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1 Introduction

Membranes are notoriously hard to quantize. This is because they are defined by world-
volume actions that, unlike the world-sheet actions of (super-)string theory, involve seemingly
intractable interactions on the world-volume. For this reason it is not even clear whether
and under what circumstances a quantum (super-)membrane theory can be sensibly defined
at all. Nevertheless, and intriguingly, the maximally extended D = 11 supermembrane
theory [1, 2] stands out uniquely as a challenging candidate for the non-perturbative quantum
unification of gravity and matter, with maximally extended D = 11 supergravity [3] as a
‘low energy limit’.

Early work on the quantization of the bosonic membrane in a Minkowski target-space
background relied on a Hamiltonian formulation in the light-cone gauge and demonstrated
its equivalence with the N →∞ limit of a certain SU(N) matrix model [4, 5]. Building on
these insights it was shown in [6] that the light-cone gauge formulation of the supermembrane
(again in flat target-space) leads to a maximally supersymmetric matrix model, corresponding
to the reduction of a maximally supersymmetric Yang-Mills theory to one (time) dimension.
This result greatly improved prospects for making the supermembrane amenable to a
quantum treatment which can accommodate D = 11 supergravity as a massless sector.
Indeed, nine years later the very same model was proposed as a model of M theory [7]. A
crucial role here is played by the fact that the spectrum of the supersymmetric Hamiltonian
is continuous [8, 9]. Altogether, these developments clarified that the supermembrane,
unlike (super-)string theory, does not admit a proper first quantized formulation, but must
be regarded as a second quantized theory from the outset [10]. For a review of these
developments and for different perspectives on them, see [10–14].

Nevertheless, despite these advances there has overall been only scant progress on
the quantization of the supermembrane and the N →∞ limit of the matrix model, with
major results mainly concerning the spectrum of the Hamiltonian and the existence (or
non-existence) of a normalizable ground state wave function for fixed finite N (see [15–19]
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and references therein), and the construction of (classical analogs of) superstring vertex
operators for the massless supermembrane states [20]. Furthermore, very recent work [21]
has provided evidence that supersymmetry is a necessary prerequisite for the N →∞ limit
of the matrix model to exist, thus lending credence to old claims that the bosonic membrane
is not renormalizable in any dimension. However, all this work pertains to the quantization
of membrane theory in a flat target-space background only, and does not generalize in any
obvious way to curved target-space geometries.

In this paper we return to the Lagrangian formulation of the membrane and super-
membrane in an arbitrary curved target-space background, focusing on the links between
membrane theory and the string dilaton. As is well known, the latter occupies a central
place in string theory via its direct relation to the string coupling gs. In a first step we
here study the double dimensional reduction of the supermembrane and its quantization
in a Polyakov-type formulation, with the world-volume metric as independent quantum
variables. As shown in [22, 23] the kinematical reduction together with the embedding
equations reproduces part of the type IIA superstring action in a Green-Schwarz formulation,
in particular with the correct world-sheet couplings of the target-space metric G(10)

µν (X)
and the two-form field Bµν(X). However, apart from the (anticipated) disappearance of
the Ramond-Ramond fields in this reduction, there remains no trace of the remaining
missing piece of the type I subsector, namely the dilaton! More specifically, the origin of
the crucial term [24]

1
4π

∫
d2σ
√
g φR(g) (1.1)

(where R ≡ R(2) is the world-sheet curvature) giving rise to the identification between the
string coupling gs and the dilaton vacuum expectation value remains unexplained. We note,
however, that for constant φ a derivation of this term was already proposed in [25].

