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Scattering angles for probes in Kerr metrics are derived for scattering in the equatorial plane of the black
hole. We use a method that naturally resums all orders in the spin of the Kerr black hole, thus facilitating
comparisons with scattering-angle computations based on the post-Minkowskian expansion from
scattering amplitudes or worldline calculations. We extend these results to spinning black-hole probes
up to and including second order in the probe spin and any order in the post-Minkowskian expansion for
probe spins aligned with the Kerr spin. When truncating to third post-Minkowskian order, our results agree
with those obtained by amplitude and worldline methods.
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I. INTRODUCTION

The gravitational bending of light around the Sun
famously provided one of the earliest observational checks
on predictions from Einstein’s general theory of relativity.
Since then, gravitational optics has become one of the
common tools of observational astronomy, and in fact is
now used inversely to infer mass distributions of massive
objects partly obstructing light in the direct line of sight.
The lightlike bending angles of general relativity thus have
a central position in modern physics.
Recently, scattering angles of massive objects have

attracted renewed attention from an entirely different
direction. For gravitational-wave predictions of black-hole
mergers one needs the effective Hamiltonian that governs
the dynamics of two massive bodies in general relativity. It
was suggested in Ref. [1] that an improvement of tradi-
tional analytical approaches based on post-Newtonian
expansions could come from the post-Minkowskian expan-
sion of the scattering regime. This suggests that modern
amplitude methods of the quantized theory to great
advantage may be used to infer the effective two-body
interactions of general relativity [2–4] after properly
removing all nonclassical contributions at loop level [5].
In a short span of time there has been enormous progress
in this direction, with results to third post-Minkowskian
order now fully under control [6–15]. Even amplitude

computations to fourth post-Minkowskian order [16] have
now been considered. A parallel track based on effective
field theory in the worldline formalism offers results at
similar high orders in the post-Minkowskian expansion
[17–29]. For recent reviews, see, e.g., Refs. [30–33].
In this paper, we will be concerned with the test-body (or

probe) limit in the motion of particles on a background
spacetime. This problem has been studied by means of the
geodesic equation in general relativity (see, for example,
Ref. [34] and references therein), but also by establishing
the connection between geodesics and an amplitudes-based
framework [35], as well as by explicitly considering the
test-body limit of scattering amplitudes up to fifth post-
Minkowskian order [36].
Adding classical spin to the post-Minkowskian expan-

sion leads to interesting challenges in the amplitude
approach due to the traditional barrier at spin-2 in quantum
field theory (although recent progress in describing massive
higher spin states has been made in Refs. [37–40]). Results
at the first post-Minkowskian order and all orders in the
spins were derived by solving Einstein’s field equations
directly [41]. Amplitude-based and worldline approaches
have since made substantial progress towards obtaining
post-Minkowskian results with spin [42–67]. In order to
have known limits in which to compare amplitude-based
results for scattering angles with those computed directly
from general relativity, we here reconsider the classical
problem of scattering in the equatorial plane of a Kerr black
hole. We restrict the spin of the black hole to be parallel
with the orbital angular momentum and the motion is
therefore restricted to the equatorial plane. A single
scattering angle can then describe the asymptotic motion
and the situation is rather similar to that of scattering
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around a Schwarzschild black hole except for the fact that
the scattering angle will depend on whether the black hole
spin is pointing in the same direction as the orbital angular
momentum, or opposite. We will be working with metrics
of signature ð−;þ;þ;þÞ throughout.
One of the interesting observations of the first-order

post-Minkowskian result of Ref. [41] was that the spins,
to that order in the post-Minkowskian expansion, could
be provided in an exact (resummed) form. The same
resummed form naturally appears also from amplitude
calculations to the same order in the post-Minkowskian
expansion [44] and remnants of such a structure can be
found also at second post-Minkowskian order, at least up to
fourth order in one of the spins [44]. It turns out that this
structure of a resummed spin is a general feature of the
probe limit: if the probe is spinless, we can show this to any
order in the post-Minkowskian expansion. Taking the
lightlike limit, and expanding in the black hole spin, we
recover the Kerr results for the bending of light [68]. As we
shall detail below, there are several other checks on our
results as well.
Finally, an interesting and challenging problem is that of

adding spin to the probe. We shall derive expressions for
the Kerr scattering angle for a spinning probe, with the
probe spin aligned with both the orbital angular momentum
and the Kerr spin, valid up to (and including) second order
in the black-hole probe spin. In principle, these calculations
can be carried through to arbitrary post-Minkowskian
order, and we illustrate that below by providing analytical
expressions up to and including OðG5Þ. Truncating to third
post-Minkowskian order our results agree with those of
Refs. [26,43,63]. The general expressions we present here
for the probe limit both without and with spin may be
useful for checks on amplitude computations at higher
orders in the post-Minkowskian expansion.

II. WARM-UP: SCATTERING
IN SCHWARZSCHILD METRICS

Before we turn to the main subject, it is instructive to
describe our method in a far simpler setting that still retains
the important features. We therefore first consider the
computationally easier problem of scattering around a
Schwarzschild black hole. This will highlight the impor-
tance of choosing suitable variables to simplify the
calculation.
Consider first a scattering problem in a spherically

symmetric effective potential VeffðrÞ for which the radial
momentum reads

pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ −

L2

r2
− VeffðrÞ

r
; ð1Þ

where p∞ is the three-momentum at radial infinity and L is
the conserved angular momentum. As is well known from
analytical mechanics (say, from Hamilton-Jacobi theory),

the scattering angle χ in such a situation follows from the
relation

χ

2
¼ −

∂

∂L

Z
∞

rm

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ −

L2

r2
− VeffðrÞ

r
−
π

2
; ð2Þ

where rm is the turning point of the orbit. This is
determined by the condition prðrmÞ ¼ 0, i.e., at the (real
and positive) point where the integrand vanishes. One may
legitimately move the derivative with respect to L inside the
integral since the boundary term at rm vanishes by
definition. The scattering angle can thus be computed from

χ

2
¼ L

Z
∞

rm

dr
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ − L2

r2 − VeffðrÞ
q −

π

2
; ð3Þ

which not only appears to depend on rm but even seems to
be singular due to the integrand diverging at the end point.
As is well known, these subtleties are only apparent and the
whole expression is completely well defined. In reality,
though, except for a very small set of integrable potentials
VeffðrÞ, we wish to find the scattering angle as a perturba-
tive series in the strength of the potential. Compact
solutions to this problem were recently provided in
Ref. [69], by means of Firsov’s inversion formula, and
in Ref. [70], where the scattering angle is given in terms of
a series of finite integrals, with one new integral appearing
for each order in perturbation theory. We follow the latter,
as we found it amenable to the introduction of spin effects.
The final result reads

χ ¼
X∞
k¼1

2b
k!

