . . . , K.
Both fully explicit and fully implicit time discretization approaches exist in literature.

Explicit techniques such as the Forward Euler scheme, Runge-Kutta 45 scheme, etc.
obtain the future value of the state variable x(t) at a given parameter, from its current
or past values. We have,

x(tk+1) = G(x(tk),x(tk−1), . . . ,x(tk−s)).

with s chosen based on the particular scheme adopted. In the case of the Forward
Euler scheme s = 0. Implicit techniques, such as the Backward Euler scheme, Crank-
Nicolson method, etc., determine the state variable at a future time instant by solving
an equation (possibly nonlinear) that involves both the past state values and the future
state value itself

G(x(tk+1),x(tk),x(tk−1), . . . ,x(tk−s)) = 0.

15



2. Mathematical Preliminaries

Explicit schemes are straightforward to implement and carry less computational bur-
den. But, they often impose a severe restriction on the value of ∆t: extremely small
values of ∆t are required for accurate results. Implicit schemes do not have such a strict
time step restriction, however, they require extra computation in solving a possibly non-
linear system of equations at each time step, using, for instance, the Newton iterations.
Moreover, implicit schemes are highly suitable for problems exhibiting stiffness.
A more nuanced approach that combines the benefits of the fully explicit and fully

implicit methods is the family of Implicit-Explicit (IMEX) methods [16]. Such methods
make a distinction in the discretization of the linear and nonlinear terms of the ODE.
An implicit scheme discretizes the linear part and an explicit method discretizes the
nonlinear part. In this thesis, we use either a fully implicit or an IMEX time discretiza-
tion method, depending on the system. Details regarding the particular method used
will be mentioned in the numerical sections.

Discrete Full-Order Model Using the first-order IMEX method (often referred to as
IMEX Euler scheme) to discretize Eq. (2.3) or its special case Eq. (2.4) in time, the
resulting fully discrete system reads

1

∆t

(
E(µ)xk+1 − E(µ)xk

)
= A(µ)xk+1 + f(xk,µ) + B(µ)u(tk), x(t0,µ) = x0.

The quantity xk ∈ RN is the fully discretized numerical solution of the PDE in Eq. (2.1)
at some time tk. For the sake of clean notation, we have not explicitly shown the
parameter dependency of xk. Rewriting the above equation by separating all terms at
time tk+1 to the left, we get the following fully-discrete system

E(µ)xk+1 = A(µ)xk + f(xk,µ) + B(µ)u(tk),

yk+1 = C(µ)xk+1
(2.11)

where E(µ) := E(µ)−∆tA(µ), A(µ) := E(µ), B(µ) := ∆tB(µ) and f := ∆tf .

2.3. Concepts of Projection-based MOR

As highlighted in Chapter 1, the FOMs obtained through the space and/or time dis-
cretization of parametric PDEs (Eqs. (2.3), (2.4), (2.10) and (2.11)) are usually large-
scale systems, with large value of N . To enable repeated and real-time evaluations
of such systems, surrogate models, or ROMs, with reduced computational complexity
are desired. Over the years, a number of ways to obtain surrogate models have been
suggested in the literature. In the survey [35], three prominent categories of surrogate
models are mentioned. They are:

(i) data-fit ROMs,

(ii) hierarchical ROMs, and

(iii) projection-based ROMs.
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Data-fit ROMs are oblivious to the underlying model and they rely purely on data
to perform interpolation or regression. Popular methods in this category include:
response-surface models, kernel methods [80] such as radial basis function (RBF) inter-
polation and gaussian process regression [170]. In recent years, a number of methods
based on neural networks and machine learning methodologies have been proposed
for MOR [114, 128]. These methods also fall under the category of data-fit ROMs.
Due to their reliance on data and not on the model, these methods are often called
non-intrusive methods. Hierarchical surrogate models involve using a hierarchy of dif-
ferent models with varying levels of accuracy to describe the underlying physics of the
model. Prominent approaches are mesh coarsening techniques, alternative basis expan-
sion, multigrid methods, etc. [15, 129]. Finally, projection-based MOR methods seek to
identify a lower-dimensional subspace of the solution space over which the FOM solu-
tions evolve and project the governing equations onto this subspace. This results in the
order (number of equations) reduction of the FOM. Moreover, these methods preserve
the structure of the underlying model and its associated physics. This can be beneficial
when certain special properties of the system, such as, stability, passivity, etc. need to
be preserved. Projection-based methods are intrusive techniques. Beyond these three
categories, there exist other data-driven methods such as the Loewner approach [14]
and the operator-inference approach [31, 161]. In this thesis, we shall restrict our focus
exclusively to projection-based approaches.
Next, we introduce the main idea of projection-based MOR through the example of

the linear system in Eq. (2.4). Formally, we seek a subspace SV with dimension n� N .
We use the term reduced basis (RB) to denote a basis of SV . Let {vi}ni=1, with vi ∈ RN ,
be the basis vectors constituting the RB. We define

SV := span{v1,v2, . . . ,vn} ⊂ RN .

We set SV to be the trial space that approximates the solution space of the FOM. For
Eq. (2.4) we seek an approximation to the solution x(t,µ) in the form

x(t,µ) ≈ x̃(t,µ) =
n∑

i=1

vix̂i(t,µ) = Vx̂(t,µ), (2.12)

where V := [v1 v2 · · · vn] ∈ RN×n. Substituting x(t,µ) with the approximation x̃(t,µ)
in Eq. (2.4) results in the following residual system:

r(t,µ) = E(µ)
d

dt

(
Vx̂(t,µ)

)
−A(µ)Vx̂(t,µ)−B(µ)u(t).

The above residual system is over-determined, with N equations and n unknown vari-
ables. In the next step, we seek a test space SW and adopt a Petrov-Galerkin projection
so that

r(t,µ) ⊥ SW .

Let W := [w1 w2 · · · wn] ∈ RN×n, SW = range(W) and WTV = I, then the ROM for
Eq. (2.4) is

Ê(µ)
d

dt
x̂(t,µ) = Â(µ)x̂(t,µ) + B̂(µ)u(t), x̂(0,µ) = x̂0(µ) = WTx0(µ),

ŷ(t,µ) = Ĉ(µ)x̂(t,µ).

(2.13)
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Remark 2.8:
Care needs to be exercised while obtaining a ROM for a system with non-zero initial
condition, i.e., x0(µ) 6= 0. As pointed out in [21], when the norm ‖x0‖2 of the non-zero
initial condition is large, a significant error can be introduced when approximating the
initial condition using projection. Proceeding in the manner described above, we have
that

x0(µ) 6= Vx̂0(µ) = VWTx0(µ).

This incorrect approximation of the initial condition can lead to large deviations in the
dynamics of the true and the reduced systems. A solution to this problem is to perform
a coordinate transformation of the form

xc = x− x0,

such that the transformed system has zero initial condition [21]. Besides this, other
works such as [22, 109] also discuss the MOR of systems with non-zero initial conditions
but the details are beyond the scope of this thesis. ♦

The reduced system matrices are obtained by making use of the affine parameter de-
pendence of the system matrices.

Ê(µ) := WTE0V +

QE∑

i=1

θiE
(
WTEiV

)
, (2.14a)

Â(µ) := WTA0V +

QA∑

i=1

θiA
(
WTAiV

)
, (2.14b)

B̂(µ) := WTB0 +

QB∑

i=1

θiB
(
WTBi

)
, (2.14c)

Ĉ(µ) := C0V +

QC∑

i=1

θiC
(
CiV

)
. (2.14d)

This is a major advantage in enabling a cheap computation of the ROM since the
parameter-independent terms (e.g.,

(
WTEiV

)
) can be precomputed once and for all,

if W,V are known.
The transfer function corresponding to the ROM in Eq. (2.13) is defined as

Ĥ(µ̆) := Ĉ(µ)R̂(µ̆)−1B̂(µ), (2.15)

where R̂(µ̆) := WTR(µ̆)V =
(
sÊ(µ)−Â(µ)

)
. It is called the reduced transfer function

throughout the thesis. A similar procedure can be used to obtain the ROMs for the
time-harmonic system Eq. (2.10) and the fully discrete nonlinear system Eq. (2.11).
The ROM corresponding to the linear parametric system in Eq. (2.10) is given by:

Â(µ̆)X̂(µ̆) = B̂(µ̆),

Ŷ(µ̆) = Ĉ(µ̆)X̂(µ̆)
(2.16)

with X(µ̆) ≈ X̃(µ̆) = VX̂(µ̆) and V ∈ RN×n.

18



2.4. Frequency-domain MOR Methods

The ROM for the nonlinear system in Eq. (2.3) is of the form

Ê(µ)
d

dt
x̂(t,µ) = Â(µ)x̂(t,µ) + f̂(x̂,µ) + B̂(µ)u(t), x̂(0,µ) = x̂0(µ) = WTx0(µ),

ŷ(t,µ) = Ĉ(µ)x̂(t,µ)
(2.17)

where, in addition to the already defined variables, we have the reduced nonlinear
quantity f̂(x̂,µ) := WTf(Vx̂,µ). Furthermore, for the fully discrete nonlinear system
Eq. (2.11) the ROM is of the form:

Ê(µ)x̂k+1 = Â(µ)x̂k + f̂(x̂k,µ) + B̂(µ)u(tk),

ỹk+1 = Ĉ(µ)x̂k+1
(2.18)

where Ê(µ) := WTE(µ)V = Ê − ∆tÂ, Â(µ) := WTA(µ)V = Ê and f̂(x̂k,µ) :=

WTf = ∆t̂f(x̂,µ).

Remark 2.9:
When the test space SW is the same as the trial space SV , or equivalently, W = V,
then the projection is denoted as a Galerkin projection. In applications such as circuit
simulation, a Galerkin projection is preferred for its special properties such as stability
preservation (see [148]). However, it has also been noticed [7] that Galerkin ROMs of
some systems arising from fluid dynamics are unstable and a Petrov-Galerkin approach
is preferred to ensure stability. ♦

Remark 2.10:
It is not always the case that the ROMs mentioned above are computationally cheaper
to evaluate when compared to their corresponding FOMs. For nonlinear and non-affine
systems, the ROM evaluation continues to incur a cost scaling with the high-dimension
N . A solution to address this is the use of hyperreduction techniques, which will be
addressed in more detail in Section 2.6. ♦

In order to obtain ROMs, we need to identify suitable left and right projection matrices
V,W. A number of methods are available in the literature whose goal is the efficient
construction of the two projection matrices in the frequency- or the time-domain. We
only give a review of those MOR methods that are used in this thesis.

2.4. Frequency-domain MOR Methods

Frequency-domain MOR techniques are principally targeted towards the frequency-
domain or input-output representation of systems (see, for example, Eqs. (2.4), (2.7)
and (2.10)) and are popular in the systems and control theory community. Such tech-
niques broadly fall under two families: Gramian-based approaches such as BT [29,
141, 194], Hankel-norm approximation [11, 205], Singular Perturbation Approxima-
tion [130], etc. and Krylov-subspace approaches such as Padé approximation, moment
matching, rational interpolation [11, 101, 202]. Due to its relevance in this thesis, we
give a detailed overview of the Krylov-subspace methods, in particular MMM.
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2.4.1. Krylov-subspace Methods

Krylov-subspace methods seek projection matrices W,V via interpolating the original
transfer function (and its derivatives). They are applicable to problems with a fixed
value of µ and the transfer function reads H(s) := C(sE−A)−1B. We write its power
series at an expansion point s0 ∈ C\P as

H(s) = C
(
(s− s0 + s0)E−A

)−1
B,

= C
(
(s0E−A) + (s− s0)E

)−1
B,

= C
[
I + (s− s0)(s0E−A)−1E

]−1
(s0E−A)−1B,

=
∞∑

i=0

[
C[−(s0E−A)−1E]i(s0E−A)−1B

]

︸ ︷︷ ︸
=:ηi(s0)

(s− s0)i

(2.19)

with P denoting the set of all eigenvalues of (sE −A). Note that, in going from the
second last to the last equality, we have made use of the Neumann lemma which states
that for some ‖F‖ < 1, (I − F )−1 =

∑∞
i=0 F

i. Here, ‖ · ‖ is the induced matrix norm.

Definition 2.11 (Moments of the Transfer Function):
The quantity ηi(s0) in the power series expansion of H(s) in Eq. (2.19) is defined as
the i-th moment of the transfer function around some point s0, i = 0, 1, . . .. Moreover,
the moments are related to the derivatives of the transfer function H(s) w.r.t. s [11]
as

ηi(s0) =
(−1)i

i!
H(i)(s0). (2.20)

where the superscript (i) of H represents the order of the derivative, for e.g., H(1)(s) =
d
ds

H(s), H(2)(s) = d2

ds2
H(s) and so on. ♦

Moment-matching methods construct a ROM so that moments of its reduced transfer
function Ĥ(s) (denoted η̂i(s0), i = 0, 1, . . . , ζ) match those of the original transfer func-
tion H(s) at s0. Depending on the choice of the expansion point(s), the corresponding
moment-matching method is known by different names. We highlight each below:

• For a single expansion point s0 = 0, the moments are ηi(0) = C(−A−1E)iA−1B.
We seek ηi(0) = η̂i(0), i = 0, 1, . . . , ζ. This approach is called Padé approxima-
tion. It preserves the DC gain H(0) and has good accuracy at low frequencies.
For some problems in circuit simulation, it is even accurate at frequencies up to
MHz.

• For a single expansion point s0 =∞, the moments are obtained as C(E−1A)i−1E−1B
and we require ηi(∞) = η̂i(∞) i = 0, 1, . . . , ζ. This approach is known by the
name of partial realization and the moments ηi(∞) are the Markov parameters.
They are useful to characterize the impulse response of the system.

• Given a set of expansion points {sj}Jj=1 aiming at η(sj) = η̂(sj), the approach is
termed rational interpolation or multipoint rational interpolation. Therefore, sj
are also called the interpolation points. We may alternatively use both names in
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2.4. Frequency-domain MOR Methods

this thesis. For this case, the moments are given by ηi = C
(
(A−sjE)−1E

)i
(sjE−

A)−1B, i = 1, 2, . . . , ζj, with ζj referring to the number of moments to be matched
at the j-th expansion/interpolation point sj. We shall exclusively consider mul-
tipoint rational interpolation in the subsequent discussions. When the interpola-
tion points are properly chosen, this approach is accurate for problems with wide
frequency bands, e.g., f ∈ [0, 10] GHz.

Constructing V,W for the ROM is done based on a Krylov-subspace, which we
define next.

Definition 2.12 (Krylov-subspace [139]):
Let A ∈ RN×N be a non-singular matrix, q ∈ RN be a vector and m ≥ 1 an integer.
The m-th order Krylov subspace Km(A,q) is defined as

Km(A,q) = span{q, Aq, A2q, . . . , Am−1q}.

For Q ∈ RN×p, the m-th order block Krylov space is defined as

Km(A,Q) = span{Q, AQ, A2Q, . . . , Am−1Q}. ♦

The connection between interpolating the transfer function and the moments of the
transfer function is made clear in the following theorem:

Theorem 2.13 ([101]):
Let H(s), Ĥ(s) be the original and reduced transfer function. Let {sj}Ji=1 ∈ C\P be
the set of interpolation points, if the projection matrices V, W are chosen such that
they span suitable Krylov-subspaces, i.e.,

J⋃

j=1

Kζj

(
(A− sjE)−1E, (A− sjE)−1B

)
⊆ span(V),

J⋃

j=1

Kζj

(
(A− sjE)−TET, (A− sjE)−TCT) ⊆ span(W),

then the first 2ζj moments (starting from the zeroth moment) of Ĥ(sj) match the first
2ζj moments of H(sj) for all j = 1, 2, . . . , J . Usually, the same number of moments are
matched at each interpolation point and we have ζ1 = ζ2 = · · · = ζJ . ♦

Remark 2.14:
The Petrov-Galerkin approach involving the two projection matrices V 6= W is called
two-sided moment matching. A Galerkin approach, called one-sided moment matching,
is also possible with V = W. For this case, only the first ζ moments (including the
zeroth moment) of the reduced transfer function Ĥ(s) match those of the original
transfer function H(s) for each interpolation point, i.e., we have

ηi(sj) = η̂i(sj), j = 1, 2, . . . , J & i = 0, 1, . . . , (ζ − 1). ♦
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Solving the above shifted linear system of equations and generating the respective
Krylov-subspaces can be achieved efficiently through the rational Krylov algorithm or
the modified Gram-Schmidt process. Unlike BT, there are no general a priori error
bounds for Krylov-subspace methods, but recent work has sought to address this [154].
Moreover, Krylov-subspace methods do not preserve stability automatically; special at-
tempts have, however, been made to have Krylov-subspace ROMs that retain passivity
or stability [79, 148]. The choice of the interpolation or expansion points {sj}Jj=1 plays
a crucial role in determining the approximation quality of the reduced transfer func-
tion. The IRKA algorithm was proposed in [102] to identify the interpolation points
iteratively by minimizing the H2-norm of the transfer function. Extensions to weakly-
nonlinear systems have also been considered [25, 30]. Another approach to determine
the interpolation points is to use a posteriori error bounds/estimators to pick a series
of points from a training set Ξ [81, 85]. In Chapter 3, we discuss this approach in more
detail.
Moment-matching techniques have also been extended to parametric systems H(µ̆)

by considering the multivariate power series of the transfer function at an expansion
point µ̆0 [35]. Next, we detail the MMM method, which we shall use extensively in
Chapter 3.

2.4.2. Multi-moment Matching Method

While in the previous section we considered moment matching for the one-parameter
case (s, the Laplace variable), multi-moment matching aims at moment matching for
systems with more general parameter dependence. The first works to treat this prob-
lem include [39, 64]. In [82], a robust algorithm is proposed to realize multi-moment
matching implicitly. In what follows, we adopt the setting in [82] to detail the MMM
method.
The MMM method is applicable to parametric dynamical and steady/time-harmonic

systems [84]. We use Galerkin projection to illustrate the method. For dynamical
systems such as Eq. (2.4), the projection matrix V is obtained from its frequency-
domain representation in Eq. (2.6), i.e.,

R(µ̆)X(µ̆) = B(µ)u(s), (2.21a)
Y(µ̆) = C(µ)X(µ̆). (2.21b)

Let H(µ̆) := C(µ)R(µ̆)−1B(µ) be the associated transfer function for the system
Eq. (2.21). The MMM method assumes that the parameter affine representation of
R(µ̆) is available and is given by:

R(µ̆) := R0 +
h∑

i=1

θi(µ̆)Ri.

Expanding X(µ̆) into a Taylor series at an expansion point θ0 = [θ0
1, · · · , θ0

h]
T, we

obtain

X(µ̆) =

(
I−

(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

))−1

BMu(s), (2.22)
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where θ̃i := (θi − θ0
i ), R̃ := R0 + θ0

1R1 + · · · + θ0
hRh and Mi := −R̃−1

Ri for all
i = 1, 2, . . . , h. We set BM := R̃

−1
B(µ). Making use of the Neumann lemma, the

solution may be expanded in terms of the infinite series below:

X(µ̆) =
∞∑

i=0

(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)i
BMu(s),

= BMu(s) +
(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)
BMu(s) + · · ·

+
(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)j
BMu(s) + · · ·

(2.23)

With the definitions

X0 := BM,

X1 :=
(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)
BM =

(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)
X0,

X2 :=
(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)2
BM =

(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)2
X1,

...
...

...

Xj :=
(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)j
BM =

(
θ̃1M1 + θ̃2M2 + · · ·+ θ̃hMh

)j
Xj−1,

...
...

...

we get X = (X1 + X2 + · · · )u(s). Using the relations between successive terms in the
above expansions, we can define the following recursive subspace sequence:

R0 = BM,

R1 =
[
M1R0,M2R0, . . . ,MhR0

]
,

R2 =
[
M1R1,M2R1, . . . ,MhR1

]
,

...
...

Rj =
[
M1Rj−1,M2Rj−1, . . . ,MhRj−1

]
,

...
...

For each term in the sequence, C(µ̆)Rj corresponds to the j-th multi-moment of H(µ̆)
for all j = 0, 1, . . .. We collect up to the ζ-th term (starting from zero) in the above
sequence and set

R := span{R0,R1, . . . ,Rζ}

such that X ≈ X̃ ∈ R, X̃ = VX̂. The orthonormal basis V of R can be constructed
using a modified Gram-Schmidt process. Algorithm 2.1 sketches the pseudocode, orig-
inally proposed in [82].

Remark 2.15:
For time-harmonic systems in Eq. (2.10) or steady systems (µ̆ = µ in Eq. (2.10)) the
derivation of V is similar and can be done by replacing R(µ̆) in Eq. (2.21) with A(µ̆)
or A(µ), respectively. ♦
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The resulting ROM for Equation (2.4) is in the form of Equation (2.13), with V = W

computed from Algorithm 2.1. The reduced transfer function Ĥ(µ̆) of the ROM is then
Ĥ(µ̆) := Ĉ(µ)R̂(µ̆)−1B̂(µ). We state the following theorem:

Theorem 2.16 (Multi-Moment matching [82]):
Suppose the reduced transfer function Ĥ(µ̆) is obtained via Galerkin projection us-
ing the matrix V. If V satisfies range(V) = span{R0,R1, . . . ,Rζ}, then the multi-
moments of Ĥ(µ̆) match those of H(µ̆) up to order ζ, that is, C(µ)Rj = Ĉ(µ)R̂j, j =
0, 1, . . . , ζ. ♦

For a proof of the above theorem, we refer to [82]. Having reviewed some frequency-
domain MOR techniques, we now turn to time-domain MOR methods.

2.5. Time-domain MOR Methods

Time-domain MOR techniques include methods such as the PODmethod and the RBM.
In the fluid dynamics community, the Dynamic Mode Decomposition (DMD) [58, 127,
178, 184, 206] is a popular approach. A more recent time-domain MOR method is the
operator-inference approach [31, 161]. Below, we only give a review of the POD method
and the RBM as they will be used extensively in this thesis.

2.5.1. Proper Orthogonal Decomposition

POD has a long history in mathematics as a data analysis and compression tool. Its
principal application is to transform and represent data in a new (preferably lower
dimensional) coordinate system whose basis vectors are orthogonal and are obtained
from the data itself. This underlying idea has been used in different contexts in sev-
eral fields, under different names: Principal Component Analysis (PCA) in statistics,
Karhunen-Loève Transform (KLT) in stochastics and signal processing, singular value
decomposition (SVD) in numerical linear algebra, etc. As a MOR tool, POD was
initially used in fluid dynamics [117] to decompose a flow field and represent its charac-
teristics in a few generic (orthogonal) modes. It is usually the most preferred method
to perform MOR of nonlinear dynamical systems.
POD works on snapshots of the solution to a FOM such as the system in Eq. (2.3)

or Eq. (2.11). We define Ξ := [µ̄1, µ̄2, . . . , µ̄ns ] as the training set consisting of time
and parameter samples, i.e., µ̄ = t, µ̄ = µ, or µ̄ = (t,µ) at which the data vectors
{di := d(µ̄i)}nsi=1 are obtained. We denote by D := [d1,d2, . . . ,dns ] ∈ RN×ns the
snapshot matrix containing all the snapshots as its columns. POD first applies SVD to
D:

D = LΣKT

where L ∈ RN×N , K ∈ Rns×ns are orthogonal matrices. The columns of L,K are,
respectively, the left singular vectors and right singular vectors. The main diagonal
of the rectangular matrix Σ ∈ RN×ns contains non-negative elements arranged in a
decreasing order: σ1 ≥ σ2 ≥ · · · ≥ σnd > σnd+1

= σnd+2
= · · · = σns = 0, where

nd ≤ min(N, ns) is the rank of D. The columns of L, {li}Ni=1 are the POD basis or
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Algorithm 2.1: mmm
Computes the projection basis V using the Multi-moment Matching Method.
Input: System matrices: R,B, Number of multi-moments to match ζ,

Deflation tolerance εdef.
Output: Projection matrix V := [v1,v2, . . . ,vnmm ].

1 Initialization: ncol = 0, indx_start = 0, indx_end = 0.

2 Compute R0 = R̃
−1

B(µ).
3 if size(B, 2) > 1 then
4 V = mgs_def(R0, εdef); ncol = size(V, 2). /* Algorithm A.1 (Appendix A.1)

modified Gram-Schmidt with deflation to orthogonalize the columns of R0,
ncol is the number of columns in the orthogonal basis V */

5 else
6 V = R0

‖R0‖2 ; ncol = 1.
7 end
8 for iter = 1, 2, . . . , ζ do
9 indx_end = ncol.

10 for j = 1, 2, . . . , h do
11 if indx_start == indx_end then
12 break
13 else
14 for k = indx_start+ 1, . . . , indx_end do
15 m = R̃

−1
Rjvk.

16 vorth = orth_def(V,m, εdef).
17 V =

[
V ,vorth

]
; ncol = size(V, 2).

18 end
19 end
20 end
21 indx_start = indx_end.
22 end

23 Function orth_def(V, m, εdef):
24 col = size(V, 2)
25 for k = 1, 2, . . . , col do
26 h = vT

km.
27 m = m− hvk.
28 end
29 if ‖m‖ > εdef then
30 vorth := m

‖m‖2 .
31 else
32 vorth = [ ].
33 end
34 return vorth.
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Algorithm 2.2: pod
Computes the rank-n Proper Orthogonal Decomposition (POD) basis.
Input: Data matrix: D, POD tolerance εPOD or desired rank n.
Output: POD basis V.

1 Compute the SVD of the data matrix: D
SV D−−−→ LΣKT.

2 if n is not an input then
3 Find the smallest n for which RIL < εPOD in Eq. (2.26).
4 end
5 return V = L(: , 1 : n).

POD modes of the data. The projection matrix V is obtained by selecting the first
n ≤ nd POD modes, i.e., V := L(: , 1 : n). The rank n POD basis has the following
optimality property:

Theorem 2.17 (POD optimality [203]):
Let D be a given data matrix and let D = LΣKT be its SVD as described above. For
any n ∈ {1, 2, . . . , nd} the solution to the following optimization problem

max
l̄1,...,̄ln∈RN

n∑

i=1

ns∑

j=1

∣∣〈dj, l̄i〉
∣∣2, such that, 〈̄li, l̄j〉 = δij, 1 ≤ i, j ≤ n (2.24)

is given by the left singular vectors {li}ni=1. Setting V := L(: , 1 : n) minimizes the least
squares error in approximating the data matrix, that is,

min
V∈RN×n

‖D−VVTD‖2
F = min

V∈RN×n

ns∑

i=1

‖di −VVTdi‖2
2 =

nd∑

i=n+1

σ2
i . (2.25)

In Eq. (2.24), δij is the Kronecker delta: δij = 1, for i = j and δij = 0, otherwise. ♦

Algorithm 2.2 sketches the pseudocode for constructing the rank n POD basis. For
many systems, the rank n to get a good approximation of the data matrix D is very
small, i.e., n � N . The appropriate choice of the reduced dimension n is often done
through heuristics [164]. For example, in fluid dynamics, n is chosen as the smallest
quantity for which the following expression is true:

RIL =

nd∑
j=n+1

σ2
j

nd∑
j=1

σ2
j

< εPOD. (2.26)

RIL stands for the relative information loss and ((1−RIL)/100) means the percentage
of ‘energy’ captured by the retained singular values {σi}ni=1. Here, εPOD is a small,
user-desired tolerance in approximation, for example, 10−5, 10−10, etc. This expression
has been adopted in other applications to good effect. Another recent approach to
determine n is based on singular value thresholding [4].
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In [87], the authors discuss an adaptive procedure to determine the reduced order
n by starting from a small value and making iterative increments. The magnitude of
the increments is determined using an a posteriori error estimator. We propose an
extension of this in Chapter 4, in the form of a two-way adaptive scheme that can
iteratively increment and decrement the reduced order n.
The choice of the snapshots {di}nsi=1 (equivalently, the choice of time and parameter

instances in the training set Ξ where the solution is sampled) is crucial to obtain a good
ROM. For non-parametric dynamical systems, a number of works discuss selection cri-
teria to obtain optimal time snapshot locations [126, 151]. For data matrices containing
many snapshots, the Adaptive Snapshot Selection (AdSS) method from [213] has been
proposed to remove (almost) linearly dependent information from the trajectory. For
general parametric systems, strategies such as Latin Hypercube sampling, Orthogonal
sampling [41], sparse grid sampling [6], etc. have been considered. However, these ap-
proaches are often not very effective since they do not take into account the underlying
model and its dynamics in the sampling process. Even if ‘optimal’ snapshot locations
were available, POD still faces the issue of needing a FOM solution at each parameter
sample to generate the data matrix. This is often prohibitive for large-scale systems,
especially when the number of samples ns is large.
Although the snapshots for POD may come from simulations of discretized (dynam-

ical) systems such as those in Eq. (2.3), the method itself makes no assumptions about
the underlying model which generated the data. The optimality property in Theo-
rem 2.17 concerns optimal data reconstruction and does not carry over to the ROM
generated using the POD basis V. The work [171] gives a good analysis of this. For
nonlinear systems, the ROM obtained through a Galerkin projection using the POD
basis may not yield the desired computational speedup. This is caused by the reduced
nonlinear term (e.g., f̂(x̂,µ)), whose evaluation still depends on the dimension N of
the FOM; see also Remark 2.10. Next, we detail the RBM, a time-domain MOR ap-
proach that incorporates knowledge about the underlying model in the sampling process
through a posteriori error estimators.

2.5.2. Reduced Basis Method

RBM is a widely used MOR technique tailored towards parametrized PDEs. The origin
of RBM as a model reduction approach dates all the way back to the 1970s, when
it was initially used to reduce systems arising from linear and nonlinear structural
analysis [5, 88, 142, 146, 147]. Succeeding decades saw further developments of RBM
in theory [165, 175], and applications [122, 162]. In the early 2000s, several major
breakthroughs in the RBM such as the Greedy algorithm for basis generation and
rigorous a posteriori error estimation were made, establishing the method in a sound
theoretical and numerical formulation; see [133, 166] and references therein. These
works extended the RBM to (i) linear elliptic problems, both coercive and non-coercive
[177, 201], (ii) linear parabolic problems [97, 100], (iii) nonlinear and/or non-affine
elliptic, parabolic problems [99, 200]. Recent works have focussed on extending RBM
to problems with high parameter dimension [75, 113], hyperbolic problems [63, 94], to
name just a few. A comprehensive discussion may be found in the books [112, 167] and
in the survey works [60, 180].
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The RBM also relies on solution snapshots to identify a suitable projection matrix V.
However, unlike POD, V is enriched iteratively. The RBM has some salient features
that sets it apart in comparison to other MOR methods. These are:

(a) A posteriori error estimation: an error estimator or indicator for the state or
output variable is utilized to steer the parameter sampling for iteratively updating
the basis V and to certify the accuracy of the ROM.

(b) Greedy sampling: RBM makes use of a greedy sampling strategy guided by the
error estimator to efficiently explore the parameter space P; this ensures construc-
tion of a good projection basis at a reasonable computational cost.

It is also worth mentioning here that the RBM was the first PMOR technique that
formalized the offline-online paradigm, which involves performing computationally ex-
pensive tasks such as basis generation only once, at an offline stage. The online stage
involves evaluating the ROM rapidly at any desired parameter with costs that do not
scale with the order N of the FOM.
The RBM is applicable to both discretized time-independent (Eq. (2.8), Eq. (2.9),

Eq. (2.10)) and time-dependent (Eqs. (2.3) and (2.11)) problems. For the former,
the RBM uses a Greedy algorithm, while for the latter, an extension of the Greedy
algorithm, known as POD-Greedy algorithm, is employed. Following the a priori con-
vergence rates for the Greedy algorithm [37], the convergence of the POD-Greedy al-
gorithm was established in [103], where it was proved that the POD-Greedy algorithm
results in exponential or polynomial convergence rate, except for advection-dominated
problems.
In this thesis, we apply RBM to the fully-discrete systems in the form given in

Eq. (2.11) for the convenience of deriving a posteriori error estimators, therefore we
focus on the main aspects of the RBM theory for the POD-Greedy algorithm. Never-
theless, for the sake of completeness, we have sketched the Greedy algorithm in Algo-
rithm 2.3.

POD-Greedy Algorithm The POD-Greedy algorithm was introduced in [106] as a
combination of POD data compression and the Greedy algorithm used in the RBM Al-
gorithm 2.3. It requires two main ingredients: (i) a discretization of the parameter
domain P in the form of a training set Ξ (this is similar to POD discussed earlier) and
(ii) an a posteriori error estimator denoted by ∆(µ)

‖xk − x̃k‖ ≤ ∆(µ) or ‖yk − ỹk‖ ≤ ∆(µ) (2.27)

that estimates the approximation error of the state or that of the output quantity
computed by the ROM. Algorithm 2.4 sketches the POD-Greedy algorithm.
Recall from the discussion in Section 2.5.1 that POD requires the FOM solutions

at all ns parameter samples in the training set Ξ to obtain the projection matrix V
through an SVD. The RBM circumvents this bottleneck by performing instead, an
iterative update of V while computing only a cheap and efficient error estimator over
all the ns parameters at each iteration. To achieve this, a greedy sampling of the
training set is done. At the iter-th iteration, RBM selects one parameter (µ̄∗) from the
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Algorithm 2.3: Greedy
Computes the rank-n basis using the Greedy algorithm for time-independent
systems.
Input: Training set Ξ, ROM tolerance ε, Deflation tolerance εdef, Maximum

iterations iter_max.
Output: Projection matrix V.

1 Initialization: V = [ ], err_max = 1 + ε, iter = 1, µ̄∗ (chosen randomly from Ξ).
2 while err_max > ε and iter ≤ iter_max do
3 Solve FOM (e.g., Eq. (2.8), Eq. (2.9) or Eq. (2.10)) at µ̄∗; obtain snapshots

matrix X(µ̄∗).
4 V = orth_def_mat(V,X(µ̄∗), εdef). /* orthogonalize X(µ̄∗) against the

columns of V; see Step 9 of Algorithm 2.4 */
5 iter = iter + 1.
6 Find µ̄∗ = arg max

µ∈Ξ
∆(µ).

7 Set err_max = ∆(µ̄∗).
8 end

training set and solves the FOM Eq. (2.11) at that parameter. The snapshots of the
resulting solution at time instances {tk}Kk=0 are collected in a snapshot matrix X as

X(µ̄∗) :=
[
x0,x1,x2, . . . ,xK

]
∈ RN×Nt , K = Nt + 1. (2.28)

Then, the snapshots are projected onto the current basis V to obtain a new snapshot
matrix X := X −VVTX containing only new information. Following this, the POD
(Algorithm 2.2) is applied to X(µ̄∗) to get VPOD ∈ RN×rRB and the projection matrix
V is updated as

V←
[
V, VPOD

]
.

Here, rRB is the number of POD modes used to enrich the projection matrix V at the
iter-th iteration. Normally, rRB is either set to 1 or is determined using a user-defined
POD tolerance. It is important to orthonormalize V for good numerical performance.
A modified Gram-Schmidt procedure is used to iteratively orthonormalize the newly
added basis vectors, see Step 9 of Algorithm 2.4. The function orth_def_mat is used
and is defined at Steps 15-22. The selection of the parameter µ̄∗ is guided by the a
posteriori error estimator ∆(µ). The parameter µ̄∗ at the (iter + 1)-th iteration is
chosen as the one at which ∆(µ) is the largest among all µ ∈ Ξ. This process is
repeated until the estimated error goes below a user-specified tolerance (ε), or if the
user-defined maximum number of iterations (iter_max) is reached. Note that, at Step
12 of the algorithm, the ROM (Eq. (2.18)) obtained with the updated V, has to be
computed for all µ ∈ Ξ in order to evaluate the error estimator. For the POD-Greedy
algorithm, the maximum number of FOM solutions required is the number of iterations
of the POD-Greedy algorithm.
The POD-Greedy algorithm has been extended to nonlinear problems through the

use of hyperreduction strategies (to be elaborated on in Section 2.6) such as the EIM,
DEIM, etc. [19, 52, 71]. Initial attempts in this direction relied on precomputation
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Algorithm 2.4: podgreedy
Computes the rank-n basis using POD-Greedy algorithm for time-dependent
systems.
Input: Training set Ξ, ROM tolerance ε, Number of POD modes rRB, Deflation

tolerance εdef, Maximum iterations iter_max.
Output: Projection matrix V.

1 Initialization: V = [ ], err_max = 1 + ε, iter = 1, µ̄∗ (chosen randomly from Ξ).
2 while err_max > ε and iter ≤ iter_max do
3 Solve FOM Eq. (2.11) at µ̄∗; obtain snapshots matrix X(µ̄∗).
4 if iter == 1 then
5 V = POD(X, rRB). /* implement Algorithm 2.2 with inputs X and n = rRB

*/

6 else
7 Compute X := X−VVTX.
8 VPOD := POD(X, rRB).
9 V = orth_def_mat(V,VPOD, εdef). /* orthogonalize the columns of

VPOD against those of V using the function orth_def in Algorithm 2.1
*/

10 end
11 iter = iter + 1.
12 Find µ̄∗ = arg max

µ∈Ξ
∆(µ).

13 Set err_max = ∆(µ̄∗).
14 end

15 Function orth_def_mat(V, VPOD, εdef):
16 col = size(VPOD, 2)
17 for k = 1, 2, . . . , col do
18 m := VPOD(: , k).
19 vorth := orth_def(V,m, εdef). /* orthogonalize the vector m against

those of V using the function orth_def in Algorithm 2.1 */

20 V =
[
V ,vorth

]
.

21 end
22 return V.

of the hyperreduction basis and suffered from a need to carry out FOM solutions at
all training samples. In recent years, much attention has been paid to simultaneously
enrich the RB and hyperreduction bases [24, 71, 209]. We discuss this issue in Chapter 4
and detail a new strategy for adaptive basis enrichment.
In Step 5 and Step 8 of Algorithm 2.4, the value of rRB needs to be defined and

the choices considered in literature have been mainly heuristic. We describe a more
principled approach to make this choice as a part of the new adaptive basis enrichment
algorithm to be discussed in Chapter 4.
A reliable, sharp estimation of the error is vital to generate good ROMs. While

just one FOM solution is required per iteration, the POD-Greedy algorithm needs ns
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evaluations of the error estimator. Therefore, in addition to being sharp, ∆(µ) should
be cheap to evaluate. Error estimation has been an intensely researched topic in the
RBM community; see [99, 107, 155, 197, 198, 210, 214]. Nevertheless, error estimation
for general nonlinear systems is still a less explored area. In Chapter 4, we discuss this
issue in greater depth and propose a novel output error estimator for a modified output
quantity to improve the sharpness of the estimate. In addition to improving the error
estimation, we also propose a RBF-based technique of reducing the computational costs
of the new error estimator.
Another crucial ingredient for the POD-Greedy algorithm is the choice of the training

set. For computational efficiency, fewer samples are preferred. At the same time,
a sufficiently large number of samples is needed to capture all the variations over
the parameter space P. These contradictory requirements have motivated research
that look to optimally sample Ξ [76, 105, 124, 134, 156, 187, 195]. We propose two
approaches to sample the training set in Chapter 4. The first seeks to iteratively add
new parameters to it, through a coarse-fine sampling strategy. The second approach
is based on subsampling a large, fine training set by choosing only the samples most
relevant to the problem.
For general nonlinear systems, MOR with POD or RBM alone is often not sufficient

for efficient ROM evaluation. A possible remedy is through the use of hyperreduction
strategies.

2.6. Hyperreduction

In Remarks 2.1 and 2.10, two challenges faced by projection-based MOR methods for
nonlinear and non-affine systems were highlighted. For these two types of systems, the
online computation costs for ROM evaluation scales with the dimension of the FOM.
Unless treated, these two issues hinder the efficient evaluation of the ROM in real-time
and multi-query simulations.
Hyperreduction methods2 are a family of techniques that ensure efficient online eval-

uation of the ROM with nonlinear or non-affine terms. Hyperreduction was first em-
ployed in the context of image reconstruction, in the Gappy-POD method [77]. In the
context of MOR, the EIM [19] was the earliest hyperreduction strategy and it was used
together with the RBM to enable efficient evaluation of non-affine functions [19]. This
was later extended to nonlinear problems [98]. Over the years, many related hyperre-
duction methods have been proposed. These include: the discrete EIM (DEIM) [52],
the empirical operator interpolation method (EOIM) [71], the Best Point Interpolation
Method (BPIM) [144], Missing Point Estimation (MPE) [17]; see also the recent survey
[78] for a comprehensive summary.
Suppose f(g(z, t,µ),µ) is some arbitrary Lipschitz continuous nonlinear function of

g ∈ V ⊂ L2(Ω) and/or non-affine w.r.t the parameter µ ∈ P ⊂ RNp . Let

Mf := {f(·,µ)|µ ∈ P}
2Many techniques classified as hyperreduction methods (such as Gappy-POD, EIM) predate the
coining of the term ‘hyperreduction’. The term was used in the specific context of strategies that
employed a reduced integration domain for material problems. However, recent MOR literature
retroactively applies the term as a catch-all notation for all reduction strategies.
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be the function manifold resulting from varying the parameter µ. Hyperreduction
techniques seek an approximation of f in the following form of variable separation:

f(g(z, t,µ),µ) ≈ I [f(g(z, t,µ),µ)] :=

nEI∑

i=1

ξi(t,µ)uEI
i (z). (2.29)

Here, uEI
i (z), i = 1, 2, . . . , nEI are a set of time, parameter-independent basis func-

tions, ξi ∈ R, i = 1, 2, . . . , nEI are parameter-dependent coefficients and I [·] is the
interpolation operator. Adopting the offline-online paradigm of the RBM, all hyper-
reduction methods precompute the parameter/time-independent basis functions at an
offline stage while the coefficients ξi are determined at the online stage. Notice that,
Eq. (2.29) is precisely the parameter affine representation such as the ones in Re-
marks 2.1 and 2.10. For many problems, just a few well-chosen basis functions uEI

i

suffice for a good approximation.
Hyperreduction techniques vary based on how they identify the basis functions and

what constraints they impose on Eq. (2.29) to determine the coefficients ξi. Methods
such as EIM [19], DEIM [52], BPIM [144] seek an approximation that interpolates the
original function at a small number (nI) of carefully chosen spatial interpolation points.
More precisely,

f(g(z℘j , t,µ),µ) = I [f(g(z℘j , t,µ),µ)], j = 1, 2, . . . , nI = nEI. (2.30)

Here, I := [℘1, ℘2, . . . , ℘nI ] includes all the indices of the spatial grid points where the
interpolation is enforced and the set E := {z℘1 , . . . , z℘nI } denotes the corresponding
spatial locations.
Other hyperreduction techniques such as Gappy-POD result in an approximation

that minimizes the least-square error over the nI points, but now with nI ≥ nEI. The
minimization problem reads

min
∥∥f(g(z℘j , t,µ),µ)−I [f(g(z℘j , t,µ),µ)]

∥∥ , j = 1, 2, . . . , nI ≥ nEI. (2.31)

Irrespective of the method, we shall, hereafter, refer to the set of points E as the EI
interpolation points, or alternatively, as EI sampling points.

