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Abstract

We study quantization of the self-interacting scalar field within the unfolded dynamics
approach. To this end we present a classical unfolded system describing 4d off-shell scalar
field with a general self-interaction potential. Then we systematically construct three
different but related unfolded formulations of the corresponding quantum field theory,
supporting them with illustrative calculations: unfolded functional Schwinger—Dyson sys-
tem, unfolded system for correlation functions and an unfolded effective system which
determines an effective action. The most curious feature we reveal is that an unfolded
quantum commutator gets naturally regularized: standard delta-function is replaced with
the heat kernel, parameterized by the unfolded proper time. We also identify an auxiliary
5d system, having this proper time as a physical time, which generates 4d scalar action
as its on-shell action.
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1 Introduction

Quantum field theory (QFT) represents a powerful and elaborated theoretical framework, that
unifies quantum mechanics and special relativity. It has been extremely successful in explaining
and predicting various phenomena of the microworld and the properties of elementary particles.
However, it is widely believed that solving the puzzle of quantum gravity will require a radical
paradigm shift, since the direct application of QFT methods to general relativity does not lead
to a meaningful theory.

One possible way out is to add new degrees of freedom while increasing the symmetry of
the theory. A natural attempt is to consider theories with higher-spin fields. From the point
of view of standard QFT, interactions with such fields seem problematic: if higher-spin (HS)
fields are massive, corresponding interactions are in general non-renormalizable; if HS fields are
massless, then related gauge symmetries turn out so restrictive that at first sight they forbid any
interactions at all (for a review of HS no-go theorems see [1]). However, thanks to symmetries,
in both cases we have remarkable examples of profound and highly nontrivial theories. String
theory contains infinite sequences of massive HS fields, but infinite-dimensional superconformal
symmetry organizes them in such a way that the whole theory is UV-finite. Vasiliev HS gravity
describes massless fields of all spins and possesses an infinite-dimensional higher-spin gauge
symmetry, but this symmetry requires a non-zero value of the cosmological constant, so the
theory is formulated in anti-de Sitter space, where it eludes the taboos of the no-go theorems
and generates non-zero HS vertices. For a partial review of the recent literature related to
higher-spin problems see [2].

Available formulations of Vasiliev HS gravity represent generating systems for classical equa-
tions of motion, written within the framework of the unfolded dynamics approach [3-7]. This



includes Vasiliev theories in 4d [4, 5], in 3d [8], Vasiliev theory for symmetric bosonic fields in
arbitrary dimensions [9], chiral HS gravity [10, 11] etc. All this models are purely classical.

One of the main problem of HS gravity is that its nonlinear action is unknown, although some
alternatives for an action principle have been put forward, see e.g. [12-19]. This provides an
obstacle to the systematic study of quantum HS gravity. In this paper we address the problem
of quantization of the field theory within Vasiliev’s unfolded dynamics approach, which does
not directly use a classical action. Namely, we provide a systematic procedure for an unfolded
quantization of a 4d self-interacting scalar field.

To this end we first present a classical unfolded formulation for this model. To quantize
it, we use the method proposed in [20], where it has been shown that quantization can be
performed via identifying a certain submodule of the off-shell unfolded system with an external
source, conjugate to the unfolded field, and promoting classical unfolded equation to unfolded
Schwinger—Dyson ones. For related proposal of the so-called Lagrange anchor see [21] (Let us
note, that at the moment there are only few suitable classical off-shell unfolded systems, besides
that presented in the paper; those include free integer-spin fields in 4d Minkowski space [20], in
4d anti-de Sitter space [22], and free chiral and gauge supermultiplets in 4d Minkowski space
[23].) Developing the idea of [20], we construct three unfolded formulations of the correspond-
ing quantum field theory: unfolded functional Schwinger-Dyson system, unfolded system for
correlation functions and an unfolded system for a quantum effective action.