Z
∞

0

du

�
d
du2

�
k ½VeffðrÞ�kr2ðk−1Þ

p2k
∞

: ð4Þ

Here r2 ¼ u2 þ b2 and the impact parameter b has been
introduced in the usual way by b ¼ L=p∞. Note that all
integrals now run along the full positive line, and they thus
become elementary for power-law potentials. One impor-
tant example which immediately fits into this framework is
that of scattering in a Schwarzschild metric expressed in
isotropic coordinates, and thus with line element

ds2 ¼ −
�
1þ GM

2r

1 − GM
2r

�
2

dt2

þ
�
1þ GM

2r

�
4

ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ: ð5Þ

This translates into the effective potential [71]

VeffðrÞ¼m2ðγ2−1Þ−m2

�
1þGM

2r

�
4
�
γ2
�
1þGM

2r

1−GM
2r

2
�
−1

�
:

ð6Þ
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Here γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the usual Lorentz contraction factor

and we have chosen the scattering to take place in the
equatorial plane of θ ¼ π=2. Writing down the
Schwarzschild scattering angle to any order in G is thus
straightforward upon expansion of the potential in a power
series and subsequent use of Eq. (4).
We now wish to generalize the derivation of Ref. [70] so

that it is amenable to more general metrics. We will follow
the standard approach based on solving for the radial
momentum pr. However, for general metrics, and in
particular also for the Schwarzschild metric in coordinates
different from isotropic, this will not lead to an expression of
the simple form (1). In order to retain as many as possible of
the simplifying features of the approach followed in
Ref. [70] we will make a suitable change of variables to a
metric which in the limit of no interactions (G → 0) reduces
to the metric of flat Minkowski space in spherical coor-
dinates. As a consequence, we recover the simple relation

pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ − L2=r2

q
ð7Þ

in that limit. We will refer to metrics with this property as
being in normal form. An example will best illustrate what
we mean. To this end, let us consider the Schwarzschild
metric, but now written in standard Schwarzschild coor-
dinates

ds2 ¼ −
�
1þ rs

r

�
2

dt2

þ
�
1 −

rs
r

�
−1
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð8Þ

where we have defined rs ≡ 2GM. For the obvious choice
θ ¼ π=2 the metric leads to

p2
r ¼

ðE2 −m2Þr3 þm2r2rs − L2ðr − rsÞ
rðr − rsÞ2

: ð9Þ

In the free case, the radial momentum Eq. (9) reduces to
p2
r ¼ p2

∞ − L2=r2. It is thus possible to separate out this part
and write, equivalently,

p2
r ¼p2

∞−
L2

r2
− rs

�
m2ðr− rsÞ−E2ð2r− rsÞþL2

r2 ðr− rsÞ
ðr− rsÞ2

�
;

ð10Þ

where the last term involving the bracket clearly vanishes as
G → 0, and we have simply added and subtracted L2=r2.
The advantage of this rewriting is that it makes it natural to
interpret the remainder

Uðr; LÞ≡ rs
m2ðr − rsÞ − E2ð2r − rsÞ þ L2

r2 ðr − rsÞ
ðr − rsÞ2

ð11Þ

formally as an L-dependent potential. The Schwarzschild
metric in these coordinates is therefore already of normal
form, and the scattering angle can thus still be written as

χ

2
¼ −

∂

∂L

Z
∞

rm

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ −

L2

r2
−Uðr; LÞ

r
−
π

2
; ð12Þ

but the derivative will now also act on Uðr; LÞ. We hence
need to generalize the derivation of Ref. [70] to this new
situation. Moreover, we discover that the L derivative of
Eq. (12), which is so natural from the canonical formalism,
can be disposed of so as to open up for more general
situations including the spin of the probe. Let us jump ahead
to the final result which turns out to be surprisingly simple.
In order to introduce it, we write the scattering angle in
the form

χ

2
¼

Z
∞

rm

dr
dϕ
dr

−
π

2

¼ −
Z

∞

rm

dr
hðrÞ
p∞

�
1 − b2=r2 −

Uðr; bÞ
p2
∞

�
−1=2

−
π

2
; ð13Þ

where

hðrÞ≡ −
dϕ
dr

pr: ð14Þ

This rather trivial rewriting in fact anticipates, in simple
cases, a first order derivative representation of χ in terms of
the radial action as in Eq. (12). Moreover, it allows for
greater flexibility regarding the effective potentials we can
handle. In terms of these quantities, the scattering angle is
given by

χ ¼ −2
X∞
n¼0

Z
∞

0

du

�
d
du2

�
n
hðrÞ r

2nUðr; bÞn
n!p2nþ1

∞
− π;

r2 ¼ u2 þ b2: ð15Þ

The function hðrÞ needs to be determined for each specific
scattering situation but it often takes very simple forms. As
an example, for the Schwarzschild metric in isotropic
coordinates it is simplyhðrÞ ¼ −bp∞=r2. The identification
of hðrÞ is useful for both nonspinning and spinning probes,
but it is particularly suited for the latter, where there may be
no obvious way in which to relate the integrand of the
scattering angle to a first-order derivative. As detailed in our
derivation below, the formula (43) is valid for any hðrÞ
which is real analytic on the interval r ∈ ½rm;∞½, and falls
off as limr→∞hðrÞ ∼ 1=rn, with n ≥ 2. These conditions are
always met for the cases considered in this paper.
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A. A compact formula for the scattering angle
in metrics of normal form

Although the final result Eq. (43) is surprisingly simple,
the steps leading to it are involved and we display them now
with a fair amount of detail. Let us first introduce some
general notation. For any nontrivial metric, pr will depend
on G and this dependence carries all of the information
about the scattering angle. We define T ≡ p2

r jG→0 so that
we can write

p2
r ¼ TðrÞ −UðrÞ ð16Þ

where, by construction, UðrÞ carries all the G dependence.
Both T andU depend on the radial coordinate r as indicated
but may also in general depend on orbital angular momen-
tum L and any other parameters of the metric. The function
U is a close analog of a classical effective potential
associated with the given metric (for some choice of
coordinates). If U carries no L dependence, then the
method used in Ref. [70] can straightforwardly be used
to derive the scattering angle in perturbation theory. Here
we consider its generalization to the L-dependent setting,
focusing on a formulation that will encompass the case of
spinning probes.
After having introduced this notation, we now return to

the case of a metric which we assume is already in normal
form. As explained above, this means that TðrÞ takes the
simple form

TðrÞ ¼ p2
∞ −

L2

r2
ð17Þ

in those coordinates. We recall that we can then write the
scattering angle as

χ

2
¼

Z
∞

rm

dr
dϕ
dr

−
π

2

¼ −
Z

∞

rm

dr
hðrÞ
p∞

�
1 − b2=r2 −

Uðr; bÞ
p2
∞

�
−1=2

−
π

2
;

dϕ
dr

¼ −
hðrÞ
pr

; ð18Þ

with hðrÞ assumed to obey the analyticity and falloff
requirements listed above. This will be the starting point
for our derivation.
Now, using the condition prðrmÞ ¼ 0, and following the

derivation of Ref. [70], we find it convenient to isolate

b2

r2
¼ r2m

r2
−
r2m
r2

Uðrm; bÞ
p2
∞

; ð19Þ

and insert this into Eq. (18). This gives

χ=2¼−
Z

∞

rm

dr
hðrÞ
p∞

�
1−

r2m
r2

−Wðr;bÞ
�−1=2

−π=2; ð20Þ

where

Wðr; bÞ≡ 1

p2
∞

�
Uðr; bÞ − r2m

r2
Uðrm; bÞ

�
: ð21Þ

Changing integration variable to u through r2 ¼ u2 þ r2m
(where u ≥ 0), we get

χ

2
¼ −

Z
∞

0

du
hðrÞ
p∞

�
1 −

r2

u2
Wðr; bÞ

�−1=2
−
π

2
; ð22Þ

where r just stands for r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ r2m

p
. Use of the binomial

expansion

ð1þ xÞ−1=2 ¼ 1þ
X∞
n¼0

� −1=2
nþ 1

�
xnþ1

¼ 1þ
X∞
n¼0

ð−1Þnþ1ð2nþ 1Þ!!
2nþ1ðnþ 1Þ! xnþ1; ð23Þ

yields the following expression for the angle

χ

2
¼ F0ðrmÞ −

X∞
n¼0

ð2nþ 1Þ!!
2nþ1ðnþ 1Þ!