2.6.1. Discrete setting

In the context of MOR, we apply hyperreduction to the discrete system Eq. (2.3).
Therefore, we discretize the parameter space in the form of a training set ΞEI ⊂ P with
nEI
s samples. The discretized nonlinear function is given by

f(x(t,µ),µ) := [f1(x(t,µ),µ), . . . , fN(x(t,µ),µ)]T ∈ RN

where x(t,µ) ∈ RN is the discrete representation of g(z, t,µ) defined previously and
x(t,µ) := [x1(t,µ), x2(t,µ), . . . , xN(t,µ)]T. Let uEI

i := [uEI
i1, . . . , u

EI
iN ]T ∈ RN be the i-th

discretized EI basis function and U := [uEI
1 , . . . ,u

EI
nEI

] ∈ RN×nEI the EI projection basis.
In addition, we define the snapshot matrix F consisting of snapshots of the discretized
function f(x(t,µ),µ) at different parameter/time instances. We denote fk(µi) ∈ RN
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as the snapshot of the function at the k-th time instant for the i-th parameter sample
in ΞEI, i.e., fk(µi) = f(x(tk,µi),µi), we define the nonlinear snapshot matrix as

F :=
[
fk(µi)

]
∈ RN×Nt·nEI

s , i = 1, 2, . . . , nEI
s , k = 0, 1, . . . , K. (2.32)

A discrete version of Eq. (2.30) reads,

f℘i(x(t,µ),µ) =

nEI∑

i=1

ξi(µ, t)u
EI
i℘i
. (2.33)

To use matrix-vector form, we introduce the matrix

S = [e℘1 , . . . , e℘nI ] ∈ RN×nI

where e℘i := [0, . . . , 0, 1, 0, . . . , 0]T ∈ RN is the ℘i-th column of the identity matrix
I ∈ RN×N . Thus, Equation (2.33) can be represented equivalently as

STf(x(t,µ),µ) = STUξ

with ξ := [ξ1(µ, t), . . . , ξnEI(µ, t)]
T ∈ RnEI . For the remainder of this thesis, we use the

shortened notations UI := STU ∈ RnI×nEI and f I := STf(x(t,µ),µ) ∈ RnI . If nI = nEI,
it can be proved [52, 167] that UI is nonsingular, so that the coefficients are obtained
by simple matrix inversion as ξ =

(
UI
)−1

f I.
The EIM- or DEIM-based hyperreduction approximation for any f(x(t,µ),µ) ∈ RN

with µ ∈ ΞEI is
I [f(x(t,µ),µ)] = Uξ = U

(
UI
)−1

f I. (2.34)

For the case where the number of interpolation points is larger than the dimension of
the EI basis (nI > nEI) the discretized minimization problem is

min
∥∥f I −UIξ

∥∥

where the sampled EI basis UI ∈ RnI×nEI is rectangular. The coefficients ξ are evaluated
using a Moore-Penrose pseudoinverse as ξ =

(
UI
)†

f I. The Gappy-POD approximation
for any f(x(t,µ),µ) with µ ∈ ΞEI reads

I [f(x(t,µ),µ)] = U
(
UI
)†

f I (2.35)

Next, we detail the EIM, DEIM strategies for identifying U and I, since this thesis
mainly uses these approaches.

2.6.2. EIM

EIM is an interpolatory hyperreduction method introduced in [19], which constructs
the EI basis iteratively, through a greedy algorithm.
With a slight abuse of notation, let us denote by F also the set containing all the

snapshots in the snapshot matrix Eq. (2.32), i.e., the columns of the matrix F. The
EIM begins by identifying the snapshot with the largest norm (‖ · ‖2 or ‖ · ‖∞)

τ := arg max
f∈F
‖f‖
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Algorithm 2.5: eim
Computes the EI basis and interpolation points using the EIM.
Input: F: a set of all snapshots fk(µj), j = 1, 2, . . . , nEI

s , k = 0, 1, . . . , K, EI
tolerance εEI, Maximum iterations iter_max.

Output: EI basis U and interpolation indices I.
1 Initialization: U = [ ], I = ∅, err_max = 1 + εEI, iter = 1.
2 Set τ = arg max

f∈F
‖f‖ and ℘1 = arg max

i∈{1,2,...,N}
|τi|. /* τ := [τ1, . . . , τN ]T */

3 Compute the first EI basis vector uEI
1 := τ

τ℘1
.

4 Set U = uEI
1 , I := I ∪ ℘1.

5 while err_max > εEI and iter ≤ iter_max do
6 iter = iter + 1.
7 Form the interpolants I [f ] := U

(
UI
)−1

(f)I for all f ∈ F.
8 Compute the snapshot f∗ := arg max

f∈F
‖f −I [f ]‖.

9 Determine the error τ := f∗ −I [f∗], let err_max = ‖τ‖.
10 if err_max > εEI then
11 Find the next EI index ℘iter = arg max

j∈{1,2,...,N}
|τj|.

12 Set uEI
iter := τ

τ℘iter
.

13 Enrich U :=
[
U , uEI

iter

]
and I := I ∪ ℘iter.

14 else
15 terminate
16 end
17 end

with τ := [τ1, . . . , τN ]T ∈ RN . EIM then proceeds to find the index of the element with
the largest absolute value in τ and normalizes the vector w.r.t this value. We perform

℘1 = arg max
j∈{1,2,...,N}

|τj|

Using this index, the first EI basis vector is determined as:

uEI
1 :=

τ

τ℘1

, U = uEI
1 .

Assuming at the end of the (iter−1)-th iteration we have the basis U = [uEI
1 ,u

EI
2 , . . . ,u

EI
iter−1]

and the set of indices I := [℘1, ℘2, . . . , ℘iter−1], the (iter − 1)-th EIM interpolant for
each f ∈ F is given by

I [f ] := U
(
UI
)−1

(f)I.

Based on this, we compute f∗ at the iter-th iteration as

f∗ := arg max
f∈F
‖f −I [f ]‖.

and compute the error τ := f∗ −I [f∗]. In the above scheme, f∗ is the snapshot in F
at which the corresponding (iter− 1)-th EIM interpolant has the worst error. We then
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check if the norm of the resulting error vector τ is below a user-defined tolerance εEI,
i.e., ‖τ‖ < εEI. If this condition is true then the algorithm is terminated; if not, the
iter-th index location is chosen and the corresponding EI basis vector is computed as
below:

℘i = arg max
j∈{1,2,...,N}

|τj|, uEI
i :=

τ

τ℘i

and the iteration continued. The EIM algorithm [167, 212] is sketched in Algorithm 2.5.
Due to the construction, the matrix UI in Step 7 of the algorithm is lower-triangular [167].
EIM was originally introduced to efficiently treat non-affine functions in the context

of the RBM. However, later it was extended to ensure efficient offline-online evaluation
of nonlinear problems. A priori error bounds for the EIM approximation have been
studied [19, 97]. When considering the ‖·‖∞ norm, the analysis involves the Lebesgue
constant. For purpose of MOR, a posteriori error estimates/bounds are of greater
interest and have been discussed in works such as [74]. We discuss a posteriori error
estimates for EIM in Chapter 4.

2.6.3. DEIM

DEIM was introduced in [52] and is closely related to the EIM. Similar to EIM, DEIM
uses a greedy scheme to determine the EI sampling indices in I. However, the EI basis is
computed differently. In fact, the EI basis used in the DEIM is determined by applying
a POD to the nonlinear snapshot matrix F:

[uEI
1 , . . . ,u

EI
nEI

] = POD(F, nEI).

Constructed this way, the EI basis is essentially the first nEI left singular vectors of
the matrix F. Following this, the interpolation indices are chosen using a greedy algo-
rithm. A pseudocode of the procedure can be found in [52] and is presented here in
Algorithm 2.6.
A priori error bounds based on the neglected singular values or best 2-norm approx-

imation exist for the DEIM [52]. A posteriori error estimates using the offline-online
paradigm were proposed in [207]. We postpone an in-depth discussion to Chapter 4.
The combination of POD with DEIM has been used successfully in a number of

applications. In contrast, only very few works have used EIM with POD for model
reduction [173]. This is unsurprising since DEIM was initially proposed in a discrete
setting, which can be straightforwardly applied. However, EIM was originally presented
only in the continuous form Eq. (2.30) [19]. For the RBM, both DEIM and EIM have
been used as hyperreduction strategies.

2.6.4. Hyperreduced ROMs from POD and RBM

As noted before, for nonlinear and/or non-affine systems, the full computational benefits
of the ROM generated using POD or RBM can be enjoyed only if a suitable hyperreduc-
tion strategy is used. On the one hand, the hyperreduced, semi-discretized ROM will
be finally simulated using numerical time integration, resulting in a fully-discretized
form. On the other hand, our proposed a posteriori error estimator is based on the
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Algorithm 2.6: deim
Computes the EI basis and interpolation points using the DEIM.
Input: Nonlinear snapshot matrix F, EI tolerance εEI or DEIM rank nEI.
Output: EI basis U and interpolation indices I.

1 Initialization: U = [ ], I = ∅.
2 Find the POD basis: [uEI

1 , . . . ,u
EI
nEI

] = POD(F, nEI( or εEI)).
3 Set ℘1 = arg max

i∈{1,2,...,N}
|uEI

1,i|; uEI
1 := [uEI

1,1, . . . , u
EI
1,N ]T ∈ RN .

4 U = uEI
1 ; I := I ∪ ℘1.

5 for j = 2 to nEI do
6 Solve UIξ = (uEI

j )I to obtain ξ, where (uEI
j )I := STuEI

j .
7 Determine the error τ := uEI

j −Uξ.
8 Compute the next EI index ℘j = arg max

i∈{1,2,...,N}
|τi|.

9 Enrich U :=
[
U , uEI

j

]
and I := I ∪ ℘j.

10 end

fully discrete Eq. (2.11) and its ROM. Thus, in the following, we discuss hyperreduced
ROMs in the fully discrete form.
For Eq. (2.18), efficient evaluation of f̂(x̂k,µ) := WTf(Vx̂k,µ) at each time step is

required. Without any special treatment, the above evaluation involves, for a given µ
and at each time step:

(i) determining Vx̂k → with O(N) cost,

(ii) evaluating f(Vx̂k) → with O(N) cost and,

(iii) projecting f(Vx̂k) onto the span of W → again with O(N) costs.

Clearly, this is not tractable in the online scenario. Using EIM or DEIM, we get

f̂(x̂k,µ) ≈WTI [f(Vx̂k,µ)] = WTU(UI)−1

︸ ︷︷ ︸
precomputed

evaluated online︷ ︸︸ ︷
(f(Vx̂k,µ))I .

In the above expression, we have (f(Vx̂k,µ))I := ST(f(Vx̂k,µ)). The quantity U :=
WTU(UI)−1 ∈ Rn×nEI can be precomputed once and for all and stored offline, whereas
(f(Vx̂k,µ))I ∈ RnEI can be cheaply computed online since nEI � N . The hyperreduced
ROM corresponding to Eq. (2.11) is

Ê(µ)x̂k+1 = Â(µ)x̂k + U(f(Vx̂k,µ))I + B̂(µ)u(tk),

ỹk+1(µ) = Ĉ(µ)x̂k+1.
(2.36)

For Galerkin projection, we have W = V.
We sketch in Algorithms 2.7 and 2.8, the PODEI and RBMEI algorithms, respec-

tively, where either the EIM or DEIM is employed to get the hyperreduced ROM, e.g.,
Eq. (2.36). In this thesis, PODEI will be applied to non-parametric systems while for
parametric systems we use the RBMEI algorithm.
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Algorithm 2.7: podei
Computes a ROM for (parametric) nonlinear dynamical systems using POD in
combination with EIM or DEIM.
Input: System matrices and nonlinear term: E,A,B,C and f , tolerance εPOD

and εEI (or POD basis and EI basis dimension n, nEI).
Output: Reduced system matrices Ê, Â, B̂, Ĉ (or Ê, Â, B̂, Ĉ) and EI quantities

U , I.
1 Simulate the FOM, e.g., Eq. (2.11) to obtain state snapshots X = [x0, . . . ,xK ]

and corresponding nonlinear term snapshots F := [f
0
, . . . , f

K
].

2 Compute POD basis V = POD(X, εPOD(or n)). /* Algorithm 2.2 */
3 Compute EI quantities [U, I] = EIM(F, εEI, iter_max) or

[U, I] = DEIM(F, εEI(or nEI)). /* Algorithm 2.5 or Algorithm 2.6 */

4 Determine reduced matrices Ê, Â, B̂, Ĉ (or Ê, Â, B̂, Ĉ) through Galerkin
projection using V as in Eq. (2.14). /* assume parameter affine representation
*/

5 Determine U := VTUUI.

2.7. Radial Basis Functions

In this section, we review radial basis functions (RBFs) and the main ideas behind
performing scattered-data interpolation using RBFs. In this thesis, RBFs are employed
in two scenarios. Recall from the discussion in Section 2.5.2 that the error estimator
used in the greedy algorithms (such as Algorithms 2.3 and 2.4), viz., ∆(µ) should be
cheap to evaluate. To address this, we derive a cheap data-driven surrogate of the
error estimator based on RBF (see, for example, Chapter 3). Furthermore, we also use
RBFs to efficiently interpolate the inf-sup constant, that appears in the output error
estimator proposed in Chapter 4.
Suppose Λ := {µ1,µ2, . . . ,µ`} ⊆ RNp be a set of pairwise distinct, non-collinear

data locations. Let D : {d1, d2, . . . , d`} ⊆ R be the values of the data, corresponding
to the locations in the set Λ. The data may arise from some multivariate function
g : RNp → R. In practice, there may be cases for which the exact representation of this
function is unknown and only the input-output data (D,Λ) is known. Or, there may
also be cases for which the exact form of g is known but its evaluation is expensive or
involves solving a high-dimensional PDE. In either case, it may be needed to generate
an approximation χ : RNp → R which interpolates the function g at a set of locations
Λ and whose evaluation is computationally inexpensive for any new value µ /∈ Λ with
‖g(µ)− χ(µ)‖ ≤ tol. Here, tol ∈ (0, 1) is a small user-defined tolerance for the quality
of approximation. This is a classical approximation problem known as scattered-data
interpolation [204].
Standard approaches such as polynomial interpolation are unsuited to interpolate

data in high-dimensional spaces due to several reasons [43, 80]. RBFs are an instance
of kernel methods and were initially used in neural networks. Later, they became
popular as a mesh-free method for data interpolation. We give a brief description of
the RBF methodology to interpolate scattered data.
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Algorithm 2.8: rbmei
Computes a ROM for parametric dynamical systems using POD-Greedy in com-
bination with EIM or DEIM.
Input: System matrices and nonlinear term: E,A,B,C and f , Training set Ξ,

RB basis dimension rRB, EI tolerance εEI or EI basis dimension nEI,
ROM tolerance ε, Deflation tolerance εdef, Maximum iterations
iter_max.

Output: Reduced system matrices Ê, Â, B̂, Ĉ (or Ê, Â, B̂, Ĉ) and EI quantities
U , I.

1 Simulate the FOM, e.g., Eq. (2.11) for all µ ∈ Ξ and obtain nonlinear term
snapshots F ∈ RN×Nt·nEI

s as in Eq. (2.32).
2 Obtain EI quantities [U, I] = EIM(F, εEI, iter_max) or

[U, I] = DEIM(F, εEI(ornEI)). /* Algorithm 2.5 or Algorithm 2.6 */
3 Initialization: V = [ ], err_max = 1 + ε, iter = 1, µ̄∗ (chosen randomly from Ξ).
4 while err_max > ε and iter ≤ iter_max do
5 Solve FOM Eq. (2.11) at µ̄∗; obtain snapshots matrix X(µ̄∗).
6 if iter == 1 then
7 V = POD(X, rRB).
8 else
9 Compute X := X−VVTX.

10 VPOD := POD(X, rRB).
11 V = orth_def_mat(V,VPOD, εdef). /* see Step 15 of Algorithm 2.4 */

12 end
13 iter = iter + 1.

14 Determine reduced matrices Ê, Â, B̂, Ĉ (or Ê, Â, B̂, Ĉ) through Galerkin
projection using V as in Eq. (2.14).

15 Solve the ROM (e.g., Eq. (2.36)) for all µ ∈ Ξ; find µ̄∗ = arg max
µ∈Ξ

∆(µ).

16 Set err_max = ∆(µ̄∗).
17 end

Definition 2.18 ([80]):
Let µ ∈ RNp and let ‖ · ‖ be the Euclidean norm on RNp . The function Φ(·) is a radial
function if there exists a function Φ : [0,∞)→ R such that

Φ(µ) = Φ(‖µ‖). ♦

The RBF interpolant χ : RNp → R is given by

χ(µ) :=
∑̀

i=1

w̃iΦ(‖µ− µi‖). (2.37)

The name RBF derives from the fact that radial functions Φ(‖ · ‖) are used as the
expansion basis to approximate the target function. The locations {µi}`i=1 are often
called centers, {w̃i}`i=1 are the weights corresponding to the centers and w̃i ∈ R. The
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weights are determined by imposing the interpolation conditions

χ(µi) = di, i = 1, 2, . . . , `. (2.38)

As a result, the following linear system of equations needs to be solved:



Φ(‖µ1 − µ1‖) Φ(‖µ1 − µ2‖) · · · Φ(‖µ1 − µ`‖)
Φ(‖µ2 − µ1‖) Φ(‖µ2 − µ2‖) · · · Φ(‖µ2 − µ`‖)

...
... . . . ...

Φ(‖µ` − µ1‖) Φ(‖µ` − µ2‖) · · · Φ(‖µ` − µ`‖)




︸ ︷︷ ︸
G




w̃1

w̃2
...
w̃`




︸ ︷︷ ︸
w̃

=




d1

d2
...
d`




︸ ︷︷ ︸
d

. (2.39)

The unique solution of the above system exists only if G is invertible. In RBF literature,
this is achieved by ensuring that the matrix G is positive definite. The matrix G being
positive definite is a sufficient condition for the unique solution of Eq. (2.39). To get a
positive definite matrix, the radial basis function Φ(‖ ·‖) should be chosen as a positive
definite function.

Definition 2.19 (Positive definite function [80]):
A real-valued continuous function Φ : RNp −→ R is positive definite on RNp if and only
if it is even and

∑̀

j=1

∑̀

k=1

cjckΦ(‖µj − µk‖) ≥ 0

for any pairwise different points µ1,µ2, . . . ,µ` ∈ RNp and c = [c1, . . . , c`]
T ∈ R`.

Moreover, Φ is strictly positive definite on RNp if the above quadratic form is zero only
for c ≡ 0. ♦

A matrix G whose elements are defined as evaluations of a (strictly) positive definite
function, i.e., Gij := Φ(‖µi − µj‖) is a (strictly) positive definite matrix. There exists
a vast body of literature on positive definite radial functions. We do not offer an in-
depth discussion here and refer to the books [43, 80, 204]. The radial functions that
are positive definite include Gaussian functions, Matérn functions, Generalized inverse
multiquadrics, etc.
It is worth noting that the requirement of strict positive definiteness on the functions

Φ(‖·‖) is rather restrictive and precludes the use of many functions that are radial,
but not positive definite. A standard workaround adopted in the RBF literature is
to consider the more relaxed notion of conditional positive definiteness which involves
some additional constraints on the weights {w̃i}`i=1.

Definition 2.20 (Conditionally positive definite matrices [80]):
A real, symmetric matrix G ∈ R`×` is called conditionally positive definite of order
d0 + 1 if its associated quadratic form satisfies w̃TGw̃ > 0 and the weights satisfy the
additional constraint

∑̀

i=1

w̃iπ(µi) = 0

where π : RNp → R is a polynomial function in p variables with degree at most d0. ♦
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To this end, Eq. (2.37) is augmented with the polynomial term

χ(µ) :=
∑̀

i=1

w̃iΦ(‖µ− µi‖) + π(µ), (2.40)

where

π :
ν∑

j=1

λjψj(µ). (2.41)

Here, the functions {ψj}νj=1 form a basis for Πp
do

the space of polynomials in p variables

with degree less than or equal to do and ν =

(
d0 + p
d0

)
. Typically, a constant, linear or

quadratic polynomial in p variables is added (d0 ∈ {0, 1, 2}). The following additional
weight constraint

∑̀

i=1

w̃iψj(µi) = 0, j = 1, 2, . . . , ν. (2.42)

is imposed in addition to the interpolation constraint Eq. (2.38), yielding the saddle-
point system [

G P
PT 0ν×ν

] [
w̃
λ

]
=

[
d

0ν×1

]
(2.43)

with P := [ψ1, . . . , ψν ] ∈ R`×ν , 0ν×ν ∈ Rν×ν a zero matrix and 0ν×1 ∈ Rν a zero vector.
There exist many examples of radial functions that yield conditionally positive definite
matrices including Generalized multiquadrics, Thin-plate splines, etc.

2.8. Conclusion

In this chapter, we have presented a broad mathematical background of the various
state-of-the-art methodologies upon which this thesis is built. We introduced the gen-
eral setting of the linear, nonlinear; steady-state, time-dependent systems of interest
and reviewed MOR techniques used to obtain ROMs for each class. In the case of lin-
ear systems expressed in the frequency-domain, we paid special attention to the MMM
method. For nonlinear systems, our main focus for MOR was the RBM. We also gave
a short overview of radial basis functions that will be used in later chapters to perform
interpolation of scattered data in high dimension.
In the following chapters, we propose new error estimation approaches and techniques

for adaptive model reduction for linear and nonlinear systems.
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3. Error Estimation and Adaptivity for Linear Steady and Dynamical Systems

3.1. Introduction

In this chapter, we study a posteriori error estimation and propose adaptive algorithms
to efficiently generate ROMs for two types of systems. The first type we consider is
linear parametric systems, arising from discretization of PDEs (such as Eqs. (2.1)
and (2.2)). For these systems, we introduce an efficient inf-sup-constant-free state
error estimator and incorporate it within an adaptive algorithm to identify a good
projection matrix to obtain the ROM. We illustrate the robustness of our state error
estimator by comparing it with existing state-of-the-art error estimators and show the
efficiency of the adaptive scheme on two real-life applications arising in the field of
electromagnetics. Following this, we study the second type of systems, viz., input-
output systems in the transfer function representation, see Eq. (2.7). For these systems,
we discuss a posteriori output error estimation. For systems having many parameters
or for systems with parameters that vary over a wide range, the computation of output
error estimators poses a challenge due to the complexity of the training set. To enable
a cheap computation of the error estimator, we develop a fast RBF-based surrogate
model. We incorporate the surrogate error model within an adaptive scheme which (i)
iteratively enriches the training set and (ii) adaptively constructs a projection matrix
to achieve a robust ROM. Numerical tests on three benchmark examples are used to
validate the proposed approach.
We begin this chapter by giving an overview of standard a posteriori error estimation

techniques and existing works in Section 3.2. Following this, in Section 3.3 we discuss
existing state error estimation techniques (Section 3.3.1), introduce the proposed inf-
sup-constant-free error estimator (Section 3.3.2) and discuss its computational aspects
(Section 3.3.3). We also compare our proposed method to the state-of-the-art tech-
niques (Section 3.3.4). An adaptive algorithm for ROM generation using the inf-sup-
constant-free estimator is detailed in Section 3.3.5. In Section 3.3.6, we validate the
adaptive algorithm on several real-life electromagnetic device models. We then turn
our focus to a posteriori output error estimation in Section 3.4. Existing dual-based
and inf-sup-constant-free error estimation approaches are discussed in Sections 3.4.1
and 3.4.2. We then point out some drawbacks that arise during adaptive ROM con-
struction based on the existing output error estimators in Section 3.4.4. To remedy this,
we propose an adaptive ROM construction procedure that exploits a surrogate error
estimator in Section 3.4.5 and analyse its computational advantages. We then demon-
strate the benefits of the strategy on benchmark numerical models in Section 3.4.6.
Most of the topics discussed in this chapter are based on the results published in [56,

57].

3.2. A Posteriori Error Estimation

Over the years, MOR has demonstrated its robustness in reducing the complexity of
parametric systems [11, 35, 180]. Besides the fact that a ROM offers considerable
speedup of the computation, it is vital to certify the accuracy of the reduced models.
In order to certify the accuracy of the ROM (Eqs. (2.13), (2.15) and (2.16)) ob-

tained using any MOR algorithm, the error of the approximation (‖x(µ̆)− x̂(µ̆)‖,
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‖y(µ̆)− ŷ(µ̆)‖) or (‖H(µ̆)− Ĥ(µ̆)‖) needs to be estimated. These quantities refer to
the true errors. Obviously, computing the true errors is not an option since it involves
knowing the true solutions (x(µ̆),y(µ̆) or H(µ̆)) at any parameter. In practice, an
upper bound or a tight estimate of the true error is preferred. There exist a priori
error bounds for some MOR methods, e.g., BT; but, such bounds are not very helpful
in quantifying the accuracy of the generated ROM. Therefore, we desire a posteriori
error bounds or estimates of the state error, output error, or transfer function error,
respectively, i.e.,

‖x(µ̆)− x̂(µ̆)‖ ≤ ∆x(µ̆), (3.1a)
‖y(µ̆)− ŷ(µ̆)‖ ≤ ∆y(µ̆), or (3.1b)

‖H(µ̆)− Ĥ(µ̆)‖ ≤ ∆H(µ̆). (3.1c)

For both frequency- and time-domain MOR methods, a posteriori error estimation
is an actively researched topic [81, 85, 98, 167, 191, 214]. In this chapter, we study a
posteriori error estimators in Eq. (3.1), which can be applied to any projection-based
MOR method.
A posteriori error bounds or indicators were initially proposed for non-parametric

systems both for Gramian-based approaches [50] and Krylov-space approaches [23, 38,
101, 116]. The extension of frequency-domain MOR methods such as BT, MM to para-
metric systems [20, 64, 82] triggered the development of a posteriori error estimators
for parametric systems [81, 83, 86]. These error estimators were inspired by similar
error estimators for steady systems proposed in the RBM community. The most com-
monly considered error estimators are based on the residual, including the randomized
approach [191]. Recent efforts towards more effective error estimation have exploited
the use of adjoint or dual systems [85, 185].
In the following sections, we discuss a posteriori error estimation in detail. To ensure

a clean notation, we do not explicitly show the parameter dependence of the matrices
and vectors in the subsequent discussion. We emphasize that, unless stated otherwise,
all systems considered in the discussion below are parametric.

3.3. A Posteriori State Error Estimation

In situations where the quantity of interest is the entire state variable, a posteriori
state error estimators in Eq. (3.1a) are essential. This is often the case in applications
such as fast frequency sweeps in electromagnetics and acoustics. Due to its importance
in applications, a number of works have considered a posteriori state error estimation.
The most common approach is simply using the norm of the residual as a heuristic error
estimator [110, 116, 155, 193]. While computationally cheap, this approach often leads
to a poor estimation of the error. Another widely used method is to use the residual
norm divided by the inf-sup constant. This is denoted as the standard a posteriori
error estimator. While this approach is rigorous, it is much more expensive as the
computation of the inf-sup constant involves the solution of a large-scale eigenvalue
problem at each parameter sample. The standard estimator is often even rougher
than the heuristic error estimator using the residual norm, especially when the inf-
sup constant is much smaller than 1. To alleviate the need of computing the inf-sup
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constant, a randomization-based technique has been proposed recently [191]. This
approach, as we shall see, results in more accurate error estimation. However, it still
faces relatively high computational cost.

3.3.1. Standard State Error Estimation

Consider the discretized system in Eq. (2.10) arising from the discretization of a steady
or time-harmonic PDE, i.e.,

AX = B,

Y = CX.

Recall that A ∈ CN×N , B ∈ CN×NI . X ∈ CN×NI is the state vector. Its corresponding
ROM (given in Eq. (2.16) is):

ÂX̂ = B̂.

For the sake of easy presentation, we shall consider systems having only a single in-
put, i.e., NI = 1 and X = x ∈ CN . The below discussion can be extended in a
straightforward manner to systems with multiple inputs.
The residual is obtained by replacing x in Eq. (2.10) with the approximate solution

x̃ = Vx̂, i.e.,
r = B−Ax̃. (3.2)

The state error estimator for the state variable used in [116] is simply defined as ∆x,res :=
‖r‖ for every parameter µ̆.
The approximation ‖x− x̃‖ can be obtained from Eqs. (2.10) and (3.2) as follows:

r = Ax−Ax̃,

=⇒ ‖e‖ := ‖x− x̃‖ = ‖A−1r‖, (3.3)

with e = x − x̃ denoting the true state error. In the subsequent discussion, we shall
consider the ‖ · ‖2 norm. Based on this, and invoking the sub-multiplicative property
of the operator A we can show the following bound for the norm of the error.

Proposition 3.1:
The norm of the error e in Eq. (3.3) is bounded above and below by the norm of the
residual r as

1

σmax
‖r‖2 ≤ ‖e‖ ≤

1

σmin
‖r‖2

with σmax := ‖A‖2 and σmin := ‖A−1‖2 the maximum and minimum singular values of
the matrix A, respectively.

Proof. From Eq. (3.3), we can show the following upper bound on the residual:

‖r‖2 = ‖Ae‖2 ,

≤ ‖A‖2 ‖e‖2 = σmax ‖e‖2 .
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Next, starting once again from Eq. (3.3), we derive an upper bound for the error:

r = Ae,

=⇒ e = A−1r,

‖e‖2 =
∥∥A−1r

∥∥
2
,

≤
∥∥A−1

∥∥
2
‖r‖2 =

1

σmin
‖r‖2 .

Combining the above two bounds, the proposition is shown to be true.

The above inequality is used to define the upper bound for the state approximation
error, which we call the standard a posteriori state error estimator ∆x,std := 1

σmin
‖r‖2.

In the numerically discretized setting, σmin plays the role of the inf-sup constant [166].
The standard error estimator has two drawbacks: (i) It is expensive to compute

the inf-sup constant for every value of the parameter µ̆, and (ii) whenever the inf-sup
constant is close to zero or is zero for some values of µ̆, the error bound is either too
rough to estimate the true error well, or simply goes to infinity. The latter scenario
often occurs in electromagnetics, where the matrix A is close-to-singular or singular
nearby or at resonance frequencies. To address the above two issues, we propose a new
state error estimator.

3.3.2. An Inf-sup-constant-free State Error Estimator

From Eq. (3.3) we notice that
Ae = r. (3.4)

The true error can be obtained by solving this linear system. However, the above system
is of dimension N and therefore, it is not practical to solve it for every parameter. To
enable fast error estimation, we propose to construct a reduced model for the above
error-residual (ER) system. We denote by Ve ∈ RN×ne the projection matrix whose
columns span the error subspace denoted by Se := {e(µ̆),∀µ̆ ∈ (C × P)}. The ROM
of the ER system in Eq. (3.4) obtained via Galerkin projection using Ve is given by

Âeê = r̂, (3.5)

with Âe := VT
e AVe ∈ Cne×ne , r̂ := VT

e r ∈ Cne and the variable ẽ := Veê approxi-
mates the true error e. Additionally, the residual of the ER system introduced by the
approximation ẽ is given by:

re := r−Aẽ. (3.6)

Our proposed error estimator for the state approximation error is ‖ẽ‖, i.e.,

‖x− x̂‖ = ‖e‖ ≈ ‖ẽ‖ =: ∆x,ER. (3.7)

We present the following theorem on the rigorousness of the proposed error estimator:
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Theorem 3.2:
The norm of the true error, ‖e‖ can be bounded from above and below by the proposed
state error estimator ∆x,ER as follows:

∆x,ER − γ ≤ ‖e‖ ≤ ∆x,ER + γ.

Here, γ := ‖e− ẽ‖ ≥ 0 is a small value whenever ẽ is a good approximation to the true
error e.

Proof. We have
‖e‖ = ‖e‖+ ‖ẽ‖ − ‖ẽ‖ .

Applying the reverse triangle inequality to ‖ẽ‖ − ‖ẽ‖ yields

‖e‖ ≤ ‖ẽ‖+ ‖e− ẽ‖ = ∆x,ER + γ.

To show the lower bound, we start from the expression for the proposed error estimator

∆x,ER = ‖ẽ‖ = ‖ẽ‖+ ‖e‖ − ‖e‖ .

Once again, applying the reverse triangle inequality to ‖ẽ‖ − ‖e‖ results in

∆x,ER ≤ ‖e‖+ γ

Combining the two inequalities and rewriting yields

∆x,ER − γ ≤ ‖e‖ ≤ ∆x,ER + γ.

The quantity γ is a measure of how well the ROM Eq. (3.5) approximates the FOM in
Eq. (3.3). If γ is sufficiently small, a very tight estimation of the true error is achieved.
In Section 3.3.5, we present an adaptive algorithm that ensures this. We next discuss
the computation of the proposed error estimator.

3.3.3. Computing the Inf-sup-constant-free State Error
Estimator

In order for the error estimator to be used, the error subspace Se and an appropriate
basis Ve need to be identified. Looking at the primal ER system in Eq. (3.4), we observe
that

e = A−1r,

= A−1(B−Ax̃) (from Eq. (3.2)),
= A−1B−Vx̂.

Notice that A−1B is just the true solution x. Suppose that there exists a basis Vs that
approximates well the true solution, then we can make the following ansatz:

x ≈ Vsx̂s.
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Thus,

e ≈ Vsx̂s −Vx̂. (3.8)

From Eq. (3.8), it can be seen that the true error is a linear combination of the columns
of V and Vs. Therefore,

Ve := colspan{V,Vs}. (3.9)

Since e 6= 0, we must have range(Vs) different from range(V), so that Ve 6= V. In
fact, we have the following theorem:

Theorem 3.3:
If Ve = V, then ∆x,ER = 0.

Proof. Suppose that Ve = V. The ROM of the ER system in Eq. (3.5) reads

Âê = r̂,

where we have used the fact that Âe = Â. Substituting Eq. (3.2) into r̂ = VTr, we
get

Âê = VTr,

= VT(B−Ax̃),

= VTB− Âx̂,

= 0 (Eq. (2.16)).

In the last equality above, we have made use of Eq. (2.16). Thus, we infer from Âê = 0
that ê = 0 and hence ∆x,ER = ‖ẽ‖ = ‖Veê‖ = 0.

Notice that the proposed error estimator involves direct approximation of the error
using the ER system and does not involve the inf-sup constant. There are two ad-
vantages: (i) The computational cost of solving a large eigenvalue problem at each
parameter is avoided, and (ii) since there is no involvement of the inf-sup constant, the
estimator is expected to perform well for problems with small inf-sup constants such
as those in electromagnetics. Next, we compare the proposed error estimator to other
similar approaches in the literature.

3.3.4. Comparison to the state-of-the-art

For the estimation of the state approximation error, the residual-norm error estimator
∆x,res and the standard error estimator ∆x,std are the most popular. As already men-
tioned, the former can be quickly computed but tends to be inaccurate; whereas, the
latter is computationally more expensive and is unsuitable when the inf-sup constant
is very small. Recently, some new error estimator were proposed in the context of
the RBM for accurate estimation of the state error [107, 191]. We briefly review both
these approaches next and highlight their benefits and drawbacks in comparison to our
proposed approach.
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Hierarchical Error Estimator An hierarchical error estimator has been proposed in
[107] for the RBM and it is defined as:

∆x,hier := ‖x̃− x̃(f)‖ (3.10)

where x̃ is an approximation to the true solution in the subspace VN spanned by
the columns of V and x̃(f) is the approximation to the true solution in an enriched
subspace V(f) spanned by the columns of a matrix V(f) ∈ RN×n(f) and n(f) > n.
Typically, the authors consider n(f) = n + i, i ∈ {1, 2}. The hierarchical approach
also avoids the computation of the inf-sup constant, is accurate and efficient at the
online stage, as demonstrated in the numerical examples in [107]. A similar idea was
previously proposed in [23] for dynamical systems, where the authors estimate the
transfer function error in the non-parametric setting.
There are several key differences that makes the proposed error estimator ∆x,ER

more attractive to use at the offline stage. Firstly, the validity of the hierarchical
error estimator relies on a saturation assumption and involves solving several nonlinear
optimization problems at each RBM iteration, to determine the saturation constant.
This incurs significant offline costs since the determination of the saturation constant
involves solving a (possibly NP-hard) nonlinear optimization problem. Secondly, the
enriched projection matrix is constructed as union of V and a few derivatives of the
true solution x w.r.t the parameter. This is in contrast to the approach we adopt for
∆x,ER, where an enriched subspace Ve is computed by adding more snapshots of the
solution x at different parameter samples.

Randomized Error Estimator Recently, a randomized state error estimator was pro-
posed in [191] for Galerkin MOR. The main idea is to approximate the norm of the
error by means of Monte Carlo estimation. It is stated that the norm of the error can
be rewritten as

‖e‖2
Σ = eTE[zzT]e = E[(zTe)2] (3.11)

with z ∈ RN a zero mean, Gaussian random vector and Σ ∈ RN×N is a covariance
matrix and ‖·‖Σ is defined as ‖e‖2

Σ = eTΣe. For our discussion Σ is simply the identity
matrix since we are interested in the Euclidean norm. Furthermore, E[·] denotes the
expected value. A Monte Carlo approximation to the above expression for the norm in
Eq. (3.11) is sought as

‖e‖ = (E[(zTe)2])1/2 ≈

√√√√ 1

Ms

Ms∑

i=1

(
zTi e
)2 (3.12)

where {zi}Ms
j=1 are the Monte Carlo samples of the random vector z and Ms denotes the

number of such samples. Next, the authors show the following equivalence:
√√√√ 1

Ms

Ms∑

i=1

(
zTi e
)2

=

√√√√ 1

Ms

Ms∑

i=1

(
yT
i r
)2
, (3.13)
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with r being the residual defined in Eq. (3.2) and the Ms random vectors {yi}Ms
i=1 are

the solution vectors corresponding to the following Ms random dual systems :

ATyi = zi, i = 1, 2, . . . ,Ms. (3.14)

The authors of [191] then proceed to construct ROMs for the Ms random dual systems
as:

ÂT
randŷi = ẑi, i = 1, 2, . . . ,Ms (3.15)

with Ârand := VT
randAVrand, ẑi := VT

randzi and ỹi ≈ Vrandŷi. Combining Eqs. (3.11)
and (3.13) and the above ROM approximation, the randomized state error estimator
is of the form shown below:

∆x,rand :=

√√√√ 1

Ms

Ms∑

i=1

(
ỹT
i r
)2
. (3.16)

The authors demonstrate that whenever Vrand = Ve in Eq. (3.5) the following equality
will hold:

∆x,rand :=

√√√√ 1

Ms

Ms∑

i=1

(
ỹT
i r
)2

=

√√√√ 1

Ms

Ms∑

i=1

(
zTi ẽ
)2 (3.17)

When compared to the true error ‖e‖, the randomized error estimator is constructed
using two layers of approximation. The first is the Monte Carlo approximation in
Eq. (3.12) and the second is the ROM approximation of Eq. (3.15) or equivalently the
ROM approximation Eq. (3.5). In contrast, our proposed error estimator ∆x,ER is a
direct approximation of the true error using the ROM Eq. (3.5). If a similar MOR ac-
curacy is used to obtain both the error estimators, our proposed error estimator should
be more accurate. In [191], two greedy algorithms are proposed to construct the matrix
Vrand. However, they incur significant computational effort. This is due to two reasons:
(i) the tolerance for obtaining the ROM in Eq. (3.15) εrand is unknown beforehand and
is, therefore, chosen heuristically. Adopting a conservative approach leads to slow con-
vergence of the greedy algorithms, and (ii) the number of random vectors Ms is also
not known. Overlooking the computational challenges, the randomized error estimator
leads to more accurate estimation of the true error than the standard error estimator.
Nevertheless, it tends to underestimate the true error as compared to our proposed
error estimator. Our numerical results demonstrate this phenomenon.

Remark 3.4:
Although we discussed the SISO case above, the standard error estimator ∆x,std, the
inf-sup-constant-free error estimator ∆x,ER, and the randomized error estimator ∆x,rand

are also applicable for multi-input systems, i.e., systems with NI > 1. We can evalu-
ate NI different ∆x,std, ∆x,ER, and ∆x,rand, i.e.,

(
{∆(i)

x,std}NIi=1, {∆(i)
x,ER}NIi=1, {∆(i)

x,rand}NIi=1

)
,

corresponding to NI different right-hand side vectors in Eq. (2.10) and pick the maxi-
mum. ♦
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Algorithm 3.1: ROMGreedy-State
Computes a ROM for Eq. (2.10) using a greedy algorithm.
Input: System matrices: A,B, Training set Ξ, ROM tolerance ε, Maximum

number of greedy iterations iter_max.
Output: Reduced system matrices Â, B̂, Ĉ.

1 Initialization: V = [ ], Ve = [ ], err_max = 1 + ε, iter = 1, initial greedy
parameters µ̆∗ and µ̆e (chosen randomly from Ξ) and µ̆∗ 6= µ̆e.

2 while err_max > ε and iter ≤ iter_max do
3 Compute matrix Vµ̆∗ using a preferred MOR method applied to the FOM in

Eq. (2.10); update projection matrix V: V = orth[V, Vµ̆∗ ]; if a real V is
preferred set V := [real(V) imag(V)].

4 Compute matrix Vµ̆e using a preferred MOR method applied to the FOM
Eq. (2.10); update projection matrix Vs: Vs = [Vs, Vµ̆e ]; if a real Vs is
preferred set Vs := [real(Vs) imag(Vs)].

5 Set error projection matrix Ve := [V Vs].
6 iter = iter + 1.
7 Obtain ROMs Eqs. (2.16) and (3.5) using V,Ve; compute ẽ to determine

the error estimator ∆x,ER for all µ̆ ∈ Ξ.
8 Find µ̆∗ = arg max

µ̆∈Ξ
∆x,ER.

