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The Drag-Free and Attitude Control System is a central element of LISA technology, ensuring the
very high dynamic stability of spacecraft and test masses required in order to reach the sensitivity
that gravitational wave astronomy in space requires. Applying electrostatic forces on test-masses is
unavoidable but should be restricted to the minimum necessary to keep the spacecraft-test masses
system in place, while granting the optimal quality of test-mass free-fall. To realise this, we propose a
new test-mass suspension scheme that applies forces and torques only in proportion to any differential
test mass motion observed, and we demonstrate that the new scheme significantly mitigates the
amount of suspension forces and torques needed to control the whole system. The mathematical
method involved allows us to derive a new observable measuring the differential acceleration of test
masses projected on the relevant sensitive axes, which will have important consequences for LISA
data calibration, processing and analysis.

I. Introduction - The Laser Interferometer Space An-
tenna (LISA) [1] will detect gravitational waves from

space in the [10−4 Hz-1 Hz] frequency band, opening a
new window on the Universe and providing access to di-
verse astrophysical sources, including mergers of super-
massive black hole binary systems, Extreme Mass Ra-
tio Inspirals (EMRIs), galactic ultra-compact binaries
[2, 3] and stellar-mass black hole binaries (LIGO-Virgo-
like sources) during their inspiral phase. LISA may
also detect a stochastic cosmological gravitational wave
signal[4–6], which would have a significant impact on our
understanding of the dynamics of the early Universe and
fundamental physics. Such a detection will rely strongly
on a deep understanding and knowledge of the instru-
mental noise in LISA.

The LISA instrument is formed by a constellation of
three spacecraft (S/C) placed at the vertices of a quasi-
equilateral triangle orbiting the Sun. The gravitational
wave detection principle reflects the usual picture of their
effect on matter: a network of free particles is deformed
by gravitational radiation passing through. Interfer-
ometry between free-falling spacecraft—representing free
particles—is realized to measure the deformation. It fol-
lows that there are two immediate, essential challenges
the LISA technology needs to address:

• Direct Michelson-like interferometry is not possible
for a 2.5 million km scale constellation in space,
since unequal arm-lengths are imposed by orbital
dynamics and laser power on-board is not suf-
ficient for a light round-trip between spacecraft.
Therefore a transponder-like scheme combined with

∗ Corresponding author: inchauspe@tphys.uni-heidelberg.de

post-processing synthesis of the measurements us-
ing time-delay interferometry is required [7, 8].

• Spacecraft are poor references of inertia due to ex-
ternal disturbances such as solar radiation pres-
sure. Instead the spacecraft carry cubic Pt-Au alloy
1.92 kg test masses, shielded from the space envi-
ronment and free-falling at the fm s−2 level [9, 10].
The spacecraft dynamics will be locked onto the
test mass motion (with the help of the so-called
Drag-Free and Attitude Control System (DFACS)
[11]), or monitored and accounted for during the
post-processing formation of synthetic interferom-
eters.

This second challenge has been the object of a dedi-
cated space mission, LISA Pathfinder [9] [10], as a techno-
logical demonstrator of most of the space metrology sub-
systems [12, 13] and critical technologies [14] on-board
the LISA satellites, except for the long-range interferom-
etry which could not be tested on a single spacecraft.
In the LISA detection principle, no direct, long-range
test mass-to-test mass optical measurement is possible,
as already mentioned above. Instead, a transponder-like
scheme is used (cf. Fig. 1) where the test mass-to-
test mass measurement is broken down into three con-
secutive measurements, that is, test mass-to-spacecraft
(local), spacecraft-to-spaceraft (inter-spacecraft or long-
range) and spacecraft-to-test mass (local). This neces-
sity of decomposing the measurements introduces imper-
fections, most important of which, are optical misalign-
ments which can lead to important cross-couplings, such
as optical tilt-to-length couplings [15], limiting the sen-
sitivity of the instrument between 10 and 100 mHz if no
hardware or post-processing corrections are undertaken.
The noise introduced by such cross-couplings are driven
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by the spacecraft and telescope jitters and therefore the
minimization of the latter is of critical importance.

Figure 1. Diagram of the long-range measurement break-
down. The test mass-to-test mass optical measurement is
decomposed into three pieces, two local and one long-range
(2.5 million of kilometres) in a transponder-like measurement
scheme.

The DFACS is therefore a core subsystem of the LISA
technology, which ensures a very high level of stability of
the test masses inside the spacecraft in order to mitigate
force gradients and, in general, measure couplings be-
tween the payload platform motion—the satellite jitter—
and local and long-range optical path-lengths. A critical
aspect of the problem is to realize an optimal decoupling
between the so-called differential mode motion, driven
by the relative motions and sensing of the test-masses,
and the common-mode motion driven by the spacecraft,
a common supporting platform to both test masses. Such
isolation between common and differential modes will en-
sure minimal couplings between the noisy platform and
the sub-picometer interferometry at aim.

Design of the actual LISA DFACS is an on-going ac-
tivity, with preliminary studies on a comprehensive, non-
linear modeling of the system [16] recently published.
A thorough analysis of LISA Pathfinder DFACS perfor-
mance [11, 17] has paved the way for a better understand-
ing and optimization of LISA control, as well as demon-
strating the reliability of closed-loop dynamics simula-
tions for explaining stability and performance data. In
this paper, we propose a novel DFACS scheme which mit-
igates significantly necessary commanded forces on test
masses—the so-called suspension forces and torques—in
decoupling them from the spacecraft jitter. After intro-
ducing the reader to the DFACS control principle and
strategy, the article derives in Section III the new control
coordinates which ensures decoupling of common and dif-
ferential mode motions. In Section IV, simulation exper-
iments demonstrate the efficiency of this isolation scheme
in ensuring that stability performance is left intact. Sec-
tion V presents the impact of this new scheme on LISA
noise budget, with a focus on the mitigation of actuation
crosstalk triggered by platform jitter. Finally Section VI
presents a novel method of measuring test mass (differ-
ential) acceleration noise in-orbit making use of the new
suspension scheme algebra.

II. LISA Drag-Free and Attitude Control Sys-
tem - The DFACS feedback control strategy, ensuring
longitudinal and angular stability of spacecraft and test
masses, can be split into three sub-components:

• Drag-Free control, which is used to lock the space-
craft longitudinal motion onto the much quieter
test masses. Actuation from the micro-thruster sys-
tem is used in order to compensate for stray forces
and actuation applied to the spacecraft, ensuring
that any stray forces must be corrected by forces
applied on the spacecraft only. On the XOY plane
of the spacecraft (cf. Fig. 2), which includes the
two sensitive axes, Drag-Free control acts upon in-
formation from the local test-mass Interferometry
System (IFO).

• Attitude control, which constrains the orientation of
the spacecraft relative to the incoming laser wave-
fronts emitted from the distant spacecraft—hence
locking the triangular constellation. It utilizes
Long-arm Differential Wavefront Sensing (LDWS)
to orient the spacecraft w.r.t. the constellation
and compensates stray, external torques with the
micro-propulsion system. In addition, orbital con-
stellation breathing, in which the opening angle be-
tween Moving Optical Sub-Assemblies (MOSA) can
change by up to ±1◦, is accounted for via a mech-
anism acting which introduces a fourth control de-
gree of freedom (d.o.f.) (in a symmetric actuation
configuration).

• Suspension control, which consists of the applica-
tion of electrostatic forces on the test masses by ap-
plying voltages to the surrounding set of electrodes
distributed over the inner surface of the Gravita-
tional Reference Sensor (GRS) housings [18] [13].
Such forces are required to compensate any dif-
ferential acceleration between the test masses that
Drag-Free will not be able to correct by construc-
tion. The suspension force authority must be
very limited in order to mitigate actuation noise
and stray force gradients in the housing. Stray
forces that accelerate the test masses (with the
DC component mainly being driven by spacecraft
and self-gravity) are expected to be low by design

(< 0.3 nm s−2 at DC) [19].

The overall 18 d.o.f. control scheme relies on three
sensor sub-systems: the test-mass IFO providing around

5 pm /
√

Hz measurement precision of longitudinal dis-

placement along each of their x-axes, and 5 nrad /
√

Hz
angular displacement precision around axes orthogonal
to the x-axis (η and φ); a capacitive-sensing system—
GRS sensing—significantly less precise than the optical
system, but available for all 6 d.o.f. of each test mass,

and providing roughly 1 nm /
√

Hz and 0.1 µrad /
√

Hz
test mass-to-housing displacement measurement preci-
sion [13]; and finally, the long-range LDWS measuring
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spacecraft attitude w.r.t. the received beams from the

far spacecraft at the 0.2 nrad /
√

Hz level (when account-
ing for telescope and optical bench imaging magnifica-
tion factors). The reader will find a more accurate and
quantitative listing of the sensing performance—the ac-
tual settings used in the simulations discussed—in Table
II in Section IV A. Table I summarizes the DFACS con-
figuration and the typical sensing-to-actuation mapping.