The paper is organized as follows. In Section 2 we give a brief overview of the unfolded
dynamics approach and present and analyze a classical unfolded system for 4d self-interacting
scalar field. In Section 3 we quantize this unfolded system by deducing unfolded functional
Schwinger—Dyson equations that determine a partition function of the theory, and use them
to calculate a free unfolded propagator. In Section 4 we present a closed system of equations
on unfolded correlation functions and with its help evaluate a first perturbative correction to
the unfolded propagator. In Section 5 we formulate a prescription for the system of unfolded
effective equations that determines a quantum effective action and find the manifest form of this
system in the one-loop approximation. In Section 6 we present a toy 5d model which leads to
the classical 4d theory under consideration and reveal some curious quasi-holographic features.
In Appendix A we present a general consistency analysis of the classical unfolded system for
the self-interacting scalar field and comment on differences between its particular solutions.

2 Unfolded dynamics approach and classical scalar field

2.1 General construction

In the unfolded dynamics approach [3-7] a classical field theory is formulated through imposing

unfolded equations
dW4(z) + GAW) =0, (2.1)

on unfolded fields W#(z), where A stands for all indices of the field. The theory is formulated
on some spacetime manifold M? with local coordinates = and de Rham differential d. Unfolded
fields W are exterior forms on M?, and G4(W) is built from exterior products of W (we omit
the wedge symbol throughout the paper). Every unfolded field W4 is provided with one and
only one own unfolded equation (2.1).



The nilpotency of the de Rham differential d> = 0 entails a consistency condition for G

5GA
s =0 (2.2)

which is of central importance for the process of "unfolding" the field theory. Different solutions
to (2.2) can, in general, provide different unfolded formulation for the same field theory.

If (2.2) is hold, unfolded equations (2.1) are manifestly invariant under infinitesimal gauge
transformations
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Here a gauge parameter £°(z), representing a rank-(n — 1) form, is generated by a rank-n un-
folded field W4. 0-form unfolded fields do not generate gauge symmetries and are transformed
only by gauge symmetries of higher-rank fields through the second term in (2.3). At the linear
level O-forms get transformed only due to vacuum symmetries and hence correspond to gauge-
invariant degrees of freedom. In a nutshell, unfolded field includes some physical field (we call it
a primary field) and all its differential descendants, parameterized in a coordinate-independent
way. In a nonlinear theory the basis of the differential descendants usually becomes nonlinear
as well.

The two most important features of the unfolded dynamics approach are manifest gauge

invariance, which allows one to efficiently control all gauge symmetries of the theory, and
manifest coordinate-independence, achieved through exploiting the exterior form formalism.

WA =de?(z) — ¢

(2.3)

2.2 Unfolded Minkowski vacuum

According to the ideology of the unfolded dynamics approach, the geometry of the spacetime
manifold M¢ must be encoded in some unfolded equations (2.1). This is achieved by using
Cartan formalism.

One introduces a 1-form connection 2 = dz2Q4(z)T4 that takes values in the Lie algebra of
symmetries of M? with generators T4. Then maximally symmetric vacuum arises via imposing

Maurer—Cartan equation on {2

dQ+%&Jﬂ:O (2.4)

(square brackets stand for the Lie-algebra commutator). Fixing some particular solution Qg to
this equation breaks an associated gauge symmetry

Q) = de(x) + [, €] (2.5)

down to a residual global symmetry €4, that leaves the solution €}y invariant and thus must
satisfy
degion + [0, €giop) = 0. (2.6)

In the paper we deal with 4d Minkowski space, so we consider a connection that takes values
in Poincaré algebra iso(1,3)

OAdS _ eaﬁpaﬁ, + waﬁMaﬁ 4 QQBMQ@ (2.7)

where P4, My and M &5 Tepresent generators of spacetime translations and (selfdual and anti-

selfdual part of) rotations. e®® and w®® (©%%) are 1-forms of vierbein and Lorentz connection,
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where two-valued indices a and 3 correspond to two spinor representations of the Lorentz
algebra so(3,1) ~ sp(2,C). The indices are raised and lowered by Lorentz-invariant spinor

metric
0 1 a & 0 1
€aﬁz€dB:<_1 0)7 65:65:(_1 0)7 (28)

according to

Vo = eBavﬁ, vt = 60‘605, Vg = eBd@B, 74 = e‘j‘B@B. (2.9)
Expansion of (2.4) in generators gives
de® 4 w® e + 0 =0, (2.10)
dw®® + w* WP = 0, (2.11)
dw® 4+ @%@" = 0. (2.12)

The simplest solution to (2.10)-(2.12) (with a non-degenerate vierbein) is provided by Cartesian
coordinates _ _ y
em®™ = (0)", wp™ =0, @, =0. (2.13)

In Cartesian coordinates equation 2.6 comes down to a simple requirement from & glﬁob, 531@17 and
Eglob” @8 t0 be z-independent, i.e. they are literally global. When we consider an unfolded scalar
field in the next Subsection, 2.3 with global €4, will define a representation of Poincaré algebra

on this unfolded scalar.