9 Find µ̆e = arg max
µ̆∈Ξ
‖re‖, where re is defined in Eq. (3.6).

10 Set err_max := ∆x,ER(µ̆∗).
11 end

3.3.5. Greedy algorithm for ROM Construction with the State
Error Estimator

In the section, we discuss adaptive construction of the ROM Eq. (2.16) for steady/time-
harmonic systems. We consider Galerkin projection and therefore seek to identify an
appropriate projection matrix V ∈ RN×n. Recall that the system is parametrized either
by µ̆ = µ or by the parameter µ̆ = [sµ] where s is the complex Laplace variable and
µ ∈ RNp is any general parameter. Therefore, our goal is to obtain V that results
in a good ROM for any parameter in the parameter space P or Pc := C × P. To
enable practical computation, usually a training set Ξ := [µ̆1, . . . , µ̆ns ] with a finite but
large number of samples is chosen and we require the ROM to be a uniformly good
approximation for all µ̆ ∈ Ξ.
We propose a greedy approach to construct the basis V. The greedy algorithm is

similar in spirit to the that used in the RBM [112, 167]. In our proposed scheme
of adaptive ROM construction, the error subspace Se (and hence the error estimator
∆x,ER) is updated as a part of the algorithm unlike the randomized error estimation in
[191] where two greedy algorithms are implemented in order to compute ∆x,rand. All the
computations needed to compute the proposed error estimator ∆x,ER are implemented
in one greedy algorithm. The proposed method is sketched in Algorithm 3.1. As
inputs, Algorithm 3.1 requires the system matrices in addition to the training set Ξ
and a desired tolerance ε for the ROM. The algorithm is automatic, except the need
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for a user-defined training set Ξ. However, this process can also be automated and will
be described in detail in Section 3.4.5. Steps 3-4 of Algorithm 3.1 involve application
of a preferred MOR method (RBM, MMM, etc.) to the FOM Eq. (2.10) to compute
µ̆∗, µ̆e-dependent matrices Vµ̆∗ ,Vµ̆e . If employing the RBM, Vµ̆∗ in Step 3 is simply
the snapshot: A(µ̆∗)−1B(µ̆∗) and Vµ̆e in Step 4 is the snapshot: A(µ̆e)−1B(µ̆e). The
MMM method introduced in Section 2.4.2 can also be used; then Vµ̆∗ or Vµ̆e can
be computed via Algorithm 2.1 by setting θ0 in Eq. (2.22) as θ0 = µ̆∗ or θ0 = µ̆e,
respectively. It can be shown that, for steady systems, the RBM is a special case of
the MMM method [82].
The initialization of µ̆∗, µ̆e in Step 1 and also their subsequent choices in Steps 8 and

9 are done to ensure that Ve 6= V; see Theorem 3.3. It is worth noting that the solution
to the FOM Eq. (2.10) can be complex-valued. Therefore, if preferred, a realification of
the projection matrices V,Vs is done in Steps 3 and 4. In Step 8, the greedy parameter
µ̆∗ for the next iteration is determined as the one maximizing the error estimator ∆x,ER.
It is computed by solving the ROM Eq. (3.5). To identify the second greedy parameter
µ̆e, we use the norm of the residual Eq. (3.6) corresponding to the ER system. As
output of the algorithm, we obtain the reduced system matrices Â, B̂, Ĉ. If desired,
the projection matrices V,Ve can be obtained as additional outputs, which can also
be used to perform online error estimation whenever necessary.

3.3.5.1. Computational Costs

We briefly compare the computational costs of the adaptive ROM construction using
the standard error estimator and the proposed inf-sup-constant-free error estimator.
For simplicity, we assume the system matrices are dense. We perform the analysis for
a system with NI inputs.

• For Algorithm 3.1 using the proposed inf-sup-constant-free error estimator:

– Steps 3 and 4 incur cost1 scaling as 2 ·O(N3) (assume a direct linear system
solver is used, for e.g., LU decomposition),

– In Step 7, the solution of the ROM Eq. (2.16) involves costs: O
(
QA(N2n+

Nn2) +QBNNIn
)
to form the reduced matrices (see Eq. (2.14)), ns ·O(n3)

to solve the linear system,

– In Step 7, the solution of the other ROM Eq. (3.5) involves costs: ns ·
O(NNIn + N2NI + NNI) to obtain the residual Eq. (3.2), O

(
QA(N2ne +

Nn2
e)
)

+ns ·O(NneNI) to form the reduced matrix Âe and vector r̂, respec-
tively, in Eq. (3.2), ns ·O(n3

e) to solve the linear system,

– Computing ẽ costs ns ·O(NNIne),

– Step 8 computes ∆x,ER with cost: ns ·O(N).

– Step 9 involves a matrix-vector product to evaluate the residual re and its
norm at a cost: ns ·O(N2NI +NNI).

1We use the big-O notation
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• For a greedy ROM construction based on the standard error estimator (Algo-
rithm B.1), the computational costs are:

– In Step 2, the inf-sup constant σmin(µ̆) is computed for all µ̆ ∈ Ξ at cost
ns ·O(N3),

– In Step 4 the FOM incurs cost: O(N3),

– The solution of the ROM Eq. (2.16) in Step 7 involves costs: O
(
QA(N2n+

Nn2)+QBNNIn
)
to form the reduced matrices, ns ·O(n3) to solve the linear

system.

– The computation of r using Eq. (3.2) costs ns ·O(N2NI +NNIn+NNI).

– Step 8 of computing ∆x,std has costs: ns ·O(N).

Although Algorithm 3.1 involves the computation of an additional FOM (in Step 4)
and ROM (in Step 7) at each iteration, it results in a overall reduction in cost when
compared to Algorithm B.1. In particular, when 1 � ns � N , the dominant cost of
Algorithm B.1 is ns ·O(N3), which is definitely larger than the dominant cost 2 ·O(N3)
of Algorithm 3.1.
We now validate the proposed error estimator ∆x,ER and the adaptive ROM con-

struction method in Algorithm 3.1 on two models of electromagnetic devices.

3.3.6. Numerical Examples

Microwave devices, such as filters and antennas, are designed to operate in a particular
range of frequencies. Frequency sweep studies play an important role in the design of
microwave devices, especially to ensure qualities such as optimal gain, noise rejection.
However, such studies are time consuming since a large-scale system needs to be simu-
lated for each frequency sample. It is often the case that the range of operation is wide,
spanning frequencies varying from mega-hertz (MHz) to giga-hertz (GHz). Therefore,
ROMs play a key role in speeding up design studies.
In this section, we test the proposed inf-sup-constant-free state error estimator on two

real-life electromagnetic devices. The first device is the dual-mode circular waveguide
filter, a MIMO system. The other device is a wide-band antenna, a SISO system. The
operation of both devices is governed by Maxwell’s equations. After discretization using
FEM, employing second-order first family of Nédélec’s elements, each of the systems
can be represented in the form of Eq. (2.10). The meshes are generated using the
software Gmsh [92].
The systems we consider are one-parameter models, with µ̆ = s := 2πf . The system

matrix A(µ̆) takes the following parameter affine form:

A(s) = A0 + sA1 + s2A2.

In the above form, A0 ∈ RN×N plays the role of a stiffness matrix, A2 ∈ RN×N is
the mass matrix and A1 ∈ RN×N is the FEM matrix related to first-order absorbing
boundary conditions. The matrix B(µ̆) takes the form

B(s) := sB1
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with B1 ∈ RN×NI . Recall that NI is the number of inputs, which, in the context of
the systems we consider, is the number of excitation ports on the device. The state
variable X(s) ∈ CN×NI is the discretized electric field in the computational domain of
the model.
Next, we describe the metrics that are used to quantify the performance of differ-

ent algorithms we test. In our numerical tests, we consider the true error εtrue as
the maximal difference among all columns of the true solution matrix X(s) and its
approximation X̃(s):

εtrue = max
i∈{1,2,...,NI},

s∈Ξ

‖xi(s)− x̃i(s)‖2. (3.18)

Here, xi and x̃i are the i-th columns of the true and approximate solution matrices,
respectively. Further, Ξ is the training set consisting of samples of the parameter. We
use the same notion for the estimated error as well and define the maximal estimated
error (see Remark 3.4) εest as

εest,� = max
i∈{1,2,...,NI},

s∈Ξ

∆x,�(s) (3.19)

with � serving as a place holder either for the residual error estimator (res), the
standard error estimator (std), the randomized error estimator (rand), or the inf-sup-
constant-free estimator (ER). We also define the effectivity (eff) as

eff :=
εest
εtrue

.

The effectivity is a gauge for the closeness of the estimated error to the true error. The
closer eff is to 1, the sharper or tighter the estimated error.
For each example in the numerical experiments, we evaluate the performance of the

four error estimators, viz., the standard state error estimator (∆x,std), the residual
error estimator (∆x,res), the randomized error estimator (∆x,rand), and the proposed
state error estimator (∆x,ER). In what follows,

• Test A refers to the greedy algorithm Algorithm B.1 using the standard state
error estimator,

• Test B refers to the greedy algorithm Algorithm B.2 which uses the norm of the
residual as a heuristic error estimator,

• Test C stands for Algorithm B.3 using the randomized state error estimator,

• Test D refers to Algorithm 3.1.

Remark 3.5:
The matrix B(s) has entries with large magnitude due to the large value of smultiplying
B1. However, the entries of the matrix A(s) are relatively small in magnitude. If
not treated appropriately, the solution X(s) has a large norm, which may lead to
large magnitude of the state error, i.e., εtrue. This distorts our measure of the actual
accuracy of the ROM. Therefore, we first scale the matrix B with an appropriate scaling
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Figure 3.1.: Dual-mode Circular Waveguide Filter.

constant, i.e., we set B := (1/sc)×B. The maximal true and estimated errors εtrue, εest
are reported for the scaled solutions. The scaling causes no distortion and the unscaled
solution can be recovered by simple multiplication. The scaling strategy is not ad-hoc,
but is actually determined by looking at the maximum entry in sB1. For the numerical
tests below, we use sc = 105. An alternate approach would be to use a relative error
estimator. However, note that the reduced solution X̂(s) varies with s. Therefore, a
relative error estimator can not accurately reflect the absolute error estimator that we
propose. Whereas, using a scaling strategy, we are still able to compute an absolute
error estimator. ♦

Remark 3.6:
The two examples to be considered result in complex-valued solution vectors (or ma-
trices). However, the system matrices Ai, i ∈ {0, 1, 2} are real. To obtain real reduced-
order matrices, we perform a realification of the form V := orth

(
[real(V) , imag(V)]

)
,

as highlighted in Step 3 and 4 of Algorithm 3.1. The above definition of V is motivated
by the following reasons: first, we observe that span{V} ⊂ span{Re(V), Im(V)} ⊂ CN

over C. From Theorem 2.13, we get the same moment matching property using
V := orth

(
[real(V) , imag(V)]

)
, as using the original complex V. ♦

For the first example, the numerical results were obtained using matlab®2015a, on a
laptop running intel®core™i5-7200U, 2.5 GHz running with 8 GB of RAM. Owing
to greater memory requirements, the simulation of the antenna example was done on
a workstation with 3 GHz, intel®core™Xeon E5-2687W v4 processors and 256 GB
or RAM, with matlab®2017a.

3.3.6.1. Dual-mode Circular Waveguide Filter

The first example we consider is a MIMO system arising from the model of a dual-
mode circular waveguide filter [67] shown in Figure 3.1. It is a type of narrow bandpass
filter widely used in satellite communication owing to its favourable properties such as
efficient power handling [66, 68]. The operation of this device is governed by Maxwell’s
equations. The FEM discretization leads to a system of dimension N = 36, 426 with
A(s) = A0 + s2A2. This system has two input excitation ports (NI = 2) and two
outputs (NO = 2). The frequency band of interest is [11.5, 12] GHz. We consider the
training set Ξ consisting of 101 uniformly-spaced frequency samples from the band of
interest. The ROM tolerance ε is 10−6. We now perform Tests A-D for this example.
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Figure 3.2.: Dual-mode Circular Waveguide Filter: results for Test A.

Test A We use Algorithm B.1 to adaptively obtain a ROM for the filter. We recall
that, this procedure involves computing the inf-sup constant for all the parameters
in the training set Ξ and is expensive. In Fig. 3.2a we depict the convergence of
the estimated error εest,std used in Algorithm B.1. It takes 11 iterations to converge.
Further, in Fig. 3.2b we show the effectivity (eff) as a function of the iteration. The
effectivity is of order O(102), which informs us that ∆x,std is not very sharp. This
is mainly due to the fact that the inf-sup constants are very small for this example
and they result in much overestimation of the true error. The dimension of the ROM
resulting from this approach is n = 20.

Test B As our next experiment, we use Algorithm B.2 to obtain a ROM for the dual-
mode filter. As done for the previous example, we illustrate the convergence of the
estimated error εest,res in Fig. 3.3a and the effectivity in Fig. 3.3b. The greedy algorithm
requires 10 iterations to converge and the resulting ROM dimension is n = 20. The
effectivity is of order O(10). The better effectivity here is due to the absence of the
inf-sup constant.

Test C We now apply Algorithm B.3 which uses the randomized error estimator
∆x,rand. To compute the error estimator we pickMs = 20 random vectors from a random
distribution with zero mean and unit covariance, using the matlab®command mvnrnd
with the seed set to be zero. The random projection matrix Vrand is generated first using
a separate greedy algorithm, and is the most time consuming part of Algorithm B.3.
The generation of Vrand uses a tolerance εrand different from the one used for the ROM,
viz., ε. We refer to [191] for the details. In our numerical test we use εrand = 5 · 10−1.
As shown in Figure 3.4, the algorithm converges in 8 iterations, yielding a ROM with
dimension n = 16. Further, the effectivity of the randomized error estimator is very
close to the ideal value of 1. Yet, there do occur underestimations for a few iterations.
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Figure 3.3.: Dual-mode Circular Waveguide Filter: results for Test B.
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Figure 3.4.: Dual-mode Circular Waveguide Filter: results for Test C.

Test D We now employ Algorithm 3.1 to adaptively generate a ROM for the dual-
mode filter model. The convergence of the algorithm is displayed in Figure 3.5a and it
is seen that 8 iterations to achieve the desired tolerance of ε = 10−6. The ROM dimen-
sion is n = 16. Evidently, the proposed error estimator leads to much better effectivity
(see Figure 3.5b) than the standard state error estimator ∆x,std and the residual error
estimator ∆x,res. Although the randomized error estimator ∆x,rand yields similar effec-
tivity, the proposed estimator is more reliable with almost no underestimation of the
true error.
To validate the ROMs derived from Tests A-D (Algorithms 3.1 and B.1 to B.3) to the

dual-mode waveguide filter, we evaluate the true errors resulting from each of the ROMs
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Figure 3.5.: Dual-mode Circular Waveguide Filter: results for Test D.
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Figure 3.6.: Dual-mode Circular Waveguide Filter: error evaluated over a test set of
parameters for ROMs obtained using different error estimators.

over a test set Ξtest consisting of 80 randomly sampled parameters (different from the pa-
rameter samples in the training set Ξ) in the frequency range [11.5, 12] GHz; Figure 3.6
shows the results. We note that all the four ROMs result in error satisfying the de-
sired tolerance of ε = 10−6. For the ROMs obtained with ∆x,std,∆x,res (Algorithms B.1
and B.2) the maximum error over the test set is much smaller when compared to the
maximum test set errors for ∆x,rand or ∆x,ER ((Algorithms 3.1 and B.3)). This reflects
the overestimation of ∆x,std and ∆x,resd, which did not make the greedy algorithm con-
verge as early as possible and led to ROMs with higher orders than the ROMs obtained
using ∆x,rand and ∆x,ER.
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Figure 3.7.: Antipodal Vivaldi Antenna.
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Figure 3.8.: s-parameter for the Antipodal Vivaldi Antenna.

3.3.6.2. Antipodal Vivaldi Antenna

The second example we consider is the antipodal Vivaldi antenna (AVA). This device
is used in radar and wireless communication applications and is known for good wide-
band performance [131]. The discretized model of the AVA is shown in Figure 3.7 and
has dimension N = 283, 846. The frequency range of interest for this antenna is
f ∈ [1, 6] GHz. Unlike the dual-mode waveguide filter, the AVA is a SISO device. The
device characteristics are usually expressed in terms of the input reflection coefficient
(or s-parameter) at the coaxial port and a typical response is shown in Figure 3.8. This
model is particularly challenging to approximate with MOR techniques, owing to the
larger number of in-band resonances. The tolerance for the ROM is set as ε = 10−3.
The training set Ξ is made up of 51 uniform samples from the parameter range of
interest. Unlike the previous case, we perform Tests B-D for the AVA. The results of
Test A are not shown for two reasons: firstly, it is computationally very expensive due
to the large-scale nature of the AVA; secondly, the resulting standard error estimator
leads to poor estimation of the error.

Test B As noted previously, the AVA is a challenging model to approximate with
MOR techniques. This is evident from Fig. 3.9a, where the convergence of the greedy
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Figure 3.9.: Antipodal Vivaldi Antenna: results for Test B.

algorithm is shown. The algorithm requires up to 20 iterations to achieve the set
tolerance. For this model, the norm of the residual overestimates the true error by
roughly one order of magnitude, as seen in Fig. 3.9b, where the effectivity is illustrated.
The resulting ROM has dimension n = 40.

Test C In this test, we use the randomized error estimator proposed in [191]. To
construct Vrand for this example, we draw Ms = 6 random vectors using the mvnrnd
command and set εrand to be 12. Algorithm B.3 from [191] takes nearly 3 hours and
12 minutes to generate Vrand. The results of the greedy algorithm are displayed in
Fig. 3.10a. Compared to Test B for the AVA, Test C requires only 17 iterations to
converge and results in a smaller ROM of dimension n = 34.

Test D Finally, we use Algorithm 3.1 to generate a ROM for the AVA. This re-
sults in a ROM of dimension n = 36, with the convergence achieved in 18 iterations.
The convergence of the maximum error and the corresponding effectivity are shown in
Fig. 3.11. Although in comparison to the randomized error estimator in Test C, the
proposed approach takes one extra iteration to converge, the overall time for Test D
is only 1 hour and 20 minutes. Moreover, the effectivity is nearly 1 for most of the
iterations. The randomized estimator’s tendency to underestimate the true error also
explains why it takes fewer iterations to converge: the algorithm stops according to the
already small error estimate, even before the true error is below the tolerance over the
whole parameter domain.
We validate the ROMs derived from Tests B-D (Algorithms 3.1, B.2 and B.3) to

the antenna model by evaluating the true errors of the ROMs over the test set Ξtest

consisting of 100 randomly sampled parameters (different from the parameter samples in
the training set Ξ) in the frequency range [1, 6] GHz; Figure 3.12 shows the results. We
note that all the three ROMs result in error satisfying the desired tolerance of ε = 10−3.

2The random number generator MersenneTwister was used with the seed set to 1.
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Figure 3.10.: Antipodal Vivaldi Antenna: results for Test C.
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Figure 3.11.: Antipodal Vivaldi Antenna: results for Test D.

The larger dimension of the ROM (n = 40) explains the slightly better performance of
Algorithm B.2 over the test set compared to the ROMs obtained using Algorithms 3.1
and B.3 for which the ROM dimensions are n = 34 and n = 36, respectively.

Remark 3.7:
The choice of the error tolerance ε is problem dependent. In case of the dual-mode filter
in Section 3.3.6.1, the problem is relatively easier to approximate since the dynamics
are not so rich. So, even with a higher tolerance (ε = 10−6) one can get a ROM of
small dimension (n = 16 or n = 20). However, the antipodal Vivaldi antenna shows
very rich dynamics under variation of the frequency. As a result, a large number of
basis vectors are required for a smaller ε. The choice of ε = 10−3 is chosen as a balance
and it leads to a ROM of dimension n = 34, n = 36, or n = 40, depending on the
method used. Of course, one can set an even better tolerance, such as 10−5; in this case
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Figure 3.12.: Antipodal Vivaldi Antenna: error evaluated over a test set of parameters
for ROMs obtained using different error estimators.

the resulting ROM will be of even larger size. Moreover, a tolerance of 10−3 is already
accurate enough for many engineering applications, such as the Vivaldi antenna. ♦

3.4. A Posteriori Output Error Estimation

In this section, we discuss a posteriori output error estimation for linear steady/time-
harmonic and dynamical systems having an output quantity of interest. Systems of
this type are commonly encountered in applications such as feedback control, circuit
simulation, etc. For linear dynamical systems (see Eq. (2.4)), we consider error estima-
tion of the reduced transfer function defined in Eq. (2.15). Since H(s) is usually called
the output response of Eq. (2.4) in the frequency domain, error estimation of Ĥ(µ̆) is
also called output error estimation. For steady/time-harmonic systems in Eq. (2.10),
we consider the output error estimation, i.e., ‖Y(µ̆)− Ŷ(µ̆)‖ in Eq. (3.1b).
A posteriori error estimation for transfer functions has been an intensely researched

topic in recent years; see [13, 23, 85, 86, 101, 154, 208]. Initial candidates for a poste-
riori error estimators were rather heuristic. In [23, 101] two types of error estimators
are introduced. One was based on approximating the transfer function in two different
subspaces, one richer than the other. The difference between the two approximations
is used as a surrogate for the true error. Note that, this is very close to the idea
of hierarchical error estimation discussed in Section 3.3.4. The second type of er-
ror estimator proposed was based on the residuals of the s-primal and s-dual systems
Eqs. (2.8) and (2.9). Applying the norm of the residual as a heuristic error estimator
has been proposed by other authors such as in [116]. Error bounds in the H2 or H∞
norms were the subject in [154, 208].
Apart from its importance to certify ROMs, a posteriori output error estimation

for reduced transfer functions is crucial for several more reasons. Firstly, for non-
parametric systems, error estimators for transfer functions are used to adaptively steer
the choice of interpolation points and/or number of moments to match in interpolatory
MOR methods such as moment matching [82]. Secondly, for parametric systems, a
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posteriori error estimators have been used as a part of an RBM-style greedy algorithm
to automatically generate parametric ROMs; see [81, 86] and references therein. Finally,
error estimation for the reduced transfer function can be applied in a straightforward
manner to output error estimation of steady/time-harmonic systems.
For non-parametric systems, recall from the discussion in Chapter 2 that the choice of

the interpolation points {si}Ji=1 is crucial in determining how well the reduced transfer
function Ĥ(s) approximates the original transfer function H(s). The early approaches
to determine the interpolation points were mainly based on experience and were mostly
heuristic. A logarithmic sampling of the interpolation points was the rule-of-thumb.
An early work in [101] discussed approaches to adaptively sample interpolation points.
A breakthrough in the choice of interpolation points for SISO systems was in [102],
which proposed the IRKA algorithm for an ‘optimal’ choice interpolation points in the
H2 norm. Extensions of IRKA to MIMO and other types of systems are available; see
[12] and references therein.
For parametric systems, an RBM-style greedy algorithm has been proposed to auto-

matically determine parametric ROMs [81]. The authors use an error estimator based
on the residuals of the s-primal and s-dual systems. The error estimator is further used to
choose the reduced basis vectors in order to enrich the projection basis. A drawback of
this approach is the need to compute the inf-sup constant, whose computation involves
solving large-scale eigenvalue problems at several parameters. This was remedied in the
works [83, 85] where a residual-based error estimator avoiding this constant was pro-
posed. The authors introduce an adaptive RBM-style greedy algorithm that iteratively
builds the projection matrix V. This approach is valid for both non-parametric and
parametric systems and represents the state-of-the-art. However, it faces difficulties
when the parameter space dimension is high or when the range of the parameters is
large.
In the next subsection, we review the a posteriori error estimator from [83, 85] in

detail and propose an extension of it. The proposed extension involves using a RBF-
based data-driven surrogate model of the estimator. We detail an adaptive algorithm
that: (i) adaptively builds a surrogate model by evaluating the error estimator at a few
parameter samples, (ii) uses the surrogate model to explore the parameter space and
enrich a training set, and (iii) adaptively enriches the projection basis V based on both
the error estimator and its surrogate.

3.4.1. Existing Primal-Dual A Posteriori Error Estimator

We begin by briefly reviewing residual-based a posteriori output error estimation. Re-
call the s-primal system and s-dual system (Eqs. (2.8) and (2.9)) from Definitions 2.4
and 2.5. We reproduce them below for convenience.

RXpr = B,

RTXdu = CT.

Let us consider the ROMs for the above two systems in the Galerkin MOR framework.
The reduced s-primal system is of the form

R̂X̂pr = B̂, (3.20)
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where R̂ is defined in Eq. (2.15) with W = V, i.e., R̂ := VTRV ∈ Cn×n, B̂ is defined
in Eq. (2.14) with W = V, i.e., B̂ := VTB ∈ Rn×NI and the solution is approximated
as Xpr ≈ X̃pr := VX̂pr ∈ CN×NI . V ∈ RN×n is the projection matrix that is used to
derive the ROM in Eq. (2.13).

Remark 3.8:
For the sake of easy presentation, we shall base the following discussion on SISO systems
(NI = NO = 1). Extension to MIMO systems is straightforward. We further remark
on this when discussing the numerical examples. ♦

We denote by
rpr := B−Rx̃pr ∈ CN (3.21)

the residual of the primal system. Analogously, the reduced s-dual system is given by

R̂
T
dux̂du = ĈT, (3.22)

where R̂du := VT
duRVdu ∈ Cn×n and Ĉ := CVdu. The dual solution xdu is approxi-

mated as xdu ≈ x̃du = Vdux̂du. Vdu ∈ RN×n is the projection matrix for MOR of the
dual system. Further, the residual corresponding to the s-dual systems is

rdu := CT −RTx̃du ∈ CN . (3.23)

The following a posteriori error bound for the transfer function error is based on the
residuals of the s-primal and s-dual systems. It reads:

|H(µ̆)− Ĥ(µ̆)| ≤ ‖rpr(µ̆)‖2 · ‖rdu(µ̆)‖2

σmin(R(µ̆))
(3.24)

For a proof of Eq. (3.24), see [81, 83, 101]. In the above expression, the quantity
σmin(R(µ̆)) is the inf-sup constant mentioned earlier and for the Euclidean norm this
simply turns out to be the smallest singular value of the matrix R(µ̆). The above
error estimator is highly accurate for problems with σmin away from zero. However,
just like the standard a posteriori state error estimator, the cost of computing the
inf-sup constant (involving the solution of a large-scale eigenvalue problem) is a severe
restriction on using this error estimator for general parametric problems. Also, for
problems whose inf-sup constants are zero or very close to zero, the above estimator is
rather useless.

3.4.2. Inf-sup-constant-free A Posteriori Error Estimator for
Dynamical Systems

A solution was proposed in the form of an inf-sup-constant-free output error estimator
in [83]. For the s-dual system, the authors introduced the following error-residual (ER)
system:

RTedu = rdu (3.25)

A ROM for the dual ER system can be computed as

R̂
T
e êdu = r̂du, (3.26)
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with R̂e := VT
e,duRVe,du ∈ Cne×ne , r̂du := VT

e,durdu ∈ Cne and the variable ẽdu :=
Ve,duêdu approximates the true dual system error edu. The following output error
bound is proposed in [83]:

Theorem 3.9 (Inf-sup-constant-free Error Estimator [83]):
The approximation error of the reduced transfer function Ĥ can be bounded as

|H(µ̆)− Ĥ(µ̆)| ≤ |edu(µ̆)Trpr(µ̆)|+ |x̃du(µ̆)Trpr(µ̆)|. (3.27)
♦

Proof. To prove the above assertion, we start from the expression for the transfer
function error:

|H− Ĥ| = |CR−1B− ĈR̂
−1

B̂|.
By pulling out CR−1 as a common factor, we get

|H− Ĥ| = |CR−1
(
B−RVR̂

−1
B̂
)
|.

Noticing that R̂
−1

B̂ is just the solution to Eq. (3.20) yields

|H(µ̆)− Ĥ(µ̆)| = |CR−1
(
B−RVx̂pr

)
| = |CR−1

(
B−Rx̃pr

)
|,

= |CR−1rpr|.

Furthermore, we have

|H− Ĥ| − |x̃T
durpr| = |CR−1rpr| − |x̃T

durpr|,
≤ |
(
CR−1 − x̃T

du

)
rpr|

where we have used the reverse triangle inequality and factored out rpr. For the above
expression, we further have

|H− Ĥ| − |x̃T
durpr| ≤ |

(
R−TCT − x̃du

)Trpr|,
= |
(
R−T(CT −RTx̃du)

)Trpr|,
= |
(
R−Trdu

)Trpr|.

Finally, notice that R−Trdu is the solution to Eq. (3.25). Thus,

|H− Ĥ| ≤ |eT
durpr|+ |x̃T

durpr|

which proves the assertion.

The error bound in Eq. (3.27) does not involve the inf-sup constant. However, the
computation of edu still involves solving the large-scale system Eq. (3.25) for each
parameter and is not practical. In [83], it is proposed to approximate edu by ẽdu
resulting in the following approximate error estimate:

|H− Ĥ| /
(
|ẽT

durpr|+ |x̃T
durpr|

)
=: ∆y,ER. (3.28)

Similar to Theorem 3.2, a sensitivity analysis of the effectivity of ∆y,ER is proposed in
[85], and is given as below.
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Theorem 3.10 ([85]):
The reduced transfer function error can be bounded from above and below as:

∆y,ER − α1 − α2 ≤ |H− Ĥ| ≤ ∆y,ER + γ1,

where γ1 := |(edu − ẽdu)Tr| ≥ 0, α1 := |(xdu − x̃du)Tr| and α2 := |ẽT
dur|.

Proof. The proof of the above assertion is similar to the one in Theorem 3.2. To show
the upper bound, we start with Eq. (3.27) in Theorem 3.9

|H− Ĥ| ≤ |eT
durpr|+ |x̃T

durpr|.

In the above inequality, we add and subtract the term |ẽT
dur| on the left leading to:

|H− Ĥ| ≤ |eT
durpr|+ |ẽT

dur| − |ẽT
dur|+ |x̃T

durpr|,
= (|x̃T

durpr|+ ẽT
dur|)− |ẽT

dur|+ |eT
durpr|,

= ∆y,ER + |(edu − ẽdu)Tr|︸ ︷︷ ︸
γ1

.

This yields the upper bound. To obtain the last inequality, we have made use of the
definition of the inf-sup-constant-free error estimator from Eq. (3.28) and the reverse
triangle inequality.
For the lower bound, we start with the expression for ∆y,ER.

∆y,ER = |ẽT
durpr|+ |x̃T

durpr|.

Adding and subtracting the term |xT
durpr| results in

∆y,ER = |ẽT
durpr|+ |x̃T

durpr|+ |xT
dur| − |xT

dur|,
= (|x̃T

durpr| − |xT
dur|) + |ẽT

durpr|+ |xT
dur|.

It can be shown that |H− Ĥ| = |xT
dur|. Using this and the reverse triangle inequality

in the above expression yields

∆y,ER ≤ |(xdu − x̃du)Trpr|︸ ︷︷ ︸
α1

+| ẽT
durpr|︸ ︷︷ ︸
α2

+|H− Ĥ|.

resulting in the lower bound.

3.4.3. Inf-sup-constant-free Error Estimator for
Steady/Time-Harmonic Systems

An inf-sup-constant-free error bound similar to the one described in Theorem 3.9 is
also applicable to a steady or time-harmonic system in the form of Eq. (2.10), that is,

A(µ̆)X(µ̆) = B(µ̆),

Y(µ̆) = C(µ̆)X(µ̆).

65



3. Error Estimation and Adaptivity for Linear Steady and Dynamical Systems

This is easy to see by noting that Y(µ̆) = C(µ̆)A(µ̆)−1B(µ̆) has the same form as the
transfer function H(µ̆) = C(µ̆)R(µ̆)−1B(µ̆). To derive the error estimator, we follow
the same procedure as adopted in Sections 3.4.1 and 3.4.2. To keep the discussion
simple, we derive the inf-sup-constant-free error estimator for a SISO system. Further,
to keep the notation clean, we do not explicitly show the parameter dependence.
The corresponding ROM (see Eq. (2.16)) for the above system can be obtained via

Galerkin projection with the matrix V ∈ CN×n and is given by

Âx̂ = B̂,

ŷ = Ĉx̂,

with Â := VTAV ∈ Cn×n, B̂ := VTB ∈ Cn. The approximated solution is x̃ ≈ Vx̂.
The residual is denoted by rpr := B−Ax̃ ∈ CN .
We define the dual system as

ATxdu = CT.

Using the projection matrix Vdu ∈ CN×n, we define the following ROM for the dual
system:

ÂT
dux̂du = ĈT,

where Âdu := VT
duAVdu ∈ Cn×n, Ĉ := CVdu ∈ Cn. The dual solution is approximated

as xdu ≈ x̃du = Vdux̂du. The residual of the dual system is rdu := CT −ATx̃du ∈ CN .
Similar to Eq. (3.25), we define the dual error-residual system as

ATedu = rdu. (3.29)

A ROM for the dual error-residual system can be computed as

ÂT
e êdu = r̂du, (3.30)

with Âe := VT
e,duAVe,du ∈ Cne×ne , r̂du := VT

e,durdu ∈ Cne and the variable ẽdu :=
Ve,duêdu approximates the true dual system error edu.
Taking up the same approach as adopted in Theorem 3.9, it can be shown that

|y(µ̆)− ŷ(µ̆)| /
(
|ẽdu(µ̆)Trpr(µ̆)|+ |x̃du(µ̆)Trpr(µ̆)|

)
=: ∆y. (3.31)

The proof is straightforward and employs the exact same reasoning used to prove The-
orem 3.9.

Computing the Inf-sup-constant-free Error Estimator We now discuss the com-
putation of the output error estimator. The discussion is similar to what was previously
mentioned for the state error estimation in Section 3.3.3.
For evaluating the inf-sup-constant-free error estimator Eq. (3.28), the quantities

involved are r, ẽdu, x̃du which can be obtained by solving the ROMs in Eqs. (3.20),
(3.22) and (3.26). To this end, the projection matrices V,Vdu and Ve,du are required.
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We now discuss the construction of Ve,du. Looking at the dual ER system Eq. (3.25),
we notice that

edu = R−Trdu,

= R−T(CT −RTx̃du),

= R−TCT −Vdux̂du.

Recall that R−TCT is the true solution xdu for the s-dual system. Suppose there exists
a basis Vd that is a good approximation to the true solution. We have

xdu ≈ Vdx̂d.

Therefore,
edu ≈ Vdx̂d −Vdux̂du.

Since the true error is not zero, i.e., edu 6= 0, range(Vd) should be different from
range(Vdu). Hence, we set Ve,du to be a combination of Vd and Vdu, that is,

Ve,du := colspan{Vdu,Vd}. (3.32)

Furthermore, in [85] it is proved that if Vd = Vdu (and hence Ve,du = Vdu), the error
estimator ∆y,ER is identically zero for all µ̆. In [83], an adaptive algorithm was proposed
to construct the parametric ROM, making use of ∆y,ER. We discuss this approach next.

3.4.4. Greedy algorithm for ROM Construction

A greedy algorithm is proposed in [83] to adaptively construct the parametric ROM
Eq. (2.13) for the linear dynamical system in Eq. (2.4). This method makes use of the
inf-sup-constant-free error estimator in Eq. (3.28). Apart from the system matrices and
the ROM tolerance ε, the algorithm requires as an input a suitable training set Ξ similar
to the one defined in Section 3.3.5. At each iteration, the adaptive algorithm picks a
parameter sample from Ξ, such that it maximizes ∆y,ER. The algorithm is sketched
in Algorithm 3.2. Based on the selected greedy parameter samples, the projection
matrices V,Vdu and Ve,du are updated iteratively (see Steps 3 - 5 in Algorithm 3.2).
Any preferred MOR technique, such as BT, RBM, Multi-moment Matching, can be
invoked to update the projection matrices. In [83], the authors discuss the usage of
RBM and MMM. If MMM is used, the number of moments to be matched (ζ) needs
to be specified as an additional input to the algorithm. In Step 5 of Algorithm 3.2,
the dual error subspace is updated as a combination of the columns spans of the dual
projection matrix Vdu and the columns of the dual ER system projection matrix Vd.
It is critical that the greedy parameter at which Vµ̆∗ is computed, viz., µ̆∗ is different
from the parameter µ̆e at which Vµ̆e is computed. Note that Ve,du contributes solely
to the first part of the inf-sup-constant-free error estimator (|ẽT

durpr|; see Eq. (3.28)).
Hence, |ẽT

durpr| is used as an indicator in Step 10 to determine the choice of µ̆e for the
next iteration.
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Algorithm 3.2: ROMGreedy-Output
Computes a ROM for linear dynamical systems Eq. (2.4) or steady/time-
harmonic systems Eq. (2.10) using a greedy algorithm.
Input: System matrices: E,A,B,C, Training set Ξ, ROM tolerance ε,

Maximum number of greedy iterations iter_max.
Output: Reduced system matrices Ê, Â, B̂, Ĉ.

1 Initialization: V = [ ], Vdu = [ ], Ve,du = [ ], err_max = 1 + ε, iter = 1, initial
greedy parameter µ̆∗ and µ̆e (chosen randomly from Ξ) and µ̆∗ 6= µ̆e.

2 while err_max > ε and iter ≤ iter_max do
3 Compute matrix Vµ̆∗ using a preferred MOR method applied to the FOM

Eq. (2.4) (or Eq. (2.10)); update V = orth[V,Vµ̆∗ ].
4 Compute matrix Vdu,µ̆∗ using a preferred MOR method applied to the dual

system Eq. (2.9); update Vdu = orth[Vdu,Vdu,µ̆∗ ].
5 Compute matrix Vd,µ̆e using a preferred MOR method applied to the ER

system Eq. (3.25) (or Eq. (3.29)); update Ve,du := orth[Ve,du , Vdu , Vd,µ̆e ].
6 iter = iter + 1.
7 Determine reduced matrices Ê, Â, B̂, Ĉ through Galerkin projection using V

as in Eq. (2.14).
8 Solve the ROMs Eqs. (3.20), (3.22) and (3.26) for all µ̆ ∈ Ξ using

V,Vdu,Ve,du.
9 Find µ̆∗ = arg max

µ̆∈Ξ
∆y,ER(µ̆) or arg max

µ̆∈Ξ
∆y(µ̆).

10 Find µ̆e = arg max
µ̆∈Ξ
|ẽdu(µ̆)Trpr(µ̆)|.

11 Set err_max := ∆y,ER(µ̆∗) or ∆y(µ̆∗).
12 end

Remark 3.11:
The error estimator in Eq. (3.28) and the Algorithm 3.2 can be applied to MIMO
systems with NI inputs and NO outputs. For MIMO systems, the transfer function H
is matrix-valued. The entry-wise construction of the error estimator is given by:

|Hij − Ĥij| /
(
|ẽT

durpr|+ |x̃T
durpr|

)
=: ∆ij

y,ER. (3.33)

with the ij-th entry of both H, Ĥ corresponding to the input signal at the j-th input
port and the output signal at the i-th output port, with 1 ≤ i ≤ NO and 1 ≤ j ≤ NI .
The quantity x̃du in Eq. (3.33) is the approximate solution to the s-dual system Eq. (2.9)
by considering the right hand side as the i-th row vector of C ∈ RNO×N , viz., CT(:, i).
The residual r in Eq. (3.28) is obtained by considering the s-primal systems Eq. (2.8) with
the right hand side being B(:, j), viz., the j-th column of the input matrix B ∈ RN×NI .
The MIMO version of the inf-sup-constant-free error estimator is then the maximum
of ∆ij

y,ER in Eq. (3.33), among all i, j. That is:

‖H− Ĥ‖max := max
i,j
|Hij − Ĥij| / max

i,j
∆i,j

y,ER =: ∆y,ER. (3.34)
♦
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Drawbacks The efficiency and the reliability of the inf-sup-constant-free error esti-
mator was demonstrated in [83, 85] on a range of benchmark problems arising in circuit
simulation and microelectronic mechanical systems (MEMS). Nevertheless, it has a few
drawbacks. The first is related to the extension of the inf-sup-constant-free error esti-
mator to MIMO systems. As demonstrated in Remark 3.11, the error estimator needs
to be computed elementwise. While this is robust, it incurs a large computational cost,
especially when several inputs and/or outputs are present. A possible solution may ex-
ist in the form of tangential interpolation approaches such as in [72, 90]. However, this
is beyond the scope of this thesis and will not be addressed further. Another drawback
of the error estimator is the unknown choice of the training set and a possible need for a
large number of samples in the training set. The training set Ξ for Algorithm 3.2 needs
to be specified a priori. However, there exists no principled approach to do this. An
inadequately sampled training set will result in a ROM that does not satisfy the desired
tolerance. Usually, the rule-of-thumb is to take a finely sampled training set. However,
this causes problems when the algorithm is applied to problems whose parameter space
dimension is large (Np + 1 � 1), or to problems whose parameters vary over a wide
range of values. In both scenarios, the training set Ξ has a large number of samples.
To address this shortcoming, we propose to construct a surrogate for the inf-sup-

constant-free error estimator using RBF. We further illustrate that computing this
surrogate is cheaper than computing the error estimator. This allows for having a very
finely sampled Ξ. We discuss this approach next.

3.4.5. Adaptive ROM Construction with Surrogate Error
Estimator

As mentioned in the previous section, the greedy ROM construction technique Algo-
rithm 3.2, based on the inf-sup-constant-free error estimator Eq. (3.28), faces some
difficulties with relation to the choice of the training set Ξ and incurs large compu-
tational costs when the training set has many parameter samples. To remedy this,
we propose an adaptive algorithm wherein, instead of a large training set, a coarsely-
sampled training set with a small cardinality is chosen and iteratively updated with
new parameter samples. Doing so ensures that the training set ‘seen’ by the greedy al-
gorithm is small and hence has much less computational costs (we analyse this in detail
below). At each greedy iteration, we add new parameter samples to the coarse training
set. We also remove parameter samples which already satisfy the required tolerance.
To add parameter samples, we propose a surrogate model for the inf-sup-constant-free
error estimator, using the RBFs introduced in Section 2.7. Surrogate models for error
estimators based on gaussian process regression and Kriging interpolation have been
proposed in previous works [70, 156], in the context of the RBM applied to both steady
and dynamical systems. Our approach extends this framework to frequency-domain
interpolatory MOR methods. In particular, we build surrogate models of the output
and transfer function approximation error estimators ∆y,∆y,ER.