Z
∞

0

du
1

u2ðnþ1Þ

×

�
hðrÞ
p∞

r2ðnþ1ÞWðr; bÞnþ1

�
−
π

2
; ð24Þ

where we have defined the function

F0ðrmÞ≡ −
1

p∞

Z
∞

0

du hðrÞ r2 ¼ u2 þ r2m: ð25Þ

Although this integral is often elementary (such as for the
Schwarzschild metric in isotropic coordinates), we do not
need to evaluate it explicitly. This will become clear below.
In fact, this function, being dependent on rm must disappear
in the end since the scattering angle should not depend on
rm. The remaining terms above can be rewritten by means
of the integration-by-parts identity [72],

Z
∞

0

du

u2ðnþ1ÞfðuÞ¼
1

ð2nþ1Þ!!
Z

∞

0

du

�
1

u
d
du

�
nþ1

fðuÞ

¼ 2nþ1

ð2nþ1Þ!!
Z

∞

0

du
�

d
du2

�
nþ1

fðuÞ; ð26Þ

valid for any C∞ function f for which fðuÞ=u2nþ1 vanishes
at zero and infinity. On account of our assumptions about
hðrÞ, Eq. (26) may be applied to Eq. (24) to obtain
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χ

2
¼ F0ðrmÞ −

X∞
n¼0

Δn −
π

2
; ð27Þ

where we have defined

Δn ≡ 1

ðnþ 1Þ!
Z

∞

0

du

�
d
du2

�
nþ1

�
hðrÞ
p∞

r2ðnþ1ÞWðr; bÞnþ1

�
:

ð28Þ

Furthermore, writing

Wðr;bÞnþ1¼Uðr;bÞnþ1

p2ðnþ1Þ
∞

ð1−xÞnþ1 with x≡−
r2m
r2

Uðrm;bÞ
Uðr;bÞ ;

ð29Þ

we can again Taylor expand, this time in powers of x, to get

Δn ¼
Z

∞

0

du

�
d
du2

�
nþ1Xnþ1

k¼0

1

ðn − kþ 1Þ!k!
hðrÞ
p∞

×
r2ðnþ1ÞUðr; bÞn−kþ1

p2ðnþ1Þ
∞

�
−
r2m
r2

Uðrm; bÞ
�
k

; ð30Þ

and once again we can use Eq. (19) to substitute the
Uðrm; bÞ in the square brackets. This results in

Δn ¼
Xnþ1

k¼0

ðb2 − r2mÞk
k!

Z
∞

0

du

�
d
du2

�
nþ1

×
hðrÞ
p∞

r2ðn−kþ1ÞUðr; bÞn−kþ1

ðn − kþ 1Þ!p2ðn−kþ1Þ
∞

: ð31Þ

Note that the only explicit rm dependence in the integrand
occurs through r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ r2m

p
. Since r is symmetric in r2m

and u2, we can exchange derivatives in u2 for derivatives in
r2m, and consider the identity

�
d
du2

�
nþ1

¼
�

d
dr2m

�
k
�

d
du2

�
n−kþ1

: ð32Þ

Applying this to the sum in Eq. (31), we find

Δn ¼
Xnþ1

k¼0

Δn;kðrmÞ; ð33Þ

where we have defined

Δn;k ≡ ðb2 − r2mÞk
k!

�
d

dr2m

�
k
Z

∞

0

du

�
d
du2

�
n−kþ1 hðrÞ

p∞

×
r2ðn−kþ1ÞUðr; bÞn−kþ1

ðn − kþ 1Þ!p2ðn−kþ1Þ
∞

: ð34Þ

We observe that the term with k ¼ nþ 1 is U independent.
Crucially, as we shall demonstrate next, this fact will
make the apparent rm dependence disappear, canceling the
rm-dependent piece F0ðrmÞ. We start by evaluating the
k ¼ nþ 1 and F0ðrmÞ terms together, and introduce
(the reason for the factor 1=2 on the left-hand side will
become clear shortly),

1

2
ζ−1 ≡ F0ðrmÞ −

X∞
n¼0

Δn;nþ1ðrmÞ: ð35Þ

Consider now the Taylor expansion of F0ðrmÞ around
rm ¼ b. This reads

F0ðbÞ ¼ −
X∞
n¼0

ðb2 − r2mÞn
n!

�
d

dr2m

�
n
Z

∞

0

du
hðrÞ
p∞

: ð36Þ

Furthermore, we note that the sum
P∞

n¼0Δn;nþ1 can be
rewritten as

X∞
n¼0

Δn;nþ1 ¼
X∞
n¼0

ðb2 − r2mÞnþ1

ðnþ 1Þ!
�

d
dr2m

�
nþ1

Z
∞

0

du
hðrÞ
p∞

;

¼ −
Z

∞

0

du
hðrÞ
p∞

þ
X∞
n¼0

ðb2 − r2mÞn
n!

�
d

dr2m

�
n

×
Z

∞

0

du
hðrÞ
p∞

; ð37Þ

where in the second line we have added and subtracted
F0ðrmÞ. Making use of Eq. (36) and the definition of
F0ðrmÞ we find

X∞
n¼0

Δn;nþ1 ¼ F0ðrmÞ − F0ðbÞ: ð38Þ

Inserting this into Eq. (35) results in 1
2
ζ−1 ¼ F0ðbÞ. The rm

dependence has explicitly disappeared from this term. It
follows from the above that the scattering angle can be
written in the form

χ − ζ−1 þ π ¼ −2
X∞
n¼0

Xn
k¼0

ðb2 − r2mÞk
k!

�
d

dr2m

�
k

×
Z

∞

0

du

�
d
du2

�
n−kþ1 hðrÞ

p∞

×
r2ðn−kþ1ÞUðr; bÞn−kþ1

ðn − kþ 1Þ!p2ðn−kþ1Þ
∞

: ð39Þ

To simplify our notation, we now define
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ζnðxÞ≡ −2
Z

∞

0

du

�
d
du2

�
nþ1 hðrÞ

p∞

r2ðnþ1ÞUðr; bÞnþ1

ðnþ 1Þ!p2ðnþ1Þ
∞

;

r2 ¼ u2 þ x2 ð40Þ

so that

χ − ζ−1 þ π ¼
X∞
n¼0

Xn
k¼0

ðb2 − r2mÞk
k!

�
d

dr2m

�
k
ζn−kðrmÞ;

¼
X∞
n¼0

X∞
l¼0

ðb2 − r2mÞl
l!