2.3 Unfolded self-interacting scalar field

Unfolded formulation of the scalar field ¢(x) requires introduction of an infinite sequence of
0-forms, which as we will see, encode all its linearly independent differential descendants.
So we start with defining an unfolded scalar field as the following set of 0-forms

O(Y, |x) :iifbk (Y, 7|z) = ii(nll

n=0 k=0 n=0 k=0

k

k «@ an —C& —dnT
)Z(I)((x()n),d(n)(x)y Lytytty o (2.14)

Here we make use of condensed notations for symmetric spinor-tensors, so that

fa(n) = fal...an- (215)

Contracting all spinor indices of ®q(n)a(n) With o-matrices one can see that it corresponds to
the symmetric traceless rank-n Lorentz tensor

(I)alag...an = (5-a1)dlal---(5an)dnanq)a(n),d(n)u nalaQ(I)alaz...an =0. (216>

Thus, (2.14) is equivalent to the set of symmetric traceless Lorentz tensors of all ranks, de-
pending on spacetime coordinate x and an additional variable 7.

To conveniently operate with symmetric spinor-tensors, we introduce in 2.14 a pair of aux-
iliary commuting sp(2, C)-spinors Y = (y, %) which contract all spinor indices. Due to com-
mutativity, they are null with respect to the antisymmetric spinor metric

—&

Y yPeas =0, 7Y ap = 0. (2.17)



We also define corresponding derivatives as

Oay® =04°, 0ay’ = 6" (2.18)
and an Euler operator N
1 1_ .=

As it becomes clear below, higher powers in yy and 7 in (2.14) correspond to differential
descendants of a scalar field

o(z) =2(Y =0,7 =0|x), (2.20)
which for this reason we call the primary field.

A consistent unfolded system, that describes a self-interacting primary scalar ¢ is

1

Do
TN

b = 1 ; 0
af . af, ~. 2 ! —
e 0,0, + N1¢ Yabs <_8T(I) +m P+ gU (CD)) 0, (2.21)

where U’ corresponds to the first variation of the scalar potential, ¢ is a coupling constant and
D is the Lorentz-covariant derivative

Dﬂxﬂ@;:@+ww%%+@ﬂ%@)ﬂxﬂ@, (2.22)

which in Cartesian coordinates comes down to the de Rham differential. To simplify notations,
throughout the paper we omit spinor indices contracted between a vierbein 1-form e® and
auxiliary spinors, so that

eyy = eaﬁyang, e00 = 6038055. (2.23)

Now let us analyze the content of (2.21). To this order we expand the Lorentz-covariant
derivative in vierbeins as

D = V4 (2.24)
and act on (2.21) with
5 0
g — 2.25
YT (2.25)

which yields a relation, that completely determines Y-dependence of ®

1 .

—y*Y*Vaa® + & = 0. (2.26)
N

We see that Y-dependence comes down to a simple shift of the coordinate = of the Y-independent
component of ® by (—y®y%),

(Y, 7|z) = exp (—y*§*Vaa) ©(0, 7|2), (2.27)

or, treated another way, yy parameterize all traceless (because of (2.17)) derivatives of ®(0, 7|x).
To determine 7-dependence of ¢ we act on (2.21) with

J

560@7

ad 1 a a—dg a0, 2
<V N+1(88 +yyaT+yym)) (2.28)



which leads to

O0® — m?® — gU'(®) = , (2.29)
where the dot stands for thes 7-derivative and d’Alembertian is defined as
0= %VMVM. (2.30)
Making use of (2.27) we deduce hereof
(O —m2)®(0, 7]x) — gU'(®(0, 7|z)) = (0, 7|2), (2.31)

This equation fixes 7-dependence of ®. But for a general potential this equation, of course,
cannot be solved manifestly, as opposite to the Y-equation (2.26), so the dependence on 7 is
quite complicated.