Remark 3.12:
A surrogate model for the state error estimator proposed in Section 3.3 can also be
obtained similarly using the techniques to be proposed in the following sections. ♦
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RBF Surrogate Estimator Recall that in Step 8 of Algorithm 3.2 three ROMs need
to be solved for every µ̆ ∈ Ξ, in order to evaluate ∆y,ER. Although this step involves
solving ROMs, it can be expensive when the cardinality of the training set, i.e., |Ξ| is
large. To enable a cheap evaluation, we construct a surrogate model of ∆y,ER by learning
the mapping ∆y,ER : µ̆ → R over the parameter domain. We build this surrogate
model using RBFs. We consider two different training sets: a coarse training set Ξc :=
{µ̆1, . . . , µ̆nc} ⊆ C×P and a fine training set Ξf := {˚̆µ1, . . . , ˚̆µnf} ⊆ C×P, with nf �
nc. We use the coarse samples and the value of the error estimator evaluated at those
samples as the input-output data pair for the RBF interpolation. More precisely, using
the notations from Section 2.7, we have Λ = Ξc and D = {∆y,ER(µ̆), µ̆ ∈ Ξc}. Using
(D,Λ), the linear system in Eq. (2.43) can be solved to obtain the RBF coefficients
w̃,λ.
To solve Eq. (2.43), the polynomial basis {ψj}νj=1 to express the side condition

Eq. (2.42) and hence the matrix P needs to be specified. A linear polynomial is a
common choice. For a linear polynomial, ν = Np + 2. We comment further on this
aspect when discussing the numerical results. Note that Eq. (2.43) constitutes a small,
dense system and solving it incurs costs of the order O((` + ν)3) and ` = nc. How-
ever, since both nc and ν are small, the cost remains low. Once the RBF coefficients
are available, the RBF surrogate for the error estimator, χ(µ̆) in Eq. (2.40), can be
evaluated for any µ̆ ∈ Ξf .
The pseudocode to adaptively construct the ROM using the surrogate model is given

in Algorithm 3.3. Unlike Algorithm 3.2, the new approach requires two training sets Ξc

and Ξf as inputs. Steps 3-7 are the same as in Algorithm 3.2. In Step 8, the ROMs are
solved only for the parameters in the coarse training set. Thus, this step incurs lesser
computational cost than Step 8 in Algorithm 3.2 since |Ξc| � |Ξ|. Step 9 determines
the data-driven RBF surrogate using the samples in the coarse training set and their
corresponding estimated errors as input data. In Steps 10-12 the coarse training set
gets updated: we remove all parameter samples at which the estimated error is below
the error tolerance ε. In addition, we identify nadd parameters from the fine training set
Ξf which result in the largest values of the RBF error surrogate χ(µ̆). We then add
these nadd new parameters to the coarse training set in Step 12. Finally, Steps 13-15
are similar to the last three steps from Algorithm 3.2.

Choice of kernel function for RBF The choice of the kernel function Φ(‖·‖) de-
termines the success of the resulting surrogate. Many kernels satisfying the positive
definiteness (Definition 2.19) and the more relaxed conditional positive definiteness (see
Definition 2.20) are known, such as inverse multiquadrics (IMQ), thin-plate splines
(TPS), etc. There is no principled approach to identify the most appropriate kernel for
a given problem and is rather heuristic. In the numerical experiments to be discussed,
we have made use of both IMQ and TPS kernels. We have observed that IMQ kernels
yield better surrogates when the error estimator ∆y,ER depends less smoothly on the
parameter µ̆. Also, we have noticed in our numerical tests that TPS kernels are best
suited when the error estimator varies smoothly as a function of the parameter. IMQ
kernels involve a hyperparameter which needs to be suitably tuned, while TPS have no
such additional quantity to be determined. We use the Leave One Out Cross Validation
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Algorithm 3.3: ROMGreedyRBF
Computes a ROM for linear dynamical systems Eq. (2.4) or steady/time-
harmonic systems Eq. (2.10) using a greedy algorithm and an RBF error surro-
gate.
Input: System matrices: E,A,B,C, Coarse training set Ξc, Fine training set

Ξf , ROM tolerance ε, Maximum number of greedy iterations iter_max.
Output: Reduced system matrices Ê, Â, B̂, Ĉ.

1 Initialization: V = [ ], Vdu = [ ], Ve,du = [ ], err_max = 1 + ε, iter = 1, initial
greedy parameter µ̆∗ and µ̆e (chosen randomly from Ξc) and µ̆∗ 6= µ̆e.

2 while err_max > ε and iter ≤ iter_max do
3 Compute matrix Vµ̆∗ using a preferred MOR method applied to the FOM

Eq. (2.4) (or Eq. (2.10)); update V = orth[V,Vµ̆∗ ].
4 Compute matrix Vdu,µ̆∗ using a preferred MOR method to the dual system

Eq. (2.9); update Vdu = orth[Vdu,Vdu,µ̆∗ ].
5 Compute Vd,µ̆e using a preferred MOR method applied to the ER system

Eq. (3.25) (or Eq. (3.29)); update Ve,du := orth[Ve,du Vdu Vd,µ̆e ].
6 iter = iter + 1.
7 Determine reduced matrices Ê, Â, B̂, Ĉ through Galerkin projection using V

as in Eq. (2.14).
8 Solve the ROMs Eqs. (3.20), (3.22) and (3.26) for all µ̆ ∈ Ξc using

V,Vdu,Ve,du.
9 For (D,Λ) := (∆y,ER,Ξc), determine the RBF coefficients by solving

Eq. (2.43); Obtain the RBF surrogate χ(µ̆) for all µ̆ ∈ Ξf .
10 Update the coarse training set: Remove µ̆ ∈ Ξc for which ∆y,ER(µ̆) < ε from

Ξc.
11 Find samples {µ̆(1), . . . , µ̆(nadd)} ∈ Ξf corresponding to the largest values of

the surrogate χ(µ̆).
12 Update the coarse training set: Ξc =

[
Ξc ∪ {µ̆(1), . . . , µ̆(nadd)}

]
.

13 Find µ̆∗ = arg max
µ̆∈Ξc

∆y,ER(µ̆) or arg max
µ̆∈Ξc

∆y(µ̆).

14 Find µ̆e = arg max
µ̆∈Ξc
|ẽdu(µ̆)Tr(µ̆)|.

15 Set err_max := ∆y,ER(µ̆∗) or ∆y(µ̆∗).
16 end

(LOOCV) [123, 176] method to identify the hyperparameter for the IMQ kernel. In
terms of implementation, TPS kernels are more straightforward.

3.4.5.1. Computational Costs

We discuss the computational costs of the adaptive algorithm in Algorithm 3.3 and
show how it is a considerable improvement over Algorithm 3.2. The major differences in
Algorithm 3.3 compared to Algorithm 3.2 are: (a) The former uses the coarse training
set in Step 8 to solve the ROMs and in Steps 13-14 to determine the next greedy
parameters, (b) Steps 9-12 involve computing the RBF surrogate and updating of the
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coarse training set. Let us first compare the costs of computing and evaluating the
error estimator and the RBF surrogate in the two approaches.

• The cost of computing the error estimator ∆y,ER for all µ̆ ∈ Ξ with cardinality
ns is:

– Solving three small, dense ROMs (Step 8, Algorithm 3.2): 3ns ·O(n3),

– Matrix-Vector product to evaluate rpr, ẽdu, X̃du (Step 9, Algorithm 3.2): 3ns ·
O(Nn),

– Inner-products in Eq. (3.28) to compute error estimator: 2ns ·O(N),

– Thus, the total cost is: 3ns
(
O(n3) +O(Nn) + 2

3
O(N)

)
.

• The cost of computing the surrogate χ(µ̆) for all µ̆ ∈ Ξc with cardinality nc and
determining χ(µ̆) for all µ̆ ∈ Ξf is:

– Solving three small, dense ROMs (Step 8, Algorithm 3.3): 3nc ·O(n3),

– Matrix-Vector product to evaluate rpr, ẽdu, X̃du (Step 13, Algorithm 3.3):
3nc ·O(Nn),

– Inner-products in Eq. (3.28) to compute error estimator: 2nc ·O(N),

– Solving Eq. (2.43) to obtain the RBF coefficients (Step 9, Algorithm 3.3):
O((nc + ν)3),

– Evaluating the RBF surrogate Eq. (2.40) for all µ̆ ∈ Ξf : nf ·O(nc + ν)

– Thus, the total cost is:
3nc
(
O(n3) +O(Nn) + 2

3
O(N)

)
+O((nc + ν)3) + nf ·O(nc + ν).

The quantity (nc+ν) is small since the cardinality of the coarse training set is kept small.
Moreover, since Ξ is usually finely sampled, ns ≈ nf � nc. Therefore, computing the
error estimator for all the parameters in µ̆ ∈ Ξ is much more expensive that computing
the RBF surrogate at each iteration for all µ̆ ∈ Ξc.

3.4.6. Numerical Examples

In this section, we apply the proposed adaptive algorithm in Algorithm 3.3 to different
benchmark examples and demonstrate its efficiency and robustness in identifying a good
ROM for any parameter in the parameter domain. We also compare its performance
against Algorithm 3.2 in terms of offline time taken and also the robustness of the
resulting ROM.
We shall consider three examples. The first is a model of a large-scale RLC circuit

while the second is a benchmark example of a microthruster device. The last example is
the waveguide filter, introduced in Section 3.3.6.1. These three examples are carefully
chosen to illustrate the performance of the proposed algorithm in various scenarios.
The circuit example involves a wide range of values for the frequency parameter, while
the microthruster is characterized by four different parameters. Finally, the waveguide
filter is a MIMO system.
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Figure 3.13.: RLC Interconnect Circuit.

To test the validity of the ROMs generated from Algorithms 3.2 and 3.3, we define
a test set Ξtest with nt parameters different from those in Ξ,Ξc and Ξf . We further
note that in Steps 3-5 of either algorithm, we make use of the MMM approach from
Algorithm 2.1 to obtain the projection matrices. For this, the number of moments ζ
to match and the deflation tolerance εdef are provided as an additional input to the
algorithms.
Next, we apply Algorithms 3.2 and 3.3 to each of the three examples and compare

their respective performances. All numerical tests were performed in matlab®2015a,
on a laptop with intel®core™i5-7200U @ 2.5 GHZ, with 8 GB of RAM.

3.4.6.1. RLC Interconnect Circuit

This example arises in large-scale interconnects in integrated circuit design. The circuit
being modelled is shown in Fig. 3.13. It consists of a segment with four resistor-inductor
pairs in series. The segment represents the wiring on a chip. The four capacitors
model the interaction between the wire and the chip substrate. This segment can be
instantiated in ` levels and between each level, the segment branches into two child

segments leading to a total of
`−1∑
i=0

2i segments for an `-level circuit. The circuit is a

SISO system [2, 86]. The model is constructed following modified nodal analysis. The

0 1 2 3

10−1

100

Frequency (f) in GHz

|H
(s
)|

Figure 3.14.: Transfer function of the RLC Interconnect Circuit.
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Table 3.1.: Simulation settings for the RLC Interconnect Circuit.
Setting N ε |Ξ| |Ξc| |Ξf | |Ξtest| ζ
Value 6, 134 10−3 90 {21, 27} 200 900 4
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(a) Algorithm 3.2: Error |H(s) −
Ĥ(s)| over the test set.
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(b) Algorithm 3.3: Error |H(s)−Ĥ(s)| over
the test set.

Figure 3.15.: Results of Test 1 and Test 2 for the RLC Interconnect Circuit.

resulting system is formulated as in Eq. (2.4) with N = 6, 134. Its transfer function
is in the form of Eq. (2.7) with µ̆ = s, and f ∈ [0, 3] GHz. For this model, we are
interested in transfer function simulation in the frequency domain.
We test both Algorithm 3.2 and Algorithm 3.3 on this model, using the MMM algo-

rithm in Steps 3-5. Table 3.1 summarizes the settings for the different variables involved
in each algorithm. Recall that ζ in Table 3.1 is the number of moments (including the
zeroth moment) matched at each selected frequency sample; see Remark 2.14. For this
example, we match the first four moments, i.e., ζ = 4.

Test 1: Algorithm 3.2 applied to the RLC Interconnect Circuit This is the same
test considered in [83]. The training set Ξ consists of ns = 90 samples covering the
frequency range of interest. The sampling is done as: fi := 3×10i/10 and i = 1, 2, . . . , 90.
The desired error tolerance is ε = 10−3. Algorithm 3.2 converges to the desired tolerance
is 3 iterations and results in a ROM of dimension n = 20. We observe the average time
for convergence to be 3.3 seconds, determined as the mean of 5 independent runs. To
test the robustness of the resulting ROM, we solve the FOM and the ROM for the 900
samples contained in the test set Ξtest.The resulting true error |H(s)− Ĥ(s)| is plotted
in Figure 3.15a.

Test 2: Algorithm 3.3 applied to the RLC Interconnect Circuit Having tested
the efficiency of Algorithm 3.2, we apply Algorithm 3.3 to the example of the RLC
Interconnect Circuit. To probe the sensitivity of the approach to the cardinality of
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Figure 3.16.: Microthruster Unit.

the coarse training set, we consider two different values, viz., nc = 21, nc = 27. The
frequency in either case is sampled as: fi := 3× 10(9·j)/21, j = 1, 2, . . . , 21 and fi := 3×
10(9·j)/27, j = 1, 2, . . . , 27. We also consider different samplings for the fine training set
to numerically illustrate that Algorithm 3.3 is robust to the type of sampling adopted.
The fine training set Ξf contains 200 logarithmically-spaced parameters3 in the first
case and consists of 200 parameters distributed as fi := 3× 109·j/200, j = 1, 2, . . . , 200
in the second case. For the RBF interpolation, we utilize the TPS kernel. Further,
the number of new parameters nadd in Step 11 is set to be 1. Algorithm 3.3 converges
to the specified tolerance in 3 iterations for both combinations of the coarse and fine
training sets. In the first case, the ROM dimension is n = 21 with an average time
of 1.6 seconds, while for the second case the ROM dimension was the same. However,
the second case required a marginally higher time of 1.7 seconds to converge. This is
not surprising since the size of the coarse training set for the second case was larger.
For either case, the time taken by Algorithm 3.3 is roughly half of that required for
Algorithm 3.2 to converge. Just as was done in Test 1, we test the robustness of the
ROM by evaluating it over the test parameter set. The results of the true error are
shown in Figure 3.15b. The ROMs obtained using different coarse and fine training set
combinations are able to successfully meet the set tolerance.

3.4.6.2. Thermal Model

The second numerical example we use to illustrate the benefits from using Algorithm 3.3
is that of the heat transfer inside a microthruster unit [196]. The microthruster incorpo-
rates solid fuel within a silicon micromachined system and is used in applications such
as space technology, gas generation. The goal is often to characterize the heat transfer
within the microthruster device with the heat coefficients on the x-, y- and z-directions
being the parameters. The heat equation with appropriate convection boundary condi-
tions is discretized spatially using linear finite elements, resulting in a linear parametric

3using matlab®function logspace: Ξtest = 3 ∗ logspace(0, 9, 200)
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(b) The transfer function of the thermal
model H(f, µ2), µ1 = 10, µ3 = 103.

Figure 3.17.: Thermal Model.

Table 3.2.: Simulation settings for the Thermal Model.
Setting N ε |Ξ| |Ξc| |Ξf | |Ξtest| ζ
Value 4257 10−4 625 256 2401 1000 2

dynamical system of the form in Eq. (2.4). More specifically, we have the system

E
d

dt
x(t,µ) =

(
A0 −

3∑

i=1

θiA(µ)Ai

)
+ Bu(t), x(0,µ) = x0(µ),

y(t,µ) = C7x(t,µ).

where E,A0 ∈ RN×N are sparse, symmetric matrices representing the heat capacity and
heat conductivity, respectively. We have N = 4, 257. Further, Ai ∈ RN×N , i ∈ {1, 2, 3}
are diagonal matrices enforcing the boundary conditions and the coefficients θ1

A, θ
2
A, θ

3
A

are, respectively, the heat coefficients µ1, µ2, µ3 along the x-, y- and z-directions. All
three parameters lie in the range [1, 104]. The matrix B ∈ RN is the input matrix
with u(t) ≡ 1 representing a constant input power of 15mW. Finally, C7 ∈ R7×N

is the output matrix and measures the temperature distribution at seven different
locations within the microthruster unit. For our purpose, we are interested in the
average temperature distribution throughout the device. Hence, we consider C ∈ R1×N

as the sum of the seven rows of C7. The ROM Eq. (2.13) of the thermal model is
obtained using either Algorithm 3.2 or Algorithm 3.3, employing the MMM method
(Algorithm 2.1) with ζ = 2 (zeroth and first moment are matched) in Steps 3-5. The
parameter µ̆ = [s, µ1, µ2, µ3], and f ∈ [10−2, 102] Hz. Figures 3.17a and 3.17b show
the transfer functions of the thermal model. Table 3.2 summarizes the simulation
parameters used.

Test 3: Algorithm 3.2 applied to the Thermal Model Due to the larger range
of values exhibited by the parameter, we consider a fixed training set Ξ formed as a
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(c) Algorithm 3.2: Error over the test set.

Figure 3.18.: Results of Test 3 for the Thermal model.

tensorial grid of five logarithmically-spaced samples for each of the four parameters.
This leads to ns = 54 = 625 samples in Ξ. The test set Ξtest is formed by randomly
sampling nt = 1000 parameters from a tensorial grid having 84 parameter samples. This
grid is formed by considering 8 logarithmically-spaced samples for the four parameters.
Applying Algorithm 3.2 to this example results in a convergence to the desired tolerance
ε = 10−4 in 10 iterations. The average algorithm runtime is 254s (averaged over 5
independent runs) and results in a ROM of size n = 86. Figures 3.18a and 3.18b
show the convergence of the greedy algorithm and the effectivity of the error estimator
Eq. (3.28), i.e., ∆y,ER(s)

|H(s)−Ĥ(s)| . In Figure 3.18c, we plot the error in approximating the
ROM, for the parameters in the test set Ξtest. As is evident, the ROM fails to meet the
tolerance for several parameters. This is due to the fact that the training set used was
not fine enough to capture all the variations across the parameter space.

Test 4: Algorithm 3.3 applied to the Thermal Model We next apply Algorithm 3.3
to the Thermal model. For the coarse training set Ξc, a tensorial grid of 44, with four
logarithmically-spaced samples per parameter is used. Similarly, the fine training set Ξf
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(c) Algorithm 3.3: Error over the test set.

Figure 3.19.: Results of Test 4 for the Thermal model.

consists of 74 samples. For the RBF interpolation, we use TPS as the kernel function.
The number of new parameters added to Ξc at each iteration is fixed as nadd = 1. The
test set Ξtest is the same as the one used for Test 3. Algorithm 3.3 results in a ROM of
size n = 85, taking 10 iterations. The average time to converge is 162 s. Figures 3.19a
and 3.19b show, respectively, the convergence of the transfer function error and the
effectivity of the error estimator Eq. (3.28). The ROM is validated over the test set
and the error is plotted in Figure 3.19c. The ROM generated using Algorithm 3.3
requires roughly 36% lesser time and results in a uniformly good approximation over
the test set.

3.4.6.3. Dual-mode Waveguide Filter

The last example we consider is that of a MIMO system arising from the model of a
dual-mode circular waveguide filter shown in Figure 3.1 and the model is in the form
of Eq. (2.10); details are the same as the ones in Section 3.3.6.1. The parameter is
the complex Laplace variable s with the frequency f ∈ [11.5, 12] GHz. Note that the
system has two inputs and two outputs. The quantities of interest are the scattering
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Figure 3.20.: Outputs of the Dual-mode Waveguide Filter.

Table 3.3.: Simulation settings for the Dual-mode Filter Model.
Setting N ε |Ξ| |Ξc| |Ξf | |Ξtest| ζ
Value 36, 426 10−5 51 17 500 101 1

parameters or s-parameters, which are obtained via a post-processing of the system
output Y(µ̆) := CX(s) ∈ C2×2 and C := BT

0 . Note that the output has the same
expression as the transfer function H(µ̆). We denote by

S :=

[
S11 S12

S21 S22

]
∈ C2×2.

the scattering matrix for the system. The scattering matrix is symmetric, so S12 = S21.
In Figure 3.20, we show the output Y(s) for the filter.
We employ Algorithms 3.2 and 3.3 to generate ROM for the filter model, making use

of the RBM in Steps 3-54. Table 3.3 summarizes the simulation parameters used.

Test 5: Algorithm 3.2 applied to the Dual-mode Filter Application of Algo-
rithm 3.2 to the filter model, using RBM at Steps 3-5 to obtain the projection matrix
V results in a ROM of dimension n = 10. The training set Ξ has 51 uniformly-spaced
parameters from f ∈ [11.5, 12] GHz. The greedy algorithm converges in five iterations
and requires, on average, 46 seconds to converge to the tolerance ε = 10−5. Since
the system is MIMO, ∆y,ER is computed following Eqs. (3.33) and (3.34). We plot in
Fig. 3.21a the true s-parameters computed using the FOM solution and those obtained
using the ROM, for the frequencies in the test set Ξtest which contains 101 uniformly-
spaced samples from the parameter domain. We note that the ROM generated by
Algorithm 3.2 is a very good approximation. This is further supported by Fig. 3.21b
where the errors of the components of the scattering parameter matrix are plotted.

Test 6: Algorithm 3.3 applied to the Dual-mode Filter To apply Algorithm 3.3,
we first note that the filter model is a MIMO system. Therefore, in Step 9 of Algo-
rithm 3.3, an RBF surrogate for each error estimator ∆ij

y,ER, i, j ∈ {1, 2} in Eq. (3.33)

4RBM corresponds to matching the zeroth order moments at the selected frequency samples.
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Figure 3.21.: Results of Test 5 for the Dual-mode Waveguide Filter.

needs to be constructed. We denote the surrogates by χij(µ̆), i, j ∈ {1, 2}. Based on
this, χ(µ̆) in Step 9 is simply defined as max

i,j
χij(µ̆). For the kernel function, we use

IMQ. The number of new parameters added to the coarse training set Ξc at each it-
eration is set to be nadd = 1. We pick the maximum among the four RBF surrogates
and add the corresponding parameter to Ξc. The initial coarse training set contains
17 uniformly-spaced parameters of the frequency and the fine training set Ξf has 500
random parameters. Algorithm 3.3 produces a ROM of dimension n = 10, similar to
Test 5. However, it needs only 24 s to converge, almost half that of the time take by
Algorithm 3.2 in Test 5. The resulting ROM is validated by evaluating it over the test
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|S12(s)− Ŝ12(s)|
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Figure 3.22.: Results of Test 6 for the Dual-mode Waveguide Filter.

set Ξtest. As is clear from Figures 3.22a and 3.22b, the ROM is able to approximate the
s-parameters very accurately. More importantly, the offline time for Algorithm 3.3 to
identify a robust ROM is much smaller than that of Algorithm 3.2.

3.5. Conclusion

This chapter focussed on a posteriori error estimation and adaptivity for linear steady/time-
harmonic and dynamical systems. We reviewed error estimation for both the state and
output variables. In Section 3.3.2, we proposed a new inf-sup-constant-free error esti-
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mator for the state variable approximation error. We further incorporated the proposed
state error estimator in an adaptive algorithm (Algorithm 3.1) to generate a ROM in
Section 3.3.5. In Section 3.3.6, we illustrated the efficiency and the robustness of Algo-
rithm 3.1 using two real-life filter and antenna circuits. Turning to a posteriori error
estimation in the output variable, we discussed existing approaches in Sections 3.4.1
and 3.4.2 and pointed out the associated drawbacks. As a remedy, we proposed a
surrogate-based evaluation of the error estimator in Section 3.4.5 and used it within
an adaptive algorithm to obtain parametric ROMs. Numerical tests were used in Sec-
tion 3.4.6 to show the improved performance of the new surrogate-based approach.
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CHAPTER 4

ERROR ESTIMATION AND ADAPTIVITY FOR
NONLINEAR DYNAMICAL SYSTEMS
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4.1. Introduction

In this chapter, we shift our focus to nonlinear dynamical systems. We shall consider
both parametric and non-parametric systems. For non-parametric, nonlinear dynamical
systems, the POD together with some hyperreduction strategy (PODEI algorithm, see
Algorithm 2.7) is the most common MOR technique used, while for parametric systems,
the RBM together with a suitable hyperreduction method (RBMEI, see Algorithm 2.8)
is the predominant approach. To certify the accuracy of the ROMs generated either
using PODEI or the RBMEI algorithm, we propose a new a posteriori output error
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estimator, based on a modified output term in Section 4.2. We begin in Section 4.2.1
by detailing an existing state-of-the-art output error estimator and briefly mention its
drawbacks. The proposed error estimator is introduced in Section 4.2.2. We discuss,
at length, its efficient computation and advantages in Sections 4.2.3 and 4.2.4. Our
approach involves using an adjoint or dual system to achieve tighter estimation.
The RBM has been successfully applied to a number of applications. Nevertheless

in several applications where the parameter sets are large, or where the dependence
of the solution on the parameter is complex, the dimension of the ROM identified
by the RBM is large. Also, the computational time for the offline stage of the RBM
can be significant. Therefore, adaptivity has been considered to address these issues.
Actually, various notions of adaptivity have been considered for the RBM. To address
the complexity of the parameter domain, adaptive sampling of the training set has been
considered in a number of works [76, 105, 134]. Adaptive basis generation is discussed
[24, 65, 71, 105] to address efficient enrichment of the RB projection matrix V and also
the projection matrix U for hyperreduction [61]. Recent works have discussed adaptive
snapshot selection to reduce the burden of computing the SVD of a large snapshot
matrix [3, 28, 96].
In this thesis, we shall consider adaptive basis enrichment and adaptive training set

sampling. Adaptive basis enrichment is discussed in Section 4.3. It is applicable to
both non-parametric and parametric systems. Efficient adaptive algorithms to gen-
erate ROMs are proposed in Sections 4.3.5 and 4.3.6. Our basis enrichment method
simultaneously enriches (a) the reduced basis, to approximate the solution manifold,
and (b) the interpolation (hyperreduction) basis, for approximating the nonlinear quan-
tity using approaches such as EIM or DEIM. To enrich either of the two bases, we make
use of the proposed error estimator as a ‘feedback’ to determine, at each iteration, the
number of new basis vectors to be added (or removed). In Section 4.3.7, numerical
experiments on real-life systems arising in process engineering are used to demonstrate
the reliability of the method and also the considerable savings in offline times it offers.
The discussion on adaptive training set sampling is postponed to Chapter 5.
The results presented in this chapter are based on [53].

4.2. A Posteriori Output Error Estimation for
Nonlinear Dynamical Systems

Error estimation is a topic of immense importance in the context of MOR in general
and the RBM in particular. For parametric dynamical systems, the RBM introduced
in Section 2.5.2 is a widely used MOR approach, highly dependent on efficient error
estimators. In fact, it makes use of error estimation both at the offline stage and the
online stage. At the offline stage, the error estimator is used to sample parameters in a
greedy manner (see Algorithm 2.8). This allows for an automatic implementation of the
RBM, while allowing for an efficient exploration of the parameter space at a reasonable
cost. The error estimator is used at the online stage to quantify the accuracy of the
ROM at any desired parameter.
The RBM community has, over the years, developed reliable, rapid error estimation
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for both the state and the output variable. Most of the development was based on
the representation of the PDE in the variational (or weak) form and using techniques
from functional analysis to obtain guaranteed error bounds. A posteriori error bounds
were initially proposed for linear, coercive, elliptic PDEs [177, 201] in the field vari-
able, followed by extensions to non-coercive elliptic PDEs [186], nonlinear/non-affine
parabolic PDEs [98, 100]. Some other recent works such as [198] have instead con-
sidered a combined space-time variational form of the PDE to derive error bounds for
elliptic and parabolic problems [210]. We refer to the survey papers [180] and to the
books [112, 167] for a deep discussion on various aspects of the RBM.
Error estimators for systems discretized using the finite volume method were con-

sidered in [106]. These error estimators were derived for the state or field variable, in
the finite dimensional vector space. However, they often suffer from poor effectivity,
especially for problems with a long simulation time. This is due to the accumulation
of the residuals over time. Such an accumulation of the residual is a common pitfall
associated with many error estimation approaches. In [214], the authors proposed a
goal-oriented a posteriori error estimator RBM, that avoids the accumulation of the
residual over time. This is achieved by considering an auxiliary dual system and its
ROM, resulting in a tighter estimation of the error at each time instant. Such dual-
or adjoint-based error estimation was originally introduced in [163], in the context of
FEM and was popularized for error estimation of linear PDEs by the work in [97, 98].
In this work, we present an a posteriori output error estimator for nonlinear dynam-

ical systems in a fully-discrete setting. Our subsequent discussion shall be based on
Eq. (2.11) as the FOM for the RBM and Eq. (2.18) (or Eq. (2.36)) as the corresponding
ROM. For these systems, we seek to bound/estimate the true output error at each time
instant tk and at each parameter µ as

‖yk(µ)− ỹk(µ)‖ ≤ ∆k
y(µ),

where ∆k
y(µ) ∈ R≥0 is the estimated error at a time instance tk for a given parameter

µ. As done in Chapter 3, we drop the explicit dependence on the parameter in order
to have a clean notation.
Our error estimator is closely aligned to the approach proposed in [214]. We propose

two improvements to that approach and considerably improve the sharpness of the
estimated error. We start by reviewing the output error estimator introduced in [214].
Following that, we highlight aspects that are ripe to be improved and propose an
improved error estimator and discuss strategies for its efficient computation.

4.2.1. An Existing Approach

We discuss the procedure laid out in [214] in the context of a single output system
(i.e., C(µ) ∈ R1×N in Eq. (2.11)). The a posteriori output error bound is targeted
at estimating the output error of the ROM for any system in the form of Eq. (2.11)
(referred to hereafter as a t-primal system). We reproduce it below for easy reference:

Exk+1 = Axk + f(xk) + Bu(tk),

yk+1 = Cxk+1.
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The ROM for the above t-primal system is given by Eq. (2.18) which we repeat below:

Êx̂k+1 = Âx̂k + f̂(x̂k) + B̂uk,

ỹk+1 = Ĉx̂k+1.

The parameter dependency is not explicitly stated to avoid cluttered notation. The
approximate solution to the t-primal system using the ROM is xk+1 ≈ x̃k+1 = Vx̂k+1.
The authors then introduce a discrete adjoint or dual system

E
T
xk+1
du = −CT (4.1)

referred to hereafter as the t-dual system. Note that, in general, the t-dual system is
time-dependent since the matrix E(µ) can vary with the time step ∆t(k). Assuming
a simplification in the form of constant time steps, i.e., ∆t(k) = ∆t, the t-dual system
becomes a steady system of the form

E
T
xdu = −CT. (4.2)

Further, the ROM corresponding to the t-dual system is given by

Ê
T
x̂du = −ĈT. (4.3)

The approximate dual solution is x̃du ≈ Vdux̂du, with Vdu ∈ RN×ndu and ndu is the
dimension of the reduced t-dual system.
The approximation of Eq. (2.11) and Eq. (4.2) by their corresponding ROMs results

in corresponding residuals. The t-primal system residual rk+1
pr ∈ RN is defined as

rk+1
pr := Ax̃k + f(x̃k) + Buk − Ex̃k+1. (4.4)

Additionally, an auxiliary residual řk+1
pr ∈ RN is obtained as the residual of Eq. (2.11)

by inserting the true state vector xk in the right-hand side. This results in

řk+1
pr := Axk + f(xk) + Buk − Ex̃k+1 = Exk+1 − Ex̃k+1. (4.5)

This yields a direct relation with the true error in the state vector xk+1 − x̃k+1 as

řk+1
pr = E(xk+1 − x̃k+1). (4.6)

Correspondingly, the residual of the t-dual system rdu ∈ RN is

rdu := −CT − E
T
x̃du. (4.7)

Based on the primal and dual system residuals the following theorem is proved in [214]:

Theorem 4.1 ([214]):
For the t-primal system and its ROM, assuming that E is invertible for every parameter
µ, the true output error yk − ỹk at the k-th time instant tk satisfies

‖yk+1 − ỹk+1‖ ≤ Φk+1‖rk+1
pr ‖, k = 1, 2, . . . , K (4.8)
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with

Φk+1 := %k
(
‖E−T‖‖rdu‖+ ‖x̃du‖

)
(4.9)

and

%k+1 :=
‖řk+1

pr ‖
‖rk+1

pr ‖
. (4.10)

♦

A detailed proof can be found in [214]. There, it is also shown there that the constant
%k is bounded above and below and that its value converges to 1 as the ROM dimension
n increases.
While the above error bound is rigorous, it is not feasible to use as a part of the

RBM POD-Greedy algorithm (Algorithm 2.4) because the true solution xk+1 is needed
for evaluating ‖řk+1

pr ‖. To address this, the authors estimate the value of %k based only
on the data available at the snapshot locations for the current greedy parameter µ∗,
i.e.,

%k+1 ≈ 1

K

K∑

k=1

%k+1(µ∗) =: %̃. (4.11)

Based on this approximation, the following error estimator is proposed:

‖yk+1 − ỹk+1‖ / Φ̃‖rk+1
pr ‖ =: ∆̃k+1

y , k = 1, 2, . . . , K (4.12)

with Φ̃ := %̃
(
‖E−T‖‖rdu‖ + ‖x̃du‖

)
. In [214], the above error estimator is used on two

benchmark examples to demonstrate its robustness. Nevertheless, there are several
issues associated with it. We elaborate on the details in the following sections.

4.2.1.1. Drawbacks

The error estimator in Eq. (4.12) consists of two parts:

∆̃k+1
y = %̃

(
‖E−T‖ · ‖rdu‖ · ‖rk+1

pr ‖
)

+ %̃
(
‖x̃du‖ · ‖rk+1

pr ‖
)

= ∆̃k+1
y,1 + ∆̃k+1

y,2 . (4.13)

The decay (with number of POD-Greedy iterations and ROM dimension) of ∆̃k
y,1 is

determined by the product of the norms of the primal and dual residuals, while that
of ∆̃k

y,2 depends on the product of the norm of the primal residual and the norm of the
approximate dual solution ‖x̃du‖.
For the first part (∆̃k+1

y,1 ), if both the primal and dual systems are approximated well,
a quadratic convergence can be expected. In [214], the same projection matrix V used
for obtaining the system ROM (Eq. (2.18)) is also used in obtaining the dual system
ROM (Eq. (4.3)). In other words, Vdu = V. As a result, the approximation of the
t-dual system is less than optimal. Furthermore, for the second part (∆̃k+1

y,2 ), even if
‖rk+1

pr ‖ is small, there is no control over the norm of the approximated dual state vector
‖x̃du‖ since that is entirely problem-dependent. Hence, the overall estimated error can
potentially be large. Finally, the practical realization of the error estimator involves
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computing the term ‖E(µ)−T‖ at all parameters µ in a training set. When considering
the Euclidean norm, this quantity turns out to be the smallest singular value of the
matrix E at a given parameter, whose computation requires solution of a large-scale
eigenvalue problem. Although computed only once, this step can incur a significant
portion of the overall computational cost at the offline stage especially for truly large-
scale FOMs. We aim at addressing these drawbacks in our proposed error estimator,
which we discuss next.

4.2.2. A New Error Bound with Modified Output

We consider the following modification of the reduced output term:

yk+1 := ỹ − x̃T
dur

k+1
pr . (4.14)

The correction term employed is simply the product of the residual rk+1
pr with the

approximate dual solution x̃du. Error estimators that make use of an adjoint/dual
system have a long history in FEM, in the context of mesh adaptivity [163]. They have
also been used previously in the context of MOR, mainly for steady-state systems [180]
and linear PDEs [97]. Our proposed error estimator, to be introduced next, is targeted
towards nonlinear dynamical systems.

Theorem 4.2:
Given the full-discrete FOM Eq. (2.11) and its ROM Eq. (2.18), assuming E to be
nonsingular at all parameters µ, the following error bound for the modified output
Eq. (4.14) can be obtained:

‖yk+1 − yk+1‖ ≤ ‖E−T‖ · ‖rdu‖ · ‖rk+1
pr ‖+ ‖x̃du‖ · ‖rk+1

pr − řk+1
pr ‖. (4.15)

Proof. The broad scheme of the proof follows the structure of the proof in [214]. The
error in the modified output is

yk+1 − yk+1 = C
(
xk+1 − x̃k+1

)
+ x̃T

dur
k+1
pr . (4.16)

Multiplying by
(
xk+1 − x̃k+1

)T on both sides of Eq. (4.2) yields

(
xk+1 − x̃k+1

)T
E

T
xdu = −

(
xk+1 − x̃k+1

)T
CT,

so that

xT
duE
(
xk+1 − x̃k+1

)
= −C

(
xk+1 − x̃k+1

)
,

where we have simply used the transpose to obtain the second equation. We further
use the expression in Eq. (4.6) to obtain

xT
duř

k+1
pr = −C

(
xk+1 − x̃k+1

)
. (4.17)
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Now, we substitute Eq. (4.17) in Eq. (4.16) followed by addition and subtraction of the
term x̃T

duř
k+1
pr to get

yk+1 − yk+1 = −xT
duř

k+1
pr + x̃T

dur
k+1
pr ,

= −xT
duř

k+1
pr + x̃T

dur
k+1
pr + x̃T

duř
k+1
pr − x̃T

duř
k+1
pr ,

= −
(
xdu − x̃du

)Třk+1
pr + x̃T

du

(
rk+1
pr − řk+1

pr

)
.

(4.18)

Next, from Eq. (4.2) and Eq. (4.7). We get

rdu = E
T
xdu − E

T
x̃du = E

T(
xdu − x̃du

)
,

=⇒
(
xdu − x̃du

)
= E

−T
rdu.

(4.19)

Substituting Eq. (4.19) into Eq. (4.18) yields

yk+1 − yk+1 = −rT
duE

−1
řk+1
pr + x̃T

du

(
rk+1
pr − řk+1

pr

)
. (4.20)

Taking the norm on either sides and using the triangle and Cauchy-Schwartz inequalities
we obtain the error bound as

|yk+1 − yk+1| = ‖ − rT
duE

−1
řk+1
pr ‖+ ‖x̃T

du

(
rk+1
pr − řk+1

pr

)
‖, (4.21)

≤ ‖E−1‖‖rdu‖‖řk+1
pr ‖+ ‖x̃du‖‖

(
rk+1
pr − řk+1

pr

)
‖. (4.22)

Notice that, similar to the error bound of [214], the above error bound cannot be used
for practical computations owing to the presence of the term ‖řk+1

pr ‖ which needs the
true solution. Therefore, instead of a rigorous upper bound, we propose the following
computable error estimator.

4.2.3. A Computable Error Estimator

We define α := ‖rk+1
pr − řk+1

pr ‖. The upper bound for α based on the triangle inequality
is ‖rk+1

pr ‖+ ‖řk+1
pr ‖ =: αu. In addition, based on the reverse triangle inequality, we have

a lower bound for α as
∣∣‖rk+1

pr ‖ − ‖řk+1
pr ‖

∣∣ =: αl. We propose to approximate α using
the lower bound, that is,

‖rk+1
pr − řk+1

pr ‖ ≈
∣∣‖rk+1

pr ‖ − ‖řk+1
pr ‖

∣∣ .

The above proposal is motivated by the following observation. Notice that, in case
we approximate α by the upper bound αu, the second part of Equation (4.15) has the
upper bound (1 + %̃)‖x̃du‖‖rk+1

pr ‖ and this quantity which is even larger than ∆y,2 in
Eq. (4.13). Additionally, note that

|αl − α| ≤
{

2%k+1‖rk+1
pr ‖, %k+1 > 1,

2‖rk+1
pr ‖, %k+1 ≤ 1,

(4.23)
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while

|αu − α| ≤ (2 + 2%k+1)‖rk+1
pr ‖. (4.24)

Based on these observations, we conclude that |αl−α| possesses a smaller upper bound
than |αu − α|, implying that α could be better approximated by αl than αu. We use
this to obtain the following expression

|yk+1 − yk+1| ≤ ‖ − rT
duE

−1
řk+1
pr ‖+ ‖x̃T

du

(
rk+1
pr − řk+1

pr

)
‖,

/ ‖E−1‖‖rdu‖‖řk+1
pr ‖+ ‖x̃du‖

∣∣‖rk+1
pr ‖ − ‖řk+1

pr ‖
∣∣ ,

=
(
%k+1‖E−1‖‖rdu‖+ |1− %k+1|‖x̃du‖

)
‖rk+1

pr ‖,
≈
(
%̃‖E−1‖‖rdu‖+ |1− %̃|‖x̃du‖

)
‖rk+1

pr ‖.

(4.25)

We have used Eq. (4.10) to substitute for ‖řk+1
pr ‖ and %k+1 is approximated using %̃ in

Eq. (4.11). Finally, defining

Φ := %̃‖E−1‖‖rdu‖+ |1− %̃|‖x̃du‖ (4.26)

results in the following error estimator:

‖yk+1 − yk+1‖ / Φ‖rk+1
pr ‖ =: ∆k+1

y , k = 1, 2, . . . , K. (4.27)

and ∆k+1
y = ∆k+1

y,1 +∆k+1
y,2 = %̃‖E−1‖‖rdu‖‖rk+1

pr ‖+|1−%̃|‖x̃du‖‖rk+1
pr ‖. We next highlight

various aspects showing the advantages of the proposed error estimator Eq. (4.27) over
∆̃k+1

y in Eq. (4.12).

4.2.4. Advantages of the Proposed Approach

Improving ∆̃k+1
y,2 Compared to the error estimator Eq. (4.8) in [214], notice that for the

proposed error estimator ∆k+1
y , the second term is multiplied by the coefficient |1− %̃|.

The quantity %̃ tends to be 1 as the POD-Greedy algorithm converges, therefore ∆k+1
y,2

tends to be 0, resulting in tighter estimation of the error.

Improving ∆̃k+1
y,1 For the error estimator ∆̃k+1

y in Eq. (4.12), the first term ∆̃k+1
y,1 con-

tains the term ‖rdu‖. This quantity is obtained by reducing the dual system (Eq. (4.2))
using the same projection matrix used to reduce the t-primal system, leading to a slow
decay of ∆̃k+1

y,1 . To ensure a faster decay of the first term, we propose to make use of
appropriate methods or projection matrices to compute the approximate dual solution
x̃du. This is motivated by the observation that x̃du need not necessarily be computed
by reducing the t-dual system using a MOR method – any method that is able to
approximate xdu should be applicable. For the case of the dual system being para-
metric, we construct a separate dual RB space as considered in [97, 180]. Using this,
the t-dual system can be much better approximated than using the primal RB matrix.
Consequently, the approximate solution x̃du will lead to a residual with a smaller norm,
thus improving the decay rate of the first term ∆k+1

y,1 . Naturally, this approach has
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a higher computational cost. In case the dual system is non-parametric (when E is
non-parametric and time-independent), instead of reducing the dual system, we pro-
pose to use Krylov-space methods (such as GMRES, MINRES) [152, 181] to iteratively
solve the t-dual system and obtain x̃du. This procedure is done only once and leads
to a smaller ‖rdu‖ compared to using the primal projection matrix to reduce the dual
system.