�
d

dr2m

�
l
ζnðrmÞ; ð41Þ

which we recognize as the Taylor expansion of ζnðbÞ
around the point rm. In this way, the turning point rm has
explicitly disappeared from all terms of the scattering
angle, as it should. No regularization of the involved
integrals and no use of ad hoc rules has been needed.
The final formula for the scattering angle thus becomes

χ þ π ¼
X∞
n¼0

ζnðbÞ þ ζ−1; ð42Þ

where ζnðbÞ is given in Eq. (40) evaluated, as we see, at
r2 ¼ u2 þ b2. The choice of notation for ζ−1 is now clear,
as this is precisely ζn from Eq. (40) evaluated at x ¼ b and
n ¼ −1. Thus we can write Eq. (42) as

χ ¼ −2
X∞
n¼0

Z
∞

0

du

�
d
du2

�
n
hðrÞ r

2nUðr; bÞn
n!p2nþ1

∞
− π;

r2 ¼ u2 þ b2: ð43Þ

This is a very general result, valid for any well-behaved
hðrÞ as stipulated in precise terms above. As we shall see
next, it will apply to both scalar and spinning test bodies up
to cubic order in the spin of the test particle S and we see no
obstacle towards it being applicable to any order in the spin
of the probes. The essential ingredient is that the spin of the
test body is considered in perturbation theory. Note that
when interactions are turned off, the function hðrÞ reduces
to hðrÞ ¼ −bp∞=r2 and the n ¼ 0 term in the sum above
thus produces zero scattering angle up to terms that vanish
when interactions are set to zero.
Having derived this general expression for the scattering

angle, it is of interest to see the form it takes when the
scattering angle can be expressed in terms of an L
derivative of the radial action as in Eq. (12). We will then
also see how it relates to the formula derived in Ref. [70] for
the special case where Uðr; bÞ does not depend on b.
Carrying out the derivative in Eq. (12), we see that

dϕ
dr

¼ −
∂

∂L
pr ¼

1

pr

�
bp∞

r2
þ 1

2p∞

∂

∂b
Uðr; bÞ

�
; ð44Þ

and thus

hðrÞ ¼ −
�
bp∞

r2
þ 1

2p∞

∂

∂b
Uðr; bÞ

�
: ð45Þ

Let us define

ϒðr; bÞ≡ ∂

∂b
Uðr; bÞ: ð46Þ

Inserting hðrÞ from Eq. (45) into (43), we get

χ ¼ 2
X∞
n¼0

Z
∞

0

du

�
d
du2

�
n
�
bp∞

r2
þ 1

2p∞
ϒðr; bÞ

�

×
r2nUðr; bÞn
n!p2ðnþ1Þ−1

∞
− π;

¼ 2b
X∞
n¼0

Z
∞

0

du

�
d
du2

�
nþ1 r2nUðr; bÞnþ1

ðnþ 1Þ!p2ðnþ1Þ
∞

þ
X∞
n¼0

Z
∞

0

du

�
d
du2

�
n
ϒðr; bÞ r

2nUðr; bÞn
n!p2ðnþ1Þ

∞
; ð47Þ

where we recall the notation r2 ¼ u2 þ b2. Note that the
n ¼ 0 term from the free part has canceled the explicit π,
and we have relabeled the remaining terms accordingly.
This is a valid and compact form for the scattering angle,
but we can simplify it further by using the identity (which is
valid for r2 ¼ u2 þ b2)

d
db

½r2nUðr; bÞnþ1� ¼ ðnþ 1Þr2nϒðr; bÞUðr; bÞn

þ 2b
d
du2

½r2nUðr; bÞnþ1�: ð48Þ

Substituting this into Eq. (47) we obtain the compact
expression

χ ¼
X∞
n¼0

Z
∞

0

du

�
d
du2

�
n d
db

�
r2nUðr; bÞnþ1

ðnþ 1Þ!p2ðnþ1Þ
∞

�
;

r2 ¼ u2 þ b2: ð49Þ

In the special case of a b-independentUðr; bÞ this is seen to
reduce to the formula (4). Remarkably, whether based on
the general formula (43) or on the special case (49), we
have found that these final results for the scattering angle
are almost as simple as those given in Ref. [70] even though
Uðr; bÞ, which effectively acts as a potential, here we can
depend on angular momentum L (or b ¼ L=p∞). The more
general representation (43) is valid even when we cannot
obviously write the scattering angle as an L-derivative of
the radial action.
If we substitute the specific form of Uðr; LÞ for

Schwarzschild coordinates as in Eq. (11) we do indeed
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recover the correct Schwarzschild scattering angles from
Eq. (43). To illustrate this point, we perform the Taylor
expansion of the Uðr; bÞ in Eq. (11) to second order in G.
This results in

Uðr; bÞ ¼ U1ðr; bÞ þ U2ðr; bÞ þOðG3Þ

¼ −
ð2E2 −m2Þr2 − L2

r3
rs −

ð3E2 −m2Þr2 − L2

r4
r2s

þOðG3Þ: ð50Þ

To leading order in G only the single term U1ðr; bÞ
contributes to the scattering angle and we thus get

χ1 ¼
Z

∞

0

du
d
db

1

p2
∞
U1ðr; bÞ

¼ 2GMð2E2 −m2Þ
bp2

∞

¼ 2ð2γ2 − 1ÞGMm2

bp2
∞

; ð51Þ

where E2 ¼ γ2m2 and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor

of the test particle with velocity v at infinity. This is the
well-known leading order result. At second order inG there
are two contributions: the U1 term from n ¼ 1 in the sum
(49) and the U2 term from n ¼ 0 part. The second-order
contribution χ2 to the scattering angle is thus

χ2 ¼
Z

∞

0

du
∂

∂b

�
d
du2

�
r2U2

1ðr; bÞ
2p4

∞
þ
Z

∞

0

du
∂

∂b
U2ðr; bÞ

p2
∞

¼ r2s

�
πð6E2 − 2m2 − p2

∞Þ
4p2

∞b2
−
πð8E2 − 4m2 − 3p2

∞Þ
16b2p2

∞

�

¼ 4G2M2m2π

�
5γ2 − 1

4p2
∞b2

−
5γ2 − 1

16p2
∞b2

�

¼ 3G2M2m2πð5γ2 − 1Þ
4p2

∞b2
ð52Þ

which is the known answer. In Table I below we list the
contributions up to and including tenth order inG computed
straightforwardly in this manner, but expressed in terms of
velocity v rather than γ for the sake of compactness.

III. SCATTERING IN KERR METRICS

We next consider applying the formula we found in the
previous section to the scattering of a small nonspinning
probe around a Kerr black hole. A standard choice for the
metric is Boyer-Lindquist coordinates ðt; r;ϕÞ, for which,
when restricted to the equatorial θ ¼ π=2 plane, the metric
reads

gμν ¼

0
BBB@

−ð1 − rs
r Þ 0 − rsa

r

0 r2

r2−rsrþa2 0

− rsa
r 0

ðrþrsÞa2þr3

r

1
CCCA: ð53Þ

Letting a test body orbit in this θ ¼ π=2 plane, it will have
its orbital angular momentum L conserved, and it will
therefore remain in that plane. This allows for a well-
defined scattering angle and it will also allow us to rewrite
the Kerr metric in normal form. We find the radial
momentum pr from the Hamilton-Jacobi equation

p2
r ¼

rðp2
∞r3 þm3r2rs þ ða2p2

∞ − L2Þrþ rsðEa − LÞ2Þ
ða2 þ r2 − rsrÞ2

;