Figure 2. Cross-section of the spacecraft geometry on the
XOY plane of the spacecraft body frame B = {~eX , ~eY , ~eZ}.
The B-frame is located at the spacecraft centre-of-mass B,
and its axes are defined so that ~eX is aligned with the bisec-
tor between the two telescope axes in the standard, symmet-
ric configuration (opening angle φm = 60°), ~eZ is normal to
the spacecraft solar panels and ~eY then completes the triad.
Spacecraft attitude is encoded with cardan angles [Θ, H,Φ]
around B-frame axes. Longitudinal motion [x1/2, y1/2, z1/2]
of the test masses are tracked w.r.t. their respective housing
frame H1/2 = {~ex1/2

, ~ey1/2 , ~ez1/2}, whose axes are set nor-

mal to housing inner walls and origins at housing geometrical
centres. Test mass frames T1/2 describe test mass orientation
deviation ~αT1/2/H1/2

= [θ1/2, η1/2, φ1/2] from their nominal

orientation represented by the H1/2 frames.

III. DFACS scheme optimization & isolation of
suspension control - In this section the proposed, op-
timized control coordinates allowing for an isolation of
suspension control from spacecraft jitter are derived. In
line with the notation of table I, we write such optimal co-
ordinates [x̂opt

1 , x̂opt
2 , ẑopt

1 , Θ̂opt, Ĥopt, Φ̂opt, ŷopt
1 , ŷopt

2 , ẑopt
2 ,

θ̂opt
1 , η̂opt

1 , φ̂opt
1 , θ̂opt

2 , η̂opt
2 , φ̂opt

2 ], as opposed to the simpler

scheme coordinates [x̂sim
1 , x̂sim

2 , ẑsim
1 , Θ̂sim, Ĥsim, Φ̂sim, ŷsim

1 ,

ŷsim
2 , ẑsim

2 , θ̂sim
1 , η̂sim

1 , φ̂sim
1 , θ̂sim

2 , η̂sim
2 , φ̂sim

2 ] (see appendix A
for details) mentioned throughout and studied for com-
parison.

Table I. Example of a simple control scheme of LISA in a
proposed, nominal science mode. For each control coordi-
nate, the table lists the respective control type and actuator
used, as well as the subsystem they are sensed with. Only
the simple control scheme case (see Appendix A) is shown
for readability. Capital letters are used for spacecraft coor-
dinates, while lower case and indices are used for test mass
coordinates. In the text, spacecraft and test mass coordinates
may be labelled to specify either the sensor system which pro-
vides its measurement or the control coordinates scheme used.

# Coordinate Sensor Control Mode Actuator Command

1 x̂1 IFO Drag-Free µ-thrust F
drag-free
X

2 x̂2 IFO Drag-Free µ-thrust F
drag-free
Y

3 ẑ1 GRS Drag-Free µ-thrust F
drag-free
Z

4 Θ̂ LDWS Attitude µ-thrust N
att
X

5 Ĥ LDWS Attitude µ-thrust N
att
Y

6 Φ̂ LDWS Attitude µ-thrust N
att
Z

7 ŷ1 GRS Suspension GRS F
sus
y1

8 ŷ2 GRS Suspension GRS F
sus
y2

9 ẑ2 GRS Suspension GRS F
sus
z1

/ F
sus
z1

10 θ̂1 GRS Suspension GRS N
sus
x1

11 η̂1 IFO Suspension GRS N
sus
y1

12 φ̂1 IFO Suspension GRS N
sus
z1

13 θ̂2 GRS Suspension GRS N
sus
x2

14 η̂2 IFO Suspension GRS N
sus
y2

15 φ̂2 IFO Suspension GRS N
sus
z2

A. Drag-Free and common-mode correction

An optimal drag-free control is designed so that any
observed test-mass displacement induced by an accelera-
tion of the spacecraft w.r.t. its local inertial frame is only
corrected through actuation thrust on the spacecraft it-
self: forces and torques on test masses will only arise
in proportion to any sensed differential motion of the
two test masses. Complying with such a philosophy, one
can build from the observed test mass displacements—as
observed by the local interferometers—coordinates that
we call common-mode coordinates and which provide the
best measurement of the spacecraft acceleration w.r.t.
inertial space.

Based on the spacecraft geometry and the opening an-
gle between the two MOSA’s φm, we define the common-
mode coordinates, {~eX , ~eY , ~eZ} in terms of the test mass
coordinates {~ex1/2

, ~ey1/2
, ~ez1/2

}, both reference frames

shown and detailed in Figure 2:

~eX =
~ex1

+ ~ex2√
2 + 2 cosφm

=
~ex1

+ ~ex2√
3

~eY =
~ex1
− ~ex2√

2 cosφm
= ~ex1

− ~ex2
(1)

~eZ = ~ez1
= ~ez2

.

where setting the opening angle between telescopes at
φm = 60° introduces the factors 1√

3
and 1.0 for the ~eX
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and ~eY drag-free directions respectively. These common-
mode coordinates are tracked by drag-free control us-
ing the sensing channels listed in Table II. Consequently
drag-Free control requested thrusts on the spacecraft will
be proportional to these common-mode combinations,
and are defined as:

Fdrag-free
X ∝ x̂opt

1 ≡
xifo

1 + xifo
2√

2 + 2 cosφm
=
xifo

1 + xifo
2√

3

Fdrag-free
Y ∝ x̂opt

2 ≡
xifo

1 − xifo
2√

2 cosφm
= xifo

1 − xifo
2

Fdrag-free
Z ∝ ẑopt

1 ≡
zgrs

1 + zgrs

2

2
.

(2)

where one uses the redundancy of the zgrs
1−2 measure-

ments for averaging and picking the common-mode mo-
tion along ~eZ . In this new scheme, the xifo

1 and xifo
2 remain

drag-free controlled effectively, and the test masses ap-
parent motion in their housings are nulled by commanded
thrust, essentially compensating for the spacecraft mo-
tion jitter.

In equation 2 we introduce test-masses coordinates la-
belled with the sensor system used to measure them in
flight. We refer the reader to table I which lists the
dynamical control coordinates and the associated sen-
sors and actuators used for control. Throughout the pa-
per, for notation simplicity, labels will be dropped during
mathematical demonstrations, and will be reintroduced
at the final stage of the derivation only.

B. Attitude control

The angular dynamics of the spacecraft are locked
on the LDWS sensors, which set the constellation ref-
erence frame for the spacecraft to rotate with in or-
der to ensure that the telescopes are pointing towards
the distant spacecraft. The incident angles [ηldws

1 , φldws
1 ]

and [ηldws
2 , φldws

2 ] of the two distant laser beams as re-
ceived by the local spacecraft telescopes yields a mea-
surement of its attitude relatively to the quasi-inertial
(for timescale shorter than its annual rotation) constel-
lation frame. The LDWS provides sub-nanoradian atti-
tude sensing precision, sufficient for use in the spacecraft
angular jitter compensation loop. Consequently, in this
scheme, attitude control is both used for the spacecraft to
track a reference orientation determined by the constel-
lation orbit, as well as for angular jitter mitigation—or
stated differently as angular drag-free control.

From the four LDWS angles [ηldws
1 , φldws

1 , ηldws
2 , φldws

2 ]
and the geometry of the spacecraft, one can estimate the
spacecraft attitude w.r.t. its target orientation frame.
The Cardan angles Θ, H and Φ [20] are determined by
Equation 4, derived from spacecraft and MOSA geome-
try:

~eX =
~ey2
− ~ey1√

2 cosφm
= ~ey2

− ~ey1

~eY =
~ey1

+ ~ey2√
2 + 2 cosφm

=
~ey1

+ ~ey2√
3

(3)

~eZ = ~ez1
= ~ez2

.

and assuming an opening angle of 60°.


Θldws

H ldws

Φldws

 =


0.0 −1.0 0.0 1.0

0.0 − 1√
3

0.0 − 1√
3

−0.5 0.0 −0.5 0.0



φldws

1

ηldws
1

φldws
2

ηldws
2

 .
(4)

Hence the error signals for attitude control—those trig-
gering spacecraft angular thrust commands Natt —are
defined as

Natt
X ∝ Θ̂opt ≡ Θldws = ηldws

2 − ηldws
1

Natt
Y ∝ Ĥopt ≡ H ldws = − 1√

3

(
ηldws

1 + ηldws
2

)
Natt
Z ∝ Φ̂opt ≡ Φldws = −1

2

(
φldws

1 + φldws
2

) (5)

C. Suspension and differential mode: Longitudinal
isolation

In order to optimize the decoupling between common-
mode and differential-mode test mass dynamics, one has
to ensure that the suspension control is locked on the

differential displacement of the two test masses,
−−−→
T1T2

−−−→
T1T2 =

−−−→
T1H1 +

−−−→
H1H2 +

−−−→
H2T2 (6)

= ~rT2/H2
− ~rT1/H1

+
−−−→
H1H2.

where ~rTk/Hk
is the test-mass k displacement vector

within its respective housing, observed by interferome-
ters and capacitive sensors:

~rT1/H1
= xifo

1 ~ex1
+ ygrs

1 ~ey1
+ zgrs

1 ~ez1

~rT2/H2
= xifo

2 ~ex2
+ ygrs

2 ~ey2
+ zgrs

2 ~ez2
, (7)

and
−−−→
H1H2 is the nominal static offset between the test

masses. Small changes in the attitude of the spacecraft
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~αB/B∗ relative to the target frame B∗ introduce contri-
butions from levers to the apparent differential displace-

ment ∆
−−−→
T1T2, for which one needs to account.