But in the case of the free theory U’ = 0 it is easy to find a manifest solution to

O — m?® = §, (2.32)

which is
®/7¢(0, 7|z) = exp ((O — m*)7) ¢(x) (2.33)

where ¢ is a primary scalar field (2.20). Combining (2.33) with (2.27), one can write down the
full solution to the unfolded system (2.21) with U’ = 0 as

(I)free(Y’,7_|x) — eT(D_WQ)_ya?avadgb(x). (234)

Now one can give a clear interpretation of Y- and 7-dependent components of the free unfolded
field ®: they provide a basis in the space of differential descendants of the primary scalar ¢,
with yy parameterizing traceless derivatives and 7 parameterizing powers of the kinetic operator
(O — m?). These two sequences exhaust all possible types of descendants in the case of the
scalar field.

Equation (2.31) with general U’ cannot be resolved manifestly. Nevertheless, one can write
down a formal implicit solution as

BV, 7|2) = (@ —yy) — g / dr'emT OO (@(0, 7|z — yg)). (2.35)

0

Here the first term coincides with the free unfolded field (2.34), so one can solve (2.35) pertur-
batively in g. Comparing (2.35) with (2.34), we see that 7-dependence of the self-interacting
® plays the same role as in the free case: it encodes d’Alembertians of ¢, but now sophisti-
catedly entangled with nonlinear corrections coming from the potential. Strictly speaking, all
systems (2.21) with different U’ are is some sense equivalent, as they simply provide different
parameterizations for the space of differential descendants of ¢. However, this equivalence is
established, in general, by strongly non-local field redefinitions.

Unfolded system (2.21) is said to be off-shell, because the primary field ¢(x) is not subjected
to any differential constraints like e.g. equations of motion. To put the system on-shell, i.e.
to subject ¢ to some differential constraints, one has to consistently remove some part of
descendants inside of ®. An advantage of systems (2.21) is that the on-shell reduction which
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leads to standard e.o.m. for the self-interacting scalar with potential U(¢) is provided by a
simple constraint

b =0, (2.36)

which eliminates all 7-descendants from ®. Then an unfolded equation for ® = ®(Y|z) becomes

00D +

4
TN N+1

eyy (m*® + gU'(®)) =0 (2.37)
and imposes, as follows from (2.29), a differential constraint

O — m?*® — gU'(®) = 0, (2.38)
which includes, in Y = 0 sector, e.o.m. for the primary scalar

O¢ — m*¢ — gU'(¢) = 0. (2.39)

So in this case unfolded field ® describes primary scalar ¢ subjected to nonlinear Klein—-Gordon
equation (2.39) and all its independent non-zero descendants encoded in Y-expansion (2.27)
(note that imposing on-shell constraint (2.36) does not affect Y-sector of the problem)

7Y |r) = exp (—y*§*Vaa) ¢(2). (2.40)

Now let us return to the off-shell system (2.21). Keeping in mind the form of the on-shell
reduction (2.36), we see that (Y = 0,7 = 0|z) can be treated as an external source j(z) for
the primary scalar ¢(z), as follows from (2.29) projected to Y = 0, 7 = 0 sector

Op —m*¢ — gU'(¢) = j(x), j(z) := (Y =0,7 = 0|x). (2.41)

Thus an off-shell unfolded model can be as well treated as the on-shell one coupled to an
external source [20]. This observation plays a decisive role when one turns to the problem of
quantization of an unfolded model.

2.4 Relation to Vasiliev Higher-Spin Gravity

Let us take a cursory glance at how the pieces of the unfolding formalism we considered so far
are built into Vasiliev’s unfolded formulation of 4d on-shell HS gravity [4, 5].