ð54Þ

and we can write it in the form p2
r¼Tðr;L;aÞ−Uðr;L;aÞ,

with

Tðr; L; aÞ≡ r2

r2 þ a2

�
p2
∞ −

L2

r2 þ a2

�
; ð55Þ

which indeed is independent of G, and

TABLE I. Scattering angle of a nonspinning test particle in a Schwarzschild background up to 10th order in G. χn is the Gn

contribution to the full scattering angle χ ¼ P
n χn.

n χn= GnMn

bnv2n

1 2ðv2 þ 1Þ
2 ð3π=4Þv2ðv2 þ 4Þ
3 ð2=3Þð5v6 þ 45v4 þ 15v2 − 1Þ
4 ð105π=64Þv4ðv4 þ 16v2 þ 16Þ
5 ð2=5Þð21v10 þ 525v8 þ 1050v6 þ 210v4 − 15v2 þ 1Þ
6 ð1155π=256Þv6ðv6 þ 36v4 þ 120v2 þ 64Þ
7 ð2=35Þð429v14 þ 21021v12 þ 105105v10 þ 105105v8 þ 15015v6 − 1001v4 þ 91v2 − 5Þ
8 ð45045π=16384Þv8ð5v8 þ 320v6 þ 2240v4 þ 3584v2 þ 1280Þ
9 ð2=63Þð2431v18 þ 196911v16 þ 1837836v14 þ 4288284v12 þ 2756754v10 þ 306306v8 − 18564v6 þ 1836v4 − 153v2 þ 7Þ
10 ð2909907π=65536Þv10ðv10 þ 100v8 þ 1200v6 þ 3840v4 þ 3840v2 þ 1024Þ
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Uðr; L; aÞ≡ −
½ð2E2 −m2Þr6 þ ðm2 − E2Þr5rs þ ðð4E2 −m2Þa4 − 4ELa3Þr2�rrs

ða2 þ r2 − rsrÞ2ða2 þ r2Þ2

−
½ðð5E2 − 2m2Þa2 − 2ELa − L2Þr4 − rsððE2 −m2Þa2 − L2Þr3 þ a4ðEa − LÞ2�rrs

ða2 þ r2 − rsrÞ2ða2 þ r2Þ2 ; ð56Þ

which carries all G dependence. Although well separated
into T and U pieces, we notice that T is not of the free kind
shown in Eq. (17). Thus, Boyer-Lindquist coordinates are
not of normal form and we need to choose different
coordinates in order for our formalism to be applicable.
As noted in the previous section, the needed change of
integration variables in the radial action can equivalently be
viewed as a coordinate transformation away from Boyer-
Lindquist coordinates, thus leading to a different metric.
Indeed, in the G → 0 limit the Boyer-Lindquist metric

Eq. (53) takes the form

gμν ¼

0
BB@

−1 0 0

0 r2

r2þa2 0

0 0 a2 þ r2

1
CCA; ð57Þ

which does not correspond to flat Minkowski space in
ordinary polar coordinates. Since the Kerr metric is
diagonal and only depends on the radial coordinate r in
this limit, we can find a coordinate change r → ρðrÞ, which
allows us to recover the free structure of T. This change is
given simply by

ρ2 ¼ r2 þ a2: ð58Þ
For this new radial coordinate ρ the Kerr metric takes the
form

g̃μν ¼

0
B@

−1 0 0

0 1 0

0 0 ρ2

1
CA ð59Þ

in the G → 0 limit, corresponding to a metric in normal
form. The transformation Eq. (58), also automatically
produces the needed

Tðρ; L; aÞ ¼ p2
∞ −

L2

r2
: ð60Þ

Note that the free part of the Kerr metric becomes
independent of the black-hole spin a in these coordinates.
The radial momentum pr transforms like

pρ ¼
dr
dρ

pr ð61Þ

under this coordinate change, and so we obtain the new
effective potential

Ũðρ; b; aÞ ¼
�
dr
dρ

�
2

Uðr; b; aÞ: ð62Þ

We may thus write the formula for the scattering angle (49)
in terms of ρ as

χ¼
X∞
n¼0

Z
∞

0

du
∂

∂b

�
d
du2

�
n ρ2nŨðρ;bÞnþ1

ðnþ1Þ!p2ðnþ1Þ
∞

; ρ2¼u2þb2:

ð63Þ

As a first quick check, we compute the scattering angle χ1
to leading order in G using Eq. (63). We find

χ1 ¼
2GMðγ2ð2b − 2avÞ − bÞ

γ2v2ðb2 − a2Þ ; ð64Þ

where v is the asymptotic velocity of the test particle. This
agrees with the scattering angle computed in Ref. [41]
when restricted to the test-body limit. We emphasize that as
in Ref. [41] our result gives the scattering angle to all orders
in the spin of the black hole a. It is easy to verify that in the
lightlike limit v → 1, γ → ∞, the result above reproduces
the terms of the expansion provided in Ref. [68].
Although the integrals are slightly more involved

than those of Schwarzschild scattering, the final results
for massive-probe scattering are relatively simple. In
Table II we list results up to and including sixth order in
G (this table can readily be extended based on our general
formula). Again, expanding in powers of a and taking
the massless limit this reproduces the well-known light-
bending formulas for Kerr metrics.
We note that the resulting scattering angle contribution

χn to any order in G displays some simple patterns. First,
the scattering angle naturally has emerged in a form that
resums all orders in a. Second, to order n one may identify
the prefactor

cn ≡ GnMn

ðb2 − a2Þð3n−1Þ=2v2n ; ð65Þ

which accounts for the all-order-in-spin behavior. We also
note that even orders in powers of G are relatively simpler,
and one can easily identify more structural patterns in them.
To be concrete, we observe that after factorizing the term in
Eq. (65), the angle takes the form
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χn=cn ¼ ðd1;nπ=a2nÞ
�
d2;nv2nðb2 − a2Þð3n−1Þ=2

þ ða − bvÞnþ1
X2n−2
l¼0

alb2n−2−lfn;lðvÞ
�
; ð66Þ

where di;n are numerical constants, and fn;kðvÞ is a poly-
nomial in v of degree n − 1 for even l or n − 2 for odd l.

IV. ADDING SPIN TO THE PROBE

It is well known that it is possible to consider a probe
limit in which the mass is negligible but the (rescaled) spin
of the probe is finite. In this section we extend the scattering
angle calculation to the case of a spinning probe in a Kerr
metric. We will be able to derive results up to and including
second order in the probe spin.
The description of the motion of extended bodies in

general relativity is a complicated problem, and one usually
needs to resort to the use of approximation schemes. For
example, one may utilize a multipolar approximation
method originally devised by Tulczyjew [73] to explicitly
work out the equations of motion. This method was applied
by Steinhoff and Puetzfeld in Ref. [74], using a multipole
approximation up to the quadrupolar order, i.e., keeping the
covariant monopole tμν, dipole tμνα and quadrupole tμναβ

moments. They write the stress-energy tensor Tμν in the
manifestly covariant form

ffiffiffiffiffiffi
−g

p
Tμν ¼

Z
dτ

�
tμνδð4Þ−∇αðtμναδð4ÞÞþ

1

2!
∇αβðtμναβδð4ÞÞ

�
:

ð67Þ

Here τ is the proper time of the worldline xρðτÞ, and
δð4Þ ≡ δðyρ − xρðτÞÞ. The dynamics of the multipolar test
body follow from demanding that the stress-energy tensor
(67) is covariantly conserved