∆
−−−→
T1T2 = ∆~rdiff + ∆~rlever

=
[
~rT2/H2

− ~rT1/H1

]
+
[
~αB/B∗ ×

−−−→
H1H2

]
(8)

Isolating the translational suspension control from
spacecraft jitter will then consist in soliciting the elec-
trostatic feedback along axes ~ey1

, ~ez1
, ~ey2

and ~ez1
to null

the quantity ∆
−−−→
T1T2. Therefore, one needs to project

∆
−−−→
T1T2 along those axes, and in doing so, express all the

vector quantities in a common coordinate system fixed in
the S/C frame:

~ex1
= cos φm

2 ~eX + sin φm
2 ~eY

~ey1
= − sin φm

2 ~eX + cos φm
2 ~eY

(9)

~ex2
= cos φm

2 ~eX − sin φm
2 ~eY

~ey2
= sin φm

2 ~eX + cos φm
2 ~eY

Using this basis and treating the differential test mass
displacement first, we can write:

∆~rdiff =

[
(x2 − x1) cos φm

2 + (y2 + y1) sin φm
2

]
~eX

+
[
(−x1 − x2) sin φm

2 + (y2 − y1) cos φm
2

]
~eY

+ [z2 − z1] ~eZ .

(10)

The suspension forces are generated by electrostatic ac-
tuation applied by the same set of capacitors used for
position sensing. Therefore, the suspension is performed
in the housing reference frames, along the y and z axes
since no force shall be applied on the x directions, the di-
mension along which the test masses must be free-falling.
Hence one needs to project Equation (10) along suspen-
sion axes y1, y2, z1 and z2.

Using Equation (4) and considering an opening angle
of 60°, one finds after further expansion the following
projection:

∆~rdiff =

[
− 2√

3
x2 +

1√
3
x1 − y1

]
~ey1

+

[
1√
3
x2 −

2√
3
x1 + y2

]
~ey2

+ [z2 − z1]
~ez1

+ ~ez2

2
.

(11)

At this stage, that is, locking the suspension scheme
on ∆~rdiff only as in Equation (11) still lets angular jit-
ter contribution through from various levers. While the
common-mode projection of such levers in the two hous-
ings will be invisible to a suspension locked on ∆~rdiff as in

Equation (11)—although seen and corrected by drag-free
control—the differential component will be interpreted
as an apparent translational drift between test masses.
Then, it is required to subtract those terms from sus-
pension control. Formally, accounting for those levers
consists of considering the change of the relative position
between test masses from the perspective of a rotating
reference frame, hence forcing suspension to disregard
apparent, differential motion arising from system of co-
ordinate variations.

Turning to the lever arm effect, according to Equa-

tion (6), when the S/C rotates, the lever
−−−→
H1H2 between

the two test-mass nominal positions then generates an
apparent, differential motion between test masses:

∆~rlever = ~αB/B∗ ×
−−−→
H1H2 = ~αB/B∗ ×∆~rH2/H1, (12)

which expressed in the B-frame gives:

∆~rlever =

(
H∆zH2/H1

− Φ∆yH2/H1

)
~eX

+
(
Φ∆xH2/H1

−Θ∆zH2/H1

)
~eY

+
(
Θ∆yH2/H1

−H∆xH2/H1

)
~eZ .

(13)

This latter expression needs to be projected along ~ey1
,

~ey2
, ~ez1

and ~ez2
. Using Equation (3), substituting in

Equation (13), and simplifying hereafter the notation of
the lever vector coordinates for clarity as [∆x,∆y,∆z],
one obtains:

∆~rlever =

(H∆z − Φ∆y)
(
~ey2
− ~ey1

)
+ (Φ∆x−Θ∆z)

~ey1
+ ~ey2√

3

+ (Θ∆y −H∆x)
~ez1

+ ~ez2

2
.

(14)

The lever-arm component of the suspension force F lever

along housing y and z axes must be triggered from ob-
served test-mass differential motion as projected along
the housing reference frame set of axes:

F lever
y1-2

∝ ∆~rlever · ~ey1-2

F lever
z1-2

∝ ∆~rlever · ~ez1-2
,

which from Equation (14) and after further expansion
yields finally:

F lever
y1-2

∝ −∆z√
3

Θ∓∆zH +

(
∆x√

3
±∆y

)
Φ

F lever
z1-2

∝ ∓∆yΘ±∆xH.

(15)

Finally, combining translational, differential motion and
lever contributions, one arrives at the following suspen-
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sion scheme:

F sus
y1
∝ ŷopt

1 ≡

− 1√
3
xifo

1 +
2√
3
xifo

2 + ygrs

1

+
∆z√

3
Θldws + ∆zH ldws

−
(

∆x√
3

+ ∆y

)
Φldws

F sus
y2
∝ ŷopt

2 ≡

− 2√
3
xifo

1 +
1√
3
xifo

2 + ygrs

2

−∆z√
3

Θldws + ∆zH ldws

+

(
∆x√

3
−∆y

)
Φldws

F sus
z1 ∝ ẑ

opt
1 ≡

zgrs

1 − z
grs

2

−∆yΘldws + ∆xH ldws

F sus
z2 ∝ ẑ

opt
2 ≡

zgrs

2 − z
grs

1

+∆yΘldws −∆xH ldws

(16)

D. Suspension and differential mode: Angular
isolation

An optimal suspension must also minimize coupling
with angular jitter of the spacecraft. However, one must
not entirely decouple angular suspension control from
spacecraft attitude control, since the test mass rotation
must follow the LISA constellation orbits around the so-
lar system center. An optimal strategy consists of defin-
ing a common-mode angular control of the TMs based
on the difference between the S/C attitude measurement
with long-arm DWS and common-mode TM-DWS.

Making use of Equation (9) and the geometry of the
spacecraft, one can express in a common coordinate sys-
tem the local, test-mass DWS outputs and the long-range
DWS outputs. Expressed in the S/C body frame B, the
common-mode suspension d.o.f written in terms of the
sensing channels in Table II would then take the form:

θsus, c =
1

2
[(θ1 + θ2) cos φm/2 + (η2 − η1) sin φm/2]

−Θ

ηsus, c =
1

2
[(θ1 − θ2) sin φm/2 + (η1 + η2) cos φm/2]

−H (17)

φsus, c =
φ1 + φ2

2
− Φ,

which with a 60° telescope angle reduces to:

θsus, c =

√
3

4
(θ1 + θ2) +

1

4
(η2 − η1)−Θ

ηsus, c =
1

4
(θ1 − θ2) +

√
3

4
(η1 + η2)−H (18)

φsus, c =
φ1 + φ2

2
− Φ.

While it is necessary to combine measured angles in
a common coordinate system, the suspension torques

Ncmd are applied along coordinates fixed in the hous-
ing frames. Hence, it is required to project the common-
mode coordinates onto the housing axes ~ex1

, ~ey1
, ~ez1

and
~ex2

, ~ey2
, ~ez2

, which is performed invoking the appropriate
rotation matrices:

Ncmd
x1-2

Ncmd
y1-2

Ncmd
z1-2

 ∝

√

3/2 ±1/2 0.0

∓1/2
√

3/2 0.0

0.0 0.0 1.0




θsus, c

ηsus, c

φsus, c

 , (19)

again setting the opening angle to 60°. After further ex-
pansion of the common mode, one obtains the common-

mode torque components Ncmd,c:

Ncmd,c
x1

= 1
2θ1 + 1

4θ2 +
√

3
4 η2 −

√
3

2 Θ− 1
2H

Ncmd,c
y1

= 1
2η1 + 1

4η2 −
√

3
4 θ2 + 1

2Θ−
√

3
2 H (20)

Ncmd,c
x2

= 1
2θ2 + 1

4θ1 −
√

3
4 η1 −

√
3

2 Θ + 1
2H

Ncmd,c
y2

= 1
2η2 + 1

4η1 +
√

3
4 θ1 − 1

2Θ−
√

3
2 H (21)

with Θ, H and Φ taken out of attitude determination
block in Equation (4).