The main purpose of this work is to argue that the derivation of (1.1) and a proper
understanding of the dilaton couplings on the world-sheet require a quantum treatment of the
membrane, beyond the classical considerations of [22], and an approach where one integrates
over all six world-volume degrees of freedom (see also [26] for an alternative approach). In
addition there is the peculiar feature that the field φ in (1.1) requires a special wave-function
renormalization from the membrane perspective, as we will explain in section 4. These
conclusions are consistent with the fact that the term (1.1) does not come with a factor
(4πα′)−1, unlike the tree level couplings. Our construction furthermore reveals the necessity
of restricting the target-space dimension to a critical value as a consistency condition (which,
however, may not be sufficient), leading to the conclusion that the membrane and the
supermembrane can be viable, if they are viable at all, only in target-space dimensions
D = 27 and D = 11 (see also [27] for very early work where the same conclusion was
reached by different arguments). The derivation also implies the relation

1
2T3R10 = 1

4πα′ g
2/3
s (1.2)

for the doubly dimensionally reduced membrane. This relation extends the known result
R10 ∝ g2/3

s [28] to membrane theory, and links the membrane tension T3 and the compacti-
fication radius R10 to the two key parameters of string theory. Furthermore it shows how
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the strong coupling limit of string theory gets intertwined with the large tension limit of
the membrane [21].

Putting together the available evidence we thus conclude that, if at all, only the
maximally extended supermembrane theory can give rise to a viable quantum theory,
because (1) D = 11 is a necessary condition by the results of the present work, and (2)
supersymmetry is required by the arguments of [21]. This implies that, unlike for string
theory, there appears to be no such thing as ‘non-critical (super-)membrane theory’!

The structure of this paper, then, is as follows. In section 2 we review the kinematics of
double dimensional reduction, following [22, 23]. In section 3 we analyze the quantization of
the theory in a Polyakov-type approach. Finally in section 4 we show that the usual dilaton
coupling is the only sensible, and in fact unique, outcome. Although our main concern is
the supermembrane we restrict attention to its bosonic subsector, as the fermionic terms do
not affect our main conclusions.

2 Double dimensional reduction

We start from the bosonic world-volume action in ‘Polyakov form’ [29, 30] with
Euclidean signature

S = T3
2

∫
d3σ
√
γ
(
γij∂iX

M∂jX
NGMN (X)− 1

)
+

+ T3
6

∫
d3σ εijk∂iX

M∂jX
N∂kX

PAMNP (X) (2.1)

where i, j = 0, 1, 2 andM,N = 0, . . . , 10 with the world-volume coordinates σi ≡ (σ0, σ1, σ2);
below we will occasionally write ξ ≡ σ2 to distinguish the compactified coordinate. GMN (X)
is the (in general curved) target space metric; AMNP (X) is the 3-form field of D =
11 supergravity. For flat target (Minkowski) space we have GMN = ηMN . The only
dimensionful parameter is the membrane tension T3, of mass dimension three. An alternative
way of writing S in terms of flat target-space indices is

S = T3
2

∫
d3σ
√
γ
(
γijΠ A

i Π B
j ηAB − 1

)
+

+ T3
6

∫
d3σ εijkΠ A

i Π B
j Π C

k AABC (2.2)

where
Π A
i ≡ ∂iXME A

M (X) (2.3)

with the target-space elfbein E A
M and flat (Lorentz) indices A,B,C, . . .. Both actions (2.1)

and (2.2) are manifestly invariant under world-volume diffeomorphisms. Because ∂iXM

transforms as a vector in target-space, they are likewise invariant under target-space diffeo-
morphisms. Finally, the action is invariant under the target space gauge transformations
δAMNP = 3∂[MΛNP ].

The solution of the (algebraic) equations of motion for γij is

γij = ∂iX
M∂jX

NGMN (X) (2.4)
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so γij is just the induced metric on the world-volume; note that the second term in (2.1)
does not depend on the world-volume metric, hence does not contribute to the embedding
equations of motion. Varying the target-space coordinates gives

∂i
(√

γγij∂jX
M
)

+√γγijΓMPQ(X)∂iXP∂jX
Q+

+ 1
6 ε

ijk∂iX
N∂jX

P∂kX
QFMNPQ(X) = 0 (2.5)

where FMNPQ ≡ 4∂[MANPQ], and ΓMPQ is the affine connection associated to the target
space metric GMN (X). There is no other equation that relates AMNP to world-volume
objects. As explained in [1, 2] the supersymmetry of the supermembrane action requires
that both GMN and AMNP satisfy their respective target superspace equations of motion.