∇νTμν ¼ 0: ð68Þ

This is sometimes referred to as Mathisson’s variational
equations of mechanics [75,76] and imposes certain con-
ditions on the multipole moments. Building on Tulczyjew’s
method [73], Eq. (68) is explicitly evaluated in Ref. [74]
where it was found that the multipole tensors tμν… can be
expressed in terms of a vector pμ, an antisymmetric tensor
Sμν, and Dixon’s reduced moment Jμναβ, which has the
same symmetries as the Riemann tensor. In terms of them,
the stress-energy tensor becomes [74]

ffiffiffiffiffiffi
−g

p
Tμν ¼

Z
dτ

�
_xðμpνÞδð4Þ þ

1

3
Rαβρ

ðμJνÞρβαδð4Þ

þ∇αð_xðμSνÞαδð4ÞÞ −
2

3
∇α∇βðJμαβνδð4ÞÞ

�
; ð69Þ

where _xμ is the tangent to the worldline, Rμνρσ is the
Riemann tensor (defined via 2∇½μ∇ν�wρ ¼ Rμνρ

σwσ), where
the (square) brackets denote (anti)symmetrization of
enclosed indices [e.g., AðμνÞ ¼ 1

2
ðAμν þ AνμÞ]. The vector

pμ and tensor Sμν are then identified as the linear momen-
tum vector and spin tensor of the object (which now play
the role of monopole and dipole moment). The motion
of a multipolar test body (or probe) in a generic curved
background spacetime is described by the two equations
governing the evolution of its momentum and spin along

TABLE II. Scattering angle of a nonspinning test particle in a Kerr background up to sixth order in G. χn is the Gn contribution to the
full scattering angle χ ¼ P

n χn.

n χn=
GnMn

v2nðb2−a2Þð3n−1Þ=2

1 2½−2avþ bð1þ v2Þ�
2 ðπ=2a2Þ½ðb2 − a2Þ5=2v4 þ ða − bvÞ3½−4a2vþ 3abþ b2v��

3
ð2=3Þ½2a5vð3v4 − 10v2 − 9Þ − 3a4bðv6 − 15v4 − 45v2 − 5Þ − 4a3b2vð15v4 þ 70v2 þ 27Þ þ
2a2b3ð11v6 þ 135v4 þ 105v2 þ 5Þ − 18ab4vð5v4 þ 10v2 þ 1Þ þ b5ð5v6 þ 45v4 þ 15v2 − 1Þ�

4
ð3π=16a4Þ½2ðb2 − a2Þ11=2v8 þ ða − bvÞ5½−8a6vð14v2 þ 5Þ þ 5a5bð72v2 þ 7Þ þ
a4b2vð16v2 − 305Þ − 5a3b3ð11v2 − 14Þ − a2b4vð11v2 − 30Þ þ 10ab5v2 þ 2b6v3��

5

ð2=15Þ½−2a9vð15v8 − 60v6 þ 378v4 þ 900v2 þ 175Þ þ 15a8bðv10 − 15v8 þ 210v6 þ 1050v4 þ 525v2 þ 21Þ þ
8a7b2vð45v8 − 780v6 − 6426v4 − 6300v2 − 875Þ − 140a6b3ðv10 − 45v8 − 630v6 − 1050v4 − 315v2 − 9Þ−

84a5b4vð45v8 þ 1020v6 þ 2814v4 þ 1500v2 þ 125Þ þ 14a4b5ð67v10 þ 3375v8 þ 15750v6 þ 14070v4 þ 2295v2 þ 27Þ−
1400a3b6vð9v8 þ 84v6 þ 126v4 þ 36v2 þ 1Þ þ 36a2b7ð29v10 þ 875v8 þ 2450v6 þ 1190v4 þ 65v2 − 1Þ−

50ab8vð63v8 þ 420v6 þ 378v4 þ 36v2 − 1Þ þ 3b9ð21v10 þ 525v8 þ 1050v6 þ 210v4 − 15v2 þ 1Þ�

6

ð5π=128a6Þ½8ðb2 − a2Þ17=2v12 þ ða − bvÞ7½−4a10vð1584v4 þ 1540v2 þ 189Þ þ 7a9bð5720v4 þ 2808v2 þ 99Þ−
a8b2vð2200v4 þ 85232v2 þ 17829Þ þ 14a7b3ð260v4 þ 5391v2 þ 330Þ − 2a6b4vð334v4 − 1491v2 þ 14070Þ þ

21a5b5ð85v4 − 272v2 þ 176Þ þ a4b6vð255v4 − 1904v2 þ 1680Þ − 28a3b7v2ð17v2 − 24Þ −
4a2b8v3ð17v2 − 56Þ þ 56ab9v4 þ 8b10v5��
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the worldline, which are also obtained by evaluating
Eq. (68) in Ref. [74]. Through the quadrupolar order in
the multipole expansion, they read

Dpμ

dτ
þ 1

2
Rμνρσ _xνSρσ ¼ −

1

6
∇μRκλρσJκλρσ; ð70aÞ

DSμν

dτ
− 2p½μ _xν� ¼ 4

3
R½μ

λρσJν�λρσ: ð70bÞ

These are the Mathisson-Papapetrou-Dixon equations
[75–77]. They may also be derived from (68) without
the assumption of a distributional Tμν (see e.g., Ref. [78]),
or alternatively from an effective action (see Ref. [79] for a
derivation following the effective field theory approach of
[80], and Refs. [81,82] for more recent examples). For a
specific quadrupole tensor given as a function of pμ and
Sμν, a closed set of evolution equations is completed by the
imposition of a “spin supplementary condition.” We will
here employ the Tulczyjew-Dixon choice [73,77],

pμSμν ¼ 0; ð71Þ

which, together with (70), determines the worldline tangent
_xμ in terms of the other quantities. Given a Killing vector
field ξμ of the background spacetime, and regardless of the
choice of the spin supplementary condition, an important
property of Eqs. (70a) and (70b) is that the quantity

Pξ ¼ ξμpμ þ
1

2
Sμν∇μξν ð72Þ

is conserved along the worldline, i.e., DPξ=dτ ¼ 0. This
holds to all orders in the multipole expansion [78]. The
system of Eqs. (70)–(71) is explicitly invariant under
reparametrizations of the worldline, but for simplicity we
will here adopt the condition _x2 ≡ _xμ _xμ ¼ −1, making τ the
proper time.
A form of the quadrupole tensor J appropriate to

describe a spin-induced quadrupole, quadratic in the spin,
and assuming Eq. (71) is given by

Jμνρσ ¼ −3
ð−p2Þ3=2 p

½μSν�p½ρSσ�; ð73Þ

for the case of a black-hole probe [83]. We will restrict
ourselves to such probes here but stress that probes with
internal and finite-size structure can be treated in this
formalism as well. Here, Sμ is the Pauli-Lubanski spin
vector,

Sμ ¼ −
1

2
ϵμνρσ

pνffiffiffiffiffiffiffiffiffi
−p2

p Sρσ ⇔ Sμν ¼ ϵμνρσ
pρffiffiffiffiffiffiffiffiffi
−p2

p Sσ; ð74Þ

with pμSμ ¼ 0. It has invariant magnitude

S2 ≡ SμSμ ¼
1

2
SμνSμν: ð75Þ

We next solve for the worldline tangent _xμ by covariantly
differentiating (71) with respect to τ and inserting
Eqs. (70a) and (70b). For our case of a black-hole probe
with its associated spin-induced quadrupole (73), and
working perturbatively in the test body’s spin S, one finds
after a remarkable cancellation the simple relation