For the differential mode, we proceed in a similar man-
ner. The test mass DWS channels are combined after
being expressed in coordinates fixed in the B frame:

θsus, d = (θ2 − θ1) cos φ2 + (θ2 + θ1) sin φ
2

ηsus, d = − (θ2 + θ1) sin φ
2 + (η2 − η1) cos φ2 (22)

φsus, d = φ2 − φ1.

Applying the rotation matrices necessary to find the
commanded torques applied in their respective housing
frames and setting φ = 60°, this simplifies to give the

differential mode torques Ncmd,d:


Ncmd,d
x1

= −1
2θ1 + 1

4θ2 +
√

3
4 η2

Ncmd,d
y1

= −1
2η1 + 1

4η2 −
√

3
4 θ2

Ncmd,d
z1 = 1

2φ1 − 1
2φ2


Ncmd,d
x2

= 1
2θ2 − 1

4θ1 +
√

3
4 η1

Ncmd,d
y2

= 1
2η2 − 1

4η1 −
√

3
4 θ1

Ncmd,d
z2 = 1

2φ2 − 1
2φ1,
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which we combine with common mode control as fol-
lows, to get the total, net suspension torque:

Ncmd
x1,y1,z1

= Ncmd,c
x1,y1,z1

−Ncmd,d
x1,y1,z1

(23)

Ncmd
x2,y2,z2

= Ncmd,c
x2,y2,z2

+Ncmd,d
x2,y2,z2

. (24)

Note the ± signs before contributions from the differen-
tial mode which differ between test mass 1 and 2 for geo-
metrical reasons: correcting the differential (2 - 1) chan-
nel implies applying forces on test masses along opposite
directions. Simplifying further yields the final result:

N sus
x1
∝ θ̂opt

1 ≡ θgrs

1 +
√

3
2 Θldws + 1

2H
ldws

N sus
y1
∝ η̂opt

1 ≡ ηifo
1 − 1

2Θldws +
√

3
2 H ldws

N sus
z1 ∝ φ̂

opt
1 ≡ φifo

1 + Φldws

N sus
x2
∝ θ̂opt

2 ≡ θgrs

2 +
√

3
2 Θldws − 1

2H
ldws

N sus
y2
∝ η̂opt

2 ≡ ηifo
2 + 1

2Θldws +
√

3
2 H ldws

N sus
z2 ∝ φ̂

opt
2 ≡ φifo

2 + Φldws.

(25)

E. Interpretation and consistency testing

In this section, we present a set of thought experiments
which help to interpret physically the error signal combi-
nations derived in the previous section, and demonstrate
that they achieve their objectives while ensuring stability
and control of the system.

Concentrating first on the longitudinal, suspension
scheme, imagine an out-of-loop force signal acting on
the spacecraft (e.g. stray thrust, micrometeorite, ...).
This excitation must not trigger suspension forces, that
is, the suspension coordinates combinations in Equa-
tion (16) must cancel out. Taking the suspension force
applied along the y axis of test mass 1, Fy1 as an ex-
ample, if one denotes the induced displacement due to
external of the spacecraft by ∆Xind and project it along
housing reference frames, one obtains:

F cmd
y1

∝

− 1√
3

(
−
√

3

2
∆Xind

)

+
2√
3

(
−
√

3

2
∆Xind

)
+

(
1

2
∆Xind

) = 0, (26)

as required. Similarly, if one injects a torque excitation
around Z on the spacecraft inducing a displacement angle
∆Φind, the propagation to suspension force along y on
test mass 1 coming from levers would be:

F cmd
y1

∝− 1√
3

∆xH2/H1
Φind −∆yH2/H1

Φind

+

(
∆x√

3
+ ∆y

)
Φind = 0. (27)

This expression is found by using ∆~rH2/H1 = ∆~rH2/B −
∆~rH1/B, and expressing the three-lever arm terms as fol-
lows:

∆xH1/BΦind~eY · ~ex1
−∆yH1/BΦind~eX · ~ex1

=
1

2
∆xH1/BΦind −

√
3

2
∆yH1/BΦind, (28)

∆xH2/BΦind~eY · ~ex2
−∆yH2/BΦind~eX · ~ex2

= −1

2
∆xH2/BΦind −

√
3

2
∆yH2/BΦind, (29)

∆xH1/BΦind~eY · ~ey1
−∆yH1/BΦind~eX · ~ey1

=

√
3

2
∆xH1/BΦind −−

1

2
∆yH1/BΦind. (30)

Zero suspension forces along other longitudinal suspen-
sion d.o.f can be demonstrated with identical reasoning.

Finally, the same check is done on the new suspension
angular coordinate. For instance, exciting the spacecraft
attitude angle Θ with an out-of-loop torque, would trig-

ger a suspension torque around x2, Ncmd
x2

of:

Ncmd
x2
∝ −

(√
3

2 Θind

)
+
√

3
2 Θind = 0. (31)

One can also verify that an attitude guidance on the
spacecraft will still trigger suspension forces and torques
on the test masses, ensuring that they will follow the
spacecraft while it orbits the Sun. In this case Θ, H and
Φ shown in Equation (16) and (25) are by definition er-
ror signals and not sensing outputs: they are inputs of
the DFACS. Injecting guidance signals induces no change
on Θ, H and Φ, while producing an apparent change to
the measured test mass position and angle relative to the
housing. Suspension forces and torques will then be trig-
gered as expected, while S/C jitter around the nominal
working point will be rejected by the combinations shown
in Equation (16) and (25). This important exception to
the isolation is true both for longitudinal and angular
suspension of the test masses.

IV. DFACS simulation, demonstration of the
control performance and the suspension isolation
- In this section, we discuss the implementation and
testing of the new DFACS scheme with simulations of
the closed-loop dynamics of the LISA constellation. At
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present, there exist three simulation tools in development
by the LISA Consortium, with at least one (LISADyn)
being the object of an upcoming publication: a Linear
Time Invariant modelling of the closed-loop system in
Matlab, a non-linear capable, Python/C++ dynamics
simulation integrated with the LISA End-to-End simu-
lation (LISANode) and a Simulink-SimScape simulator
in active development. In the remainder of this paper we
refer to these simulators as LISADyn-linear, LISADyn
and LISA-SimScape respectively. This complete and in-
dependent set of tools will afford us extensive and robust
testing of this new scheme, in terms of isolation from
common-mode disturbances, stability performance and
acceleration noise performance. The LISADyn-linear
will be used preferably for design, while the other two
will be utilized for validation and robustness checking.

A. Simulation software and control laws

LISADyn simulations inherit their control laws from the
LISA Pathfinder mission, for which a similar linear sim-
ulation was developed [21] and proved to be very use-
ful in the context of LISA Pathfinder data analysis and
stability performance studies [11]. This LISA Pathfinder
closed-loop simulation used a set of control laws designed
and provided by industry, in the form of 15 transfer func-
tions designed to robustly stabilize the 15 Single-Input
Single-Output (SISO) systems of the decoupled dynamics
problem—that is, a system which has been transformed
into the d.o.f. space so that a given actuation channel
acts only on a single d.o.f. These control laws can be
seen as generic second-order dynamics system stabilizers,
with spectral shape adapted to Attitude, Suspension and
Drag-Free control according to the mission requirements.
Such a set of control laws is not yet available to the LISA
Consortium, since the DFACS design is an on-going ef-
fort under the responsibility of the industrial contractors
bidding to build LISA. Given the importance and the im-
pact of DFACS on the noise budget, however, the LISA
Consortium is also carrying out this independent activ-
ity to evaluate mission performance and prepare for data
analysis efforts.

A reasonable starting point for the closed-loop sys-
tem is given by LISA Pathfinder control laws, which
can be easily adapted to LISA in applying the coupling
matrix which is specific to the LISA spacecraft geomet-
rical and dynamical properties. From the set of inde-

pendent 15 SISO control transfer functions KSISO, one
can retrieve the coupled Multiple-Input Multiple-Output
(MIMO) control functions K which stabilize the actual
LISA dynamics as follows:

Katt = [SattBatt]
−1KSISO

att Satt (32)

Kdf = [SdfBdf]
−1KSISO

df Sdf (33)

Ksus = [SsusBsus]
−1KSISO

sus Ssus, (34)

where Batt, Bdf and Bsus encode and map the contribu-

tions of the various input forces and torques applied on
the spacecraft and the test masses to the controlled dy-
namical d.o.f., or simply put, account for the couplings
between the actuation channels. Satt, Sdf and Ssus are
the selection matrices which define the sensor channel
combination to be used for each control port: the control
mapping scheme the DFACS uses. Table III gives the re-
sulting control bandwidth used in the simulator for drag-
free, attitude and suspension control, together with the
impacted d.o.f, while Table IV summarizes in a matrix
form the drag-free and suspension combinations derived
in section III. Doing so, one obtains a stable closed-loop
system with stability performance compatible with LISA
requirements—although not yet optimized in term of ro-
bustness and model uncertainty. The achieved stability
performance turns out to be well below the spacecraft
jitter requirements for LISA, both longitudinal and an-
gular. Fig. 3 shows a comparison between the jitter
performance of LISADyn DFACS and LISA requirement
curves.