Efficiently computing the inf-sup constant In Eqs. (4.12) and (4.27), ‖E(µ)−1‖
needs to be computed at all parameters µ in some training set. Actually, this quantity
is the so-called inf-sup constant. In case of using the Euclidean norm (the matrix
spectral norm) ‖ · ‖2,

‖E(µ)−1‖2 = σmax

(
E(µ)−1

)
=

1

σmin

(
E(µ)

)

where σmin is the smallest singular value of the matrix E(µ). For the RBM, the train-
ing set usually contains many parameters, thus, obtaining ‖E(µ)−1‖ is expensive. The
Successive Constraints Method (SCM) [119, 120] is an approach proposed to compute
‖E(µ)−1‖ more efficiently. However, the SCM is known to suffer from slow conver-
gence [188]. In [111], the inf-sup constant is approximated using Kriging interpola-
tion [150]. Instead, we use an RBF-based interpolation to approximate the smallest
singular values. This approach was originally introduced in [137] and it avoids the slow
convergence rates seen in the SCM, while reducing the computational costs drastically.

4.2.5. Radial Basis Interpolation for the inf-sup constant

Recall from the discussion in Section 2.7 that RBFs are good choice to perform interpo-
lation of scattered data in high-dimensional spaces. The training set Ξ in the RBM is
usually densely-sampled, making it a large computational burden to evaluate σmin for all
samples in Ξ. To this end, we seek an RBF interpolant of the function σmin : RNp → R≥0,
which can be cheaply evaluated. Our approach closely follows the procedure laid out in
[137]. We start by considering a coarsely-sampled subset Ξc := {µc

1, . . . ,µ
c
nc} ⊂ Ξ. We

then solve the large-scale eigenvalue problem to determine the smallest singular values
σmin

(
E(µ)

)
for all µ ∈ Ξc and form the RBF interpolant for σmin. To achieve this, using

the notations from Section 2.7, we then set Λ : Ξc and D := {σmin

(
E(µ)

)
,µ ∈ Ξc}. Us-

ing (D,Λ), the RBF interpolant can be obtained by solving the linear system Eq. (2.43).
Next, we follow a greedy procedure to enrich the coarse training set Ξc with new param-
eters from Ξ and update the RBF interpolant. The new parameter at each iteration is
chosen as the one maximizing a pre-defined criterion function C defined over Ξ. This
function is chosen such that it promotes adding new samples in locations with highly
varying response and also ensures the positivity of the interpolant. At the end of each
greedy iteration, the relative error in the L∞-norm between the current and the previ-
ous RBF interpolant is computed and this serves as the termination criterion. In the
following algorithms, the RBF approximation σ̃min will replace σmin.
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4.3. Adaptive Basis Enrichment

Now, we make use of the improved a posteriori error estimator in Section 4.2.2 to
propose an adaptive scheme for basis enrichment. This scheme is applicable to both
non-parametric and parametric systems.

4.3.1. Non-Parametric Systems

In the non-parametric case, the PODEI algorithm (Algorithm 2.7) is the state-of-the-
art. However, this approach does not guarantee that the dimensions of the POD basis
V or the hyperreduction basis U is as small as possible. In fact, in the worst case,
the ROM can be unstable; see [87, 93]. This is due to the fact that the two bases are
generated separately (Steps 2-3 of Algorithm 2.7). The choice of εPOD, εEI (or n, nEI) is
heuristic and uncorrelated to the actual output error. To address this, [87] introduced
an adaptive enrichment of the bases V,U. The adaptivity was guided by an a posteriori
error estimator. The method in [87] has several drawbacks, which we seek to improve.
Firstly, it is applicable exclusively to non-parametric systems. Secondly, the adaptive
scheme is one-way : the bases can only be extended with new basis vectors but can not
be shrunk when needed. This may restrict the initial number of basis vectors in V,U
to be small and could result in many iterations to converge. Thirdly, the a posteriori
error estimator used in [87] is the same as the one from [214] which is not optimally
sharp (see Section 4.2.1.1) and could be further improved. As a consequence, a tighter
error estimator may also lead to fewer number of iterations.
Our proposed extension to the PODEI algorithm is called the Two-way Adaptive PODEI

algorithm. It is, in fact, a non-trivial extension of the ideas proposed in [87]. In terms of
the enhancements, we make use of the improved a posteriori error estimator proposed
in Section 4.2.2. The resulting tight estimation of the error allows for obtaining ideally
small ROMs. Furthermore, we make the adaptive enrichment a two-way process – we
allow for both addition and removal of basis vectors. This removes any limitation on
the initial dimensions of the V,U, an issue faced in [87].

4.3.2. Parametric Systems

In the parametric setting, the RBMEI algorithm (Algorithm 2.8) represents the pre-
dominant approach to obtain parametric ROMs and it suffers from similar issues as
the ones highlighted for the PODEI algorithm. In this form, this algorithm incurs large
computational costs at the offline stage due to Step 1, where the FOM needs to be
solved for every parameter in the training set Ξ in order to collect the snapshots of the
nonlinear term. Moreover, the number of basis vectors in U is determined through a
heuristic criterion of singular value decay in case of DEIM (see Eq. (2.26)), or through
a greedy procedure in the case of EIM (see Algorithm 2.5). This often leads to an
unnecessarily large dimension of the EI basis, since it is based on an artificial singular
value error measure (for DEIM) or interpolation error (for EIM) and is not related
to the approximation quality for the problem being considered. Apart from this, the
dimension of the RB V, viz., rRB is determined heuristically (Steps 7, 10). The com-
mon choices are to simply set rRB = 1 or to determine it using some tolerance εPOD in
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Algorithm 2.2. These shortcomings were also pointed out in [24, 65, 71].
In [65], the authors introduce the simultaneous EIM-RB (SER) algorithm for simul-

taneously enriching the RB and EIM basis for nonlinear, steady systems. The goal is
to enrich the EIM and RB bases alternately, avoiding the computation of expensive
FOM solutions for all the parameters in a given training set. At the first step, a FOM
solution at a randomly chosen parameter is obtained. Based on this, the EIM basis U
and interpolation points are computed. Furthermore, the first RB basis is built by or-
thogonalizing the available snapshot from the FOM solution. In the subsequent steps,
the EIM and RB bases are enriched alternately, relying only on the approximate solu-
tions computed from the ROM simulation. In essence, the approach requires only an
initial FOM simulation at a single parameter. Since only the ROM is simulated for EIM
and RB updates, the snapshots used for EIM and RB construction are approximate
snapshots.
In [24], the progressive EIM (PREIM) algorithm is proposed as an extension of SER

to time-dependent problems. The PREIM algorithm computes the nonlinear term
based not only on the approximate FOM solution, but also on the high-fidelity FOM
solution, whenever available. More precisely, if a new greedy parameter is chosen for
enriching V, the high-fidelity solution at this parameter needs to be computed. The
corresponding snapshots of the nonlinear term at this greedy parameter are also readily
available. For the other parameters in the training set, the nonlinear snapshots are
obtained based on the approximate FOM solutions computed from the ROM.
Departing from the approaches in the above works, we extend the RBMEI algorithm

in several directions. Our extension is called the Adaptive RBMEI algorithm.

• We consider a simultaneous enrichment of the RB and EI bases, starting from
a single FOM solution at an initial parameter. This avoids the need for pre-
computing the FOM at all parameters in the training set.

• Our adaptive basis enrichment scheme is a flexible, two-way technique: we con-
sider both adaptive basis extension and adaptive basis shrinking. The enrichment
or shrinking is done using the estimated error at the greedy parameter as a feed-
back. If the error is large, we add more basis vectors and if the error is more than
sufficient, we delete unnecessary basis vectors from V,U.

Also, we make use of the improved error estimator Eq. (4.28). The benefit of this
is that we obtain a separation in the contribution of the error in terms of the RB
and EI approximation. This is crucial to perform adaptive basis enrichment of V,U
individually. We highlight some key aspects in which our approach differs to the existing
ones from [24, 65, 71]. When compared to the SER and PREIM algorithms in [24, 65]
our method differs in the following ways:

- we do not use the approximate state solution to evaluate the nonlinear function,
so that no extra errors are introduced during basis construction. For the hy-
perreduction (using EIM or DEIM), we only use the high-fidelity solutions that
are needed for enriching V and which are computed by solving the FOM at the
greedy parameters selected by the algorithm. The nonlinear functions are essen-
tially evaluated using the FOM snapshots that are available for free.
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- For SER and PREIM, a new greedy sample for basis enrichment is selected based
on the EIM error, rather that the error of the ROM. Moreover, for PREIM, the
selection process might be time consuming for dynamical systems since it is done
at every parameter in the training set. In contrast, the adaptive scheme in the
Adaptive RBMEI algorithm is based on an efficient output error estimator, that
offers a separation in the RB and EI error contributions. At each iteration, a new
parameter is selected based on both the RB and EIM errors.

- For SER and PREIM, at each iteration only one candidate basis vector is com-
puted to enrich U. But, our proposed method allows for adaptive EI basis con-
struction. This means that the number of EI basis vectors to enrich U can vary
at each iteration. In fact, both SER and PREIM do not consider an adaptive
enrichment of the basis V. However, our approach allows adaptive enrichment of
both V and U.

When compared to the method in [71] our approach has the following advantages:

- In [71], the initial size of the RB and EI bases are determined by solving the FOM
for all parameters in a coarse training set, following which the bases are updated
trivially with one new basis vector per greedy iteration. However, our approach
avoids the need for choosing such a coarse training set. The initial bases V,U
are initialized with basis vectors obtained at a single FOM solution at an initial
parameter, and this is more effective in the sense of adaptivity since it avoids
many FOM solutions.

• The bases at each iteration are updated trivially with one new basis vector in
[71]. Our approach allows for an adaptive update based on the estimated error.

Note that the estimator in Eq. (4.27) is applicable to estimating the error of the
ROM in Eq. (2.18). However, in practice, we use the ROM in Eq. (2.36) using hyper-
reduction. Next, we introduce a modification of the error estimator in Eq. (4.27) when
hyperreduction of the nonlinear term is used. That is, we propose an error estimator
for the ROM in Eq. (2.36).

4.3.3. Error Estimation Considering Hyperreduction

To address the most general case of nonlinear systems, a hyperreduction procedure is
used to efficiently evaluate the nonlinear term f(xk) at the online stage and the ROM is
of the form Eq. (2.36). Taking this into account, the residual term rk+1

pr (see Eq. (4.4))
in the estimator in Eq. (4.27) can be rewritten as

rk+1
pr = Ax̃k + f(x̃k) + Buk − Ex̃k+1,

= Ax̃k + f(x̃k) + I [f(x̃k)]−I [f(x̃k)] + Buk − Ex̃k+1,

=
(
Ax̃k + I [f(x̃k)] + Buk − Ex̃k+1

︸ ︷︷ ︸
=:rk+1

pr,I

)
+
(

f(x̃k)−I [f(x̃k)]︸ ︷︷ ︸
=:ekEI

)
.
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In the above equation, rk+1
pr,I is the residual resulting from the ROM (Eq. (2.36)) by

considering a hyperreduction step and ekEI is the error introduced by the hyperreduc-
tion. By substituting this separation, we can rewrite Eq. (4.27) as a sum of (a) error
resulting from approximating the state variable using V and (b) error resulting from
approximating the nonlinear term using the hyperreduction basis U. We have

‖yk+1 − yk+1‖ / Φ‖rk+1
pr,I‖︸ ︷︷ ︸

=:∆k+1
y,RB

+ Φ‖ekEI‖︸ ︷︷ ︸
=:∆k+1

y,EI

, k = 1, 2, . . . , K. (4.28)

The term ∆k+1
y,RB ∈ R≥0 is the contribution to the overall estimated error ∆k+1

y from
the RB approximation and ∆k+1

y,EI ∈ R≥0 is an error estimator for the hyperreduction
interpolation error ekEI.
The error estimator for the hyperreduction scheme is obtained based on the idea of

hierarchical error estimation considered in works such as [19, 71, 100, 207]. We consider
two different orders of hyperreduction (using EIM or DEIM) for the nonlinear term f(x̃):
let Un̊ ∈ RN×̊n, I̊n = [℘̊1, . . . , ℘̊n̊] denote the EI projection basis and the interpolation
indices corresponding to an order-̊n approximation and let Un ∈ RN×n, In = [℘1, . . . , ℘n]
denote the EI projection basis and the interpolation indices corresponding to an order-
n approximation, with n̊ > n. Let us further define Sn̊ := [e℘̊1 , . . . , e℘̊n̊

] ∈ RN×̊n and
Sn := [e℘1 , . . . , e℘n ] ∈ RN×n with ei ∈ RN denoting the i-th unit vector in RN . Based
on these two different approximations, we have the following expression for the error
incurred due to hyperreduction:

ekEI := Πn̊

(
I− Πn

)
f(x̃k). (4.29)

The quantity Πn̊ is defined as Πn̊ :=
(
I − Πn

)
Un̊

(
ST
n̊ (I − Πn)Un̊

)−1

ST
n̊ and we de-

fine Πn := Un

(
ST
n Un

)−1

ST
n , with I ∈ RN×N being the identity matrix. A detailed

derivation can be found in [207]. We will use this expression to obtain the empirical
interpolation error that will be used for adaptive basis enrichment.

Mean Error Estimates The proposed error estimator Eq. (4.28) is given for every
time instance tk. For use in the proposed Two-way Adaptive PODEI and Adaptive RBMEI
algorithms, we are interested in the mean error over time defined as below:

1

K

K∑

i=1

‖yi − yi‖ / 1

K

K∑

i=1

(
∆i

y,RB + ∆i
y,EI

)
= ∆y,RB + ∆y,EI =: ∆y. (4.30)

4.3.4. Adaptive update of RB and EI bases

We now discuss the main idea behind the adaptive basis enrichment. It is applicable
to both non-parametric and parametric systems. To keep the discussion general, we
illustrate the proposed approach for parametric systems.
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Suppose that we have some desired tolerance for the ROM, denoted by ε. At each
iteration of the POD-Greedy algorithm, we look at the ratio of the RB and EI estimated
errors at the greedy parameter µ∗ w.r.t. the tolerance given by

∆y,RB(µ∗)

ε
and

∆y,EI(µ
∗)

ε
. (4.31)

It is obvious that in Eq. (4.31), if either of the ratios is larger than 1, i.e.,
(

∆y,RB

ε

)
> 1

or
(

∆y,EI

ε

)
> 1, the current RB or EI basis (V or U) is not sufficient to meet the

desired tolerance and needs to be extended. On the other hand, when either of the
ratios is below 1, this implies that the current RB or EI basis is accurate and no new
basis vectors need to be added. For the latter case, some basis vectors could be removed
from V or U to make the bases as compact as possible. The magnitude of the ratios
in Eq. (4.31) can vary over a large range, therefore, we instead use the logarithm (base
10) to map the magnitudes to a reasonable interval. We use the rounded, log-mapped
values of the ratios in Eq. (4.31) as a ‘feedback’ for enriching or shrinking the RB, EI
bases.

Remark 4.3:
The proposed adaptive basis enrichment scheme can also be applied to non-parametric
systems. In this case, the corresponding form of Eq. (4.31) reads

∆y,RB

ε
and

∆y,EI

ε
. (4.32)

♦

Let rRB and rEI be the dimension of the RB, EI basis vectors, respectively, at the current
iteration. We then update the dimensions based on the following rule:

δRB := ±1 +

⌊
log10

(
∆y,RB(µ∗)

ε

)⌋
,

δEI := ±1 +

⌊
log10

(
∆y,EI(µ

∗)

ε

)⌋
.

(4.33)

Based on these updates, the number of RB, EI basis vectors at each iteration is

rRB = rRB + δRB,

rEI = rEI + δEI.
(4.34)

The basis update scheme is able to both add or remove basis vectors from V and U. The
quantity ±1 in Eq. (4.33) tries to ensure that at least one basis vector is added (+1) or

removed (−1) at each iteration, in case the rounded value γRB =

⌊
log10

(
∆y,RB(µ∗)

ε

)⌋

or γEI =

⌊
log10

(
∆y,EI(µ

∗)

ε

)⌋
is zero, but the values log10

(
∆y,RB(µ∗)

ε

)
or log10

(
∆y,EI(µ

∗)

ε

)

are non-zero (either slightly smaller or slightly larger than zero).
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Overcoming Stagnation The goal for adaptivity is to add/delete basis vectors to/from
the current RB, EI bases so that the ROM meets the given tolerance, while being kept
as compact as possible. It is observed that in some cases, the convergence of the adap-
tive algorithm becomes slow when the estimated error is close to the tolerance. In
such situations, the number of additional basis vectors to be added/deleted is usually
one, resulting in a slow convergence. A second issue is that the error estimator could
keep oscillating (below and above the tolerance ε) upon basis enriching/shrinking. We
propose to define a zone-of-acceptance (zoa) for the output error. In particular, we set
a new value ε∗ < ε. Taken together, ε∗ and ε define the zoa: [ε∗, ε]. Whenever the
estimated error (∆y) falls within the zoa,the algorithm will terminate. We typically set
ε∗ = 0.1ε. The zoa helps address the second issue highlighted above (oscillations) for
the case of basis enriching/shrinking and addresses the first issue (slow convergence) in
case of basis shrinking.

(D)EIM Plateaus Previous works dealing with the simultaneous enrichment of RB
and (D)EIM bases have noted the issue of (D)EIM plateaus. In fact, two different
notions of plateauing have been observed and presented in [45, 71, 98, 121, 190, 197].
In [98, 190, 197], the authors note that when the number of basis elements of the EIM
approximation is fixed at some small value, an increase in the number of RB vectors
does not result in an improvement in the overall error. This is a plateauing due to
large error in the EI approximation. However, in [71], it is observed that EIM plateaus
occur when the error contribution is dominated by the RB approximation error and a
further enrichment of the EIM basis is useless. This is a plateauing due to large error
in the RB approximation. These observations suggest that simultaneous enrichment of
the RB and the EI basis is critical to avoid plateaus in general. A solution proposed in
[71] is to monitor an error estimator over the training set, that is, max

µ∈Ξ
∆y, between two

successive iterations. If a newly added RB basis vector leads to an increase in the error,
then it is dropped and only the EIM basis is updated. In [197], the author considers
different tolerances for the RB, EIM approximations. However, the proposed algorithm
involves some user-defined constants which makes it less straightforward to implement.
From our experience in the numerical tests, setting different tolerances for the RB and
EI basis updates in Eq. (4.34), viz., εRB and εEI, respectively, with εEI < εRB proves to
give the best approximation. A similar observation is also noted in [190]; however, no
simultaneous enrichment is considered there. Still, it is not entirely clear how small
the EI approximation tolerance has to be when compared to the RB tolerance. In our
numerical experiments, we set εRB = ε, the ROM tolerance and use εEI = 0.01εRB for
the EI tolerance. We now detail the Two-way Adaptive PODEI algorithm and Adaptive
RBMEI algorithm.

4.3.5. Two-way Adaptive PODEI algorithm

The Two-way Adaptive PODEI algorithm extends the one proposed in [87]. It offers the
flexibility of being initialized with an arbitrary choice of dimensions of the POD and EI
bases. The method is able to suggest the proper number of basis vectors to be added
to or removed from the current basis, and yields a compact and stable ROM, for the
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given tolerance. The pseudocode is sketched in Algorithm 4.1. The algorithm begins
by solving the FOM Eq. (2.11) to collect snapshots. Then, the POD and EI tolerances
εPOD, εEI are used to identify the POD projection matrix V0 and the hyperreduction
quantities U0, I0. Usually, the tolerances are chosen conservatively small (∼ 10−10).
This potentially leads to an unnecessarily large dimension for the ROM. Moreover,
there is no correlation to the actual desired ROM tolerance ε. To obtain a compact
ROM, the adaptive scheme is initialized in Step 4 with an initial choice of dimensions
rRB, rEI and the initial projection matrices V0,U0 and initial interpolation indices I0

are identified. In Step 5, a Krylov-subspace method, such as GMRES, is used to obtain
the approximate dual solution x̃du and in Step 6, the inf-sup constant σmin is computed.
As long as the estimated error ∆y does not fall within the zone-of-acceptance, the RB
and EI bases dimensions are updated in Step 13, by adding or removing basis vectors.
In Step 14, we ensure that the dimension of the EI projection matrix U is larger than
that of the RB projection matrix V. This is motivated by our observation in some
numerical experiments that for rEI < rRB, the ROM is no longer stable.
As will be demonstrated in the numerical experiments, using Algorithm 4.1 leads to a

much smaller ROM than the one resulting from applying Algorithm 2.7. Moreover, for
the ROM obtained using Algorithm 2.7 there is no guarantee that it meets the desired
tolerance ε; whereas this is ensured for the proposed approach.

4.3.6. Adaptive RBMEI algorithm

We now detail the Adaptive RBMEI algorithm, our proposed extension to Algorithm 2.8
with adaptive basis enrichment. The basic idea is to start from an initial greedy pa-
rameter µ∗ (chosen randomly), then iteratively and non-trivially update the RB and
EI bases V and U. In Step 1, in case the dual system Eq. (4.2) turns out to be
non-parametric, we use a Krylov-subspace method (such as GMRES) to obtain the ap-
proximate dual solution x̃du, since it will be required in the error estimator Eq. (4.28).
In Step 2, we compute the approximate inf-sup constants σ̃min(µ),∀µ ∈ Ξ using the
RBF-based interpolation approach discussed in Section 4.2.5. In Step 3, the quantities
involved in the greedy algorithm are initialized. In our approach, we build the dual
system projection matrix Vdu as a part of the greedy algorithm. It is also possible to
construct Vdu separately, as done in [100], but with possibly more computational time.
In Steps 5-16 of Algorithm 4.2, we update the RB matrix with rRB basis vectors based
on the POD applied to the snapshot matrix at every iteration. In Step 12, we use
the modified Gram-Schmidt process to orthogonalize the most recently added columns
against the existing columns of V. For the case when rRB < 0, i.e., when basis vectors
need to be removed, we delete the last few columns of the matrix V in Step 15. The
use of the modified Gram-Schmidt process allows for the direct removal of the last rRB

columns in V. Step 17 involves collecting the snapshots of the nonlinear term at the
current greedy parameter. We use this to update the matrix F, which consists of all
the snapshots of the nonlinear term obtained from the greedy parameters selected so
far. In Step 18, the EI basis and interpolation points are updated based on the new
information added in F. The subroutine update_ei invokes either Algorithm 2.5 or
Algorithm 2.6. The dual RB matrix Vdu is enriched in Step 19 for the case of a para-
metric t-dual system. To do this, we invoke the subroutine update_dual where a greedy
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Algorithm 4.1: two-way_adaptive_podei
Computes a ROM for a non-parametric nonlinear dynamical systems using adap-
tive basis enrichment.
Input: System matrices and nonlinear term: E,A,B,C and f , POD, EI

tolerance εPOD and εEI, error tolerance ε, zoa ε∗, Maximum number of
greedy iterations iter_max.

Output: Reduced system matrices Ê, Â, B̂, Ĉ and EI quantities U , I.
1 Simulate the FOM Eq. (2.11) to obtain state snapshots X = {xk}Kk=0 and

corresponding nonlinear term snapshots F := {fk}Kk=0.
2 Compute POD basis V0 = POD(X, εPOD).
3 Compute EI quantities [U0, I0] = EIM(F, εEI, iter_max) or [U0, I0] = DEIM(F, εEI).
4 Set initial choice of RB, EI basis rRB, rEI (with rEI > rRB), form initial bases

V := V0(: , 1 : rRB),U := U0(: , 1 : rEI) and I := I0(1 : rEI).
5 Determine the solution to the t-dual system Eq. (4.2) x̃du using GMRES.
6 Compute the inf-sup constant σmin of the matrix E.
7 Simulate the ROM Eq. (2.36) based on V,U, I and determine

∆y := ∆y,RB + ∆y,EI.
8 while ∆y /∈ zoa do

9 Determine δRB =

⌊
log10

(
∆y,RB

ε

)⌋
and δEI =

⌊
log10

(
∆y,EI

εEI

)⌋
.

10 if δRB = 0 or δEI = 0 then
11 enforce trivial update δRB = ±1, δEI = ±1.
12 end
13 Update the basis vectors: rRB = rRB + δRB, rEI = rEI + δEI.
14 Ensure rEI > rRB.
15 Update the projection matrices and interpolation indices:

V := V0(: , 1 : rRB),U := U0(: , 1 : rEI) and I := I0(1 : rEI).
16 Simulate ROM Eq. (2.36) based on updated V,U and I, compute error

estimator in Eq. (4.30) ∆y = ∆y,RB + ∆y,EI.
17 end
18 Determine reduced matrices Ê, Â, B̂, Ĉ through Galerkin projection using V.
19 Determine U := (V)TU(U)I.

algorithm is implemented. The error estimator ∆y,du is the norm of the dual system
residual Eq. (4.7). Once we have the RB matrix V, the EI basis and sampling points
U, I, and the dual projection matrix Vdu, we obtain the ROM and estimate the error
using Eq. (4.30) for every parameter in the training set Ξ. The next greedy parameter
is chosen in Step 22 based on the worst approximation error ∆y for all µ ∈ Ξ. Finally,
in Step 24, the number of basis vectors for the RB and EI projection matrices (rRB and
rEI) at a given iteration are determined by the update rule in Eq. (4.34). This part is
implemented in the subroutine adapt_basis_update. Based on the values of δRB, δEI,
we add a trivial update of ±1 if required. It is worth noting that in Step 41, we ensure
that the dimension of the EI basis is larger than V. As before, this is to ensure a
stable ROM. This can be also be assured by choosing different tolerances εRB, εEI. We
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Algorithm 4.2: adaptive_rbmei
Computes a ROM using the Adaptive POD-Greedy algorithm in combination
with hyperreduction.
Input: System matrices and nonlinear term: E,A,B,C and f , Training set Ξ, EI tolerance εEI, ROM

tolerance ε, zoa ε∗, Deflation tolerance εdef, Maximum iterations iter_max.
Output: Reduced system matrices Ê, Â, B̂, Ĉ and EI quantities U , I.

1 For non-parametric t-dual system Eq. (4.2), obtain x̃du using a Krylov-space method.
2 Use RBF interpolation to approximate inf-sup constants as σ̃min(µ) for all µ ∈ Ξ.
3 Initialization: V = [ ], Vdu = [ ], U = [ ], I = ∅, err_max = 1 + ε, err_max_dual = 1 + ε, iter = 1, µ∗,µ∗du

(chosen randomly from Ξ), rRB = rEI = 1.
4 while err_max /∈ zoa and iter ≤ iter_max do
5 if rRB > 0 then
6 Solve FOM Eq. (2.11) at µ∗; obtain snapshots matrix X(µ∗).
7 if iter == 1 then
8 V = POD(X, rRB)
9 else

10 Compute X := X−VVTX.
11 VPOD := POD(X, rRB).
12 V = orth_def_mat(V,VPOD, εdef). /* see Step 15 of Algorithm 2.4 */
13 end
14 else
15 Remove the last rRB columns from V.
16 end
17 Form snapshot matrix for the nonlinear term: F := [F f(X)].
18 Update EI basis and interpolation points U, I using the subroutine update_ei.
19 For a parametric t-dual system, update dual RB matrix Vdu using the subroutine update_dual.
20 iter = iter + 1.
21 Determine reduced matrices Ê, Â, B̂, Ĉ through Galerkin projection using V as in Eq. (2.14).
22 Solve the ROM Eq. (2.36) for all µ ∈ Ξ; find µ∗ = arg max

µ∈Ξ
∆y(µ).

23 Set err_max = ∆(µ∗).
24 Update rRB, rEI using the subroutine adapt_basis_update.
25 end

26 Function [U, I] = update_ei(F, rEI, εEI):
27 Set iter_max = size(F, 2).
28 Compute the EI basis and interpolation points: [U, I] = EIM(F, rEI, iter_max) or [U, I] = DEIM(F, rEI).

29 Function [Vdu,µ
∗
du] = update_dual(Vdu,µ

∗
du, ε, err_max_dual):

30 if err_max_dual > ε then
31 Solve Eq. (4.2) for the greedy parameter µ∗du to get snapshot xdu(µ∗du).
32 Update Vdu with new snapshot: Vdu = [Vdu, xdu(µ∗du)], orthogonalize the columns of Vdu.
33 Find µ∗du := arg max

µ∈Ξ
∆y,du.

34 end

35 Function [rRB, rEI] = adapt_basis_update(rRB, rEI,∆(µ∗)):

36 Find δRB =

⌊
log10

(
∆y,RB(µ∗)

ε

)⌋
and δEI =

⌊
log10

(
∆y,EI(µ

∗)
εEI

)⌋
.

37 if δRB = 0 or δEI = 0 then
38 enforce trivial update δRB = ±1, δEI = ±1.
39 end
40 Update the basis vectors: rRB = δRB, rEI = rEI + δEI.
41 Ensure rEI > rank(V) + rRB.

set εRB = ε and εEI = 0.01εRB.

4.3.7. Numerical Examples

Having introduced the idea of adaptive basis enrichment for both non-parametric and
parametric systems, we validate these approaches and compare them to the state-of-
the-art methods through some benchmark examples. The examples we consider are
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carefully chosen to demonstrate different aspects of our proposed algorithms. The
first example is that of a fluidized bed crystallizer (FBC) [136], an apparatus used
in chemical and process engineering for the separation of chemical compounds. This
example is non-parametric. We use it to test Algorithm 4.1 and also compare the results
to that obtained in [214]. Following that, we consider an example of the well-known
Burgers’ equation to test Algorithm 4.2 for parametric systems.
In the numerical examples, we compare the performance of the proposed error esti-

mator Eq. (4.28) to the error estimator in Eq. (4.12) (with hyperreduction involved).
For non-parametric systems, we compare the mean error over time for either error
estimator. We have

∆̃mean :=
1

K

K∑

i=1

∆̃i
y, and (4.35)

∆mean :=
1

K

K∑

i=1

∆i
y. (4.36)

For parametric systems, we compare the maximum of the mean errors ∆̃mean or ∆mean,
evaluated over the training set Ξ. We define

∆̃max := max
µ∈Ξ

∆̃mean, and (4.37)

∆max := max
µ∈Ξ

∆mean. (4.38)

The true errors for the error estimator Eq. (4.12) are defined as:

ε̃mean :=
1

K

K∑

i=1

‖yi − ỹi‖, and (4.39)

ε̃max := max
µ∈Ξ

ε̃mean. (4.40)

And, the true errors for the error estimator Eq. (4.27) are defined as:

εmean :=
1

K

K∑

i=1

‖yi − yi‖, and (4.41)

εmax := max
µ∈Ξ

εmean. (4.42)

All numerical results in this section were obtained using matlab®2015a, on a laptop
with intel®core™i5-7200U @ 2.5 GHZ, with 8 GB of RAM.

4.3.7.1. Fluidized Bed Crystallizer

The FBC is a setup used in the field of chemical engineering to separate chemical com-
pounds known as enantiomers. Enantiomers are molecules that have the same physical
and chemical properties but occur as mirror images of one another. Due to their sim-
ilar properties, separation of the two components is not easily achieved using simple
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Figure 4.1.: Fluidized Bed Crystallizer.

techniques, but requires sophisticated methods such as adsorption, crystallization, and
so on. For a more in-depth treatment, the reader is referred to [136]. Figure 4.1 shows
the FBC, which is a long cylindrical column, with the walls tapering inwards as one
approaches the bottom. The chemical mixture that has the two enantiomers dissolved
in it (called racemate) is injected from the bottom. Some seed crystals need to be
introduced into the crystallizer before it begins operation. Seed crystals are essentially
the pure crystals of the enantiomer we want to isolate. The seeds are necessary for
triggering the precipitation of the crystals in the racemate. During its operation, the
smaller crystals move to the top of the crystallizer along with the fluid flow. Bigger
crystals sink to the bottom from where they are collected and sent to a crushing device
(such as an ultrasonic attenuator) to be crushed to an appropriate size and reintro-
duced as seed crystals. The crystallization process is governed by a set of conservation
formulas, called the population balance equations which are PDEs. The PDE governing
the FBC is given by

Ac(z)
∂n

∂t
= − ∂

∂z

(
Ac(z)vp(z, L, t)n(z, L, t)

)
+D

∂

∂z

(
Ac(z)

∂n

∂z

)
− Ac(z)G

∂n

∂L

+ V̇us

(
nus(L)

∫∞
0
nl3dl∫∞

0
nusl3dl

− n(z, L, t)

)
δ̂(z − zus), (4.43)

where

• z denotes the spatial coordinate, L denotes the particle size coordinate,

• Ac(·) is the area of cross-section, n is the number size density, i.e., the number of
particles per volume of size L at coordinate z at time t,

• vp is the plug flow velocity,

• D is the dispersion constant, G is the crystal growth factor,
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• V̇us is the volume flow to/from the attenuator,

• nus(L) is a constant describing the distribution of the crystals coming from the
attenuator.

The state variable in the above equation is the quantity n(z, L, t). We discretize
the spatial coordinate z and the particle diameter coordinate L, using FVM. For time
discretization, we adopt the IMEX first-order Euler scheme. Based on this, Eq. (4.43)
can be written in the form of Eq. (2.11). Table 4.1 gives the model parameters that
we consider for the full order simulation. The discretized FOM is of size N = 18400.
The output quantity of interest is the volume fraction of particles. We plot this for
the larger time interval of 10, 000 seconds in Figure 4.2. The model of the crystallizer
takes a very long time to reach a cyclic, quasi steady-state, usually 5000 seconds.
However, for snapshot generation, we need only the transient portion and the first
cycle of the quasi steady-state, since the latter cycles behave very similarly. As a result
we only need to simulate the FOM till 500 seconds (dashed gray line in Figure 4.2) for
snapshot generation. To this end, we collect a snapshot every two seconds, resulting
in 250 snapshots. For this model, we first apply Algorithm 2.7 with the tolerances
εPOD = εEI = 10−10. The tolerance for the ROM is ε = 10−4. Although the tolerance
for the desired ROM is 10−4, we choose εPOD = εEI conservatively, since we do not
know a priori how the singular values correlate to the actual output error. The ROM
obtained from Algorithm 2.7 is of dimension (rRB, rEI) = (60, 61). Following this, we
make use of Algorithm 4.1. The tolerance for the ROM is the same ε = 10−4. We
make use of GMRES to solve the associated dual system. It is implemented via the
matlab®function gmres. Moreover, we use the Incomplete LU (ILU) factorization
with a drop tolerance of 10−3 as a preconditioner. The GMRES tolerance is set to
be 10−6. To test Algorithm 4.1, we consider two cases. We denote the first case as
increase. It involves starting from a small initial choice of RB and DEIM bases
dimensions (rRB, rEI), and iteratively adding new basis vectors to both. In the second
case, denoted as decrease, we initialize Algorithm 4.1 with a larger number of initial
basis vectors and adaptively remove basis vectors, till the ROM reaches the defined
tolerance band zoa. For the zoa, we set ε∗ = 10−5. Figure 4.3a shows the adaptive
generation of POD and DEIM basis starting from small initial number of (rRB, rEI) =
(3, 8). The error estimator is below the tolerance after 9 iterations, showing that
Algorithm 4.1 terminates.
The adaptive process results in a final ROM of (rRB, rEI) = (16, 20) basis vectors. In

Figure 4.4, we show the error landscape obtained by plotting the logarithm of the mean
error estimator (Eq. (4.30)) corresponding to different combinations of (rRB, rEI). On
the landscape, we mark the trajectory ∆y, adaptively selected by Algorithm 4.1. We
can see that, for several combinations of rRB, rEI not present in the adaptive trajectory,
the resulting ROMs are unstable. For ease of visualization, the ∆y resulting in unstable
ROMs were set to be 1 in the log-scale. The figure clearly illustrates how the algorithm
converges to the minimum in the landscape, while avoiding the combinations resulting
in instabilities. Further, one can identify the plateaus in the error, whenever the RB
approximation is too poor. An additional observation deserving attention is that the
instabilities mainly occur at (rRB, rEI) combinations with rEI < rRB. For a pair of big
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Figure 4.2.: Output quantity for the Fluidized Bed Crystallizer; the black line is the
entire output until quasi steady-state; the dashed gray line shows the time
until which snapshots are collected.
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Figure 4.3.: FBC ROM obtained using increase.

initial values: (rRB, rEI) = (31, 39), the iterations of Algorithm 4.1 are shown in Fig-
ure 4.5a. In the beginning, the error estimator is below 10−5, indicating that the ROM
is very accurate and there is possibility to further reduce the size of the ROM. After 7
iterations, the reduced basis vectors from POD as well as the DEIM basis vectors are
adaptively adjusted to (rRB, rEI) = (17, 28). These results are summarised in Table 4.2.
In Figures 4.3a and 4.5a, the true error is the mean error defined by the left hand side
of Eq. (4.30) and the corresponding error estimator is defined by the right hand side
of the same inequality. In Figures 4.3b and 4.5b, we compare the effectivities of the
original and the modified error estimators. On the one hand, both error estimators
show good effectivities and are relatively sharp. On the other hand, the modified error
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Figure 4.4.: Error landscape for the increase procedure for the FBC example.

Table 4.1.: Simulation data for the FBC.
Interpolation N [0, T ] (s) tolerance ε εPOD

DEIM 18400 [0, 500] 10−4 10−10

Table 4.2.: Simulation results for the FBC example.

Process Initial Final Iterations
rRB rEI rRB rEI

increase 3 8 16 20 9
decrease 31 39 17 28 7

estimator clearly outperforms the original estimator, especially in the final step of the
algorithm. Figure 4.6 shows the error landscape for the decrease case. Once again,
one can see how Algorithm 4.1 avoids unstable RB, DEIM basis vector combinations
and converges to a compact ROM.

Finally, Figures 4.7a and 4.7b compare the modified error estimator for the final
ROM over all time steps tk, with the true error, in the increasing and decreasing
cases, respectively. Figure 4.7 not only shows the sharpness of the modified error
estimator, especially for the cyclic state in the time interval [200, 500]s, but also verifies
the reliability of the error estimator.
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Figure 4.5.: FBC ROM obtained using decrease.

4.3.7.2. Burgers’ Equation

We next test the proposed Adaptive PODEI algorithm on the one-dimensional viscous
Burgers’ equation defined in the domain Ω := [0, 1] and z ∈ Ω denoting the spatial
variable. The parameter that varies is the viscosity. The equation and initial boundary
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Figure 4.6.: Error landscape for the decrease procedure for the FBC example.
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Figure 4.7.: Final hyperreduced ROM error over all time for the FBC.

conditions are given as
∂g

∂t
+ g

∂g

∂z
= µ

∂2g

∂z2
+ s(z, t),

g(0, t) = 0,

∂g(1, t)

∂z
= 0,

(4.44)

where g := g(z, t) ∈ R is the state variable. s(z, t) is the source/input term, µ is the
viscosity. The output is taken at the last spatial point in the domain: y = z(1, t). We
consider s(z, t) ≡ 1. The initial condition is defined as g(z, 0) := 0.
The simulation parameters are listed in Table 4.3. A training set Ξ is formed by 100

log-uniformly distributed samples in the parameter domain P := [0.0005 , 1]. The model
has N = 500 equations after discretization in space. We employ the central difference
scheme for both the diffusion and convection terms. A first-order IMEX Euler method
is used to discretize the time variable. We make use of EIM (see Algorithm 2.5) to
efficiently evaluate the nonlinearity. The EIM tolerance εEI is set to 10−10. A time
step of ∆t = 4 · 10−4 was used, with the snapshots collected every 10th time step. In
Fig. 4.8, we compare the convergence of Algorithm 2.8 to that of Algorithm 4.2. It can
be seen that using the latter leads to a much quicker convergence of the greedy loop: 10
iterations as compared to 16 iterations. We plot the convergence of the maximal error
estimator ∆max in Eq. (4.38) and the corresponding true error εmax in Eq. (4.42), for
both algorithms. Recall that, the maximal errors are defined over all the parameters in
the training set Ξ. The improved convergence of Algorithm 4.2 is a direct consequence
of enriching the basis in an adaptive manner. Further, in Fig. 4.9a, we plot the adaptive
increments of the RB, EIM basis vectors. Starting from a value of 1 for each, we can see
that the biggest jumps are at the first few steps where the maximal estimated output
error ∆max is large. Subsequent steps moderate the number of basis vectors to be
added, as the algorithm converges. We end up with a final value of (rRB, rEI) = (14, 40)
for the RB, EIM basis respectively. As for the standard implementation, where the
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Table 4.3.: Simulation parameters for the Burgers’ equation.
Interpolation N [0, T ] (s) Parameter training set (Ξ) tolerance ε εEI

EIM 500 [0, 2] 100 log-uniformly distributed samples
10−3 10−10

in [0.0005,1]
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Figure 4.8.: Burgers’ equation: convergence of the greedy algorithms - Algorithm 2.8
vs. Algorithm 4.2.

EIM basis is precomputed outside the greedy loop, the resulting ROM has dimension
(rRB, rEI) = (16, 154). Thus, our proposed algorithm not only produces a ROM that
meets a certain tolerance, but also leads to a more compact ROM. Figure 4.9b compares
the effectivities of the original error estimator from [214] (Eq. (4.37)) and the newly
proposed error estimator in Eq. (4.38). For this example, the proposed error estimator
performs slightly better.
Fig. 4.10a shows the output y(t) of the FOM and ỹ(t) of the ROM obtained using

Algorithm 4.2 at viscosity µ = 5 · 10−4. The ROM solution is nearly indistinguishable
from the FOM solution. In Fig. 4.10b we plot the number of RB, EIM basis vectors
as a function of the iteration number. Note that, both RB and EIM bases start from
only one basis vector at the first iteration.
In Table 4.4, we show the runtime taken for Algorithms 2.8 and 4.2 till convergence.

The adaptive algorithm needs much less time. The reduced runtime of the adaptive
approach is mainly contributed by the reduced number of FOM simulations. For the
inf-sup constant (the smallest singular value of the system matrix) we apply radial basis
function interpolation. From Table 4.5, it is clear that the RBF approach is faster as
compared to using SVD to determine the smallest singular value of the system matrix.
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iteration number.