Even before dimensionally reducing the theory, the world-volume metric can be decom-
posed via the standard Kaluza-Klein (KK) ansatz

γij =
(
gαβ + e2τAαAβ e2τAα

e2τAβ e2τ

)
,

γij =
(
gαβ −Aα

−Aβ e−2τ +AγAγ

)
, (2.6)

where the world-volume indices are split as i = (α, 2̇) etc. into world-sheet indices α, β, . . .
and the remaining third coordinate (we sometimes put a dot on the last index to indicate
that it is a curved index). gαβ is the 2× 2 world-sheet metric, Aα is a 2-vector and ρ ≡ eτ

is the world-volume dilaton. Then
√
γ = eτ√g (2.7)

The double dimensional reduction scheme, or ‘DDR’ for short, in part reproduces the
string or superstring (Green-Schwarz) worldsheet actions by a simple kinematic reduction
that makes partial use of the embedding equations (2.4), and is implemented by identifying
the 10th target-space coordinate X10 with the third world-volume coordinate σ2 ≡ ξ [22].
Here we slightly generalize this ansatz by assuming the membrane world-volume to be of
the following topological shape (see also [25])

world-volume ∼ Σn × S1 (2.8)

where Σn is a Riemann surface of genus n. Then we set

Xµ = Xµ(σ0, σ1) for µ = 0, . . . , 9 (2.9)

and identify the 10th target-space coordinate with the third world-volume coordinate
according to1

∂2̇X
10 = 1 , ∂αX

10 = 0 (2.10)
1In principle we could also use

∂αX
10 = vα

with vα a harmonic vector field on Σn, which obeys ∂αvβ − ∂βvα = 0 and ∂α(√ggαβvβ) = 0; there are 2n
independent such vector fields on Σn This means that in principle, the target space coordinate X10 can
wrap around not only S1, but simultaneously around any non-trivial cycle on the Riemann surface.
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For the target-space metric we proceed again from the standard KK ansatz

G
(11)
MN =

e−
2
3φG

(10)
µν + e

4
3φAµAν e

4
3φAµ

e
4
3φAν e

4
3φ

 (2.11)

where µ, ν = 0, . . . , 9, and G
(10)
µν (X) = e a

µ (X)eνa(X) and Aµ ≡ Aµ(X). The associated
elfbein (in triangular gauge) is

E A
M =

e−
1
3φe a

µ e
2
3φAµ

0 e
2
3φ

 ⇒ E M
A =

e
1
3φe µ

a −e
1
3φAa

0 e−
2
3φ

 (2.12)

From these relations and the definition (2.3) we read off that

Π a
α = e−

1
3φ∂αX

µe a
µ , Π a

2̇ = 0

Π 10
α = e

2
3φ∂αX

µAµ , Π 10
2̇ = e

2
3φ (2.13)

The dilatonic prefactors in (2.11) and (2.12) have been adjusted in order to end up with the
standard bosonic action of D = 10 type IIA supergravity in string frame after dimensional
reduction from D = 11 to D = 10 [28]

S11 =
∫

d11X
√
−G(11)

(
R(11) − 1

48F
MNPQFMNPQ

)
→ (2.14)

→
∫

d10X
√
−G(10) e−2φ

(
R(10) − 1

12H
µνρHµνρ + 4G(10)µν∂µφ∂νφ

)

+
∫

d10X
√
−G(10)

(
−1

4A
µνAµν −

1
48F

µνρσFµνρσ
)
≡ S10

With this normalization, the terms involving the Ramond-Ramond fields Aµ and Aµνρ carry
no dilaton factors in the effective target-space Lagrangian (see also [31]).

The relation (2.4) implies in particular

γ2̇2̇ ≡ e2τ = ∂2̇X
M∂2̇X

NGMN = e
4
3φ (2.15)

from which we read off the on-shell relation between the world-volume dilaton τ and the
target-space dilaton φ

τ(σ) = 2
3φ(X(σ)) (2.16)

The embedding formula (2.4) furthermore requires

γα2̇ ≡ e2τAα = ∂αX
M∂2̇X

NGMN ⇒ Aα = ∂αX
µAµ (2.17)

whence on-shell the world-volume KK vector field Aα gets identified with the pull-back of
the target-space KK vector field Aµ.