The stability performance are certainly not guaranteed
to reach the level of the simulation, as numerous crite-
ria remain to be implemented in their design (for ex-
ample robustness w.r.t. model uncertainties, constraints
from accurate modeling of sensors and actuators). At
this early stage, therefore, we choose a conservative ap-
proach to illustrate the benefit of the newly proposed
suspension scheme and assume a degraded level of sta-
bility, such that the performance coincides with the re-
quirement limits. We mimic a degraded spacecraft sta-
bility by increasing the noisy forces and torques applied
on the spacecraft. We find that multiplying the forces
and torques by factors 4.5 and 2.5 respectively compared
levels observed with LISA Pathfinder [11, 22] the simu-
lated stability spectra are brought up to the requirement
threshold, as shown by the light blue and orange traces
of Figure 3.

In the following sections, we present simulation results
using LISADyn-linear as it provides better flexibility for
investigation and testing. The degraded stability case
will be considered to reflect the LISA requirement levels
and highlights the benefit of optimizing the suspension
scheme. The results and conclusions have been cross-
checked and validated by more comprehensive simulation
implementations such as LISADyn or LISA-SimScape. It
is finally worth noting that the development of the pro-
posed suspension scheme has assumed a fixed MOSA
opening angle of φ = 60° and the simulations discussed
below use such approximation. In reality, φ will vary
by up to ±1degree in order to account for variations in
the spacecraft orbits. Performing a first order Taylor ex-
pansion of the formulae 16 and 25 around φ = 60° and
running the same simulations including MOSA rotations
shows that the constant opening approximation leads to
a ≈ 2% residual level in the suspension isolation at most
The approximation therefore guarantees a 98% rejection
of platform jitter from suspension control while allowing
us to keep a simpler, time-invariant control scheme.
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Table II. Table of sensing and actuation noise settings in the simulations. The fc : α columns indicate the corner frequency fc
and the slope α of the noise models.

# Sensing Channel Noise Floor fc : α Actuation Channel Noise Floor fc : α

1 xifo
1 /xifo

2 (m /
√

Hz) 1.0× 10−12 1mHz : 1/f2 Thrust X (N /
√

Hz) 2.2× 10−7 0.5mHz : 1/f

2 ηifo
1 /ηifo

2 (rad /
√

Hz) 2.0× 10−9 0.7mHz : 1/f2 Thrust Y (N /
√

Hz) 1.3× 10−7 0.5mHz : 1/f

3 φifo
1 /φifo

2 (rad /
√

Hz) 2.0× 10−9 0.7mHz : 1/f2 Thrust Z (N /
√

Hz) 3.6× 10−7 0.5mHz : 1/f

4 xgrs
1 /xgrs

2 (m /
√

Hz) 1.8× 10−9 1mHz : 1/
√

f Thrust Θ (N m /
√

Hz) 7.7× 10−8 0.5mHz : 1/f

5 ygrs
1 /ygrs

2 (m /
√

Hz) 1.8× 10−9 1mHz : 1/
√

f Thrust H (N m /
√

Hz) 6.9× 10−8 0.5mHz : 1/f

6 zgrs
1 /zgrs

2 (m /
√

Hz) 3.0× 10−9 1mHz : 1/
√

f Thrust Φ (N m /
√

Hz) 1.3× 10−7 0.5mHz : 1/f

7 θgrs
1 /θgrs

2 (rad /
√

Hz) 120.0× 10−9 1mHz : 1/
√

f Fygrs (N /
√

Hz) 6.0× 10−15 1.5mHz : 1/f

8 ηldws
1 /ηldws

2 (rad /
√

Hz) 0.2× 10−9 0.7mHz : 1/f2 Fzgrs (N /
√

Hz) 10.0× 10−15 1.5mHz : 1/f

9 φldws
1 /φldws

2 (rad /
√

Hz) 0.2× 10−9 0.7mHz : 1/f2 Ngrs
x (N m /

√
Hz) 1.0× 10−15 1.5mHz : 1/f

10 Ngrs
y (N m /

√
Hz) 1.0× 10−15 1.5mHz : 1/f

11 Ngrs
z (N m /

√
Hz) 1.0× 10−15 1.5mHz : 1/f

(a) Longitudinal jitter (Z-axis) (b) Angular jitter (Φ angle)

Figure 3. Achieved stability performance by the simulated DFACS vs. LISA spacecraft (S/C) jitter requirements. Z and Φ
d.o.f are represented as they are leading contributor to actuation cross-talk noise. In light blue are traced the stability curves
for nominal thrust noise floor levels (from LISAPathfinder [11, 22]). In orange the same curves with increased longitudinal
thrust noise (×4.5) and angular thrust noise (×2.5) emulating degradation of stability performance down to requirements (at
20 mHz). Settings of the orange curve will be used for the suspension scheme testing in order to highlight the benefit of its
optimization in the conservative context of performance at the level of requirements.

B. Experiment: Thrust forces along X, Y and Z

We first demonstrate the isolation of suspension forces
from translational spacecraft jitter. Thrust forces are in-
jected on the spacecraft along X, Y and Z d.o.f (along
the axes of the spacecraft body frame B-frame), and we
verify that these signals do not produce coherent suspen-
sion forces. We simulate the three following cases:

• Simple suspension control scheme where we sus-
pend the test masses locking on coordinates [ŷsim

1 ,

ŷsim
2 , ẑsim

2 , θ̂sim
1 , η̂sim

1 , φ̂sim
1 , θ̂sim

2 , η̂sim
2 , φ̂sim

2 ], which are
aliases of the d.o.f as they are measured on-board
(see appendix A).

• Suspension scheme using the optimized suspension

coordinates [ŷopt
1 , ŷopt

2 , ẑopt
2 , θ̂opt

1 , η̂opt
1 , φ̂opt

1 , θ̂opt
2 , η̂opt

2 ,
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Table III. DFACS control bandwidth for drag-free, attitude
and suspension control. Drag-free and attitude control com-
pensates for external disturbances on spacecraft and operates
at higher frequency than suspension control, to mitigate low-
frequency and D.C. differential drift between the test masses
(mostly due by spacecraft self-gravity [19]). Above 10mHz,
drag-free and attitude control gain have decreased enough
to let force and torque noise through, inducing measurable
spacecraft jitter.

Control Degrees of freedom Bandwidth

Drag-Free x
ifo
1 , x

ifo
2 , z

grs
1 + z

grs
2 200 mHz

Attitude Θ
ldws

, H
ldws

, Φ
ldws

200 mHz

Suspension (long.) y
ifo
1 , y

ifo
2 , z

grs
1 − zgrs2 1.5 mHz

Suspension (rot.) θ
grs
1 , η1

ifo
, φ

ifo
1 , θ

grs
2 , η2

ifo
, φ

ifo
2 1.5 mHz

φ̂opt
2 ] as defined in Section III including the lever

arm correction (Eq. 16) and (Eq. 25).

• Suspension scheme using the optimized suspension
coordinates as defined in Section III without the
lever arm corrections.

All dynamical couplings between common and differ-
ential modes such as stiffness or sensing and actuation
cross-talks have been turned off for these simulations.
While they would trigger legitimate suspension forces or
torques, their inclusion would complicate the interpreta-
tion of the injection experiments making it difficult to
assess the achieved level of suspension isolation.

We have injected 1 µN sinusoidal force along X, Y and
Z simultaneously, with frequencies of 10 mHz, 20 mHz
and 30 mHz respectively. Fig. 4a and 4b show the ampli-
tude spectral density (ASD) of the resulting commanded
suspension force on test mass 1 along the y axis of its
housing (~ey,H1

), and the suspension forces on test mass
2 along ~ez,H2

. This choice is motivated by the symmet-
ric results observed for y1 and y2, and since only z2 is
suspended in the simple suspension scheme (z1 is drag-
free controlled). The figures show clearly that the new
schemes (red and yellow traces) null the requested sus-
pension forces below the level of the force noise. One also
sees that, besides the injection, the overall force level
in the considered bandwidth is significantly decreased
demonstrating the isolation from spacecraft motion that
is the aim of this work. Accounting for lever-arm effects
(yellow trace) produces improved performance because
suspension forces are more effectively isolated from space-
craft rotational jitter in this case. This will be investi-
gated further in the next section, where angular injection
on the spacecraft will be tested.

C. Experiment: Thrust torques around X, Y and Z

The case of test mass suspension force isolation from
spacecraft rotation is somewhat more complex than the
translational case because of the various inertial and lever

arms effects projecting along the housing frame axes.
Torque injection experiments provide a comprehensive
test of the jitter isolation scheme, and from the three
considered test cases, a clear demonstration of the differ-
ence and advantages of the derived schemes.