One can imagine, the savings in time would be much more significant for large-scale
systems with N � 500.
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Table 4.4.: Runtime for the Burgers’ equation: Adaptive vs. non-adaptive.
Method runtime (s)
Adaptive 606

Non-adaptive 933

Table 4.5.: Runtime for Burgers’ equation: inf-sup constant computed over training set.
Method runtime (s)
SVD 3.7
RBF 0.4

4.4. Conclusion

This chapter considered a posteriori error estimation and adaptivity for parametric
nonlinear dynamical systems. We proposed a new a posteriori output error estimator
in Section 4.2 that overcomes the disadvantages faced by an existing error estimator in
literature. Furthermore, we discussed efficient computational strategies for computing
the proposed error estimator. In Section 4.3 we discussed an adaptive basis enrichment
scheme that makes use of the proposed output error estimator, for non-parametric and
parametric systems. The adaptive basis enrichment scheme is able to iteratively enrich
the RB (or POD) and EI bases based on a greedy strategy. The main benefits offered
by the adaptive basis enrichment scheme are: significant reduction in offline cost and a
better balance in the RB (POD) and EI bases, resulting in a more stable ROM. These
advantages were numerically illustrated using two benchmark examples.

110



CHAPTER 5
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5.1. Adaptive Sampling for the Training Set in RBM

In Chapter 4, we introduced an approach for adaptive basis enrichment (Algorithm 4.2)
in order to improve the offline computational cost for the RBM. We illustrated our
approach on a one-parameter Burgers’ equation. However, when the number of samples
in the training set Ξ is large, the proposed approach may still incur a considerable cost.
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Usually, the choice of a training set is non-trivial. On the one hand, if it includes too few
parameters, the original solution manifold may not be adequately represented, leading
to a poor ROM with large error. On the other hand, if it contains too many samples,
the offline time can be prohibitively long. When the PDE involves several parameters,
properly defining the training set can lead to a severe computational issue. In this
chapter, we consider a further step of adaptivity, viz., adaptive training set sampling.
Instead of fixing the training set involved in the RBM a priori, we adaptively update
it as a part of the POD-Greedy algorithm.
Due to the criticality of the training set choice, a number of approaches have been

considered within the RBM community to enable a good sampling of the training set.
The earliest work to consider an adaptive sampling of the training set was [187], where
the author proposes a Multi-Stage Greedy algorithm. The algorithm is run several
times over randomly sampled small training sets to generate the RB projection matrix.
Then, the ROM is tested over a much larger training set and the greedy algorithm
is re-run only on those points failing the tolerance criterion. The authors of [105]
address the issue of large training sets by two approaches. The first one is a procedure
to monitor the error over an additional validation parameter set. If a large error is
detected, then the training set is further refined, either uniformly or locally. The
second approach, similar to the ones presented in [75, 76], is based on partitioning the
parameter domain adaptively, and generating local bases V for each partition. Other
approaches for adaptive training set sampling include [113] and [134]. [113] introduces
the Adaptively Enriching Greedy algorithm where the authors propose a saturation
criterion which is used to systematically remove parameters from a randomly-sampled
training set. New random parameters are then added to the current training set. A
larger training set serves as a safety check mechanism at every iteration. However, it
may not be efficient, in general, to estimate a robust saturation criterion. In [115],
the authors consider a two-stage approach that uses the analysis of variance (ANOVA)
expansion [192] together with parameter domain decomposition to address training set
complexity. The work [134] considers an anisotropic sampling of the parameter domain
using an empirical norm derived from the truncated Hessian of the solution vector with
respect to the parameter. No explicit partition of the parameter domain is considered.
However, the basis vectors are determined at the online stage. Moreover, the method
needs to compute the Hessian at each point in the training set in order to define a
distance metric which is subsequently used to add more samples to the training set.
The calculation of the Hessian can be very expensive, especially for time-dependent
problems. The authors of [59] perform an eigendecomposition of the Hessian matrix of
the output variable with respect to the parameter to identify a small subspace of the
high-dimensional parameter space by truncation. The parameters that constitute the
training set for the RBM are then sampled from the identified eigenspace. The method
proposed in [125] makes only a subset of the finely sampled training set active at a
given iteration of the greedy algorithm. A recent extension of this work [124] proposes
hybrid strategies combining the ideas from [113, 187]. Different strategies are proposed
to identify the set of active parameters.
An approach based on Kriging interpolation and clustering is proposed in [156], to

tackle the problem of high-dimensional parameter spaces. An interpolant of the residual
norm is calculated over a fine grid of parameters. Then, k-means clustering is used to
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identify parameters that have high probability of presenting larger errors. In [195], the
so-called active subspace [62] of the parameter space is identified by relying on gradient
information of the output with respect to the parameter. Both these works are limited
to scalar-valued outputs and steady problems.
Most of the existing work related to adaptive training set sampling focuses on steady

or quasi steady-state problems. To the best of our knowledge, only [75, 105, 156] address
training set adaptivity for time-dependent problems. The works [75, 105] propose a
localization strategy that involves constructing multiple ROMs over local parameter
domains, while [156] considers adaptively enriching a coarse training set by observing
a cheap error surrogate over a fine training set.
We propose two different strategies to address the issue of training set sampling for

the RBM. The first is an extension of the approach proposed in Section 3.4.5 to the
RBM. It involves using an RBF-based surrogate model of the error estimator to adap-
tively update the training set, starting from a few samples. Two closely related works to
our approach are [113, 156]. We highlight crucial distinctions of our approach compared
to [113, 156] in the next section. Our second strategy for training set sampling takes
a diametrically opposing view. We start from a finely sampled training set consisting
of many parameter samples. From this, we identify a set of parameter samples that
contribute the most to approximating the solution subspace, which will constitute the
training set of the greedy algorithm. We do this by means of sparse sampling strategies
based on the DEIM and its variants and also the pivoted QR decomposition.
Both our proposed strategies for training set sampling are tightly integrated with the

adaptive basis enrichment scheme for the RBM (Algorithm 4.2). Thus, together they
result in a fully adaptive POD-Greedy algorithm with minimal user interference, which
(a) adaptively identifies a robust ROM, and (b) leads to considerable reduction in the
offline computational costs. This is in perfect alignment with our stated objective of
automatic model order reduction (see Section 1.4).
We present the combined RBMEI algorithm with adaptive basis enrichment and adap-

tive training set using the error surrogate in Section 5.2.1. We test it on several numer-
ical examples in Section 5.2.2. Then, in Section 5.3 we present the combined RBMEI
algorithm together with the subsampling-based strategy. Furthermore, we discuss two
efficient sparse sampling strategies in Section 5.3.3. These methods are then validated
using two benchmark examples in Section 5.3.4.
The material covered in this chapter is based on the works [54, 55].

5.2. Adaptive Training Set Sampling using Surrogate
Error Estimator

The approach we propose here is based on interpolating a sharp a posteriori output
error estimator. Recall that, for linear systems using frequency-domain MOR methods,
a similar idea was discussed in Section 3.4.5 for adaptive ROM construction. In this
section, we extend the approach to the RBM. For the standard RBM (Algorithm 2.8),
we introduce a method based on a surrogate error estimator to efficiently sample the
parameter domain, such that the training set is adaptively updated, starting from a
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coarse set with a small number of parameter samples. The RBM is initialized with a
coarse training set. We update this set iteratively by adding or removing points from
it. At each iteration of the greedy algorithm, we estimate the error of the ROM at
every parameter in the coarse training set. Note that the evaluation of the estimator
does not involve the FOM. In order to further reduce the computational costs, we then
interpolate the estimated error over a fine training set and use the interpolant as the
surrogate estimator to estimate the ROM error over a fine training set. That is, at
each iteration of the greedy algorithm, the ROM errors at the parameters in the fine
training set are checked by the surrogate estimator. Those parameters corresponding
to large values of the surrogate estimator are selected and added to the coarse training
set. The surrogate estimator is much cheaper to compute than the error estimator.
Therefore, using the former instead of the latter to check the ROM error over the fine
training set, will reduce the computational cost. Additionally, if any parameter in the
coarse training set achieves the required ROM accuracy, we remove it from the coarse
training set. Such an approach is able to construct a small, representative training set
by fully exploring the parameter domain with reduced computational cost.
As previously mentioned, the ideas proposed in [113, 156] are closely aligned with

the approach we propose. Therefore, we briefly discuss how our approach differs from
these earlier methods.

- We use a sharp a posteriori error estimator with the modified output term
Eq. (4.30) on a coarse training set and a cheaply computable error surrogate
on the fine training set. No cheap error estimator is used on the fine training set
in [113], potentially leading to a larger computational effort.

- At each iteration of the greedy algorithm, a saturation assumption is introduced
in [113] in order to avoid calculation of the ROM at certain parameters. However,
this requires estimation of the saturation constant which needs to be defined a
priori by the user. In our method, no such constant needs to be estimated.

Furthermore, when compared to [156]:

- We consider both addition and removal of parameter samples from the coarse
training set. The method in [156] is restricted to adding new samples only.

- The use of Kriging interpolation involves the estimation of several hyperparame-
ters. This can be a computational bottleneck [199]. In the case of the RBF, there
is only one free parameter at most. If using some special kernel functions, e.g.
polyharmonic spline kernels, there are no free parameters to tune.

- Finally, a nonlinear model was considered in [156], in order to demonstrate the
adaptive sampling approach. An offline hyperreduction step was used to reduce
the complexity of the online nonlinearity evaluations, where a second training
set for the nonlinear function is used in the hyperreduction step, and is likely to
be separately given and fixed. In our approach, we employ Algorithm 4.2. This
avoids the need for a potentially separate training set for the hyperreduction
phase. Instead, the EI basis generation is carried out within the same greedy
loop. In this way, our method is a fully adaptive approach.
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5.2.1. Fully Adaptive RBMEI algorithm with Surrogate Error
Estimator

In this section, we extend and integrate the surrogate error estimator approach dis-
cussed in Section 3.4.5 to Algorithm 4.2.
For the POD-Greedy algorithm Algorithm 2.8 (or its extension Algorithm 4.2), Step

15 (or Step 22) involves solving the ROM at every parameter in the training set Ξ.
Whenever the number of samples in Ξ is high, repeatedly solving for the ROMs at each
iteration can quickly become expensive. Therefore, we construct a surrogate for the
error estimator Eq. (4.30) by learning the map ∆y : µ ∈ RNp → R. We consider a
coarse training set Ξc := {µc

1, . . . ,µ
c
nc} with nc parameter samples. We also sample

a fine training set Ξf := {µ̊1, . . . , µ̊nf} with nf � nc samples. We compute the
error estimator only over Ξc and obtain the data (D,Λ) for RBF interpolation with
D = {∆y(µ),∀µ ∈ Ξc} and Λ = Ξc. Based on this input data, the RBF interpolant is
obtained by solving Eq. (2.43). The resulting interpolant χ(µ) is then evaluated at all
parameter samples present in Ξf . Note that, the cost of forming the RBF interpolant
scales as O((nc + ν)3) and evaluating the interpolant incurs costs that scale as nf ·
O(nc + ν) (see the analysis in Section 3.4.5.1). Since both nc, ν are small, the cost
of evaluating the surrogate model χ(µ) is much lower than the cost of computing the
error estimator ∆y. The coarse training set Ξc is updated at each iteration by adding
and/or removing samples. To add new parameters, we monitor the surrogate estimator
χ(µ) for the samples in Ξf . We then add those nadd parameters having the largest
errors measured by χ(µ). The value of nadd is user-defined. It can also be adaptively
determined, for instance, by the following heuristic choice:

nadd := log10

max
µ∈Ξc

∆y(µ)

ε
.

We observe the coarse training set to identify those parameter samples with ∆y(µ) < ε.
These parameters are then removed from Ξc. This ensures that the ROM at these
parameters need not be solved, thus controlling the offline computational costs. Al-
gorithm 5.1 sketches the pseudocode for the proposed adaptive parameter sampling
approach using surrogate error estimator.
Algorithm 5.1 is similar to Algorithm 4.2. The main differences are: we use two

separate training sets Ξc,Ξf for the former. Moreover, the error estimator ∆y is eval-
uated only at the samples in the coarse training set in Step 22. This ensures that the
offline cost is kept low since it avoids solving the ROM for every parameter in a finely
sampled training set. In Step 23, the RBF surrogate for the estimator is determined.
The error evaluated using the surrogate χ(µ) is used to update Ξc in Steps 24-26. A
similar computational cost analysis as done in Section 3.4.5.1 applies here as well.
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Algorithm 5.1: adaptive_rbmei_ts1
Computes a ROM using the Adaptive POD-Greedy algorithm in combination
with hyperreduction and adaptive training set sampling using surrogate error
estimator.
Input: System matrices and nonlinear term: E,A,B,C and f , Training sets Ξc,Ξf ,

EI tolerance εEI, ROM tolerance ε, zoa ε∗, Deflation tolerance εdef, Maximum
iterations iter_max.

Output: Reduced system matrices Ê, Â, B̂, Ĉ and EI quantities U , I.
1 For non-parametric t-dual system Eq. (4.2), obtain x̃du using a Krylov-space method.
2 Use RBF interpolation to approximate inf-sup constants as σ̃min(µ) for all µ ∈ Ξc.
3 Initialization: V = [ ], Vdu = [ ], U = [ ], I = ∅, err_max = 1 + ε,

err_max_dual = 1 + ε, iter = 1, µ∗,µ∗du (chosen randomly from Ξc), rRB = rEI = 1.
4 while err_max /∈ zoa and iter ≤ iter_max do
5 if rRB > 0 then
6 Solve FOM Eq. (2.11) at µ∗; obtain snapshot matrix X(µ∗).
7 if iter == 1 then
8 V = POD(X, rRB)
9 else

10 Compute X := X−VVTX.
11 VPOD := POD(X, rRB).
12 V = orth_def_mat(V,VPOD, εdef). /* see Step 15 of Algorithm 2.4 */
13 end
14 else
15 Remove the last rRB columns from V.
16 end
17 Form snapshot matrix for the nonlinear term: F := [F f(X)].
18 Update EI basis and interpolation points U, I using the subroutine update_ei.

/* see Line 26 of Algorithm 4.2 */
19 For a parametric t-dual system, update dual RB matrix Vdu using the subroutine

update_dual. /* see Line 29 of Algorithm 4.2 */
20 iter = iter + 1.
21 Assemble the ROM Eq. (2.36) through Galerkin projection and hyperreduction

using V,U.
22 Solve the ROM Eq. (2.36) and compute ∆y(µ) in Eq. (4.30) for all µ ∈ Ξc.
23 Define D := {∆y(µ),µ ∈ Ξc} and Λ := Ξc, solve Eq. (2.43) to obtain RBF

surrogate χ(µ) for all µ ∈ Ξf .
24 Update Ξc: remove µ ∈ Ξc for which ∆y < ε.
25 Find samples {µ(1), . . . ,µ(nadd)} ∈ Ξf resulting in largest error for the surrogate

χ(µ).
26 Update Ξc: Ξc =

[
Ξc ∪ {µ(1), . . . ,µ(nadd)}

]
.

27 Find µ∗ = arg max
µ∈Ξc

∆y(µ)

28 Set err_max = ∆(µ∗).
29 Update rRB, rEI using the subroutine adapt_basis_update. /* see Line 35 of

Algorithm 4.2 */
30 end
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5.2.2. Numerical Examples

In this section, we validate the proposed adaptive training set sampling method using
three examples. The first is the nonlinear Burgers’ equation model with one parameter,
already introduced in Section 4.3.7.2. The second example is a two-parameter linear
convection-diffusion model. The last one is a three-parameter model of a microthruster
unit, which was investigated in Section 3.4.6.2.
For the three examples, we implement the Adaptive RBMEI algorithm with training

set sampling using the surrogate error estimator (Algorithm 5.1). For comparison, we
also present the results of Algorithm 4.2 which uses a fixed training set. In both cases,
the error estimator with modified output term (Eq. (4.30)) is employed. To accurately
quantify the effects of our sampling, we make use of a test set Ξtest that is different from
the training sets (Ξ,Ξc,Ξf ). We plot at the end of each greedy iteration, the maximal
error ∆max (Eq. (4.38)) over the test set. We compute the true errors εmean (Eq. (4.41))
of ROMs resulting from Algorithms 4.2 and 5.1 over the samples present in Ξtest. If not
particularly pointed out, the initial coarse training set Ξc for Algorithm 5.1 is the same
as the fixed training set for Algorithm 4.2.
All numerical results in this section were obtained using matlab®2015a, on a laptop

with intel®core™i5-7200U @ 2.5 GHZ, with 8 GB of RAM.

5.2.2.1. Burgers’ Equation

The model equations are same as those in Equation (4.44). We adopt the same space
and time discretization. The tolerance is set to be ε = 10−5 and the parameter domain
we consider for the viscosity is µ ∈ [0.001, 1]. For Algorithm 4.2 we consider a training
set Ξ with 10 randomly chosen samples1. The coarse training set for Algorithm 5.1 is
set to be the same as Ξ, while the fine training set Ξf contains 300 randomly sampled2
parameters. The test set Ξtest used for validation contains 100 parameter samples3. To
construct the surrogate error estimator χ(µ) in Step 23 of Algorithm 5.1, the IMQ
kernel function is used for the RBF interpolation. LOOCV has been applied to specify
the shape parameter for the IMQ kernel. Since the model is nonlinear, the DEIM is
used in order to efficiently compute the nonlinear term.
Applying Algorithm 4.2 to the Burgers’ equation results in a convergence after 7 it-

erations and produces a ROM of dimension n = 7. Algorithm 5.1 takes 18 iterations to
converge and the resulting ROM dimension is n = 18. In Figure 5.1a, the decay of the
error estimator over the test set Ξtest is shown for every iteration of both Algorithms 4.2
and 5.1. The reason to show the error decay over the test set is motivated by the fact
that Algorithms 4.2 and 5.1 use different training sets in their respective greedy algo-
rithms. The error measured over the test set serves to uniformly validate the accuracy
at each iteration of either approaches. The earlier termination of Algorithm 4.2 is due
to the insufficient density of the training set used, which contains only 10 samples.
This has resulted in overfitting. This is evident from Figure 5.1b, where we see that the

1generated using rng command from matlab®with seed 12 and random number generator twister.
2generated using rng command from matlab®with seed 114 and random number generator twister.
3generated using rng command from matlab®with seed 200 and random number generator
simdTwister.
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Figure 5.1.: Results for the Burgers’ equation using Algorithm 4.2 (Fixed) and Algo-
rithm 5.1 (Adaptive).

ROM resulting from Algorithm 4.2 fails to meet the desired tolerance over the test set.
However, the ROM obtained from Algorithm 5.1 is successful in meeting the tolerance
uniformly over the test set. In Figure 5.2, the evolution of the coarse training set Ξc

for different iterations is shown. It is seen that the algorithm tends to pick parameters
in the low-viscosity regions (close to 0.001), as expected, since the solution of the PDE
tends to be ‘less smooth’, requiring more basis functions to approximate.

5.2.2.2. Convection-Diffusion Equation

The second example we consider is a 1-D model of brain transport, originally discussed
in [18] and later in [97, 214]. The transport is modelled as a linear convection-diffusion
PDE defined in the spatial domain Ω := [0, 1] and for time t ∈ [0, 1],

∂g

∂t
= µ1

∂2g

∂z2
+ µ2

∂g

∂z
− µ2, (5.1)

0.001 0.5 1

(a) Ξc at iteration 1.

0.001 0.5 1

(b) Ξc at iteration 5.

0.001 0.5 1

(c) Ξc at iteration 15.

0.001 0.5 1

(d) Ξc at iteration 18.

Figure 5.2.: Burgers’ equation: training set evolution for Algorithm 5.1.
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Figure 5.3.: Results for the Convection-diffusion equation using Algorithm 4.2 (Fixed)
and Algorithm 5.1 (Adaptive).

where g(z, t, µ1, µ2) is the field variable, z ∈ Ω is the spatial variable, and the two pa-
rameters (µ1, µ2) ∈ P := [0.001 , 1]× [0.5 , 5] are the diffusion and convection constants,
respectively. The boundary conditions are given by,

g(z, 0, µ1, µ2) =

{
1, z ≤ 0.5

0, otherwise
, g(0, t, µ1, µ2) = g(1, t, µ1, µ2) = 0.

We discretize the equation using the FDM on a grid yielding N = 800. The output is
calculated as the average value of the state in a small interval Ωo centered around the
midpoint of the domain at z = 0.5.

y(t) :=
1

|Ωo|

∫

Ωo

g(z, t, µ1, µ2)dz, Ωo := [0.495 , 0.505].

We carry out the tests using Algorithms 4.2 and 5.1, just as in the case of the previous
example. The tolerance is set as ε = 10−5. For Algorithm 4.2, we define Ξ as a set
including 25 random samples from the parameter domain P4. The fine training set Ξf

for Algorithm 5.1 includes 1600 equidistant samples in P. The test set Ξtest consists of
625 random samples5. The error surrogate model χ(µ) in Algorithm 5.1 is constructed
using IMQ kernel function, where cross validation (LOOCV) has been applied to specify
the shape parameter.
Figure 5.3 shows the decay of the maximal estimated error (∆max) over Ξtest, com-

puted at each iteration of Algorithm 4.2 and Algorithm 5.1. It is clear that adaptively
4picked using the rng command in matlab®and making use of twister, with a seed of 112.
5generated using the same random number generator as for the Burgers’ equation example, viz.,
simdTwister with a seed of 200.
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Figure 5.4.: Convection-diffusion equation: training set evolution.

Table 5.1.: Convection-diffusion example: Runtime comparison between Algorithm 4.2
and Algorithm 5.1.

Algorithm Runtime (seconds)

Fixed training set (Algorithm 4.2) 74.09

Adaptive training set (Algorithm 5.1) 41.52

enriching the training set leads to orders of magnitude faster convergence to the required
accuracy. For Algorithm 4.2, the ROM dimension is n = 38 and for Algorithm 5.1, it
is n = 63. Figure 5.3b plots the mean true error εmean (Eq. (4.41)) of the final ROM
at every parameter in the test set Ξtest, for the case of an adaptive training set and a
fixed training set. We see that for some test parameters, the required tolerance is not
met by the ROM computed using the fixed training set. In Figure 5.4, the evolution
of the training set is shown at different stages of Algorithm 5.1. It can be seen that
samples from the left boundary of the parameter domain are added or retained. This
has physical sense as this corresponds to the lower viscosity regions where the convec-
tive part of the solution dominates and the solution is ‘less smooth’. Thus, more basis
functions are required for a good approximation.
In order to achieve a better ROM by using the fixed training set, we tried a Ξ with 225

random samples for Algorithm 4.2, leading to a ROM with error below the tolerance.
In Table 5.1, we provide the runtime results of both algorithms, where Algorithm 4.2
uses the refined training set with 225 samples. On the other hand, the initial coarse
training set and the fine training set for Algorithm 5.1 remain the same. For this case,
Algorithm 5.1 with adaptive training set sampling outperforms Algorithm 4.2, though
both approaches produce accurate ROMs.

5.2.2.3. Thermal Model

The third and final example is that of the thermal model which has three parameters.
This example was previously introduced in Section 3.4.6.2 in the frequency-domain
representation. The dimension of the system is N = 4, 257. The parameters {µi}3

i=1

are the heat coefficients at the top, bottom and side (x-, y- and z-directions) of the
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Figure 5.5.: Results for the Thermal model using Algorithm 4.2 (Fixed) and Algo-
rithm 5.1 (Adaptive).

microthruster unit, respectively. All three have a range between [1 , 108] in our simula-
tions. The output in this case is the temperature at the center of the polysilicon heater
in the unit, which corresponds to the first row of the output matrix C7(µ).
For this example, the initial training sets Ξ,Ξc corresponding to Algorithm 4.2

and Algorithm 5.1, respectively, are different. Since this is a three-parameter prob-
lem with a very large parameter domain, we use a large fixed training set Ξ with 63

logarithmically-spaced parameter samples for Algorithm 4.2, to have a fair comparison.
For Algorithm 5.1, the initial coarse training set includes only nc = 10 randomly cho-
sen samples6. The fine training set Ξf for Algorithm 5.1 is made up of 163 equidistant
samples, while the test set Ξtest consists of 83 logarithmically-spaced samples. For the
RBF interpolation, TPS kernel is used. No shape parameter needs to be determined.
The tolerance for this model is set as ε = 10−3.
In Figure 5.5a, we show the maximal error estimator ∆max over Ξtest at each iteration

of Algorithm 4.2 and Algorithm 5.1, respectively. Algorithm 4.2 takes 23 iterations to
converge with the fixed training set Ξ. The resulting order of the ROM is n = 44. How-
ever, the maximal error estimator ∆max over the test set Ξtest is still above the tolerance.
Algorithm 5.1 converges in 24 iterations to a ROM of dimension n = 74. The maxi-
mum error estimator ∆max over Ξtest is below the tolerance upon convergence. We note
that, in the first few iterations, Algorithm 4.2 has a faster convergence in comparison
to Algorithm 5.1. However, since the training set is fixed, the convergence eventually

6To generate these random samples, we first generate a uniform sampling of each parameter µj , j =

1, 2, 3, given as, µij = 10
i

Nc/8 , i = 1, 2, . . . , Nc, which leads to a matrix (µij) ∈ RNc×3. Then, the
rows of the matrix are permuted using the rng and randperm commands in matlab®. The seeds and
random number generators used are 100 (twister), 120 (combRecursive) and 600 (combRecursive),
respectively. In this way, we get random samples which spread through the 3-D parameter domain.
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Table 5.2.: Thermal model: Runtime comparison between Algorithm 4.2 and Algo-
rithm 5.1.

Algorithm Runtime (seconds)

Fixed training set (Algorithm 4.2) 151.16

Adaptive training set (Algorithm 5.1) 38.76

saturates. In Fig. 5.5b, we plot the error εmean of the final ROM over Ξtest, computed
by the two algorithms. Algorithm 5.1 once again outperforms Algorithm 4.2. In Ta-
ble 5.2, we provide the runtime comparison between Algorithm 4.2 and Algorithm 5.1
for the thermal model, where an obvious speed-up by Algorithm 5.1 is observed. More
importantly, with the reduced runtime, Algorithm 5.1 produces a ROM with sufficient
accuracy, whereas, the ROM computed by Algorithm 4.2 still does not meet the accu-
racy requirement. This further justifies the motivation of using adaptive sampling for
models with two or more parameters, especially when the parameter domain is very
large.

5.3. A Subsampling Approach for Adaptive Training
Set Sampling

In this section, we introduce a second, alternate strategy based on subsampling for
choosing the training set in the RBM. This approach is a goal-oriented sampling strat-
egy that relies on the output quantity of interest. We aim at identifying the structure
of the parameter dependency of the output through the empirical interpolation algo-
rithm (DEIM) or the pivoted QR decomposition and utilize this information to find
out the parameter importance. Our proposed method is applicable to both steady and
time-dependent problems with vector-valued outputs. Our central contribution is a
two-stage algorithm to control the cardinality of the training set. In the first stage, a
low-fidelity RBM approximation of the problem is obtained using a fine training set.
Then, an approximate output snapshot matrix is derived by simulating the low-fidelity
ROM at all the parameter samples in the fine training set. We apply the pivoted QR
decomposition or, alternatively, the DEIM and its variants to the approximate output
snapshot matrix. As we shall show, this procedure identifies regions of the parameter
space that have a greater contribution to the RB approximation space. The set of
sparse sampling points identified by the pivoted QR decomposition or the DEIM reveal
the structure of the parametric dependence of the output variable. In the second stage,
the fine training set is subsampled based on the parameter distribution identified us-
ing the pivoted QR decomposition or the DEIM algorithm, and leads to a subsampled
coarse training set. The RBM is continued over the coarse training set, until a targeted
error tolerance is met.
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5.3.1. Sparse Sampling Strategies

In Section 2.6, we introduced hyperreduction strategies for efficient treatment of the
nonlinear term in the context of MOR. We especially focused on EIM and DEIM,
two popularly used approaches in the context of POD and RBM. As was described
in Algorithms 2.5 and 2.6, the main criterion to choose the EI sampling points was a
greedy selection strategy based on the residual. Recently, several extensions to DEIM
have been introduced, which use alternate criteria to determine the interpolation indices
[69, 159]. Our proposed training set subsampling strategy relies on these. We give a
brief overview of these methods below.

QDEIM The QDEIM (QR-DEIM) was introduced in [69] as an extension of the
DEIM. The QDEIM method relies on a column-pivoted QR decomposition to iden-
tify the interpolation indices. This is different from the sequential, greedy choice of
interpolation points in DEIM. QDEIM is proven to have a sharper error bound and is
also computationally more efficient and straightforward to implement. The pseudocode
for QDEIM is sketched in Algorithm C.1.

KDEIM Another recent variant to the DEIM is the KDEIM. The K in KDEIM refers
to the k-means clustering algorithm [108]. Recall the definition of the nonlinear snap-
shots matrix F in Eq. (2.32). In the KDEIM approach, an SVD is used to obtain the
EI basis U. Following this, the k-means clustering is used to cluster the rows of U such
that rows having a similar response are assigned to the same cluster. The standard
k-means objective function is recast as a relaxed trace maximization problem which is
then solved using the QR decomposition. For an in-depth treatment we refer to [159].
The procedure in Algorithm C.2 sketches the basic KDEIM scheme, taken from [159].

Gappy-POD Recall from Section 2.6 that the number of interpolation points in the
EIM and the DEIM algorithm (nI) is equal to the dimension nEI of their EI basis
U. However, in many cases it is beneficial to consider nI > nEI interpolation points.
The Gappy-POD method and other related approaches fall into this category [47, 48,
77]. The Gappy-POD approximation for any function f(µ) is given in Eq. (2.35),
where UI is a non-square matrix with nI > nEI rows. Different sampling strategies
are possible to choose the nI EI sampling points. In [159], the authors discuss two
different oversampling strategies. The first approach, called Gappy-POD Eigenvector
chooses new interpolation points as those leading to the largest decrease of ‖(UI)†‖.
This is closely related to the sampling strategy in the DEIM, where the interpolation
point is chosen based on the location leading to minimizing ‖(UI)−1‖2, with UI ∈
RnEI×nEI being square. The second oversampling strategy, Gappy-POD Clustering,
proposed in [159] can be viewed as Gappy-POD based on different interpretation of the
QR decomposition as a clustering algorithm. The additional samples from nI − nEI
interpolation indices are identified based on the mutual entropy of the columns. The
pseudocodes for the Gappy-POD Eigenvector and Gappy-POD Clustering schemes are
sketched in Algorithms C.3 and C.4, respectively. For a more elaborate discussion we
refer to [159, 211]. In the next sections, we aim to make use of DEIM and its variants
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Table 5.3.: Greedy parameters picked by RBM for the Burgers’ equation.
Parameter 0.005 0.0151 0.0251 0.0352 0.0553 1
Repetitions 14 1 1 1 1 1

(QDEIM, KDEIM), as well as Gappy-POD to select important parameter samples from
the parameter domain for the RBM.

5.3.2. Motivating Observations

We detail two observations that pertain to the greedy algorithm in the RBM, the DEIM
algorithm as well as the QR pivoting. We shall see that these two observations have
motivated us to develop a subsampling strategy for the RBM training set.

5.3.2.1. Greedy Parameters, QR Pivots, and DEIM Interpolation Points

Our first observation concerns the parameters µ∗ selected by the greedy algorithm (See
Algorithm 2.8). The second observation is their resemblance to the QR pivots and the
DEIM interpolation points.
From our experience, the greedy algorithm tends to repeatedly pick parameter sam-

ples from a small subset of the training set, especially for time-dependent problems.
This same phenomenon has been reported in other existing works [99, 104, 106, 134,
145, 169, 214]. The solution (or output) vectors at these parameter values usually
exhibit large variability. While the greedy algorithm scans through all the parameter
samples in the training set, a majority of those samples are never picked. The fact that
a few parameters get repeatedly picked reveals that there are still unresolved modes and
hence more POD modes, corresponding to the selected parameter, are needed to get
a good approximation. These few parameters picked by the greedy algorithm, usually
represent solutions that are less smooth and hence are more difficult to approximate.
An example of this phenomenon occurs in fluid dynamics problems where the low vis-
cosity solutions develop shock and need a large number of POD modes to approximate.
We illustrate this observation through the standard greedy algorithm applied to the
discretized 1-D viscous Burgers’ equation with N = 1000. The details of the model
were presented in Section 4.3.7.2. We use 100 equispaced parameter samples from the
domain P := [0.005, 1] to form the training set Ξ. A ROM with error below the tol-
erance ε = 10−6 is requested from the greedy algorithm (Algorithm 4.2). In Table 5.3,
we provide the parameters picked by the greedy algorithm at each iteration from the
training set. Noticeably, among the 100 parameter samples in the training set, only 6
contribute to generating the basis V that approximates the solution manifold. Of these
6 samples, the sample µ = 0.005 is picked fourteen times. This is not surprising since
this parameter corresponds to the solution vector with the smallest viscosity and is the
most difficult to approximate.
Next, we make an important connection between the parameters selected by the

greedy algorithm and the pivots obtained through a pivoted QR decomposition of the
transpose of the output snapshot matrix defined in Eq. (5.2).
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Table 5.4.: First 10 pivots for the QR decomposition of the transposed true output
snapshot matrix Y of the Burgers’ equation.

Pivots 0.005 0.0151 0.0251 0.0352 0.0553 0.1055 0.1859 0.3166 0.7487 1

0.005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QR Pivots Greedy Points

Figure 5.6.: Greedy parameters for the Burgers’ equation and QR pivots of the true
output snapshots matrix Y .

For the same viscous Burgers’ equation, we collect the snapshots of the scalar-valued
outputs y at all the parameters in Ξ into a snapshot matrix given by

Y :=




y0(µ1) · · · yK(µ1)
... . . . ...

y0(µns) · · · yK(µns)


 ∈ Rns×Nt , (5.2)

Each row of the matrix consists of the snapshots of the output at Nt = K + 1 time
instances corresponding to a given parameter. Consider first the well-known pivoted
QR decomposition of a matrix D given by

DΠ = QR =

[
R11 R12

0 R22

]
, (5.3)

where Q is an orthogonal matrix and R is upper triangular. The pivots are given by
the column permutation matrix Π. We apply the QR decomposition to YT and identify
the pivots. A comparison of the parameters corresponding to the first ten pivots and
the parameters selected in the greedy algorithm is shown in Table 5.4 and Fig. 5.6.
Of the ten pivots, six are identical with the greedy parameters. This close connection
between the pivots of the QR decomposition and the greedy parameters chosen in the
RBM has been, to the best of our knowledge, discussed only in [10, 143], where the
QR decomposition is interpreted as a greedy column selection procedure. Note that
the application of a QR decomposition assumes the existence of the FOM solution for
all the parameters in the training set. In practice, we do not have this information as
part of the RBM. Instead, we propose to apply the pivoted QR decomposition to the
transpose of an approximate output snapshot matrix, in order to identify important
parameters which can then be used to subsample the fine training set in the RBM.
In Section 2.6, the usage of DEIM was discussed in the context of MOR. The DEIM

algorithm uses a greedy, sparse sampling of the left singular vector matrix (U) of the
snapshots to identify interpolation points. The QDEIM approach, a variant of DEIM
introduced in the previous section, performs a QR decomposition with column pivoting
on UT. This implicates a similar phenomenon as observed above: QR with pivoting
could select points of importance on different demands.
It is also noticed that QR with pivoting connects the greedy algorithm with DEIM

(or QDEIM), which indicates that DEIM and QDEIM could also be used to select
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representative parameter samples if either is applied to the output snapshot matrix.
Fig. 5.6 shows that pivots of the QR decomposition on YT gives similar points as those
selected by the greedy algorithm. It then indicates that sample points selected by the
greedy algorithm in a way are highly related to the interpolation points of QDEIM,
if the same snapshot matrix is considered by both the greedy algorithm and QDEIM,
which is, in our case, the output snapshot matrix Y . By exploiting this interpretation,
we propose to use DEIM or other variants of DEIM in order to adapt the training set
during the greedy algorithm.
To further support and motivate our proposed scheme, in the next subsection, we

show that DEIM also has the similar capability of identifying the most representative
parameter samples for dynamics, as that exhibited by the greedy algorithm in the RBM.
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(a) Singular value decay.
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Figure 5.7.: Toy problem demonstrating anisotropic choice of interpolation points. The
colourbars indicate the order of selection of the parameters. Points in
the black end of the spectrum were selected earlier while those in the white
regions of the spectrum were picked later during the course of the algorithm.
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5.3.2.2. DEIM and Parametric Anisotropy

For a function of two variables f(x,µ) : RN × RNp → RN , the DEIM algorithm first
identifies a linear subspace U and a small subset of points in the x variable, based on
the snapshot matrix F of f(x,µ). One can analogously consider the mapping f(µ,x) :
RNp×RN → RN through a transpose of F. However, now the DEIM algorithm identifies
a small subset of points in the µ variable. We illustrate this on a toy example from [1].
Consider the following nonlinear, two parameter function:

f(x1,x2,µ) =
1 + π2

4
(µ2 − µ1 − (µ1 + µ2)x2)2 sin2(π

2
(x1 + 1))

1 + (µ1 + µ2) cos(π
2
(x1 + 1))

, (5.4)

where x := [x1,x2] ∈ RN×2 is the spatial variable obtained from the discretization
of the two dimensional domain Ω := [−1 , 1] × [−1 , 1] with 50 points in each spatial
direction, resulting in N = 2500. The parameter µ := (µ1, µ2) ∈ R2 belongs to the
domain P := [−0.4 , 0.4] × [−0.4 , 0.4]. We collect 1600 snapshots of the function into
the snapshot matrix F ∈ R2500×1600, based on uniform, equally spaced samples of the
parameter. In Fig. 5.7a, the singular values of the snapshot matrix F are plotted. The
rapid decay clearly demonstrates the reducibility of this function. We apply a cut-off
of εEI = 10−10 for Algorithm 2.6 applied to both F and FT. The DEIM interpolation
points in Fig. 5.7b are those corresponding to the indices in the set I, obtained from
applying Algorithm 2.6 to F. The DEIM interpolation points in Fig. 5.7c are those µ
corresponding to the indices stored in I, obtained from applying Algorithm 2.6 to FT.
The distribution of the points determined by DEIM for both the spatial and parameter
variable have a characteristic structure. The number of interpolation points with SVD
truncation tolerance εEI = 10−10 was 48, a mere 3% of the total points. The spatial
interpolation points illustrate that while the variable x1 is equally important over the
entire range of [−1 , 1], the x2 variable has almost all its variation concentrated at
x2 ∈ {−1, 0, 1}. For the parameter variable, the greedy algorithm picks most of the
samples from the boundary of the domain and from the diagonal going from the lower
left to the upper right. There is a dense concentration of points around the corners
(−0.4,−0.4) and (0.4, 0.4). The choice of the greedy points is closely related to the
structure of the function f being approximated. In most of the existing MOR literature,
the DEIM algorithm has been used mainly as a tool to speed up evaluations of nonlinear
or non-affine (parametric) functions in a ROM. However, through the toy example, we
have demonstrated its capability to expose the nature of parametric dependence of a
function. As seen in Fig. 5.7c, it is able to identify the regions in the parameter space
where the function has large variations.

5.3.3. Subsampling the Training Set

Based on the observations in Sections 5.3.2.1 and 5.3.2.2, it is evident that a substantial
computational effort can be saved at the offline stage of the RBM if we appropriately
(optimally) sample the training set. The rationale for the proposed approach is the
following: the standard greedy algorithm scans through the entire training set at each
iteration and evaluates the error estimator at each parameter. This approach can incur
significant computational cost for training sets with a large number of parameters. The
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proposed algorithm aims at picking out a small subset of the training set containing
the most informative parameters. As will be demonstrated numerically, the parameters
match closely to those chosen by the standard greedy algorithm.
Based on our observation of Fig. 5.6 in Section 5.3.2.1 and Fig. 5.7 in Section 5.3.2.2,

we propose to apply the pivoted QR decomposition and the DEIM algorithm (and
its variants) to the snapshot matrix of the approximate output vector ỹk(µ) (See
Eq. (2.18)). More specifically, we consider the output snapshot matrix given by

Ỹ :=




[ỹ0(µ1)]T · · · [ỹK(µ1)]T

... . . . ...
[ỹ0(µns)]

T · · · [ỹK(µns)]
T


 ∈ Rns×NO·Nt (5.5)

with each row containing the snapshots of the approximated (vector-valued) output
quantity at K + 1 time instances corresponding to a given parameter sample.

Remark 5.1:
In case of steady systems with a single output we apply the proposed subsampling

approach on the approximate state snapshots. For this, we define Ỹ := X̃
T
, X̃ being

the snapshot matrix of the approximate state vector (x̃(µ) = Vx̂(µ)) such that

X̃ := [x̃(µ1), · · · , x̃(µns)] ∈ RN×ns ,

with x̃(µi) being the solution snapshot corresponding to the parameter µi, i = 1, 2, . . . , ns.♦

Note that Ỹ can be obtained from a coarse or low-fidelity ROM of the original system
without doing FOM simulation at all the parameter samples. We propose two sampling
strategies: (a) apply pivoted QR decomposition to Ỹ

T
, (b) apply DEIM or its variants

to Ỹ , in order to identify the structure of the parametric dependence of the output
variable. Once the distribution of the interpolation points is identified, we can then
adapt the training set for subsequent iterations of the greedy algorithm. We now outline
the proposed approach and discuss different computational strategies.
The proposed sampling procedure consists of two stages. The first stage is identical

to the standard RBM procedure outlined in Algorithm 2.8. A finely sampled training
set Ξf is used. We consider two different stopping criteria for the first stage — (a)
the first stage runs until the maximum estimated error is below a coarse tolerance
denoted by εc > ε, where ε is the desired error tolerance for the final ROM, or (b) at
two successive iterations, the number of DEIM sampling points or QR pivots does not
change. The value of εc is user-defined and is of order O(1) in this work. Based on the
two stopping criteria, two different schemes of training set subsampling are presented in
Algorithms 5.2 and 5.3, respectively. For both algorithms, we do not reset the value of
iter at the end of Stage 1, so the final value of iter upon convergence for Algorithms 5.2
and 5.3 is the total number of iterations required by either algorithms to converge to
the desired tolerance. We employ the a posteriori error estimator in Eq. (4.30) in both
stages of the proposed algorithms so that the parameter sample picked at each iteration
is the one at which an estimated output error is the largest. Following the adaptive
basis enrichment strategy from Section 4.3.6, the number of POD modes corresponding
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to a selected parameter sample is adaptively decided: when the estimated error is large,
a higher number of POD modes (rRB) are added for the selected parameter; otherwise
fewer POD modes are added. This reduces the chance of the same parameter sample
being repeatedly chosen at subsequent iterations. This adaptive basis enrichment is
implemented for both stages of our proposed method.
We now discuss several practical computational strategies in connection with Steps

28 and 29 in Algorithm 5.2 and Steps 26, 28 and 33 in Algorithm 5.3.