Next we substitute (2.6) and (2.11) into (2.2); for the first term on the r.h.s. this gives

SDDR = T3r0
2

∫
d2σ eτ√g ηAB

(
γαβΠ A

α Π B
β + 2γα2̇Π A

α Π B
2̇ + γ2̇2̇Π A

2̇ Π B
2̇ − 1

)
(2.18)
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where r0 =
∫

dξ is a reference length; with the dilaton vacuum expectation value τ = 〈τ〉0
the actual circumference of the compactified dimension is

R10 =
∫

dξ e〈τ〉0 , (2.19)

which together with (2.16) implies the well-known relation R10/r0 = g
2/3
s for constant φ [28].

Next we substitute (2.6) and (2.13) to obtain2

SDDR = 1
4πα′

∫
d2σ

[
eτ−

2
3φ
√
ggαβ∂αX

µ∂βX
νG(10)

µν (X)

+ eτ+ 4
3φ
√
ggαβ

(
∂αX

µAµ −Aα
)(
∂βX

νAν −Aβ
)

+ 2 e
2
3φ
√
g sinh

(2
3φ− τ

)]
(2.20)

where we identify
1
2T3r0 ≡

1
4πα′ ⇒ 1

2T3R10 = 1
4πα′ g

2/3
s (2.21)

thus exhibiting the relation between the membrane tension T3 and the compactification
radius on the one hand, and α′ and the string coupling gs on the other. Now substituting
the embedding equations (2.16) and (2.17) we see that the cosmological constant and the
terms with KK vector fields cancel, and we are left with the canonical string σ-model
world-sheet action

S = 1
4πα′

∫
d2σ
√
ggαβ∂αX

µ∂βX
νG(10)

µν (X) (2.22)

The dependence on the dilaton field in (2.22) thus drops out on-shell, that is, upon partial
use of the embedding equations (2.4). Similarly, the dilaton decouples from

T3
6

∫
d2σ

∫
dξ εijk∂iXM∂jX

N∂kX
PAMNP (X)

= 1
4πα′

∫
d2σ εαβ∂αX

µ∂βX
νBµν(X) (2.23)

but without the use of any embedding equations, since both εijk and εαβ are densities (that
is, again no dilaton dependence) and Bµν ≡ Aµν10.

We therefore reach the conclusion that in this purely kinematical reduction of the
membrane action (2.1) the dilaton disappears altogether from the string world-sheet action,
even when restricting to the type I subsector. Likewise the Ramond-Ramond fields Aµ and
Aµνρ drop out, but this was already clear from the well known fact that their inclusion
requires an extension of the usual NSR formalism.

3 Quantization

This leaves the question how to generate the world-sheet dilaton coupling (1.1) from the
membrane action (2.1). As is well known, in string theory this term is added in a somewhat

2An equivalent formula was already derived in [23].
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ad hoc fashion in order to ensure conformal invariance (that is, vanishing β-functions for the
target space fields) also for non-Ricci flat target space geometries [24, 32]. It is important
that from the string theory perspective, this term should be interpreted as a σ-model
one-loop term, because it comes without a factor of (4πα′)−1 [24, 32]. The argument
explains why (1.1) cannot be derived by a simple kinematical reduction from the membrane
action, unlike (2.22) and (2.23). Here we wish to argue that in order to recover the correct
dilaton dependence we must replace the above classical (on-shell) treatment by a quantum
mechanical (off-shell) treatment where instead of using the embedding equations (2.16)
and (2.17) one must keep the world volume fields τ and Aα as quantum fields with the
action (2.20) and integrate over them. Such an approach is evidently much closer in spirit
to a Polyakov-type treatment in the sense that all six components of the world-volume
metric are to be integrated over. This is also a main difference with [25] where a more
restricted form is assumed for the world-volume metric, cf. their eq. (11).