In this set of experiments 1 µN m sinusoidal torques
around X, Y and Z have been injected simultaneously,
at 10 mHz, 20 mHz and 30 mHz respectively. We present
ASDs of the suspension forces and torques: Fy1 , Fz2 ,
Ny2 , Nz1 , as examples in order to show instances of each
suspension d.o.f. No significant difference between test
masses 1 and 2 has been observed.

Focusing first on the longitudinal requested suspension
forces Fy1 and Fz2 shown in Fig. 5a and Fig. 5b, we con-
firm that the full isolation scheme compensating for the
levers efficiently suppresses the three injections to a level
below the noise. We also see that the scheme without
lever correction (red traces) leaves large peaks due to
coupling to the rotational injection through lever arms,
demonstrating again the necessity of this additional cor-
rection.

The experiment also demonstrates isolation from
spacecraft jitter of the test mass angular suspension. Us-
ing the updated angular suspension coordinates as de-
scribed in Equation (25), one efficiently suppresses the
three injection peaks in the suspension torques as seen in
Figures 5c and 5d showing commanded torque spectra,
Ny2

and Nz1
respectively. One also notes a significant

decrease of the noise floor around 20 mHz for Ny2
and

Nz1
where suspension torque noise is driven by motion

rather than sensor noise.

D. Experiment: angular guidance of the spacecraft

It is important to ensure, as briefly discussed in Sec-
tion III E, that the test masses follow the spacecraft as
they rotate to maintain laser links with each other. In
practice, suspension will have to push the test masses in
order to go along with the constellation rotation, as well
as correct the test mass orientation in their housings ac-
cordingly, both compensations act at low frequency, out
of the measurement band. One must then verify that the
isolation from common-mode jitters does not suppress
this low-frequency rigidity. As explained in III E, this
can be tested by verifying that attitude guidance signals
trigger corresponding suspension forces and torques on
test masses. We perform a simulated experiment where
guidance spacecraft attitude signals of 1 nrad around X,
Y and Z are injected at 0.1 mHz, 0.2 mHz and 0.3 mHz
respectively. Fig. 6 shows an extract from the time series
of the suspension force along y1 and torque around z2.
The clear oscillation at 0.3 mHz confirms the response of
suspension to attitude guidance—and hence to constel-
lation rotation—is intact. Similar responses are seen at
0.1 mHz and 0.2 mHz on other d.o.f. not shown here.
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Table IV. DFACS optimized scheme represented through the mapping matrix from the sensing error signals to the commanded
forces / torques. The symbol ”-” replaces the 0.0 value to enhance readability of the table.

Control Θldws H ldws Φldws xifo
1 ηifo

1 φifo
1 xifo

2 ηifo
2 φifo

2 xgrs
1 ygrs

1 zgrs
1 θgrs1 ηgrs

1 φgrs
1 xgrs

2 ygrs
2 zgrs

2 θgrs2 ηgrs
2 φgrs

2

Att.

NX 1 - - - - - - - - - - - - - - - - - - - -

NY - 1 - - - - - - - - - - - - - - - - - - -

NZ - - 1 - - - - - - - - - - - - - - - - - -

DF

FX - - - 1√
3

- - 1√
3

- - - - - - - - - - - - - -

FY - - - 1 - - −1 - - - - - - - - - - - - - -

FZ - - - - - - - - - - - 1
2

- - - - - 1
2

- - -

Fx1 - - - - - - - - - - - - - - - - - - - - -

Sus.

Fy1
∆z√

3
∆z −∆x√

3
−∆y - 1√

3
- - 2√

3
- - - 1 - - - - - - - - - -

TM1

Fz1 -∆y ∆x - - - - - - - - - 1 - - - - - −1 - - -

Nx1

√
3

2
1
2

- - - - - - - - - - 1 - - - - - - - -

Ny1 - 1
2

√
3

2
- - - - - - - - - - - 1 - - - - - - -

Nz1 - - 1 - - - - - - - - - - - 1 - - - - - -

Fx2 - - - - - - - - - - - - - - - - - - - - -

Sus.

Fy2 - ∆z√
3

∆z ∆x√
3
−∆y - 2√

3
- - 1√

3
- - - - - - - - - 1 - - - -

TM2

Fz2 ∆y −∆x - - - - - - - - - −1 - - - - - 1 - - -

Nx2

√
3

2
− 1

2
- - - - - - - - - - - - - - - - 1 - -

Ny2
1
2

√
3

2
- - - - - - - - - - - - - - - - - 1 -

Nz2 - - 1 - - - - - - - - - - - - - - - - - 1

E. Control performance and residual jitter levels

Finally, one must check that the new suspension
scheme does not increase spacecraft-to-test masses jit-
ter for the corresponding suspended d.o.f., that would
result in an increased acceleration noise through stiffness
couplings. Intuitively, one may imagine that prohibit-
ing direct actuation on the test masses to compensate
for spacecraft jitter would worsen position stability be-
tween spacecraft and test masses. We show below that it
is not the case, since in a simple scheme where y and z
test mass coordinates are suspended, suspension actua-
tion competes with drag-free control to achieve the same
result.

This is visible in plotting the ASD of the test mass
positions relative to the spacecraft for x, y and z d.o.f.s
as shown in Figure 7. In each of the sub-figures both
the case of a simple (blue) and optimized (orange) sus-
pension scheme are shown. We verify that the achieved
control performance of both schemes matches very well
and therefore we do not see any adverse impact of sus-

pension isolation on the achieved control performance.

V. Impact of new DFACS scheme on noise budget
- The primary goal of the improved suspension scheme
is to mitigate the effect of actuation noise cross-talk into
the sensitive x1 and x2 axes due to instrumental im-
perfections or misalignments. An incorrect decoupling
of common and differential actuation modes would then
in-turn couple this actuation cross-talk to the jitter of
the platform, inducing an increased contribution to ac-
celeration noise in the 10-100 mHz frequency band where
the drag-free authority is loosest and therefore allows the
largest relative motions between the spacecraft and the
test masses.

Cross-talk specifications have been set based on LISA
Pathfinder experience [23]. Defining Cij as the cross-talk
of a force or torque applied along axis j into axis i, the
values considered are Cxy = Cxz = 0.001, Cxθ = Cxη =

0.001 m rad−1 and Cxφ = 0.005 m rad−1. The asymme-
try in angular coefficients is explained by the electrode
system geometry, where the electrodes used for φ actua-
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(a) Suspension forces along y1 (b) Suspension forces along z2

Figure 4. Suspension response to longitudinal jitter injection on spacecraft (10 mHz, 20 mHz and 30 mHz)

tion are located on the x faces of the TM housing. The
Cxφ cross-talk element and the contribution from chan-
nel Φ spacecraft jitter to test mass acceleration noise is
therefore of particular concern.

Fig. 8 shows a comparison between actuation cross-
talk contribution to test mass acceleration budget—
limiting the analysis to the cross-talk induced by space-
craft jitter—for two suspension schemes considered: the
simple scheme (dashed line) using simple one-to-one
mapping between dynamical d.o.f. and force and torque
channels, and the optimal scheme (solid lines) developed
in this work. We present results for test mass 1 (in blue)
and 2 (in red), together with LISA requirement curve for
test mass acceleration (black dotted line). We utilize the
spacecraft longitudinal and angular jitter requirements
as a common-mode disturbance input to the analysis,
benefiting from the flexibility of LISADyn-linear that
allows an easy extraction of specific open-loop transfer
functions of interest. Here, the 6 × 2 open-loop trans-
fer functions relating the closed-loop spacecraft jitters to
the stray forces exerted along x1 and x2 were used to
generate the blue and red curves of Fig. 2.

Although not dominating any part of the acceleration
noise budget, actuation cross-talks can represent a sub-
stantial fraction of the noise using the simple suspension
scheme. Cross-talk forces driven by spacecraft jitter can
reach up to 10% of the budget around the peak of space-
craft jitter amplitude, at 30 mHz, dominated by the Cxz
and Cxφ coefficients. Switching to the optimal scheme,
one observes in Fig. 8 a clear suppression of this effect,
leaving only a non-physical residual caused by limitations
of numerical precision. This result is obtained only by
rearranging the combinations of sensor data used by the

DFACS to compute the commanded forces and torques
to be applied, that is with no change to sensing or ac-
tuation capabilities or control algorithms. While the op-
timization of the suspension will not significantly affect
the noise budget, it can yield improved robustness in the
DFACS system and suppress cross-talk contributions to
a negligible level for minimal cost of implementation. We
also note that this isolation scheme will suppress possible
transient suspension force contributions from impulsive
events affecting the spacecraft such as micro-meteoroid
impacts—numerous such events have been observed and
analyzed with LISA Pathfinder [24]—since the resulting
test-mass to spacecraft motion will be common-mode for
both test masses.