_xμ ¼ pμffiffiffiffiffiffiffiffiffi
−p2

p þOðS3Þ; ð76Þ

as noted in Ref. [84]. That is, the tangent is still proportional
to themomentum through this order, for a black hole. Finally,
one can verify from (70) with (73)–(74) that the quantity

m2 ≡ p2 þ Rμνρσ
pμpρ

−p2
SνSρ þOðS3Þ ð77Þ

is conserved to the order shown. Taking the flat space limit,
we identifymwith themass of the scattered probe. All of this
holds in a general curved background.
We now restrict ourselves to the background of a Kerr

spacetime outside a black hole of mass M and spin Ma in
Boyer-Lindquist coordinates xμ ¼ ðt; r; θ;ϕÞ. We again
consider the motion in the equatorial plane θ ¼ π=2, and
with the probe spin aligned (or antialigned) with the
symmetry axis, Sμ ¼ −Seθμ where eθμ is the unit vector
in the θ direction. We take the constant scalar S to carry a
sign: positive when the probe spin is aligned with the Kerr
spin, and negative when antialigned. Note that the motion
will remain in the equatorial plane only when the spin is
aligned, and the spin will remain aligned only when the
motion is in the equatorial plane. In this case, the evolution
equation (70b) for Sμν is automatically satisfied, and the
content of evolution equation (70a) for pμ is equivalent to
the conservation equations for three constants of motion:
the invariant mass m of (77) and the two constants (72)
from the two Killing vectors of the Kerr background. The
timelike Killing vector tμ ≡ ð∂tÞμ gives the conserved
energy E≡ Pt, and the axial Killing vector ϕμ ≡ ð∂ϕÞμ
gives in this aligned-spin/equatorial case the total angular
momentum J ≡ Pϕ,

E¼−pata−
1

2
Sab∇atb; J¼paϕ

aþ1

2
Sab∇aϕb; ð78Þ

¼ −pt þ
GMS

r3
ffiffiffiffiffiffiffiffiffi
−p2

p ðpϕ þ aptÞ;

¼ pϕ þ
Sffiffiffiffiffiffiffiffiffi
−p2

p �
−pt þ

GMa
r3

ðpϕ þ aptÞ
�
; ð79Þ

where the second line has evaluated in terms of the
momentum components pμ ¼ ðpt; pr; pθ ¼ 0; pϕÞ in
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Boyer-Lindquist coordinates with θ ¼ 0, pθ ¼ 0 and with
the spin tensor as specified above. Similarly evaluating (77)
yields

m2 ¼ −p2 þ GMS2

r3

�
1þ 3

ðpϕ þ aptÞ2
r2ð−p2Þ

�
þOðS3Þ; ð80Þ

with

−p2 ¼−gμνpμpν

¼ ½ðr2þa2Þptþapϕ�2
r2Δ

−
ðpϕþaptÞ2

r2
−
Δ
r2
p2
r ; ð81Þ

and Δ≡ r2 þ a2 − 2GMr. Now the system (78)–(81)
can be solved, working perturbatively in S, for the
momentum components pt, pr and pϕ as functions of

TABLE III. Scattering angle of a spinning probe in a Kerr background up to fifth order in G. χn;k is the GnSk contribution to the full
scattering angle χ ¼ P

n;k χn;k.

ðn; kÞ χn;k=
GnMnðS=mÞk

v2nðb2−a2Þð3nþ2k−1Þ=2

(1, 1) −4ðav − bÞða − bvÞ
(1,2) −4a3vþ 6a2bðv2 þ 1Þ − 12ab2vþ 2b3ðv2 þ 1Þ
(2, 1) ð3π=2Þðav − bÞða − bvÞ½a2ð−2v2 − 3Þ þ 10abv − b2ð3v2 þ 2Þ�

(2, 2)
ð3π=4Þ½−10a5vðv2 þ 1Þ þ a4bð12v4 þ 71v2 þ 12Þ − 90a3b2vðv2 þ 1Þ þ

a2b3ð21v4 þ 128v2 þ 21Þ − 40ab4vðv2 þ 1Þ þ b5ð2v4 þ 11v2 þ 2Þ�

(3, 1)
8ðav − bÞða − bvÞ½a4ð−v4 − 10v2 − 5Þ þ 8a3bvð3v2 þ 5Þ−

2a2b2ð5v4 þ 38v2 þ 5Þ þ 8ab3vð5v2 þ 3Þ − b4ð5v4 þ 10v2 þ 1Þ�

(3, 2)

4½−2a7vð7v4 þ 30v2 þ 11Þ þ 5a6bð3v6 þ 55v4 þ 65v2 þ 5Þ −
6a5b2vð51v4 þ 190v2 þ 63Þ þ 5a4b3ð17v6 þ 265v4 þ 275v2 þ 19Þ−
10a3b4vð53v4 þ 170v2 þ 49Þ þ 3a2b5ð19v6 þ 255v4 þ 225v2 þ 13Þ−

10ab6vð11v4 þ 30v2 þ 7Þ þ b7ð3v6 þ 35v4 þ 25v2 þ 1Þ�

(4, 1)
ð105π=16Þðav − bÞða − bvÞ3½a4ð−8v4 − 20v2 − 5Þ þ 12a3bvð6v2 þ 5Þ −

2a2b2ð10v4 þ 79v2 þ 10Þ þ 12ab3vð5v2 þ 6Þ − b4ð5v4 þ 20v2 þ 8Þ�

(4, 2)

ð15π=32Þða − bvÞ½−2a8vð24v6 þ 320v4 þ 485v2 þ 95Þ þ
7a7bð248v6 þ 1100v4 þ 635v2 þ 30Þ − a6b2vð760v6 þ 15808v4 þ 25345v2 þ 4980Þ þ
105a5b3ð92v6 þ 466v4 þ 276v2 þ 13Þ − 15a4b4vð106v6 þ 2272v4 þ 3860v2 þ 769Þ þ

21a3b5ð405v6 þ 2050v4 þ 1258v2 þ 60Þ − a2b6vð585v6 þ 12140v4 þ 20270v2 þ 4196Þ þ
7ab7ð160v6 þ 775v4 þ 460v2 þ 24Þ − 5b8vð4v6 þ 79v4 þ 124v2 þ 24Þ�

(5, 1)

4ðav − bÞða − bvÞ½a8ðv8 − 36v6 − 378v4 − 420v2 − 63Þ þ
64a7bvðv6 þ 27v4 þ 63v2 þ 21Þ − 4a6b2ð9v8 þ 668v6 þ 3222v4 þ 2268v2 þ 105Þ þ

64a5b3vð27v6 þ 289v4 þ 405v2 þ 63Þ − 2a4b4ð189v8 þ 6444v6 þ 18094v4 þ 6444v2 þ 189Þ þ
64a3b5vð63v6 þ 405v4 þ 289v2 þ 27Þ − 4a2b6ð105v8 þ 2268v6 þ 3222v4 þ 668v2 þ 9Þ þ

64ab7vð21v6 þ 63v4 þ 27v2 þ 1Þ − b8ð63v8 þ 420v6 þ 378v4 þ 36v2 − 1Þ�

(5, 2)