In order to implement the integration over all world-volume degrees of freedom in (2.20)
we decompose the full functional measure of the world-volume theory according to

[Dγij ] = [Dgαβ ] [DAα] [Deτ ]

[DX] =
[
D(10)X

] [
DX10

]
(3.1)

where [DX(10)] ≡ [DX0] · · · [DX9]. One new ingredient originating from the DDR of
the membrane theory that is absent from the string world-sheet theory is the extra
gauge invariance

δX10 = Ξ
(
X0, . . . , X9

)
(3.2)

that follows from the invariance of the original membrane action (2.1) under target-space
diffeomorphisms: indeed, such fluctuations drop out entirely from (2.20). Now, as is well
known from general KK theory, the diffeomorphisms along the compactified direction
descend to gauge transformations on the KK vector in the compactified theory according to

δAµ(X) = ∂µΞ(X) (3.3)

Likewise the world-volume diffeomorphisms split into world-sheet diffeomorphisms and the
KK gauge transformations

δAα(σ) = ∂αω(σ) (3.4)

On-shell, the transformations (3.3) and (3.4) are identified by (2.17)

δAα = ∂αω ≡ ∂αXµ∂µΞ (3.5)

where ω(σ) ≡ Ξ(X(σ)) is the KK gauge transformation parameter induced on the world-
volume. This argument also shows in what sense (2.20) is invariant under world-volume
gauge transformations: any gauge transformation on the world-volume KK vector Aα can be
absorbed into a target-space gauge transformation, where the function Ξ(X) must coincide
with ω on the world-volume for Xµ = Xµ(σ), but is otherwise arbitrary. Because Ξ is
thus a gauge transformation parameter in the effective target-space theory, it must not be

– 7 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
9

integrated over. Consequently, we can remove [DX10] from (3.1), and thus replace the last
line of (3.1) by

[DX] −→
[
D(10)X

]
(3.6)

Next we observe that the first two lines on the r.h.s. of (2.20) depend only on the
unimodular part √ggαβ of the world-sheet metric, and therefore the conformal factor
eλ ≡ √g appears only in the last line of the action (2.20) as a linear factor. However,
it is well known from string theory that a hidden dependence on the conformal factor
may nevertheless arise via the functional measure in the form of a Liouville action [33–
38]. This hidden dependence disappears only in the critical dimension. More precisely,
only in the latter case we can exploit the invariance of the full functional measure under
conformal rescalings

[Dgαβ ]
[
D(10)X

] ∣∣∣
g=ĝeλ

= [Dĝαβ ]
[
D(10)X

] ∣∣∣
ĝ

(3.7)

To divide out world-sheet diffeomorphisms we follow the standard procedure (which is
beautifully explained in the original papers [34–36]) by parametrizing the metric variations as

δgαβ = δλ gαβ + (Pv)αβ + δµrΨ
(r)
αβ (3.8)

with the traceless world-sheet diffeomorphisms

(Pv)αβ := ∇αvβ +∇βvα − gαβ∇γvγ (3.9)

Here µ coordinatize the moduli space of Σn, and the Ψ(r)
αβ form an orthonormal basis of

(ImP )⊥ = ker (P †). Then it is shown [35, 36] that after dividing out the diffeomorphisms
the measure can be represented in the form

[Dgαβ ] →
[
Deλ

]
dµ

(
det′P †ḡPḡ

)1/2
det1/2H

(
P †ḡ

)
(3.10)

where dµ is a measure on the moduli spaceM(Σn), with ḡαβ ≡ ḡαβ(µ) a representative
metric in the diffeomorphism and conformal equivalence class of metrics, and the finite-
dimensional matrix Hrs(P †) = 〈Ψ(r)|Ψ(s)〉 [35, 36]. The determinant factors in (3.10)
are finite functions of the modular parameters µ [35, 36] which we will disregard in the
remainder. Importantly, [Deλ] is still part of the measure, but crucially there is no other
hidden dependence on the conformal factor in the full measure by (3.7), so we can take the
operator Pḡ to depend on any representative metric ḡαβ(µ). Without any other dependence
on the conformal factor — as in critical string theory — we can then divide the full measure
by the (infinite) volume of the group of Weyl rescalings, and thus drop the integral over
[Deλ] altogether.