Remark 5.2:
The active subspaces method (ASM) is an approach for parameter space reduction
that has been recently applied in the context of MOR [62, 179, 195] mainly for the
case of scalar valued outputs. The ASM identifies a set of important directions in the
parameter space onto which the parameter vectors are projected. This is done by means
of Monte Carlo sampling of the gradients (with respect to the parameter) of the scalar-
valued output quantity at selected parameter samples. The active subspaces are the
eigenspaces of the (truncated) covariance matrix of the gradients. Compared to ASM,
our approach differs in two significant ways. Firstly, the proposed subsampling strategy
is applicable to vector-valued output quantities. Secondly, ASM requires calculation of
the gradient of the output. Moreover, the user still has to define an additional training
set over which the gradient samples are acquired. Our proposed approach does not
require the calculation of any additional quantity. ♦

Remark 5.3:
Our proposed subsampling strategy occurring in Step 28 of Algorithm 5.2 and Step 26 of
Algorithm 5.3 shares similarity with the column subset selection problem (CSSP) in the
fields of numerical linear algebra and data mining [135]. For some general data matrix
D ∈ RN×M , the CSSP aims to identify h < M independent columns of the matrix D
such that the residual ‖D−PhD‖ is minimized. Here, Ph = SS† is a projection matrix
and S ∈ RN×h consists of the h extracted columns from D. A number of algorithms,
both deterministic and randomized, have been proposed to solve the CSSP [40, 42, 49].
One popular approach is to apply variants of the QR decomposition (column-pivoted,
rank-revealing, hybrid, etc.) either to the data matrix D or to the transpose of the
(truncated) left (or right) singular matrix L (or K) of D. If we consider D as the
approximate output snapshot matrix, then our proposed algorithm using pivoted QR
(or QDEIM) can be seen as a special case of the CSSP. ♦
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Algorithm 5.2: adaptive_rbmei_ts2_s1
Computes a ROM using the Adaptive POD-Greedy algorithm in combination
with hyperreduction and sparse subsampling of the training set.
Input: System matrices and nonlinear term: E,A,B,C and f , Training set Ξf , EI tolerance εEI, ROM

tolerance ε, coarse tolerance εc, zoa ε∗, Deflation tolerance εdef, Maximum iterations iter_max.
Output: Reduced system matrices Ê, Â, B̂, Ĉ and EI quantities U , I.

1 Initialization: V = [ ], U = [ ], I = ∅, err_max = 1 + ε, iter = 1, µ∗ (chosen randomly from Ξf ),
rRB = rEI = 1.

2 For non-parametric t-dual system Eq. (4.2), obtain x̃du using a Krylov-space method.
3 Use RBF interpolation to approximate inf-sup constants as σ̃min(µ) for all µ ∈ Ξf .

4 Stage 1
5 while err_max > εc and iter ≤ iter_max do
6 if rRB > 0 then
7 Solve FOM Eq. (2.11) at µ∗; obtain snapshot matrix X(µ∗).
8 if iter == 1 then
9 V = POD(X, rRB).

10 else
11 Compute X := X−VVTX.
12 VPOD := POD(X, rRB).
13 V = orth_def_mat(V,VPOD, εdef). /* see Step 15 of Algorithm 2.4 */
14 end
15 else
16 Remove the last rRB columns from V.
17 end
18 Form snapshot matrix of the nonlinear function: F := [F f(X)].
19 Update EI basis and interpolation points U, I using the subroutine update_ei. /* see Line 26 of

Algorithm 4.2 */
20 For a parametric t-dual system, update dual RB matrix Vdu using the subroutine update_dual. /* see

Line 29 of Algorithm 4.2 */
21 iter = iter + 1.
22 Assemble the ROM Eq. (2.36) through Galerkin projection and hyperreduction using V,U.
23 Solve the ROM Eq. (2.36) and compute ∆y(µ) for all µ ∈ Ξf .
24 Find µ∗ = arg max

µ∈Ξf

∆y(µ); set err_max = ∆(µ∗).

25 Update rRB, rEI using the subroutine adapt_basis_update. /* see Line 35 of Algorithm 4.2
*/

26 end

27 Stage 2

28 Perform pivoted QR decomposition of ỸT
, or apply DEIM or a DEIM variant to Ỹ and identify the indices I

of the QR pivots or DEIM interpolation points.
29 Identify new training set Ξ using distribution of I.
30 while err_max > ε and iter ≤ iter_max do
31 if rRB > 0 then
32 Solve FOM Eq. (2.11) at µ∗; obtain snapshot matrix X(µ∗).
33 if iter == 1 then
34 V = POD(X, rRB)
35 else
36 Compute X := X−VVTX.
37 VPOD := POD(X, rRB).
38 V = orth_def_mat(V,VPOD, εdef). /* see Step 15 of Algorithm 2.4 */
39 end
40 else
41 Remove the last rRB columns from V.
42 end
43 Form snapshot matrix of the nonlinear function: F := [F f(X)].
44 Update EI basis and interpolation points U, I using the subroutine update_ei.
45 iter = iter + 1.
46 Determine reduced matrices Ê, Â, B̂, Ĉ through Galerkin projection using V as in Eq. (2.14).
47 Solve the ROM Eq. (2.36) and compute ∆y(µ) for all µ ∈ Ξ.
48 Find µ∗ = arg max

µ∈Ξ
∆y(µ); set err_max = ∆(µ∗).

49 Update rRB, rEI using the subroutine adapt_basis_update.
50 end
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5.3.3.1. Fully Adaptive RBMEI algorithm with Training Set Subsampling –
Scheme 1

We describe the proposed approach for the first scheme detailed in Algorithm 5.2. In the
first stage, a low-fidelity ROM is built with a coarse tolerance εc, over a finely sampled
training set Ξf . The intuition is that a low-fidelity approximation is sufficient to discover
the parametric dependence of the output variable. At the end of the first stage, DEIM
(or one of its variants) is applied to Ỹ to identify the interpolation points or a pivoted
QR decomposition of Ỹ

T
is used to identify the pivots. Once the set of interpolation

points (or pivots) I is identified, we proceed to suitably subsample the finely sampled
training set based on the distribution of the identified interpolation points or pivots.
Different possibilities exist to achieve this. A simple approach is to consider the training
set for the second stage Ξ populated only by the identified interpolation points or pivots.
Consider the fine training set Ξf := {µ1,µ2, . . . ,µnf} with the subscript denoting the
index corresponding to the position of a parameter in the set. Let I be the vector
whose elements are the indices of the chosen interpolation points (in I) or pivots. We
define the subsampled training set Ξ as the one consisting of all those parameters µz

from Ξf such that their indices are present in I, i.e., Ξ := {µz;z∈I}. If there are only
a few interpolation points, this approach would lead to a rapid second stage of the
algorithm. However, there may exist the pitfall that it may result in an overfit by
which we mean that the resulting ROM after Stage 2 satisfies the desired tolerance ε
only over the subsampled training set and does not generalize to other parameters in
the parameter domain. We illustrate this phenomenon in the numerical tests. Another
possible approach is to define a training budget m for the second stage and use an
oversampling strategy like the Gappy-POD to ensure that the training set for the
second stage consists of a total of m parameter samples.

5.3.3.2. Fully Adaptive RBMEI algorithm with Training Set Subsampling –
Scheme 2

The first scheme of our proposed training set adaptivity method requires a user-defined
coarse tolerance εc. Choosing such a tolerance is rather heuristic. For some problems,
a rough approximation may be enough to suitably capture all the parametric depen-
dences, whereas a finer approximation may be needed for others. Therefore, for the
second scheme we define a heuristic criterion that leads automatically to the second
stage. To achieve this, we apply DEIM approximation (or a variant of DEIM) to the
matrix Ỹ or the pivoted QR factorization to Ỹ

T
, at each iteration of the greedy al-

gorithm. Whenever the DEIM interpolations or pivoted QR decompositions at two
successive iterations turn out to be equal, we terminate the first stage. This can be
easily calculated by comparing the number of interpolation indices or the pivot indices
at two successive iterations. Then, the subsampling of the training set for the second
stage is carried out with similar approaches as discussed above. Following this, the
second stage is run, until the required tolerance ε is met. In Algorithm 5.3, I iter and
I iter−1 in Stage 1 refer to the vector containing the interpolation indices identified by
DEIM or its variants, or the indices of the QR pivots at the current iteration and the
previous iteration, respectively.
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Each of the two schemes has its own benefits or shortcomings. For Scheme 1, the
burden of choosing an appropriate coarse tolerance lies with the user. This is highly
problem-dependent. In the limit that εc = ε, Scheme 1 is just the POD-Greedy algo-
rithm (Algorithm 4.2) with a fixed training set. If εc � ε, a very fast second stage can
be ensured, leading to considerable speedup of the offline stage of the RBM. However,
it is not known a priori, if the chosen coarse tolerance results in a sufficiently accurate
ROM. Scheme 2, on the other hand, automatizes the switching from Stage 1 to Stage 2
of the subsampling strategy by considering a heuristic criterion. But, this comes with
the additional cost of performing the DEIM algorithm or the pivoted QR decomposi-
tion, repeatedly. The success of both schemes is also highly dependent on the strategy
adopted to construct the subsampled training set. In the numerical tests, we shall
consider two approaches. In the first approach, we consider as many parameters in the
subsampled training set as the number of DEIM interpolation points or QR pivots. For
the second approach, we fix the cardinality of the subsampled training set to be m and
then use oversampling strategies based on the Gappy-POD method to choose those m
parameters in a principled way.

Remark 5.4 (Computational complexity):
The fine training set is used in Stage 1 of both Algorithms 5.2 and 5.3. However, the
computational complexity is not high for Algorithm 5.2, since we use a coarse tolerance
εc in Stage 1, so that the greedy algorithm converges within much fewer steps than
when using the user desired tolerance in Stage 2. The computational complexity will
grow with the decrease of the coarse tolerance used in Stage 1. However, as we have
observed, a moderate value of εc is enough to figure out the parameter dependency
of the output. The number of FOM simulations is indeed independent of the size of
the fine training set, since the FOM simulation is implemented only at those “selected”
parameter samples. The situation for Algorithm 5.3 is different since it involves the
DEIM or QR algorithms at each iteration (see Step 26) to compute the interpolation
points. A fine training set will indeed increase the cost of this step. Nevertheless,
one can readily use recent techniques based on randomized linear algebra (such as
randomized SVD, randomized QR, etc.) to keep the costs under control, see [73, 182].♦

Remark 5.5 (High-dimensional parameter spaces):
Both Algorithms 5.2 and 5.3, can be used when the parameter space is high-dimensional.
The cost in Stage 2 will not be affected much, since a small training set identified
from Stage 1 is used. The main increase in cost is due to the need to solve addi-
tional ROMs and estimate the error in Stage 1 of the proposed algorithms (Step 23 in
Algorithms 5.2 and 5.3). If sparse grid sampling and cheap error estimator is used, the
costs will not increase fast. Actually, we can go a step further and make use of cheaply
computable surrogate models of the error estimator as done in Section 5.2.1. Such an
approach involves a RBF surrogate for the error estimator that is adaptively updated
during the greedy algorithm. We only evaluate the actual error estimator over a few
parameter samples. We then use this data to form a surrogate model, which can be
used to evaluate the error for different parameter samples in the fine training set in
Stage 1. ♦
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Algorithm 5.3: adaptive_rbmei_ts2_s2
Computes a ROM using the Adaptive POD-Greedy algorithm in combination
with hyperreduction and sparse subsampling of the training set.
Input: System matrices and nonlinear term: E,A,B,C and f , Training set Ξf , EI tolerance εEI, ROM

tolerance ε, zoa ε∗, Deflation tolerance εdef, Maximum iterations iter_max.
Output: Reduced system matrices Ê, Â, B̂, Ĉ and EI quantities U , I.

1 Initialization: V = [ ], U = [ ], I = ∅, err_max = 1 + ε, iter = 1, µ∗ (chosen randomly from Ξf ),
rRB = rEI = 1.

2 For non-parametric t-dual system Eq. (4.2), obtain x̃du using a Krylov-space method.
3 Use RBF interpolation to approximate inf-sup constants as σ̃min(µ) for all µ ∈ Ξf .

4 Stage 1
5 while not terminated do
6 if rRB > 0 then
7 Solve FOM Eq. (2.11) at µ∗; obtain snapshot matrix X(µ∗).
8 if iter == 1 then
9 V = POD(X, rRB)

10 else
11 Compute X := X−VVTX.
12 VPOD := POD(X, rRB).
13 V = orth_def_mat(V,VPOD, εdef). /* see Step 15 of Algorithm 2.4 */
14 end
15 else
16 Remove the last rRB columns from V.
17 end
18 Form snapshot matrix of the nonlinear function: F := [F f(X)].
19 Update EI basis and interpolation points U, I using the subroutine update_ei. /* see Line 26 of

Algorithm 4.2 */
20 For a parametric t-dual system, update dual RB matrix Vdu using the subroutine update_dual. /* see

Line 29 of Algorithm 4.2 */
21 iter = iter + 1.
22 Assemble the ROM Eq. (2.36) through Galerkin projection and hyperreduction using V,U.
23 Solve the ROM Eq. (2.36) and compute ∆y(µ) for all µ ∈ Ξf .
24 Find µ∗ = arg max

µ∈Ξf

∆y(µ); set err_max = ∆(µ∗).

25 Update rRB, rEI using subroutine adapt_basis_update. /* see Line 35 of Algorithm 4.2 */
26 Perform pivoted QR decomposition of ỸT

, or apply DEIM or a DEIM variant to Ỹ and identify the
indices I of the QR pivots or DEIM interpolation points.

27 if iter ≥ 2 then
28 Check if length(Iiter−1) == length(Iiter).
29 If true break and proceed to Stage 2.
30 end
31 end

32 Stage 2
33 Identify new training set Ξ using distribution of I.
34 while err_max > ε and iter ≤ iter_max do
35 if rRB > 0 then
36 Solve FOM Eq. (2.11) at µ∗; obtain snapshot matrix X(µ∗).
37 if iter == 1 then
38 V = POD(X, rRB)
39 else
40 Compute X := X−VVTX.
41 VPOD := POD(X, rRB).
42 V = orth_def_mat(V,VPOD, εdef). /* see Step 15 of Algorithm 2.4 */
43 end
44 else
45 Remove the last rRB columns from V.
46 end
47 Form snapshot matrix of the nonlinear function: F := [F f(X)].
48 Update EI basis and interpolation points U, I using the subroutine update_ei.
49 iter = iter + 1.
50 Assemble the ROM Eq. (2.36) through Galerkin projection and hyperreduction using V,U.
51 Solve the ROM Eq. (2.36) and compute ∆y(µ) for all µ ∈ Ξ.
52 Find µ∗ = arg max

µ∈Ξ
∆y(µ); set err_max = ∆(µ∗).

53 Update rRB, rEI using the subroutine adapt_basis_update.
54 end
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Remark 5.6 (Role of output quantity of interest):
In many cases, there is often the requirement, based on the application, to have a good
approximation for the entire state vector. However, in this work we have specifically
focussed on a goal-oriented approach. For several applications, like in control systems or
fluid dynamics, only a small number of state variables may be of interest. By focussing
on those states alone, the resulting ROM dimension can be considerably lowered when
compared to the case where the entire state needs to be well-approximated. Also, it is
indeed true that different output QoIs may have different influences on the parameter
samples chosen. However, if some QoIs give rise to quantities with similar emphases,
then they may result in similar parameter samples being chosen. For example, a QoI
defined by the mean of the solution over the spatial domain and a QoI defined by the
sum of the solution over spatial domain should result in similar samples. But a QoI
defined by the mean of the solution over space probably gives different samples from
the QoI defined by the maximum of the state over the spatial domain. ♦

5.3.4. Numerical Examples

We test the proposed adaptive training set subsampling algorithm on two examples.
They are:

1. viscous Burgers’ equation with one parameter,

2. thermal block with four parameters.

The first example is a nonlinear system and the details were introduced in Section 4.3.7.2.
The second example is a linear model of the heat equation. Next, we describe the met-
rics used in all the numerical tests:

• The results of the proposed algorithms (Algorithms 5.2 and 5.3) are compared
against the Adaptive RBMEI algorithm (Algorithm 4.2) with a fixed training set.
The implementation adopts Galerkin projection. The number of POD modes
rRB, rEI to enrich the RB and EI bases is determined at each iteration based on
the subroutine adapt_basis_update in Algorithm 4.2. The dual RB basis Vdu

required for the error estimator is generated separately.

• The fixed training set used for Algorithm 4.2 and the initial fine training set used
for Algorithms 5.2 and 5.3 are the same.

• For Algorithms 5.2 and 5.3, we apply (i) the pivoted QR decomposition to the
transposed approximate output snapshot matrix Ỹ

T
and, (ii) the DEIM variants

on the approximate output snapshot matrix Ỹ as two approaches to subsample
the fine training set.

• The cut-off criterion to determine the number of pivots (h) for the pivoted QR de-
composition in Eq. (5.3) of the approximate output snapshot matrix in Eq. (5.5) is
based on the magnitude of the diagonal elements in the upper triangular matrix R,
i.e., we set h = q based on the smallest q such that |R(q+1, q+1)|/|R(1, 1)| < εQR,
with q ∈ {1, 2, . . . ,min(ns, Nt)}. The pivoted QR decomposition can effectively
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identify the rank of a matrix with a small diagonal R(q+1, q+1). Although there
are cases when the column pivoted QR decomposition fails, they are rare in prac-
tice [51]. A more robust rank-revealing QR factorization [51] can also be straight-
forwardly applied to our proposed subsampling algorithm. However, in this work,
we simply use column pivoted QR. The intrinsic matlab®command qr is used
with the options vector enabled, i.e., we call [Q,R, pqr] = qr(Ỹ

T
, 'vector'). It

returns the pivot indices pqr as a vector, from which we select the first h as our
subsampling indices, i.e., I = pqr(1 : h). Here, I is the vector whose elements
are the indices of the QR pivots and it lets us choose the subsampled training
set Ξ for Stage 2 of the proposed method, based on the fine training set Ξf from
Stage 1.

• Our implementation of the k-means algorithm for KDEIM is based on the intrinsic
matlab®function kmeans. We use five different initializations and pick the best
configuration among the five.

• Reported runtimes for all the algorithms are obtained by considering the median
value of five independent runs.

• The quantity Iterations reported in Tables 5.5 to 5.9 refers to the total number
of iterations of the corresponding greedy algorithm (Algorithms 4.2, 5.2 and 5.3)
to converge to the desired tolerance.

The reported results below were obtained using matlab®2015a, on a laptop with
intel®core™i5-7200U @ 2.5 GHZ, with 8 GB of RAM.

5.3.4.1. Burgers’ Equation

The model equations and discretization schemes are the same as those used to discretize
Equation (4.44) in Section 4.3.7.2. However, for this example, we consider a finer spatial
discretization resulting in a FOM with dimension N = 1000. The parameter domain
of the viscosity µ is P := [0.005, 1]. The training sets Ξf = Ξ consists of 100 equally
spaced samples in P. For the RBM, we fix the tolerance to be ε = 1 · 10−6. To validate
the ROM, we use a test set Ξtest containing 300 randomly sampled parameters, different
from those in the training set.

Greedy Algorithm with Fixed Training Set We begin by applying the Adaptive
RBMEI algorithm (Algorithm 4.2) to the discretized model of the Burgers’ equation.
The algorithm requires 505.47 seconds and 19 iterations to converge to the defined
tolerance of 1 · 10−6. The resulting ROM has RB dimension rRB = 32 along with
rEI = 33 basis vectors for the DEIM projection matrix. The maximum true error over
the test set is εmax = 2.07 · 10−8, where εmax is as defined in Eq. (4.42). Although
the POD-Greedy algorithm with a fixed training set results in a ROM that meets
the specified tolerance, its offline time is high and there is scope for improvement by
considering a subsampled training set.
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Greedy Algorithm Schemes 1 and 2 We apply Algorithms 5.2 and 5.3 to the Burg-
ers’ equation, making use of both pivoted QR and two DEIM variants (QDEIM and
KDEIM) to identify the interpolation points I. Further, we consider three different
SVD and QR cut-off tolerances (εEI, εQR) for the pivoted QR and DEIM variants
{1 · 10−4, 1 · 10−6, 1 · 10−8} to highlight the progressive refinement of the adapted train-
ing set in ‘difficult regions’ of the parameter space. The results are summarized in
Tables 5.5 and 5.6 for Algorithms 5.2 and 5.3, respectively. The matrix Ỹ ∈ R100×81,
for either algorithms, was assembled by collecting the snapshots of the output vector at
every 25th time step. The fine training set Ξf for either algorithm is the same as Ξ, used
for the fixed training set case above. The training set in Stage 2 of both algorithms
consists of interpolation points identified by QR, QDEIM or KDEIM. As revealed in
the results, this choice is sufficient to produce ROMs that meet the required tolerance
over the test set. For this example, there is not a big difference between the results of
the two algorithms. Both schemes produce ROMs of almost identical RB, DEIM basis
sizes (rRB, rEI) and result in nearly the same maximum error over the test set.

We show the subsampled training sets resulting from Algorithm 5.3 using the piv-
oted QR, QDEIM and KDEIM variants, with different SVD, QR tolerances in Figs. 5.8
to 5.10. The black crosses denote those samples from the fine training set which were
retained in Stage 2 of the algorithm. For the QDEIM variant, it is clear that the sub-
sampled parameters are concentrated more around the lower viscosity regions of the
parameter space. Thus, the method is able to successfully identify the physically more
relevant points. Moreover, the parameter samples identified by QDEIM are very close
to the ones identified by the method using a pivoted QR decomposition. This is not
surprising since the former determines the interpolation points through a pivoted QR
decomposition of UT (U is the left singular matrix of Ỹ) whereas the latter applies
the pivoted QR decomposition directly to Ỹ

T
. We also show the results of KDEIM,

where the subsampled (selected) parameter samples and their corresponding clusters
are presented. The subsampled points in this case are the centroids of the clusters.
The clusters are smaller in size for the low viscosity regions, while they are compara-
tively larger in the high viscosity zone. The resulting subsampled training sets from
Algorithm 5.2 display a similar trend.

For a given εEI or εQR, the runtimes for the QDEIM and KDEIM based training set
adaptation are very close. Using the pivoted QR leads to a subsampled training set
with one sample more than that generated by using QDEIM or KDEIM. This results in
a marginally higher offline time for this method. One observation worth remarking is
that, for some instances, using the KDEIM approach to identify the adapted training
set leads to the greedy algorithm converging in fewer iterations. This is most likely
due to the fact that the identified parameters in this case represent cluster centroids
and are more representative of the average behaviour. This yields a more uniform
approximation throughout the parameter domain, with each cluster average being well-
represented. The QDEIM version, on the other hand, tends to identify points based on
the SVD of the output snapshot matrix and tends to favour points away from the mean
behaviour. We illustrate this in Fig. 5.11 for the case of εEI = 10−8 for Algorithm 5.2.
It is evident that while the subsampling strategy using QDEIM results in a smaller
magnitude of the maximum error over the test set (4.55 · 10−8 vs. 6.88 · 10−8), the
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approach using the KDEIM-based sampling leads to a more uniform distribution of the
error over the test set.
On average, for a given SVD tolerance, Algorithm 5.2 is faster than Algorithm 5.3.

This can be attributed to the fact that for the latter, the DEIM variant or the pivoted
QR decomposition needs to be performed repeatedly to check the criterion in Step
26 of Algorithm 5.3. Since this involves performing an SVD, the associated costs
are higher. The proposed subsampling algorithms result in a noticeable speedup of
the POD-Greedy algorithm. For Algorithm 5.2, the maximum achieved speedup was
5.6 for εEI = 1 · 10−4 using QDEIM. However, the least speedup noticed was 4.0 for
εEI = 1 ·10−8 using QDEIM or KDEIM. Also, for Algorithm 5.3 the maximum achieved
speedup was 5.7 for εEI = 1 · 10−4 using KDEIM while the minimum speedup was 3.5
for εEI = 1 · 10−8 using QDEIM.

5.3.4.2. Thermal Block

The second example is a benchmark model of the time-dependent heat transfer in a
thermal block. The domain Ω := (0, 1)× (0, 1) ∈ R2 is partitioned into five regions —
Ω = Ω0∪Ω1∪Ω2∪Ω3∪Ω4 as shown in Fig. 5.12. The governing equation is given by:

∂g(z, t;µ)

∂t
+∇.(−κ(z;µ)∇g(z, t;µ)) = 0, t ∈ (0, T ), z ∈ Ω. (5.6)

The left boundary of the domain (Γin) is associated with an input heat flux, the top
and bottom boundaries (ΓN) are associated with a Neumann boundary condition with
zero flux and finally the right boundary (ΓD) is fixed at zero. The state variable g is
the temperature at a given spatial location z ∈ Ω, for a given time t. The output is
the average temperature measured at Ω2. The problem is parametrized by the heat
conductivity κ in the four subdomains (Ω1,Ω2,Ω3 and Ω4). We have the parameter
vector µ = [κ1, κ2, κ3, κ4]. The governing PDE is discretized in space using linear finite
elements with respect to a simplicial triangulation of the domain Ω obtained via the
software gmsh [92]. It is further discretized in time using the implicit Euler scheme for a
time ranging from t ∈ [0 , 1], with step size ∆t = 0.01. The spatially discretized system
has dimension N = 7, 488. For more details on the model and the spatial discretization,
the reader is referred to [172]. The discretized heat equation can be written in the form
of Eq. (2.11). Since the problem is linear, we have f ≡ 0. For the numerical results, the
parameter µ is sampled from the domain P := [1 · 10−5 , 1 · 10−2]× [1 · 10−5 , 1 · 10−2]×
[1 · 10−4 , 1]× [1 · 10−1 , 1]. For purposes of illustration, we consider the three parameter
version of the thermal block problem by fixing κ4 to its mean value, i.e., κ4 = 0.5.
The training set Ξ consists of a tensor grid of nf = 63 = 216 parameters, with 6
parameters sampled for each κi, i = 1, 2, 3. The test parameter set consists of 100
parameters, randomly sampled from P. The tolerance for the greedy algorithm is set
to be ε = 1 · 10−3.

Greedy Algorithm with Fixed Training Set Applying Algorithm 4.2 with a fixed
training set to the thermal block example results in a ROM of dimension rRB = 74,
taking 53 iterations to converge in 694.73 seconds. The maximum error over the test
set is εmax = 9.78 · 10−4. In Fig. 5.13, the training set Ξ and the greedy parameters
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identified by Algorithm 4.2 are shown. Of the 216 parameters in the training set,
only 44 are chosen. The greedy parameters have a larger concentration at and around
(0.01, 0.01, 0.0001), the upper right corner of the figure. In fact, the regions around the
vicinity of the upper and right wall of the grid posses many greedy samples near them.

Greedy Algorithm Schemes 1 and 2 Similar to the Burgers’ equation, we now
apply the proposed training set subsampling schemes to the thermal block example.
For this model, we shall also illustrate the advantages of using oversampling. For both
Algorithms 5.2 and 5.3, we consider εQR, εEI = 1 · 10−10 and a coarse tolerance εc = 1.
The approximation to Y is obtained by taking snapshots at every time step of the
implicit Euler scheme. The results are summarized in Table 5.7 and Table 5.8 for
Algorithms 5.2 and 5.3, respectively. For both algorithms, the fine training set Ξf is
the same as Ξ, the one used for the fixed training set. The first scheme does not lead
to a ROM with sufficient accuracy for both QDEIM and KDEIM whereas using the
pivoted QR decomposition on Ỹ

T
to identify the subsampled training set produces a

successful ROM. For the second scheme of the proposed algorithm, both QDEIM and
KDEIM result in a subsampled training set of cardinality ns = 19 while the pivoted QR
approach gives ns = 20. However, both QR and QDEIM are unsuccessful in meeting
the required ROM tolerance for the test set. On the other hand, KDEIM results in a
ROM satisfying the tolerance, taking a significantly smaller number of iterations (40)
to converge. The results seem to indicate that the subsampling approach is not entirely
able to capture the full range of features over the training set. This is mainly due
to the smaller number of parameters ns = 19, that the algorithm results in. Recall
that for the standard greedy approach, 44 unique greedy parameters were determined.
However, it is also to be noted that the performance of the ROMs resulting from either
scheme on the test set is not bad. The maximum error is only slightly higher than the
desired tolerance of ε = 1 · 10−3.
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Figure 5.8.: Algorithm 5.3 for the Burgers’ equation with SVD, QR tolerance εEI, εQR =
1 ·10−4. The crossmarks denote the parameters in the subsampled training
set. For KDEIM each colour represents one cluster; the centroids of each
of the clusters make up the subsampled training set.
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Figure 5.9.: Algorithm 5.3 for the Burgers’ equation with SVD, QR tolerance εEI, εQR =
1 ·10−6. The crossmarks denote the parameters in the subsampled training
set. For KDEIM each colour represents one cluster; the centroids of each
of the clusters make up the subsampled training set.
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Figure 5.10.: Algorithm 5.3 for the Burgers’ equation with SVD, QR tolerance εEI, εQR =
1·10−8. The crossmarks denote the parameters in the subsampled training
set. For KDEIM each colour represents one cluster; the centroids of each
of the clusters make up the subsampled training set.
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(a) QDEIM.
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Figure 5.11.: Error plot for Algorithm 5.2 with tolerance εEI = 10−8 applied to the
Burgers’ equation. The error between the true and reduced outputs
‖yk(µ) − ỹk(µ)‖ is plotted over the duration of the simulation for all
parameters in the test set.

Figure 5.12.: Thermal Block: spatial domain and boundaries.

Next, we perform oversampling to identify more parameters. For the standard DEIM
approach, the number of interpolation points is equal to the rank nEI of the truncated
left singular vectors of the snapshots matrix. For oversampling, we set the number of
interpolation points to be m = 2nEI and test the approaches based on maximizing the

141



5. Adaptive Training Set Sampling and Fully Adaptive RBM

10−5

10−4

10−3

10−2

10−5

10−4

10−3

10−2

10−4

100

κ1

κ2
κ
3

Parameters
Greedy Choices

Figure 5.13.: Thermal Block: fine training set with 216 parameters and the 44 greedy
parameters picked by Algorithm 4.2.

smallest singular value (Gappy-POD Eigenvector) and the approach based on clustering
(Gappy-POD Clustering), both originally proposed in [159]. The results are given
in Table 5.9. We see that both oversampling approaches result in ROMs that are
validated to be accurate over the test set. The Gappy-POD Clustering method results
in the smallest test error among the two and takes 40 iterations to converge. Notice
that, compared to the previous two approaches based on QDEIM and KDEIM, the
oversampling approach requires more time. This is not surprising, since a larger number
of parameters is included in the coarser training set Ξ at Stage 2 of Algorithms 5.2
and 5.3. The speedup of the Gappy-POD Eigenvector variant is 3.9, while a speedup
of 4.6 is achieved by the Gappy-POD Clustering variant. We show the subsampled
training sets of both the approaches in Fig. 5.14. In particular, parameter samples
anticipated by the Gappy-POD Clustering variant bear a close resemblance to the
greedy parameter distribution in Fig. 5.13. In Fig. 5.15, we plot the mean error over
time for each parameter in the test set Ξtest which consists of 100 random samples from
the parameter domain. It is evident that both the proposed oversampling strategies,
Gappy-POD Eigenvector (Fig. 5.15a) and Gappy-POD Clustering (Fig. 5.15b) have
been successful in keeping the error below the desired tolerance, uniformly for all the
parameters in the test set.

5.4. Conclusion

In this chapter, we turned our focus to adaptive training set sampling for the RBM.
We proposed two different approaches. Our first approach in Section 5.2 iteratively
builds the training set, starting from a small number of samples. The procedure uses
a surrogate model for the a posteriori error estimator introduced in Chapter 4. Three
benchmark numerical examples were used to show the improved performance of this
method.
Following this, in Section 5.3 we discussed a different strategy for adaptive training

set sampling. This two-stage approach starts from a finely sampled training set and
has the ability to identify a set of sparse parameter samples that are most important
in approximating the solution to the given problem. The set of identified samples are
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Table 5.7.: Thermal Block: results of Algorithm 5.2 with QDEIM, KDEIM and QR.

Method Fixed
Adapted

εEI, εQR = 1 · 10−10

QDEIM KDEIM QR
ns 216 19 19 20
εmax 9.78 · 10−4 1.10 · 10−3 2.10 · 10−3 6.45 · 10−4

rRB 74 64 64 66
Iterations 53 42 43 44

Offline time (s) 694.73 121.36 123.27 126.35
Speedup - 5.7 5.6 5.5

Table 5.8.: Thermal Block: results of Algorithm 5.3 with QDEIM, KDEIM and QR.

Method Fixed
Adapted

εEI, εQR = 1 · 10−10

QDEIM KDEIM QR
ns 216 19 19 20
εmax 9.78 · 10−4 1.10 · 10−3 9.36 · 10−4 1.60 · 10−3

rRB 74 65 62 57
Iterations 53 45 40 35

Offline time (s) 694.73 121.58 110.13 73.38
Speedup - 5.7 6.3 9.5

Table 5.9.: Thermal Block: results of Algorithm 5.2 with oversampling.

Method
Oversampling
m = 2nEI

Gappy-POD Eigenvector Gappy-POD Clustering
nc 38 38
εmax 9.91 · 10−4 7.96 · 10−4

rRB 70 62
Iterations 47 40

Offline time (s) 177.51 151.39
Speedup 3.9 4.6

then used as a sparse training set for the RBM. We proposed different sparse sampling
strategies and they were tested on two benchmark examples to show their capability
to identify good training set samples.
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(a) Subsampled parameters using Gappy-POD
Eigenvector.
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(b) Subsampled parameters using Gappy-POD
Clustering.

Figure 5.14.: Subsampling strategy using Gappy-POD with oversampling for the Ther-
mal Block.
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(a) Gappy-POD Eigenvector.
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(b) Gappy-POD Clustering.

Figure 5.15.: Error plot for Algorithm 5.2 with coarse tolerance εc = 1 and subsampling
based on Gappy-POD Eigenvector and Gappy-POD Clustering applied to
the thermal block example. The mean error over time between the true
and reduced outputs - (1/K+ 1)

∑K
i=0 ‖yk(µ)− ỹk(µ)‖ - is plotted for all

parameters in the test set Ξtest.
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6.1. Coupled Systems

So far in this thesis, we focused on large-scale systems arising from PDEs of the form
Eqs. (2.1) and (2.2). Both these PDEs are scalar-valued, in the sense that they model
the dynamics of the state variable g ∈ R. Moreover, they describe the dynamics of
one physical quantity (for e.g., heat, temperature, velocity, etc.). In many physical
and engineering systems, the underlying physical phenomenon is often in the form
of a coupled system of PDEs, i.e, the PDE describes the relation between different
physical quantities. A well-known example of this arises in multi-physics problems,
which involve the coupling between different physical quantities. For example, fluid-
structure interaction, electro-thermal coupling, etc. We now focus our attention on such
coupled systems. The general time-dependent, nonlinear, parametric coupled system
can be represented in the form

∂

∂t
g(z, t,µ) = Rc[g(z, t,µ),u(t),µ], (6.1)

similar to that of Eq. (2.1). For coupled systems, the field variable g is no longer
scalar. We denote g := [g1, g2, . . . , gm]T ∈ Rm. If the PDEs model a fluid-structure
interaction, then g1 could denote the fluid pressure and g2 the displacement of the
solid structure from some mean location. Furthermore, Rc[·, ·, µ] is a parametrized
linear/nonlinear differential operator. Within the class of coupled systems, the coupling
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6. Fully Adaptive RBM for Coupled Systems

can vary based on the physics being modelled. The PDEs can be coupled directly
through the vector of field variables g. In case of nonlinear PDEs, the coupling between
the field variables can also occur indirectly, through the nonlinear function operating on
the field variables. Other instances of coupled systems include interconnected systems,
for which the coupling is through the inputs and the outputs: the output of one PDE
is the input to the next, and so on.
Spatial and time discretization of state-coupled systems represented in the form of

Eq. (6.1) can be carried out with similar standard techniques as explained previously
for the PDEs in Eqs. (2.1) and (2.2). The fully discrete system can be modelled as
below:




E11 E12 · · · E1m

E21 E22 · · · E2m
...

... . . . ...
Em1 Em2 · · · Emm




︸ ︷︷ ︸
E




xk+1
1

xk+1
2
...

xk+1
m




︸ ︷︷ ︸
xk+1

=




A11 A12 · · · A1m

A21 A22 · · · A2m
...

... . . . ...
Am1 Am2 · · · Amm




︸ ︷︷ ︸
A




xk1
xk2
...

xkm




︸ ︷︷ ︸
xk

+




f1(xk)

f2(xk)
...

fm(xk)




︸ ︷︷ ︸
F(xk)

+




B1

B2
...

Bm




︸ ︷︷ ︸
B

uk,




yk+1
1

yk+1
2
...

yk+1
m




︸ ︷︷ ︸
yk+1

=




C1

C2

. . .
Cm




︸ ︷︷ ︸
C




xk+1
1

xk+1
2
...

xk+1
m




(6.2)
Here, Eij,Aij ∈ RN i×Nj are time- and/or parameter-dependent system matrices arising
from the discretization of each coupled equation, with 1 ≤ i, j ≤ m. Bi ∈ RN i×N i

I ,Ci ∈
RN i

O×N i are the input and output matrices corresponding to the i-th coupled system,
with i ∈ {1, 2, . . . ,m}. The total number of inputs and outputs are: NI = N1

I +· · ·+Nm
I ,

NO = N1
O+· · ·+Nm

O , respectively. The state vector xki corresponds to the discretization
of the field variable of the i-th equation, while f i is the nonlinear term associated
to that equation. The overall dimension of the coupled system N is given by N =
N1 + N2 + · · · + Nm. Based on the coupling, some elements of the large matrices
E ∈ RN×N ,A ∈ RN×N turn out to be zero, i.e., Eij = 0,Akl = 0 for some values of
i, j, k, l ∈ {1, 2, . . . ,m}. This means that the corresponding subsystems are not coupled.
However, in case of nonlinear systems, this is not entirely true. For nonlinear systems,
a coupling between the state variables may arise indirectly through the operation of
the nonlinear vector f i on the state vector xk.

6.1.1. MOR for Coupled Systems

A number of works in the past decade have considered reduced order modelling of
coupled systems [27, 132, 174]. Early development was mainly driven by the need
in the field of circuit theory, which called for the modelling and simulation of very
large scale integration (VLSI) chips consisting of many interconnected units. ROMs for
coupled systems were also considered in structural dynamics, where coupled systems
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6.1. Coupled Systems

involve interconnection of different mechanical modules such as trusses and beams.
Another prominent area where coupled systems are widely encountered is chemical and
process engineering. Often, chemical reactions involve multiple components, governed
by different physical laws. We shall especially focus on coupled systems arising in the
process of batch chromatography in process engineering.
Broadly, two competing approaches have been considered in literature to obtain

ROMs for coupled systems [27]. The first is the structure-preserving approach. For
several reasons, it is important to preserve the block structure of the coupled system
Eq. (6.2) in the reduced model. Therefore, ROMs are generated individually for each
subsystem and they are finally assembled together based on the particular coupling law
for the problem under consideration. Such an approach is adopted in many works, both
for frequency- and time-domain MOR methods. Two sub-variants of this approach are
discussed in [27]. The other approach for MOR of coupled systems, the monolithic
approach, considers the system as a whole and extracts a single ROM [174]. While
this approach is not so common, it is often adopted in systems and control theory.
There, the coupled system is represented as a single system based on the closed-loop
representation and MOR is carried out for the closed-loop system.
While MOR techniques have been extended to nonlinear coupled systems [213], only

few works have considered parametric systems. Among them, only a handful have
considered adaptive MOR techniques in the context of the RBM. To fill this gap, in
this thesis, our goal is to extend adaptive MOR techniques introduced in the previous
sections (adaptive basis enrichment, adaptive parameter sampling) to general nonlinear,
parametric, time-dependent coupled systems.

6.1.2. Adaptive Structure-Preserving MOR for Coupled Systems

We adopt the structure-preserving approach in order to carry out adaptive MOR for
coupled systems. For a coupled system involving m subsystems, we shall consider
separate projection matrices V for each subsystem. For the FOM in Eq. (6.2), we
begin with the following ansatz:

xk ≈ x̃ki := Vix̂i, i = 1, 2, . . . ,m. (6.3)

The matrix Vi ∈ RN i×ni , i = 1, 2, . . . ,m, is the RB projection matrix for the i-th
subsystem. Here, {ni}mi=1 are the reduced dimensions of each subsystem constituting
the coupled system and n = n1 + n2 + · · · + nm. Substituting this in Eq. (6.2) and
performing a Galerkin projection results in the reduced coupled system of the form

Êx̂k+1 = Âx̂k + F̂(x̃k) + B̂uk,

ỹk+1 = Ĉx̂k+1.
(6.4)

with Ê, Â ∈ Rn×n being the reduced system matrices and B̂ ∈ Rn×NI , Ĉ ∈ RNO×n are
the input and output matrix, respectively, of the reduced coupled system. We denote
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6. Fully Adaptive RBM for Coupled Systems

the block projection matrix as

V :=




V1

V2

. . .
Vm


 . (6.5)

The reduced matrices of the coupled system have the forms as shown below:

Ê := VTEV =




VT
1 E11V1 VT

1 E12V2 · · · VT
1 E1mVm

VT
2 E21V1 VT

2 E22V2 · · · VT
2 E2mVm

...
... . . . ...

VT
mEm1V1 VT

mEm2V2 · · · VT
mEmmVm



, (6.6)

Â := VTAV =




VT
1 A11V1 VT

1 A12V2 · · · VT
1 A1mVm

VT
2 A21V1 VT

2 A22V2 · · · VT
2 A2mVm

...
... . . . ...