−2½2a11vð11v8 þ 500v6 þ 2114v4 þ 1652v2 þ 203Þ−
7a10bð3v10 þ 467v8 þ 4214v6 þ 6734v4 þ 2087v2 þ 63Þ þ

2a9b2vð1665v8 þ 35036v6 þ 110726v4 þ 73052v2 þ 8001Þ −
21a8b3ð51v10 þ 3491v8 þ 22358v6 þ 28910v4 þ 7703v2 þ 207Þ þ
12a7b4vð2845v8 þ 41836v6 þ 103726v4 þ 56812v2 þ 5341Þ−

42a6b5ð133v10 þ 6517v8 þ 32410v6 þ 33922v4 þ 7489v2 þ 169Þ þ
84a5b6vð829v8 þ 9580v6 þ 19054v4 þ 8428v2 þ 637Þ −

6a4b7ð1029v10 þ 40789v8 þ 164122v6 þ 137410v4 þ 23617v2 þ 393Þ þ
42a3b8vð795v8 þ 7604v6 þ 12194v4 þ 4148v2 þ 219Þ −

a2b9ð1449v10 þ 49049v8 þ 162722v6 þ 105770v4 þ 12437v2 þ 93Þ þ
14ab10vð203v8 þ 1652v6 þ 2114v4 þ 500v2 þ 11Þ − b11ð35v10 þ 1043v8 þ 2870v6 þ 1358v4 þ 71v2 − 1Þ�

(6, 1)
ð3465π=128Þðav − bÞða − bvÞ5½a6ð−32v6 − 112v4 − 70v2 − 7Þ þ 26a5bvð16v4 þ 28v2 þ 7Þ−

a4b2ð112v6 þ 1796v4 þ 1337v2 þ 70Þ þ 52a3b3vð14v4 þ 57v2 þ 14Þ − a2b4ð70v6 þ 1337v4 þ 1796v2 þ 112Þ þ
26ab5vð7v4 þ 28v2 þ 16Þ − b6ð7v6 þ 70v4 þ 112v2 þ 32Þ�
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only the Boyer-Lindquist radial coordinate r and the
constants M, a, E, J and m.
From the relation (76) for the tangent vector, with

pμ ¼ gμνpν, evaluating the r and ϕ components yields

_ϕ ¼ 1

Δ
ffiffiffiffiffiffiffiffiffi
−p2

p �
pϕ −

2GM
r

ðpϕ þ aptÞ
�
þOðS3Þ; ð82Þ

_r ¼ Δpr

r2
ffiffiffiffiffiffiffiffiffi
−p2

p þOðS3Þ; ð83Þ

which can each be expressed as functions of r and the
constants of motion from the results above. Then the
scattering angle χ can be computed from

χ ¼ 2

Z
∞

rm

dr
_ϕ

_r
− π: ð84Þ

From this expression we can immediately make contact
with our general formula (18). Note that dϕ=dr up to and
including OðS2Þ has the correct form to readily identify
hðrÞ. First,

dϕ
dr

¼ rðlr − 2GκMÞ
prða2 þ rðr − 2GMÞÞ2 −

aGκMS
mrprða2 þ rðr − 2GMÞÞ2

þ GκMS2ðr − 2GMÞ
mr2prða2 þ rðr − 2GMÞÞ2 þOðS3Þ; ð85Þ

where for simplicity we have introduced γ ¼ E=m and
l≡ L=m, where L≡ J − γS is the orbital angular momen-
tum [cf. Eq. (79) as r → ∞], and κ ≡ l − γa. The radial
momentum pr is the positive root of Eq. (81),

pr¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Δ

�½ðr2þa2Þptþapϕ�2
r2Δ

−
ðpϕþaptÞ2

r2
þp2

�s
: ð86Þ

This identifies

hðrÞ ¼ −
rðlr − 2GκMÞ

ða2 þ rðr − 2GMÞÞ2 þ
aGκMS

mrða2 þ rðr − 2GMÞÞ2

−
GκMS2ðr − 2GMÞ

m2r2ða2 þ rðr − 2GMÞÞ2 þOðS3Þ: ð87Þ

We can readily use the expression above in normal
coordinate systems by means of the transformation (58).
Furthermore, hðrÞ obeys our requirements of being real
analytic on the interval r ∈ ½rm;∞½ and with falloffs as
limr→∞ hðrÞ ∼ 1=rn, with n ≥ 2. Therefore, Eq. (43) can be
used. Note that to each order in S, the radial momentum pr
must be expanded correspondingly. An equivalent form of
this integrand was first derived (by the same methods)
in Ref. [85].

Results up to sixth order in G and up to second order in
probe spin S are given in Table III. We note that the pattern
of resummation in the Kerr black hole spin is generalized to
an overall prefactor of

cn;k ≡ GnMnðS=mÞk
v2nðb2 − a2Þð3nþ2k−1Þ=2 ð88Þ

to first (k ¼ 1) and second (k ¼ 2) order in the probe spin.
It is tempting to conjecture that this pattern will hold to
higher orders (k > 2) in the probe spin. Furthermore, we
observe that the remainders after factorizing Eq. (88) again
shows remarkable structures to linear order in the spin of
the probe S, i.e., for k ¼ 1

χn;1=cn;1 ¼ ðav − bÞða − bvÞ
X2n−2
l¼0

alb2n−2−lfn;1;lðvÞ

for odd n; ð89Þ

χn;1=cn;1 ¼ ðav − bÞða − bvÞn−1
Xn
l¼0

albn−lfn;1;lðvÞ

for evenn; ð90Þ

where fn;1;lðvÞ are polynomials in v of order n for even n
and order 2n − 2 for odd n. We have not found any
discernible structure for the results at quadratic order in S.

V. CONCLUSION

We have derived a simple formula for the scattering
angle of massless probes in external black hole metrics.
Building on the compact formula presented in Ref. [70], we
have found a scattering angle expression that straightfor-
wardly handles metrics in any choice of coordinates
belonging to a class we have denoted as normal. In such
coordinates the metric enjoys the property of reducing to
flat Minkowski metric in polar coordinates when one
takes the limit G → 0. To illustrate, we have derived the
scattering angles of massive and massless probes in the
metric of a Schwarzschild black hole in Schwarzschild
coordinates. The final scattering angle formula is mani-
festly free of any dependence on the turning point rm of the
orbit without any need of regularization or prescription.
While of interest in itself, the existence of such a

compact formula for the scattering angle becomes more
important in the case of scattering in the equatorial plane
of Kerr black-hole metrics. Choosing standard Boyer-
Lindquist coordinates, one notices that the Kerr metric is
not in normal form in those coordinates. We show that a
simple transformation of the radial coordinate brings the
Kerr metric to normal form and we are then able to rather
effortlessly calculate the scattering angle in this Kerr metric
to any desired order in G. Interestingly, we find that the
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resulting expressions all resum the dependence on the black
hole spin a to all orders, for any fixed order in G. Finally,
we have extended these scattering angle calculations to the
case of spinning black-hole probes in the aligned (or
antialigned) case of spins in the equatorial plane of the
Kerr metric. Our results display regularities up to second
order in the probe spin that may lead to a better under-
standing of all-order results in the case of scattering of
spinning black holes. We expect the resulting expressions
to be useful for the community presently computing
scattering angles from gravitational scattering amplitudes
in the post-Minkowskian expansion.
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