Here the situation is different because there still remains an explicit dependence on
the conformal factor in (2.20). The necessity of restricting the target-space dimension to a
critical value also for the (super-)membrane is now a consequence of the fact that only in
this case the conformal factor can act as a Lagrange multiplier field and does not acquire
any dynamics of its own (as in Liouville theory), so that the integration over [Deλ] can be
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explicitly performed to produce a δ-functional ∝ δ
(
τ − 2

3φ
)
. Once this δ-functional is in

place we can finally do the integral over [Deτ ], which identifies the world-volume and the
target-space dilaton fields also for the quantized theory, thus ensuring that the world-volume
dilaton likewise does not develop any independent dynamics of its own. Altogether this
leaves us with the world-sheet action (the coupling (2.23) emerges from the kinematical
reduction as before)

S = 1
4πα′

∫
d2σ

√
ḡḡαβ

[
∂αX

µ∂βX
νG(10)

µν (X)+

+ e2φ
(
∂αX

µAµ −Aα
)(
∂βX

νAν −Aβ
)]

(3.11)

which still depends on the target-space dilaton φ . From the membrane perspective, the
conformal (Weyl) invariance of the world-sheet theory can thus be viewed as the result of
integrating out the conformal factor, such that we are only left with the dependence on
the representative metric ḡαβ(µ) and a finite-dimensional integral over the moduli space
M(Σn) (see also [23, 26] for a somewhat different perspective on the emergence of conformal
symmetry on the world-sheet).

We now recognize the necessity of restricting the target space dimension to a critical
value also for the (super-)membrane, from a perspective that is quite different from string
theory. Our arguments imply D = 27 and D = 11 as necessary (but not sufficient)
consistency conditions for the bosonic membrane and the supermembrane to exist: only
with this assumption, the extra world-volume degrees of freedom remain kinematical
(Lagrange multiplier) degrees of freedom without dynamics of their own. With any other
choice we would be left with a de facto intractable path integral! These arguments also
imply that there is no such thing as non-critical membrane theory.

4 Dilaton coupling

However, we are not yet done since it remains to integrate over Aα, and thus to determine
the dilaton dependence of the final result. For the normalization of the integral we choose∫ [

DA′α
]
ḡ e−||A

′||2ḡ = 1 (4.1)

with
||A′||2ḡ ≡

1
4πα′

∫
d2σ

√
ḡḡαβA′αA

′
β (4.2)

and the redefined (gauge invariant) field A′α ≡ Aα − ∂αXµAµ. Our aim is to compute the
(partial) renormalized effective action functional W = W [ḡαβ , φ]

e−W [ḡ,φ] =
∫ [
DAα

]
ḡ

exp
(
− 1

4πα′
∫

d2σ e2φ√ḡḡαβAαAβ) (4.3)

where we drop primes from now on. It is not immediately obvious how to get a well-defined
answer from this expression, but we now demonstrate, subject to the somewhat unusual
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renormalization prescription (4.8) below, that if there is any sensible answer at all, it must
be proportional to (1.1)!

The key observation is that (4.3) is an ultralocal Gaussian integral which can be done
explicitly, apart from questions related to the continuum limit. In order to analyze it, let us
discretize the r.h.s. of (4.3), with two-dimensional lattice points an on (a local coordinate
patch of) the discretized Riemann surface, and lattice spacing a and n ∈ Z2. We wish to
calculate the a→ 0 limit of the integral

e−fa(φ) =
∫ ∏

n ;α=0,1

[
a · dAα(an)

2π
√
α′

]
×

× exp
(
− a2

4πα′
∑

n
e2φ(an)Gαβ(an)Aα(an)Aβ(an)

)
(4.4)

where Gαβ(an) ≡
√
ḡḡαβ(an) is unimodular; because of unimodularity no further normal-

ization is required, and the integral is thus normalized in such a way that fa(0) = 0. Now
by rescaling integration variables it is easy to see that for non-vanishing φ(an) we have, on
the given patch,

fa(φ) = 2
∑

n
φ(an) (4.5)

As desired, this is linear in φ, so the only question is how to perform the continuum limit
a→ 0 in such a way as to get a sensible and well-defined result. However, as it stands, the
limit a→ 0 does not exist because we are lacking a prefactor a2 for this expression to be
converted into a Riemann sum for an integral. The only way to remedy this situation is
to insert a factor a2 × (Z(a,n)/a2) in such a way that the sum admits a finite limit. The
relation, valid in two dimensions√