VI. Differential mode along the sensitive axes: a
local measurement of the differential acceleration
noise - At low-frequency, test-mass acceleration noise
limits the performance of LISA. Understanding noise
behavior is critical to identifying transient events [25],
extracting the maximum number of continuous gravita-
tional waveforms and stochastic gravitational wave sig-
nals [26, 27]. A number of instrument-noise characteri-
zation experiments and calibrations also rely on applying
and measuring direct forces on the test masses [28]. Un-
like in other gravitational experiments, there is no way
to perfectly “switch off” the signal in LISA, the measure-
ment of differential acceleration between test masses in
a single LISA arm is dominated by laser frequency noise
and TDI combinations are expected to contain continu-
ous gravitational waves with large signal to noise across
the LISA frequency band. A local estimate of the dif-
ferential acceleration noise of the test masses on a single
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(a) Suspension forces along y1 (b) Suspension forces along z2

(c) Suspension torques around y2 (d) Suspension torques around z1

Figure 5. Suspension response to angular jitter injection on spacecraft (10 mHz, 20 mHz and 30 mHz)

spacecraft immune to both of these effects is therefore
valuable.

Following similar logic to that used to derive the opti-
mized suspension scheme already presented, we can de-
rive expressions for the test mass accelerations isolating
them from the motion of the spacecraft using a combina-
tion of suspension forces, GRS and IFO data. A devel-
opment comparable to that of section III C allows con-
struction of observables ∆ax1/2

for the differential accel-

eration between the test masses projected along the drag-

free axes—assumed to be the sensitive, long-arm axis to
first-order. Here we generalize the method of III and
find among all possible combinations, the set of coeffi-
cients that minimizes the introduced sensing noise—that
which limits the utilization of noisier GRS channels to
the strict minimum required. Such a calculation starts
in subtracting from the optical measurement of test mass

acceleration along the drag-free axis, ¨x1/2
ifo, an estima-

tor of spacecraft acceleration along the same axis, a
S/C
x1 .
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(a) Suspension forces along y1 (b) Suspension torques around z2

Figure 6. Time series suspension response to attitude guidance injection on spacecraft at 0.1 mHz, 0.2 mHz and 0.3 mHz
around X, Y and Z respectively.

(a) TM1-to-S/C jitter along y1 (b) TM2-to-S/C jitter around x2 (c) TM1-to-S/C jitter around z1

Figure 7. Stability performance of there representative dynamical d.o.f - y1, θ2 and φ1 - using the historical (blue trace) and
the optimal (orange trace) suspension schemes. These plots come from the simulation including injection torques on spacecraft
at (0.1 mHz, 0.2 mHz and 0.3 mHz). We verify that the stability performance are preserved by the newly proposed suspension
scheme.

The latter can be expressed in terms of a linear combi-
nation of the measured motions of the of test masses in
their housing reference frames:

aS/C
x1

= β11 ÿ
grs
1 + α21 ẍ

ifo
2 + β21 ÿ

grs
2 (35)

aS/C
x2

= β12 ÿ
grs
1 + α12 ẍ

ifo
1 + β22 y

grs
2 ,

where α and β are constants to be determined.
Two constraints come directly from geometry: tak-

ing as an example test mass 1, one requires the space-

craft acceleration vector to be co-linear with ~ex1
—since

one wants to compute aS/C
x1

= ~a S/C · ~ex1
—and normal

to ~ey1
, imposing unity norm to the vector combination.

The third and last constraint is used to guarantee opti-

mal signal-to-noise ratio. The interferometer xifo chan-
nels being more than 3 orders of magnitude more precise
than the GRS channels (see Table II), the optical noise
can be safely neglected here. Hence, the quadratic sum

β2
11S

grs/y1
n + β2

21S
grs/y2
n is to be minimized, with Sn de-

noting the power spectral densities of the two—assumed
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Figure 8. Jitter-induced actuation cross-talk contributions to
acceleration noise budget analyzed with the historical sus-
pensions scheme (dashed lines) and the optimal scheme (solid
lines) for the two test masses. The dotted, black lines repre-
sent test mass acceleration requirements as a reference.

uncorrelated— ygrs channels sensing noise. Assuming
equal sensing noise levels for ygrs

1 and ygrs
2 channels, and

posing q = β2
11 + β2

21, the optimization translates mathe-

matically as requiring dq
dβ11

= 0, remarking that the ge-

ometrical constraints imposes that β12 =
√

3−β11
2 . With

these 3×2 constraints in total, one can find the following
optimal solution:

α21 =
4

5
β11 =

√
3

5
β21 =

2
√

3

5
(36)

α21 =
4

5
β12 = −2

√
3

5
β22 = −

√
3

5
.

Accounting for lever coupling to spacecraft attitude
measured by the long-arm interferometer DWS, subtract-
ing suspension forces applied to the TMs along y to ob-
tain out-of-loop quantities and finally projecting along
the axes of interest (~ex1

for test mass 1, ~ex2
for test mass

2), Equations (37) and (38) provide the combinations we
finally propose.

∆aest
x1

= ẍifo
1 −

4

5
ẍifo

2 −
√

3

5
ÿgrs

1 − 2
√

3

5
ÿgrs

2

+ ∆zΘ̈ldws − ∆z

2
Ḧ ldws −

(
∆x− ∆y√

3

)
Φ̈ldws

+

√
3

5

F sus
y1

m1
+

2
√

3

5

F sus
y2

m2
(37)

∆aest
x2

= ẍifo
2 −

4

5
ẍifo

2 +
2
√

3

5
ÿgrs

1 +

√
3

5
ÿgrs

2

+ ∆zΘ̈ldws +
∆z

2
Ḧ ldws −

(
∆x+

∆y√
3

)
Φ̈ldws

− 2
√

3

5

F sus
y1

m1
−
√

3

5

F sus
y2

m2
(38)

Note that in combining IFO, GRS and LDWS informa-
tion, the estimate precision is deteriorated relative to the
true test mass motion by LDWS and GRS sensing noise.
At low frequency however, where the sensing noise have
a lesser impact on acceleration noise, the estimator be-
comes very accurate.

We present in Fig. 9 the result of a simulation exper-
iment intended to compare the acceleration estimator
written in Equation (37) to the true acceleration of test
masses 1 and 2 projected along their respective axes—
physical quantities obviously not available to observers
but known by the simulators and its users. A sinu-
soidal force of 0.1 pN is injected on test mass 1 at the
f = 0.1 mHz. Time series traces on the left-hand sub-
figure show that the estimator is able to recover the in-
jected signal well, while the spectra on the right-hand
side shows that there is no significant residual left over
after subtraction. The spectrum breakdown illustrates
the performance of the estimator. Below 0.6 mHz the es-
timator noise is a factor 5-6 above the target acceleration
noise level. The additional noise originates from the the
acceleration noise of the second test mass along its y axis,
projected onto the first TM x axis hence introducing sig-
nificant additional noise. In fact, the signal resolved by
the estimator below 0.6 mHz is exactly the differential
acceleration between the two test masses along ~ex1

—and
respectively ~ex2

)—drawn in light blue in Fig. 9. Expres-
sions for these quantities are given in Equations (39) and
(40). Above 0.6mHz, GRS, and to a lesser extent, LDWS
sensing noise take over as leading contributors to noise.

∆atrue
x1

= atrue
x1
− 4

5
atrue
x2
−
√

3

5

(
atrue
y1
−
F sus
y1

m1

)
− 2
√

3

5

(
atrue
y2
−
F sus
y2

m2

)
(39)

∆atrue
x2

= atrue
x2
− 4

5
atrue
x1

+
2
√

3

5

(
atrue
y1
−
F sus
y1

m1

)
+

√
3

5

(
atrue
y2
−
F sus
y2

m2

)
(40)

VII. Conclusion - We have proposed optimized sus-
pension control coordinates for the LISA Drag Free and
Attitude Control System in order to isolate commanded
forces and torques applied on test masses from spacecraft
jitter. Using these coordinates, we have demonstrated
the isolation efficiency by simulating the excitation of the
spacecraft longitudinally and rotationally and observing
its rejection in the response on the suspension command.
Meanwhile, we verify that the new suspension coordi-
nates do not deteriorate stability performance while keep-
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(a) Time series: comparison between estimator and true ac-
celeration noise for an injected signal with an amplitude of
0.5 × 10−12 m s−2 at 0.1 mHz. Both quantities have been pro-
cessed identically through low-pass filtering (order 3, fc =
2mHz) and detrending in order to highlight their matching.

(b) Spectrum breakdown of the estimator and comparison to true
acceleration. In blue the total estimator, in red the true quantity
to be measured, in yellow the residual, in purple the contribution
from the sensor channels combination and in green from the com-
manded forces along y1 and y2 . Light blue trace is the true dif-
ferential acceleration between the two test masses projected along

~ex1
.