First, the space of O-forms of the higher-spin theory contains spinor-tensors of all possible
ranks in dotted and undotted indices Ca(m)7 f(n)> DOT just a scalar unfolded module ®,) a(n)-
These new 0-forms correspond to gauge-invariant strength tensors of all fields of the theory
(Maxwell tensor and its descendants for s = 1, Weyl tensor and its descendants for s = 2
and so on for higher-spin fields). Analogously, 1-forms of the theory now include all possible
Waem),4(n) Desides gravitational sector m +n = 2 which we have used to describe Minkowski
vacuum. They encode potentials of gauge fields and their gauge-noninvariant descendants
(first (s — 1) derivatives of the potential for a spin-s field). At the linear order, 1-forms get
connected to corresponding 0-forms that makes them dynamical (in particular, gravitational
gauge multiplet e®?, w®?, 0% gets connected to 0-forms of Weyl tensor Caa) C’d(4), that allows
metric to fluctuate). At the higher orders both 0- and 1-form equations receive nonlinear
corrections that describe HS interactions.



All spinor indices are still contracted with Y-spinors, which now play a very important role,
being generating elements of infinite-dimensional associative algebra of HS gauge symmetries.

Finally, Minkowski vacuum (2.10)-(2.12) is not a solution of Vasiliev theory. HS gauge
symmetry requires a non-zero value of cosmological constant, so usually one considers expansion
over AdS, background.

For a detailed review of Vasiliev theory see e.g. [24, 25].

3 Quantization of the unfolded scalar field

In this Section we show how one can quantize classical unfolded system presented in the previous
Section. In a nutshell, we make use of the analogy with functional Schwinger—Dyson equations
and promote off-shell unfolded equations

dWw4 + GAW) =0,
to operator equations
(dWA + GA(W)) Z=0
for a partition function Z and determine unfolded operator algebra

(WA WE| = FAB(W).

3.1 Functional Schwinger—Dyson equation

In standard QFT with the classical action S[¢], the partition function

217)i= [ Doesp(zsiel - [ drola)ja)) (3.1)
satisfies functional Schwinger-Dyson equation
08,90
—ih—]Z = jZ 3.2
lins|z = jZ, (32
which can be deduced from the fact that a functional integral of a total derivative vanishes, so
that 5
/Dgsweﬂs—-fd‘*wj) = 0. (3.3)

One can obtain Schwinger-Dyson equation (3.2) as follows. One starts with the classical
e.o.m. of the theory coupled to an external source j

0S

bl = g 3.4

ol = (3.4)
and quantize it by promoting a pair field-source to the operators acting on "wave function" Z
and subjected to a canonical commutation relation

[95(%)73(%)] = ih54($1 - $2)- (3-5)

Then in j-representation one arrives at (3.2).

We are going to perform a similar procedure for the unfolded system (2.21). In this Sub-
section we deal with a free theory with U’(®) = 0. The case of the non-vanishing potential will
be considered in the next Subsection.



3.2 Free quantum scalar

We start with classical off-shell unfolded equation

0P +

1
4
TN N1

eyy <m2<1> + <I>> =0 (3.6)
and, accounting for (2.41), define an unfolded external source as
J(Y,7|z) = &(Y, 7|z). (3.7)

Note that this is to some extent analogous to the Legendre transform in classical mechanics:
here we pass from "velocity" ® to "momentum" J.
Now we have a pair of unfolded equations

_ P B
d<I>+N+1600(I>—I—N+16yy(m 4 J) =0, (3.8)
_ o, N
dJ+N+1608J+N+16yy<mJ+J>—O. (3.9)
Analogously to (2.34), a solution to (3.9) is
J(Y, 7|z) = exp (O — m*)7 — Vaay*y®) j(z), (3.10)

where j(x) is a primary source. Now for ® one has, instead of (2.32), a wave equation
00 — m?*® = J, (3.11)
and in the primary sector, where Y =0, 7 = 0,

O¢ —m?¢ = j. (3.12)

Equation (3.12) should be treated as a classical e.o.m. with an external source j and then one
can quantize the theory as described in Subsection 3.1. However, our aim is to get a closed
formulation of the unfolded quantum theory in terms of the unfolded quantum fields $ and J ,
without manifest appealing to primary fields, which are just particular components of d and
J.