ḡR(ḡ) = −1
2� ln det ḡ (4.6)

then suggests the introduction of a discretized Laplacian,3

Z(a,n) = −1
2 ln

[
ḡ(a(n + e0)

)
ḡ(a
(
n− e0)

)
ḡ
(
a(n + e1)

)
ḡ
(
(a(n− e1)

)
ḡ(an)4

]
(4.7)

with lattice unit vectors eα, such that lima→0 Z(a,n)/a2 =
√
ḡR(ḡ). This procedure

therefore amounts to a metric dependent ‘wave-function renormalization’

φ(an) = CZ(a,n)φren(an) (4.8)

such that the sum (4.5) is replaced by

fa(φ) = Ca2 ∑
n

(
Z(a,n)
a2

)
φren(an) (4.9)

Therefore we have the renormalized result

lim
a→ 0

fa(φ) = C

∫
d2σ

√
ḡ φrenR(ḡ) (4.10)

3For simplicity, we spell out this formula only for Gαβ = δαβ .
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This renormalization prescription is perhaps a bit unusual in view of the fact that, in flat
space quantum field theory, the wave-function renormalization factor depends only on the
cutoff, but not on the coordinates. However, for a non-trivial background one would expect
the renormalization to also involve the background geometry.

We emphasize that, up to an overall factor C, this outcome is unique if we demand (i)
the final result to be generally covariant, and (ii) the limit to be such that the a2 factor is
properly taken care of with a finite and well-defined limit. The latter requirement excludes
also higher order derivative contributions such as R2 , R3 , . . . . Furthermore, by (4.5) there
cannot appear any terms with derivatives acting on φ (which would not be accessible to
arguments restricted to constant φ). Luckily, the above renormalization prescription does
not affect any other terms in the world-sheet Lagrangian, precisely because the dilaton
appears nowhere else in the final answer. From our derivation it is clear that if there is any
sensible result at all for (4.3), it must be proportional to (1.1). This is indeed all there is to
the issue of ‘renormalization’ for this particular sector of the theory! The overall prefactor
(4π)−1 in (1.1) is then fixed by adjusting the proportionality constant in (4.10), and is thus
also part of the renormalization prescription (alternatively, its value can be pinned down by
arguments along the lines of [25, 26]).

As a final comment, we remark that one could also try to apply more standard heat
kernel techniques (see e.g. [39, 40]) to the evaluation of (4.3). More specifically, invoking
the Hodge-de Rham decomposition

δAα = ∂αω + εαβ∂
βϕ (4.11)

we can change integration variables in (4.3) with the Jacobian (discarding zero modes)

det δ(A0, A1)
δ(ω, ϕ) = det�ḡ (4.12)

to recast the exponent of (4.3) in a more familiar form with a scalar Laplacian. Inspection
of the formulas in section 7.1 of [40] then shows that the desired term (1.1) does appear,
as well as non-local terms that would be excluded by our arguments above, in addition
to various renormalizations that must be taken into account. However, apart from the
fact that the formulas given there cannot be directly applied to the determination of the
relevant coefficients for the model at hand, the introduction of derivative terms in (4.3) by
means of (4.11) appears rather artificial, in that it obscures the ultralocality of the original
expression. For this reason we prefer the more direct argument given above.

5 Outlook

In summary, we have shown that the dilaton coupling which is missing in the double
dimensional reduction of the (super-)membrane can be accounted for by properly quantizing
the membrane, thus completing the derivation of the world-sheet action for the type I
subsector of the full theory. We have also shown that the construction only works in
the critical dimension, whence non-critical (super-)membrane theories are ruled out. As
expected, the derivation does not extend to the Ramond-Ramond sector, although our

– 11 –
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discussion in section 3 does clarify why the KK vector field Aµ can only appear in a gauge
invariant combination in the effective target-space Lagrangian, if it appears at all. The
question of how to properly include these degrees of freedom in the world-sheet description of
string theory has been under discussion for a long time. According to standard wisdom [41]
this requires the extension to open strings and the incorporation of D-branes into the theory.
By contrast, from the membrane perspective, the world-volume action (2.1) already includes
them in a natural manner from the very outset. It would therefore be interesting to relate
these two descriptions, but this is a task which we leave to future work.
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