Figure 9. Estimation of the differential acceleration between test masses projected along ~ex1
from on-board sensors (IFO, GRS

and LDWS) and commanded forces.

ing test masses locked at their set points in response to
the attitude guidance produced by the the annual rota-
tion of LISA constellation. An important consequence
of the new suspension scheme is a significant reduction
of the level of suspension forces and torques applied to
the test masses, and subsequently a large mitigation of
actuation cross-talk effect which would lead to impor-
tant contribution to the acceleration noise budget. On
the other hand, coupling through dynamical stiffness or
tilt-to-length stay unchanged since stability performance
are similar relative to the former, simple scheme usually
considered.

A possible disadvantage of the new scheme may be an
increase of the complexity of the control scheme and the
of the sensor mapping, making in-loop sensor outputs
and calibration experiments interpretation less immedi-
ate. Table IV provides all the information needed about
such mapping, and from it, basic, analytical processing
is needed to rotate coordinates back to more understand-
able quantities. In addition, this new control scheme re-
lies extensively on multi-sensor fusion and this can have
robustness implications regarding sensor failures. How-
ever, sensor failure may have critical impact on any con-
trol scheme, including the simpler scheme of Appendix A.
Further analyses will be needed in order to understand
impact of failure for the various control schemes consid-
ered. It is important to note that such novel scheme

proposition involves software implementation only, and
addresses the particular case of a science mode in nom-
inal operational conditions. It will always be possible
to modify the control scheme on-board the spacecraft in
case of failure or for any operational reason. It is to be
expected that various control modes will be developed
and available in flight for LISA, for the different phases
of the missions or in case of hardware failure.

Based on similar reasoning and algebra, we have pro-
posed estimators of the differential acceleration (pro-
jected along interferometer arms) between the two lo-
cal test-masses on-board LISA spacecraft. We verify by
simulation that this estimate agrees with true accelera-
tion quantities below 0.6 mHz, while being limited above
that frequency due to GRS sensing noise. This compos-
ite data product provides critical information about local
test mass accelerations which will have important use for
data sanity and quality check, calibration and data pro-
cessing, data analysis and data artifact corrections.

A. Note on the simple DFACS scheme - The sim-
ple control scheme, with direct suspension on GRS chan-
nels, captures necessarily the noisy motion of the space-
craft. This simple strategy then suffers from a coupling
between the suspension command and spacecraft longi-
tudinal and rotational jitter. As in section III for the
optimized scheme, here are detailed the 15 control co-
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ordinates [x̂sim
1 , x̂sim

2 , ẑsim
1 , Θ̂sim, Ĥsim, Φ̂sim, ŷsim

1 , ŷsim
2 , ẑsim

2 ,

θ̂sim
1 , η̂sim

1 , φ̂sim
1 , θ̂sim

2 , η̂sim
2 , φ̂sim

2 ] which defines the simple
DFACS scheme we refer to throughout the paper and
formerly considered on initial technical work and inter-
nal report on LISA DFACS by industry. Equation A1
and A2 gives drag-free and attitude control coordinates
while A3 and A5 provides both suspension longitudinal
and angular coordinates. Table V gives an overall, matrix
view of the control strategy.

Fdrag-free
X ∝ x̂sim

1 ≡ xifo
1

Fdrag-free
Y ∝ x̂sim

2 ≡ xifo
2 (A1)

F
drag-free
Z ∝ ẑsim

1 ≡ zgrs

1

Natt
X ∝ Θ̂sim ≡ Θldws = ηldws

2 − ηldws
1

Natt
Y ∝ Ĥsim ≡ H ldws = − 1√

3

(
ηldws

1 + ηldws
2

)
(A2)

Natt
Z ∝ Φ̂sim ≡ Φldws = −1

2

(
φldws

1 + φldws
2

)

F sus
y1
∝ ŷsim

1 ≡ ygrs

1

F sus
y2
∝ ŷsim

2 ≡ ygrs

2 (A3)

F sus
z1 ∝ ẑ

sim
1 ≡ 0 (A4)

F sus
z2 ∝ ẑ

sim
2 ≡ zgrs

2

N sus
x1
∝ θ̂sim

1 ≡ θgrs

1

N sus
y1
∝ η̂sim

1 ≡ ηifo
1

N sus
z1 ∝ φ̂

sim
1 ≡ φifo

1 (A5)

N sus
x2
∝ θ̂sim

2 ≡ θgrs

2

N sus
y2
∝ η̂sim

2 ≡ ηifo
2

N sus
z2 ∝ φ̂

sim
2 ≡ φifo

2
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tiales (CNES) for its financial support. Peter Wass,
Orion Sauter and Henri Inchauspé were supported by
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Optical Suppression of Tilt-to-Length Coupling in the
LISA Long-Arm Interferometer. Physical Review Ap-
plied, 14(1):014030, July 2020. Publisher: American
Physical Society.

[16] Simone Vidano, Carlo Novara, Luigi Colangelo, and
Jonathan Grzymisch. The LISA DFACS: A nonlinear
model for the spacecraft dynamics. Aerospace Science
and Technology, 107:106313, December 2020.

[17] A. Schleicher, T. Ziegler, R. Schubert, et al. In-orbit per-
formance of the LISA Pathfinder drag-free and attitude
control system. CEAS Space Journal, 10(4):471–485, De-
cember 2018.

[18] R. Dolesi, D. Bortoluzzi, P. Bosetti, et al. Gravitational
sensor for LISA and its technology demonstration mis-
sion. Classical and Quantum Gravity, 20(10):S99, 2003.

[19] M. Armano, H. Audley, G. Auger, et al. Constraints
on LISA Pathfinder’s self-gravity: design requirements,
estimates and testing procedures. Classical and Quantum
Gravity, 33(23):235015, November 2016. Publisher: IOP
Publishing.

[20] James Diebel. Representing Attitude: Euler Angles, Unit
Quaternions, and Rotation Vectors. Matrix, 58, January

2006.
[21] Mario Weyrich and Adrien Grynagier. The SSM class:

modelling and analyses for the LISA Pathfinder technol-
ogy experiment. Technical Report S2-iFR-TN-3003, In-
stitut für Flugmechanik und Flugregelung, Universität
Stuttgart, 2008.

[22] M. Armano, H. Audley, J. Baird, et al. LISA Pathfinder
micronewton cold gas thrusters: In-flight characteriza-
tion. Physical Review D, 99(12):122003, June 2019.

[23] M. Bassan, A. Cavalleri, M. De Laurentis, et al. Ac-
tuation crosstalk in free-falling systems: Torsion pen-
dulum results for the engineering model of the LISA
pathfinder gravitational reference sensor. Astroparticle
Physics, 97:19–26, January 2018.

[24] J. I. Thorpe, J. Slutsky, John G. Baker, et al. Microm-
eteoroid Events in LISA Pathfinder. The Astrophysical
Journal, 883(1):53, September 2019. Publisher: Ameri-
can Astronomical Society.

[25] Quentin Baghi, Natalia Korsakova, Jacob Slutsky, et al.
Detection and characterization of instrumental tran-
sients in LISA Pathfinder and their projection to LISA.
arXiv:2112.07490 [astro-ph, physics:gr-qc], December
2021. arXiv: 2112.07490.



19

[26] Chiara Caprini, Daniel G. Figueroa, Raphael Flauger,
et al. Reconstructing the spectral shape of a stochastic
gravitational wave background with LISA. Journal of
Cosmology and Astroparticle Physics, 2019(11):017–017,
November 2019. arXiv: 1906.09244.

[27] Raphael Flauger, Nikolaos Karnesis, Germano Nardini,
et al. Improved reconstruction of a stochastic gravita-
tional wave background with LISA. Journal of Cosmol-
ogy and Astroparticle Physics, 2021(01):059–059, Jan-
uary 2021. Publisher: IOP Publishing.

[28] M. Armano, H. Audley, J. Baird, et al. Calibrating the
system dynamics of LISA Pathfinder. Physical Review
D, 97(12):122002, June 2018.


	New LISA dynamics feedback control scheme: Common-mode isolation of test mass control and probes of test-mass acceleration
	Abstract
	I Introduction
	II LISA Drag-Free and Attitude Control System
	III DFACS scheme optimization & isolation of suspension control
	A Drag-Free and common-mode correction
	B Attitude control
	C Suspension and differential mode: Longitudinal isolation
	D Suspension and differential mode: Angular isolation
	E Interpretation and consistency testing

	IV DFACS simulation, demonstration of the control performance and the suspension isolation
	A Simulation software and control laws
	B Experiment: Thrust forces along X, Y and Z
	C Experiment: Thrust torques around X, Y and Z
	D Experiment: angular guidance of the spacecraft
	E Control performance and residual jitter levels

	V Impact of new DFACS scheme on noise budget
	VI Differential mode along the sensitive axes: a local measurement of the differential acceleration noise
	VII Conclusion
	A Note on the simple DFACS scheme
	B Acknowledgement
	 References