VT
mAm1V1 VT

mAm2V2 · · · VT
mAmmVm



, (6.7)

B̂ := VTB =
[
B

T
1 V1 B

T
2 V2 · · · B

T
mVm

]T
, (6.8)

Ĉ := CV =




C1V1

C2V2

. . .
CmVm


 . (6.9)

The nonlinear term F̂ is of the form

F̂ := VTF =
[
f1(xk)TV1 f2(xk)TV2 · · · fm(xk)TVm

]T (6.10)

Since there exist nonlinear terms in Eq. (6.2), we invoke the hyperreduction techniques
to enable efficient online computation. As considered for the RB projection matrix, we
obtain separate EI projection matrices and interpolation indices corresponding to each
subsystem forming the coupled system. The block EI projection matrix U is of the
form

U :=




U1

U2

. . .
Um


 (6.11)

and the interpolation indices {Ii}mi=1 are collected in the set I := {I1, I2, . . . , Im}. Sim-
ilar to Eq. (2.36), the hyperreduced ROM for Eq. (6.2) is given by

Êx̂k+1 = Âx̂k + Uf + B̂uk,

ỹk+1 = Ĉx̂k+1.
(6.12)
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The quantity U := VTU(UI)−1 can be precomputed once and for all and stored offline,
whereas f := (f(xk,µ))I ∈ RnEI can be cheaply computed online since nEI � N . The
selection of the rows of the EI bases in the term UI is done for each subsystem as shown
below:

UI =




UI1
1

UI2
2

. . .
UIm
m


 . (6.13)

Similarly, the evaluation of the quantity f in Eq. (6.12) is also done component-wise
based on the respective EI sampling points:

f =




f
I1

1

f
I2

2
...

f
Im

m



. (6.14)

Having discussed the structure-preserving ROM for coupled systems, we next apply the
adaptive basis enrichment and adaptive training set sampling methods to efficiently
obtain the RB and EI projection bases and sampling points.
Remark 6.1:
For the remainder of the discussion, we shall restrict ourselves to the case of the matrices
E,A being diagonal. We have Eij = Aij = 0 for all i, j ∈ {1, 2, . . . ,m} & i 6= j, i.e.,
subsystems are coupled indirectly through the nonlinear term. The numerical example
we shall deal with, viz., coupled systems arising in the process of batch chromatography
are precisely in this form. ♦

6.1.2.1. Adaptive Basis Enrichment for Coupled Systems

To enable the application of adaptive strategies, we first discuss error estimation. We
make use of the a posteriori output error estimator ∆y from Eq. (4.30). For coupled
systems, we require m error estimators, one for each subsystem denoted by ∆y,i, i ∈
{1, 2, . . . ,m}.
Remark 6.2:
For MIMO systems, this can potentially become expensive, as in total, the error needs
to be estimated for m · NO output variables. However, in practice, not all subsystem-
s/variables are important, and it is usually enough to estimate the errors for a total
of mc critical subsystems and NO,c critical variables. Therefore, the error estimation
is computationally tractable. In our discussion, we assume that the error needs to be
estimated for only ec = (mc · NO,c) � (m · NO) variables in Eq. (6.12). We denote by
{α1, . . . , αec} the indices of those variables in Eq. (6.2) which are critical. ♦

Recall from Section 4.2.2 that the t-dual system Eq. (4.1) needs to be solved to compute
the error estimator in Eq. (4.30). This means, ec dual systems

E
T
αkαk

xdu,k = −CT
k , k = 1, 2, . . . , ec (6.15)
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are to be solved. Let us denote the block dual projection matrix for coupled systems
by

Vdu :=




Vdu,1

Vdu,2

. . .
Vdu,ec


 . (6.16)

We define the estimated error as the maximum among the errors estimated for the ec
variables, i.e.,

∆y,c := max
i∈{1,2,...,ec}

∆y,i. (6.17)

We first detail the adaptive basis enrichment scheme for coupled systems in Algo-
rithm 6.1. The algorithm follows the essence of the procedure outlined previously in
Algorithm 4.2; however, as we will describe below, it is suitably modified to treat cou-
pled systems. In case the dual systems are non-parametric, Krylov-space methods are
used in Step 1 to obtain the dual system solutions. Following this, the initialization of
the RB, EI projection bases and interpolation points is carried out. It is worth men-
tioning that for coupled systems the number of POD modes rRB, rEI to be added/re-
moved at each iteration are now vectors defined as rRB := [rRB,1, . . . , rRB,m]T ∈ Rm,
rEI := [rEI,1, . . . , rEI,m]T ∈ Rm with the entries denoting the number of RB or EI basis
vectors for each subsystem. Upon entering the greedy loop, in Step 5 we collect in
the set S, the indices j of all entries in rRB for which rRB,j > 0. In Step 6, the FOM
Eq. (6.2) corresponding to each subsystem j ∈ S is solved for the current greedy param-
eter and the snapshots of the state vectors xj are collected and stored in the snapshot
matrices Xj. Based on the new information from the snapshots, the RB projection
matrices Vj are updated in Step 8 or Step 12. For all entries rRB,j, j /∈ S, we then
suitably delete columns from the corresponding Vj in Step 14. Steps 15-16 involve
the simultaneous enrichment of the EI projection bases and sampling points. We first
collect the snapshots of the nonlinear term corresponding to each subsystem into the
matrix Fi in Step 15. Step 16 then invokes the subroutine update_ei (see Line 26 in
Algorithm 4.2) for every subsystem, to enrich Ui, Ii. The error estimation is done for
the ec output variables in Step 20. We pick the maximum estimated error among all
variables. Finally, in Step 22, each entry in rRB, rEI is updated through the subroutine
adapt_basis_update (see Line 35 in Algorithm 4.2).

6.1.2.2. Fully Adaptive RBMEI algorithm for Coupled Systems

The adaptive training set sampling based on a surrogate error estimator was introduced
in Section 5.2.1. We now extend this to coupled systems. Since the implementation
and computational costs were already discussed in detail, we do not repeat it here
and simply sketch the pseudocode in Algorithm 6.2. Concerning the surrogate error
estimator, since we have ec quantities of interest, we build RBF-surrogates for the
estimated error corresponding to each of those variables in Step 21. Step 22 involves
pruning the coarse training set Ξc. We monitor the maximum estimated error ∆y,c
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Figure 6.1.: The schematic of a Batch Chromatography for binary separation.

among all the subsystems, and remove samples from Ξc for which ∆y,c < ε. In Steps
23 and 24, we add new parameters to Ξc. For this, we first identify the surrogate
χi(µ) which yields the maximum error among all subsystems. Then, we add nadd new
parameters corresponding to largest errors identified by χi(µ). The remaining steps
are nearly the same as described for Algorithm 6.1.

6.1.3. Numerical Example: Batch Chromatography

The process of chromatography as a separation and purification is widely used in the
fields of chemical and process engineering. It is a critical part of drug discovery and
bio-chemical purification. There exist different types of chromatography such as dis-
continuous or batch chromatography, simulated moving bed chromatography, gas chro-
matography, etc. We shall mainly consider the batch elution chromatography, used for
binary separation. Figure 6.1 shows the schematic of this process taken from [213]. The
mixture containing two components that need to be separated is periodically injected
at one end of the column. In the column, a static bed of a substance called the station-
ary phase is present. The injected mixture has to pass through this stationary phase.
Batch chromatography relies on the phenomenon of adsorption. The components that
need to be separated have different adsorption affinities toward the stationary phase
and, hence, tend to move through the column with varying velocities. The separated
components are then collected at the end of the column. The time of collecting the
two components of the original mixture is determined based on the required purity
specifications.
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Algorithm 6.1: adaptive_rbmei_coupled
Computes a ROM using the Adaptive POD-Greedy algorithm in combination
with hyperreduction for coupled systems.
Input: System matrices and nonlinear term: E,A,B,C and F, Training set Ξ,

EI tolerance εEI, ROM tolerance ε, zoa ε∗, Deflation tolerance εdef,
Maximum iterations iter_max.

Output: Reduced system quantities Ê, Â, B̂, Ĉ and EI quantities U , I.
1 For non-parametric dual systems solve ec t-dual systems of the form Eq. (4.2),

obtain {x̃du,1, . . . , x̃du,ec} using a Krylov-space method.
2 Use RBF interpolation to approximate inf-sup constants σ̃min(µ) for all µ ∈ Ξ.
3 Initialization: {Vi, Vdu,i, Ui}mi=1 = [ ], I = ∅, err_max = 1 + ε,

err_max_dual = 1 + ε, iter = 1, µ∗,µ∗du (chosen randomly from Ξ),
rRB = rEI = 1.

4 while err_max /∈ zoa and iter ≤ iter_max do
5 Denote by S the set of all indices j such that rRB,j > 0.
6 Solve FOM Eq. (6.2) at µ∗; obtain snapshot matrices {Xj(µ

∗)}, j ∈ S.
7 if iter == 1 then
8 Vj = POD(Xj, rRB,j), j ∈ S.
9 else

10 Compute Xj := Xj −VjV
T
j Xj, j ∈ S.

11 VPOD,j := POD(Xj, rRB,j), j ∈ S.
12 Vj = orth_def_mat(Vj,VPOD,j, εdef), j ∈ S. /* see Step 15 of

Algorithm 2.4 */

13 end
14 Remove the last rRB,j columns from Vj, j /∈ S.
15 Form snapshot matrices for the nonlinear function:

Fi := [Fi f i(Xi)], i = 1, 2, . . . ,m.
16 Update EI basis and interpolation points Ui, Ii using the subroutine

update_ei for each subsystem and form UI, f (see Eqs. (6.13) and (6.14)).
17 For a parametric t-dual system, update dual RB matrix Vdu,i using the

subroutine update_dual for the subsystems.
18 iter = iter + 1.
19 Determine reduced matrices Ê, Â, B̂, Ĉ through Galerkin projection using Vi

and hyperreduction using Ui.
20 Solve the ROM Eq. (6.12) for all µ ∈ Ξ; find µ∗ = arg max

µ∈Ξ
∆y,c(µ).

21 Set err_max = ∆y,c(µ
∗).

22 Update rRB, rEI using the subroutine adapt_basis_update.
23 end

6.1.3.1. Mathematical Model

The model of the batch chromatography was originally proposed in [213]. Our dis-
cussion closely follows the presentation there. The process can be modelled using a
system of coupled PDEs. There exists a coupling between the solid and liquid phase
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concentrations of the two components. The coupled PDEs governing the process are
given by

∂g̊β
∂t

+
1− p̊
p̊

∂g̊β
∂t

= −∂g̊β
∂z

+
1

Pe

∂2g̊β
∂z2

, 0 < z < 1, β ∈ {a, b} (6.18a)

∂gβ
∂t

=
L

Q/p̊Ac
κβ(gEqβ − gβ), 0 ≤ z ≤ 1. (6.18b)

with g̊β, gβ being, respectively, the solid and liquid phase concentrations of the two
components β ∈ {a, b} which need to be separated. For easy modelling, we have
considered an idealized 1-D domain Ω : [0, 1] with z denoting the spatial variable. This
assumption is not simplistic since there is generally a uniform concentration of the
reactants along the cross-section of the column. p̊ denotes the column porosity. The
porosity is crucial for the interaction between the solid and liquid phases. Further, we
have the Péclet number Pe, which is the ratio of the rate of advection to the rate of
diffusion. For the batch chromatography process, the advection tends to dominate the
diffusion and we have Pe � 1. Concerning the geometry of the column, L denotes
its length while Ac is the cross-section area. Q refers to the volumetric feed flow, the
amount of solvent injected per second into the column. The injection of the solvent
is done periodically, in batches. The time tin is the duration for which the solvent is
pumped while tcyc is the duration of a single cycle of injection and flow through the
column. The mass transfer coefficients for each component is κβ.
The source of nonlinearity in this model is the adsorption equilibrium gEqβ denoted

by

gEqβ =
Hβ1g̊β

1 +Ka1g̊
f
a g̊a +Kb1g̊

f
b g̊b

+
Hβ2g̊β

1 +Ka2g̊
f
a g̊a +Kb2g̊

f
b g̊b

(6.19)

where Hβ1, Hβ2 are Henry’s constants, Kβ1, Kβ2 are thermodynamic coefficients, and g̊fβ
are the feed concentrations of the two components β ∈ {a, b}. We impose the following
initial and boundary conditions:

g̊β(0, z) = 0, gβ(0, z) = 0, 0 ≤ z ≤ 1, (6.20a)
∂g̊β
∂z
|z=0 = Pe

(
g̊β(t, 0)− u[0,tin](t)

)
, (6.20b)

∂g̊β
∂z
|z=1 = 0. (6.20c)

Here, u[0,tin](t) defines the periodic input u(t) = 1, t ∈ [0, tin] and u(t) = 0, t /∈ [0, tin].
The volumetric feed flow Q and the injection time tin are considered as the parameters
that can be varied.
The coupled system Eq. (6.18) is spatially discretized using FVM and a second-order

Crank-Nicolson method is employed for time discretization. The discretized system can

155



6. Fully Adaptive RBM for Coupled Systems

be represented in the form of Eq. (6.2) as:



E

E

I

I




︸ ︷︷ ︸
E




xk+1
1

xk+1
2

xk+1
3

xk+1
4




︸ ︷︷ ︸
xk+1

=




A

A

I

I




︸ ︷︷ ︸
A




xk1

xk2

xk3

xk4




︸ ︷︷ ︸
xk

+

[
p̊−1
p̊

1

]
⊗
[
fa(x

k)

f b(x
k)

]

︸ ︷︷ ︸
F(xk)

+




B

B

0

0




︸ ︷︷ ︸
B

uk,




yk+1
1

yk+1
2

yk+1
3

yk+1
4




︸ ︷︷ ︸
yk+1

=




C

C

0

0




︸ ︷︷ ︸
C




xk+1
1

xk+1
2

xk+1
3

xk+1
4



.

(6.21)
The vectors xk1,x

k
2 ∈ RN1 are the discretized version of the liquid phase concentrations,

g̊a, g̊b, respectively; the vectors xk3,x
k
4 ∈ RN2 are, respectively, the discretized form of

the solid phase concentrations ga, gb of the two components a, b in the solvent. The
overall state vector at some time t = tk is xk ∈ RN with N = 2N1 +2N2 and N1 = N2.
The term F(xk) ∈ R4N1 is the discretized nonlinear vector where

f
k

a := ∆t
L

Q/p̊Ac
κa
(
xEq(xk1,x

k
2)− xk3

)
∈ RN1

,

f
k

b := ∆t
L

Q/p̊Ac
κb
(
xEq(xk1,x

k
2)− xk4

)
∈ RN1

.

Here, xEq(xk1,x
k
2) is the discretized representation of the adsorption equilibrium in

Eq. (6.19). From the above equation, it is clear how there exists a coupling between
the solid and liquid phase concentrations. The matrices E,A ∈ RN1×N1 are non-
parametric and tridiagonal. I ∈ RN2×N2 is the identity matrix. The input matrix is
given by B :=

[
d0 0 · · · 0

]T ∈ RN1 with

d0 = ∆z · Pe ·
( ∆t

2∆z
+

∆t

Pe ·∆z2

)
u[0,tin](t

k),

∆z and ∆t being the space and time discretization step sizes. Although Eq. (6.21)
is a coupling of m = 4 subsystems, there are only two output variables of interest,
viz., yk1,y

k
2. These variables denote the liquid phase concentrations at the last node of

the spatial domain, where the solvent exits the column. The output matrix is of the
form C :=

[
0 0 · · · 1

]
∈ R1×N1 . Table 6.1 summarizes the values of the various

parameters used in the model.
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6.1. Coupled Systems

Algorithm 6.2: adaptive_rbmei_coupled_ts1
Computes a ROM using the Adaptive POD-Greedy algorithm in combination
with hyperreduction and a training set sampling using surrogate error estimator
for coupled systems.
Input: System matrices and nonlinear term: E,A,B,C and F, Training sets

Ξc,Ξf , EI tolerance εEI, ROM tolerance ε, zoa ε∗, Deflation tolerance
εdef, Maximum number of iterations iter_max.

Output: Reduced system quantities Ê, Â, B̂, Ĉ and EI quantities U , I.
1 For non-parametric dual systems solve ec t-dual systems of the form Eq. (4.2),

obtain {x̃du,1, . . . , x̃du,ec} using a Krylov-space method.
2 Use RBF interpolation to approximate inf-sup constants σ̃min(µ) for all µ ∈ Ξc.
3 Initialization: {Vi, Vdu,i, Ui}mi=1 = [ ], I = ∅, err_max = 1 + ε, iter = 1, µ∗,

err_max_dual = 1 + ε, µ∗du (chosen randomly from Ξc), rRB = rEI = 1.
4 while err_max /∈ zoa and iter ≤ iter_max do
5 Denote by S the set of all indices j such that rRB,j > 0.
6 Solve FOM Eq. (6.2) at µ∗; obtain snapshot matrices {Xj(µ

∗)}, j ∈ S.
7 if iter == 1 then
8 Vj = POD(Xj, rRB,j), j ∈ S.
9 else

10 Compute Xj := Xj −VjV
T
j Xj, j ∈ S.

11 VPOD,j := POD(Xj, rRB,j), j ∈ S.
12 Vj = orth_def_mat(Vj,VPOD,j, εdef), j ∈ S. /* see Step 15 of

Algorithm 2.4 */

13 end
14 Remove the last rRB,j columns from Vj, j /∈ S.
15 Form snapshot matrices for the nonlinear function:

Fi := [Fi f i(Xi)], i = 1, 2, . . . ,m.
16 Update EI basis and interpolation points Ui, Ii using the subroutine

update_ei for each subsystem and form UI, f (see Eqs. (6.13) and (6.14)).
17 For a parametric t-dual system, update dual RB matrix Vdu,i using the

subroutine update_dual for the subsystems.
18 iter = iter + 1.
19 Determine reduced matrices Ê, Â, B̂, Ĉ through Galerkin projection using Vi

and hyperreduction using Ui.
20 Solve the ROM Eq. (6.12) for all µ ∈ Ξc.
21 Define Di := {∆y,i(µ),µ ∈ Ξc} and Λi := Ξc, solve Eq. (2.43) to obtain RBF

surrogate χi(µ) for all µ ∈ Ξf for every variable with index
i ∈ {α1, . . . , αec}.

22 Update Ξc: remove µ ∈ Ξc for which ∆y,c < ε for all ec subsystems.
23 Among all the ec surrogate estimators, identify the one with maximal error;

find samples {µ(1), . . . ,µ(nadd)} ∈ Ξf corresponding to largest errors of the
identified surrogate χ(µ).

24 Update Ξc: Ξc =
[
Ξc ∪ {µ(1), . . . ,µ(nadd)}

]
.

25 Find µ∗ = arg max
µ∈Ξc

∆y,c(µ). Set err_max = ∆y,c(µ
∗).

26 Update rRB, rEI using the subroutine adapt_basis_update.
27 end
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Figure 6.2.: Snapshots of liquid phase concentrations for components a and b.

Table 6.1.: Parameters for the Batch Chromatography Model.
Parameter Magnitude Parameter Magnitude

Columns length L (cm) 10.5 Diameter D (cm) 2.6
Péclet number Pe 2000 Porosity p̊ 0.4
Dimension N1, N2 1000 Time (T) (s) 11
Spatial step ∆z 0.001 Time step ∆t <= 8 · 10−4

Ha1 3.728 Ha2 0.3
Hb1 2.688 Hb2 0.1

Ka1 (ml/g) 46.6 Ka2 (ml/g) 33.6
Kb1 (ml/g) 3000 Kb2 (ml/g) 1000

Mass transfer coeff. κa (1/s) 0.1 Mass transfer coeff. κb (1/s) 0.1
Feed concentration g̊fa mg/l 2.9 · 10−3 Feed concentration g̊fb mg/l 2.9 · 10−3

Volumetric feed flow Q (m3/s) [0.0667, 0.1167] Injection time tin (s) [0.5, 2.0]

The parametric model of the batch chromatography process poses several challenges
in its simulation. We list them below:

• To precisely capture the dynamics of the system, the dimension N1 (or N2) for
each subsystem needs to be large; since the equations are coupled, the FOM is of
dimension 4N1 making the simulation extremely challenging.

• The simulation time window T is large, in order to allow for flow of the entire
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6.1. Coupled Systems

volume of solvent through the column. In addition, the step size ∆t needs to
be small to satisfy the CFL1 condition. Moreover, the step size also depends on
the parameter Q (the volumetric feed flow); for smaller values of Q, the step size
needs to be reduced.

• The model is nonlinear (see Eq. (6.19)) with a rational-type nonlinearity. It is
also non-affine in its parameter dependence.

• The Péclet number Pe for the model is usually large and of order O(103). This
means that the model is convection-dominant. It is well-known (see [44, 149])
that for convection-dominated problems approaches such as POD and RBM face
challenges.

Figs. 6.2a and 6.2b show the snapshots of the liquid phase concentration x1,x2 at
different time instances. It clearly illustrates the convection-dominated behaviour of
the solution.
Our adaptive strategies (basis enrichment and training set sampling) aim at ad-

dressing some of the above challenges. To apply a parametric ROM for the batch
chromatography model, we apply Algorithm 6.2 to the discretized batch chromatogra-
phy system Eq. (6.21). To show the considerable benefits offered by the adaptive basis
enrichment and adaptive training set sampling, we compare our results against those
obtained by using the standard RBMEI algorithm (Algorithm 2.8).
For the numerical simulation of this example we used matlab®2020a, on a laptop

with intel®core™i7-8565U @ 1.8 GHZ, with 16 GB of RAM.

Snapshot Selection As previously mentioned, the simulation time T is large while ∆t
is small. Hence, the number of snapshots collected is also big and it is time consuming
to perform SVD on such a large snapshot matrix. To circumvent this, we use the
adaptive snapshot selection (AdSS) technique [28]. It is essentially an algorithm to
determine the linear dependency of successive vectors in the snapshot matrix. The
angle between a new snapshot vector and the last selected vector is evaluated. If it
falls below a tolerance it means that the new vector is almost linearly dependent on
the previously added snapshot vector and thus can be discarded. For more details on
this approach, we refer to [28]. Finally, a much thinner snapshot matrix is obtained,
reducing the costs of SVD in either the DEIM or the (Adaptive) RBMEI algorithm.
The parameters used for the simulations are shown in Table 6.1. The system dimen-

sion isN1 = N2 = 1000, where the finite volume method is used for space discretization.
The Lax-Friedrichs flux is used for the convection term, while a central difference scheme
is applied for the diffusion term. The volumetric feed flow Q and the injection time tin
are the two parameters. For the fixed training set Ξ we sample 36 logarithmically dis-
tributed parameters from the parameter domain P := [0.0067, 0.0167]× [0.5, 2.0]. The
coarse training set Ξc contains 16 logarithmically-spaced parameter samples whereas
the fine training set Ξf has 100 equally-spaced parameters in the form of a 10×10 grid
over P. The test set Ξtest used to validate the ROMs resulting from both algorithms
consists of 49 randomly sampled parameters. The simulation time T varies depending

1Courant-Friedrich-Levy
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Figure 6.3.: Batch Chromatography: convergence of the greedy algorithms -
Algorithm 2.8 vs. Algorithm 6.2.

on the choice of Q. The tolerance for the ROM error is set as ε = 10−4. We use the
DEIM for treating the nonlinear terms. The t-dual system for this example is non-
parametric, therefore we use GMRES to compute the approximate dual solutions for
the subsystems. The two subsystems whose output are required are denoted by the
indices αk ∈ {1, 2}, i.e., the first and second subsystems. Luckily, since the matrices
E,C are the same for these two subsystems, in essence, we need to solve only one dual
system.
We apply Algorithm 6.2 to the batch chromatography model. In Figure 6.3, we plot

the decay of the quantity ∆max (see Eq. (4.38)) at each iteration of the standard RBMEI
Algorithm 2.8 and Algorithm 6.2, respectively. The proposed Adaptive RBMEI algorithm
for coupled systems with adaptive basis enrichment and training set sampling results
in a quicker convergence (29 iterations) as compared to the standard RBMEI algorithm
(49 iterations). The dimension of the ROM resulting from application of Algorithm 2.8
is (rRB, rEI) = (49, 99) while that from Algorithm 6.2 is (rRB, rEI) = (48, 49). This is
owing to the simultaneous enrichment of the DEIM projection bases and interpolation
points together with the RB projection matrices. In addition to producing a smaller
ROM, Algorithm 6.2 results in considerable savings at the offline training time. The
overall time taken by Algorithm 2.8 was 2, 421 seconds, whereas only 1, 436 seconds
are needed for the proposed Algorithm 6.2 to identify a ROM. The ROMs obtained
from both algorithms satisfy the tolerance when evaluated over the samples in the test
set Ξtest, however, the benefit of using Algorithm 6.2 is its considerably reduced offline
costs.
Finally, in Figure 6.4 we illustrate the effect of the adaptive training set sampling

scheme. At the first iteration, the initial coarse training set Ξc consists of 16 uniformly
sampled parameters (represented by the black dots) in Fig. 6.4a. The surface in the
figure is the interpolated error over the fine training set Ξf obtained via the RBF surro-
gate. As the algorithm proceeds, newer parameters are added to the coarse training set,
as seen in Figs. 6.4b and 6.4c. A large number of parameters are added in the region
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Figure 6.4.: Coarse training set Ξc and the maximum surrogate error χ(µ) at different
iterations for the batch chromatography model; black dots are the samples
in Ξc.

161



6. Fully Adaptive RBM for Coupled Systems

where Q is small. At the very end, at iteration iter = 28 (Fig. 6.4d) it is seen that the
algorithm has removed a number of parameters, since at these samples the required
tolerance has already been achieved. The remaining parameters are mainly clustered
around regions where the parameter Q is small. Thus, we see that the adaptive al-
gorithm is able to adjust itself automatically based on the degree of approximation
achieved in different regions of the parameter space P.

6.2. Conclusion

The focus of this chapter is nonlinear coupled systems. We extended the adaptive meth-
ods proposed in Chapters 4 and 5 to address the challenges arising in building good
ROMs for coupled systems. We used a real-life model of the batch chromatography sep-
aration process to show the vastly reduced offline time achieved by our adaptive MOR
methods. Not only is the proposed method faster, it is also successful in identifying a
ROM of smaller dimension when compared to the standard RBM. The construction of
the ROM is almost automatic, with little requests from the user.
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CHAPTER 7

CONCLUSIONS
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7.1. Summary

In this thesis, we investigated a posteriori error estimation and adaptivity with the
goal of automatic model reduction for several types of large-scale systems. The systems
covered in this thesis can be broadly classified into linear and nonlinear systems. Within
these we considered:

• Linear systems: parametric steady systems, parametric time-harmonic systems,
parametric dynamical systems in the input-output representation,

• Nonlinear systems: non-parametric and parametric systems, parametric coupled
systems.

To set the stage for the discussions, Chapter 2 reviewed mathematical preliminaries.
We formally introduced the setting of the different kinds of systems we consider. This
was followed by the introduction of the fundamentals of MOR and the mathematical
forms of the ROMs of the different systems of interest. We highlighted the core ideas
behind some prominent MOR methods in the frequency- and time-domain. Then we
discussed hyperreduction strategies, an important tool to enable efficient ROMs for
nonlinear systems. We also briefly looked at radial basis functions which is an important
tool for interpolation of scattered data.
In Chapter 3 we focussed on a posteriori error estimation and adaptivity for linear

systems. We employed frequency-domain MOR techniques to obtain the ROMs. We
began by deriving an inf-sup-constant-free a posteriori state error estimator. We then
proposed a greedy algorithm that uses the inf-sup-constant-free state error estimator
for efficient ROM construction. Application of the proposed error estimator focused on
electromagnetic systems, for which inf-sup-constant-based error estimators often result
in poor error estimation. The superior performance of our approach over existing ones,
in terms of robustness and computational cost is demonstrated via real-life models of an
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antenna and a filter. Our contribution regarding a posteriori output error estimation
is algorithmic. We introduced an efficient procedure for generating a surrogate model
of the error estimator using RBF and integrated it as a part of a greedy algorithm
to obtain parametric ROMs. The proposed approach is effective for systems with
high-dimensional parameter space and systems with large parameter ranges. Tests
on three benchmark numerical examples proved the efficiency of this method and the
considerable improvement it brings compared to current approaches.
Chapter 4 looked at a posteriori error estimation and adaptive basis enrichment for

nonlinear dynamical systems. We derived a residual-based a posteriori output error
estimator by considering a modified output term. Our approach made use of an adjoint
or dual system to improve the sharpness of the error estimation and we discussed various
aspects involved in its efficient computation. The adaptive basis enrichment scheme
aimed to bring down the large offline computational cost usually involved in the RBM
and we also aimed to obtain ideally small ROMs. Using the proposed a posteriori
output error estimator as a ‘feedback’, we proposed simultaneous enrichment of the
reduced basis vectors that approximate the state variable and also the hyperreduction
basis vectors that approximate the nonlinear term. The adaptive basis enrichment
scheme we introduced is applicable to both non-parametric and parametric systems.
In Chapter 5, we addressed adaptive training set sampling for the RBM. We proposed

two approaches: the first involves using a surrogate model of the a posteriori error esti-
mator to adaptively add and/or remove samples from a coarse training set; the second
approach invokes several state-of-the-art sparse sampling strategies to identify the most
important parameter samples from a fine training set. Furthermore, the adaptive train-
ing set sampling was successfully combined with the adaptive basis enrichment scheme.
Consequently, the RBM for (non)linear parametric dynamical systems is upgraded to
an almost automatic version. We tested both training set sampling ideas on differ-
ent numerical examples to bring out considerable improvements in performance and
efficiency they offer for different types of systems.
Finally, in Chapter 6, we extended the previously proposed adaptive strategies to

generate efficient ROMs for coupled systems. The proposed techniques are numerically
demonstrated using a model of batch chromatography, a method widely used in process
engineering. Large computational savings are obtained using our adaptive strategies.

7.2. Outlook

While we have tried to be as comprehensive as possible, this thesis is by no means the
last effort on the topics of a posteriori error estimation and adaptivity. In fact, there
exist a number of promising avenues for future research. We list the ones, which in our
opinion, are of most interest:

• We discussed inf-sup-constant-free a posteriori error estimation in Chapter 3, in
the context of frequency-domain MOR methods. A worthwhile line of research
could be the extension of inf-sup-constant-free error estimation to the RBM for
structured systems such as second-order systems or time-delay systems.

• While a considerable improvement over the state-of-the-art, the a posteriori error
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estimator proposed in Chapter 4 still has some shortcomings. Firstly, it is derived
exclusively for systems whose time discretization uses an implicit-explicit strategy
(implicit for the linear term, explicit for the nonlinear term). Future work could
be to derive error estimators for systems that involve an implicit discretization
of the nonlinear term as well. Secondly, the estimation of the quantity %̃ in
Equation (4.27) is more or less heuristic. In our approach, only the FOM solution
at the current greedy parameter is used to estimate the value of %̃. It may be
worth considering to use all available FOM solutions in order to better estimate
the value of %̃.

• We studied a posteriori error estimation and adaptivity in Chapter 4 for the
RBM. The numerical time stepping technique is assumed to be known and to
be the same for the FOM and ROM simulations. A challenge worth addressing
would be scenarios where commercial adaptive time step solvers are used to solve
the FOM and the particular numerical time integrator used is unknown or can
not be easily extracted. For this case, the goal would be to learn the mismatch
between the residual obtained from snapshots provided by the software and the
residual available by imposing a self-defined numerical time integration method.
If this mismatch information can be learned, then it is safe to use the snapshots
available from the commercial software. One can then derive an error estimator
at each time instance of the self-defined numerical time integration scheme by
taking into consideration the mismatch information. Moreover, even if a user
requests the error at a time tk that is missing in the defined integration scheme,
this can be computed, for e.g., through interpolation.

• The adaptive training set sampling approach in Chapter 5 is aimed at learning
the parameter-to-output map through sparse sampling strategies. In many cases,
the parameter-to-state map may be of interest. To address this, ideas from tensor
theory such as higher-order interpolatory decompositions may be worth pursuing.

• The adaptive MOR of coupled systems was considered in Chapter 6. There, we
assumed the coupling to arise exclusively from the nonlinear term. It is not yet
clear how adaptive MOR methods proposed here could be applied to systems
involving state-coupling or input-output coupling. This is another topic left for
future work.

165





Appendices

167





APPENDIX A

MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION
WITH DEFLATION

A.1. MGS

Algorithm A.1: mgs_def
Determines an orthogonal basis of range (D) using modified Gram-Schmidt al-
gorithm with deflation.
Input: Matrix D = [d1, . . . ,dm] ∈ RN×m, Deflation tolerance εdef.
Output: Orthogonal basis V := [v1,v2, . . . ,vnmm ] ∈ RN×nmm .

1 Initialization: v1 := d1/ ‖d1‖, V = [ ].
2 for iter = 2, . . . ,m do
3 v̂ = di.
4 for j = 1, 2, . . . , (i− 1) do
5 h = v̂Tvj.
6 v̂ = v̂ − hvi.
7 end
8 if ‖v̂‖ > εdef then
9 viter = v̂/ ‖v̂‖, V = [V, viter].

10 else
11 break.
12 end
13 end
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APPENDIX B

GREEDY ALGORITHMS FOR ADAPTIVE ROM
CONSTRUCTION

B.1. Standard State Error Estimator

Algorithm B.1: ROMGreedy-State-Standard
Determines a ROM for Eq. (2.10) using a greedy algorithm with the standard
state error estimator.
Input: System matrices: A,B, Training set Ξ, error tolerance ε, Maximum

iterations iter_max.
Output: Reduced system matrices Â, B̂, Ĉ.

1 Initialization: V = [ ], err_max = 1 + ε, iter = 1, initial greedy parameter µ̆∗
2 Compute the inf-sup constant σmin(µ̆) for all µ̆ ∈ Ξ.
3 while err_max > ε and iter ≤ iter_max do
4 Compute matrix Vµ̆∗ using a preferred MOR method applied to the FOM

Eq. (2.10); update projection matrix V: V = orth[V, Vµ̆∗ ]; if a real V is
preferred set V := [real(V) imag(V)].

5 iter = iter + 1.
6 Determine reduced matrices Â, B̂ through Galerkin projection using V as in

Eq. (2.14).
7 Solve the ROM Eq. (2.16) and compute the residual r for all µ̆ ∈ Ξ.
8 Find µ̆∗ = arg max

µ̆∈Ξ
∆x,std.

9 Set err_max := ∆x,std(µ̆
∗).

10 end
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B.2. Residual Error Estimator

Algorithm B.2: ROMGreedy-State-Residual
Computes a ROM for Eq. (2.10) using a greedy algorithm with the residual state
error estimator.
Input: System matrices: A,B, Training set Ξ, error tolerance ε, Maximum

iterations iter_max.
Output: Reduced system matrices Â, B̂, Ĉ.

1 Initialization: V = [ ], err_max = 1 + ε, iter = 1, initial greedy parameter µ̆∗
2 while err_max > ε and iter ≤ iter_max do
3 Compute matrix Vµ̆∗ using a preferred MOR method applied to the FOM

Eq. (2.10); update projection matrix V: V = orth[V, Vµ̆∗ ]; if a real V is
preferred set V := [real(V) imag(V)].

4 iter = iter + 1.
5 Determine reduced matrices Â, B̂ through Galerkin projection using V as in

Eq. (2.14).
6 Solve the ROM Eq. (2.16) and compute the residual r for all µ̆ ∈ Ξ.
7 Find µ̆∗ = arg max

µ̆∈Ξ
∆x,res.

8 Set err_max := ∆x,res(µ̆
∗).

9 end
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B.3. Randomized Error Estimator

B.3. Randomized Error Estimator

Algorithm B.3: ROMGreedy-State-Randomized
Determines a ROM for Eq. (2.10) using a greedy algorithm with the randomized
state error estimator.
Input: System matrices: A,B, Training set Ξ, error tolerance ε, Maximum iterations

iter_max.
Output: Reduced system matrices Â, B̂, Ĉ.

1 Initialization: V = [ ], err_max = 1 + ε, iter = 1, initial greedy parameter µ̆∗

2 Compute the matrix Vrand: [Vrand,Z] = rand_estm(A,B, N,Ξ,Ms, εrand) with
Z := [z1, . . . , zMs ] ∈ RN×Ms .

3 while err_max > ε and iter ≤ iter_max do
4 Compute matrix Vµ̆∗ using a preferred MOR method applied to the FOM

Eq. (2.10); update projection matrix V: V = orth[V, Vµ̆∗ ]; if a real V is
preferred set V := [real(V) imag(V)].

5 iter = iter + 1.
6 Determine reduced matrices Â, B̂ through Galerkin projection using V as in

Eq. (2.14).
7 Solve the ROM Eq. (2.16) and compute the residual r for all µ̆ ∈ Ξ.
8 Solve the Ms ROMs (Eq. (3.15)) obtained using Vrand and obtain the

corresponding approximate solution vectors {yi}Ms
i=1.

9 Find µ̆∗ = arg max
µ̆∈Ξ

∆x,rand, with ∆x,rand computed as in Eq. (3.16).

10 Set err_max := ∆x,rand(µ̆∗).
11 end

12 Function [Vrand,Z] = rand_estm(A,B, N,Ξ,Ms, εrand):
13 Draw Ms random N -dimensional vectors [z1, . . . , zMs ] from a Gaussian distribution

with zero mean and covariance identity.
14 Define the augmented training set Ξaug := {1, 2, . . . ,Ms} × Ξ.
15 Initialization: Vrand = [ ], err_max = 1 + εrand, iter = 1, initial augmented greedy

parameter µ̆∗aug = (i∗, µ̆∗)
16 while err_max > εrand and iter ≤ iter_max do
17 Solve the FOM random dual system Equation (3.14) for the i∗-th random right

hand side vector zi∗ at the greedy parameter µ̆∗aug and collect snapshot yi∗ .
18 Update random projection matrix: Vrand := orth[Vrand yi∗ ]. /* orthogonalize

yi∗ against columns of Vrand */
19 iter = iter + 1.
20 Determine the reduced matrix Ârand, right hand side vectors ẑi (See

Equation (3.15)) through Galerkin projection using Vrand.
21 Solve the ROM Eq. (3.15) and compute the residual vector rrand := zi −ATỹi

for all (i, µ̆) ∈ Ξaug.
22 Find µ̆∗aug = (i∗, µ̆∗) := arg max

(i,µ̆)∈Ξaug
‖rrand‖2.

23 Set err_max := ‖rrand(i∗, µ̆∗)‖2.
24 end
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APPENDIX C

ALGORITHMIC SKETCH OF DEIM VARIANTS

The algorithms pertaining to the implementation of the DEIM variants, namely, QDEIM,
KDEIM and Gappy-POD are sketched below. While the QDEIM algorithm is based on
the pseudocode in [69], KDEIM and the two Gappy-POD variants are based on the
pseudocode provided in [159].

C.1. QDEIM

Algorithm C.1: QR Discrete Empirical Interpolation Method (QDEIM)
Input: Snapshots of the nonlinear vector F, tolerance εEI (or rank nEI).
Output: U, S and I.

1 Find the POD basis: U = POD(F, nEI( or εEI)).
2 [∼,∼, I] = qr(UT, 'vector'), with I = [℘1, ℘2, . . . , ℘N ].
3 Set I = I(1 : nEI) and S = [e℘1 , . . . , e℘nEI

].
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C. Algorithmic Sketch of DEIM Variants

C.2. KDEIM

Algorithm C.2: kmeans-Discrete Empirical Interpolation Method (KDEIM)
Input: Snapshots of the nonlinear vector (F), tolerance εEI (or rank nEI).
Output: U, S and I.

1 Find the POD basis: U = POD(F, nEI( or εEI)).
2 Set [∼, nEI] = size(U) and p = zeros(nEI, 1).
3 Apply k-means algorithm and identify the clusters: [Idx,K] = kmeans(U, nEI).
4 for i = 1, . . . , nEI do
5 J = find(Idx == i); j = length(J).
6 Z = U(J , :)− ones(j, 1) K(i , :).
7 Define s1 = sum(Z. ∗ Z, 2) and s2 = sum((U(J , :).∧2), 2).
8 [∼, c] = min(s1./s2).
9 ℘i = J(c(1)).

10 end
11 Set I = [℘1, . . . , ℘nEI ] and S = [e℘1 , . . . , e℘nEI

].
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C.3. Gappy-POD Eigenvector

Algorithm C.3: Gappy-POD Eigenvector
Input: Snapshots of the nonlinear vector F, number of additional samples m,

tolerance for the SVD εEI (or rank nEI).
Output: U, S and I.

1 Find the POD basis: U = POD(F, nEI( or εEI)).
2 [∼,∼, I] = qr(UT, 'vector'), with I = [℘1, ℘2, . . . , ℘N ].
3 Set I = I(1 : nEI).
4 for i = nEI + 1, . . . , m do
5 [∼,S,W] = svd(U(p , :), 0).
6 g = S(end-1 , end-1).∧2− S(end , end)∧2.
7 Ub = WT ∗UT.
8 r = g + sum(Ub.

∧2 , 1).
9 r = r − sqrt ((r).∧2− 4 ∗ g ∗Ub(end , :).∧2).

10 [∼,Q] = sort(r , 'descend').
11 e = 1.
12 while any (Q(e) == p) do
13 e = e+ 1.
14 end
15 I(end + 1) = Q(e).
16 end
17 Set S = [e℘1 , . . . , e℘m ].
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C.4. Gappy-POD Clustering

Algorithm C.4: Gappy-POD Clustering
Input: Snapshots of the nonlinear vector (F), number of additional samples m,

tolerance for the SVD εEI (or rank nEI).
Output: U, S and I.

1 Find the POD basis: U = POD(F, nEI( or εEI)).
2 [∼,R, I] = qr(UT, 'vector'), with I = [℘1, ℘2, . . . , ℘N ].
3 [N, nEI] = size(U).
4 Set φ = I(1 : nEI).
5 R̃ = R(1 : nEI, 1 : nEI)\R; set s = sum(abs(R̃), 1).
6 R̃ = abs(R̃)./repmat(s , size(R̃ , 1) , 1).
7 e = zeros(N , 1).
8 for i = 1, . . . , N do
9 K = R̃(: , i) > 0.

10 e(i) = −R̃(K , i)T log(R̃(K , i)).
11 end
12 [∼, K] = sort(e, 'descend').
13 Set i = 1.
14 while length(φ) < m do
15 φ = unique([φ , I(K(i))]).
16 i = i+ 1.
17 end
18 Set I = φ, where φ = [℘1, . . . , ℘m].
19 Set S = [e℘1 , . . . , e℘m ].
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