We want to promote system (3.8)-(3.9) to the quantum operator equations on the partition
function Z

I R L A U
(d<1>+ o009 + 5 ev <m cI>+J)) Z =0, (3.13)
Af + 1 edd + evi (m2i+23)) z =0 (3.14)
N+1 N1 or v '

This requires the definition of the commutator [®;, Ji], satisfying "initial condition" (3.5) and
consistent with (3.13)-(3.14). Resolving Y-dependence in (3.13)-(3.14) (which still reduces to
a shift of space-time coordinates = by (—yg), just as in the classical theory) one gets for Y =0

(Dﬁ) —m2 - j) Z =0, (3.15)
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<Dj—m2j— a%j) Z =0. (3.16)

Assuming o o
[D;, D] = [Js, k] =0, (3.17)
self-consistency of these equations requires
(O = m?) (&4, Ji) = (T — m?) [, Ji], (3.18)
2 , 0 23
(Di -m ) <Dk —m” — —) [D;, Jx] = 0. (3.19)
a’Tk

Any solution to this system, respecting initial condition (3.5), defines some consistent quanti-
zation of the unfolded system (3.6).
We pick up a particular solution of the form

(D, J,] = ihe ™ TAR K (2 — yilis; T — Yk ) O (3.20)

where the heat kernel K. (x1;x2) is defined in the usual way

K. (x;29) == (4737_)26_W (3.21)

and possesses well-known properties
K- (21;29) = €770 (x) — x3), (3.22)
lii%KT(xl; x9) = 0(x1 — x2). (3.23)
<Di:{172} —m?— a%) e TR (215 1) = 0, (3.24)
/d4:c2KT(x1;x2)KT/(:£2;x3) = K.y (x1;23), (3.25)

Relation (3.23) guarantees that (3.5) holds. We have also added an equal -7-time factor

I, =7

571-,'% =
0, © 7A Tk

to (3.20). This is not required by quantum consistency (3.18)-(3.19), and the reason to have it
will become clear when we consider a nonlinear problem.

Expression for the commutator of unfolded quantum fields (3.20) is one of the central in
this paper. Let us pay attention to two of its most striking features:

(1) It naturally contains the heat kernel in the Schwinger proper-time parametrization.
However, while proper time 7 in Schwinger’s method appears as a formal integration variable
which allows for convenient representantions of Green’s functions, one-loop determinants etc.,
in the unfolded dynamics approach it arises already at the classical level and possesses a clear
interpretation — 7 parametrizes off-shell descendants of the primary field, and, in addition,

generates the Legendre transform (3.7) which defines an unfolded source conjugate to the
unfolded field;

(3.26)

11



(2) Expression (3.20) does not immediately produces a singularity in coinciding spacetime
points. Singularity appears only when 7; = 7, = 0, i.e. in the sector of primary fields and
their on-shell descendants. Effectively, 7-dependent heat kernel replaces for unfolded fields
the spacetime delta-function distribution in ordinary expressions of QFT. Thus, proper time 7
serves as a natural regularizer, which potentially might manage and soften quantum divergences;

Finally, (3.20) is to some extent similar to the propagator of a non-relativistic quantum
particle with 7 playing the role of the time, as usual for the heat kernels. The important
difference, however, is that (3.20) depends on the sum of the times, not on the difference, and
contains an equal-7-time factor.

Now let us use (3.20) to complete quantization of the free unfolded scalar. We go to J-
representation, where operators are realized, according to (3.20), as

. )
o, = z'h/d4$k /di/d4YkK2ri(xi — YiYi; T — yk?]k)an,mﬁ'

k
When dealing with a free theory, it is handy to introduce, instead of Z, a generator for connected
correlation functions W as

(3.28)

W = —ihlog Z. (3.29)
Then instead of (3.15) one has
, N OW
(O—m?) /d4:E Ko (z;x )W = J(7|x). (3.30)

From here one finds, restoring Y-dependence, for W
. +(X)
Wil =5 [ar [ [y [ [ @y K ey —y )00 Y ). (330
0

One also has to take into account equation (3.14) which restricts an admissible form of .J. But
in J-representation it literally coincides with classical equation (3.9), whose solution is (3.10).
Substituting (3.10) into (3.31) one finds, after integrating by parts,

Wil = —2% d'zj(z) (O —m?) ™ j(z) 70dr/d4Y/d4Y’, (3.32)

which is a standard expression for W of the free scalar filed up to an infinite constant. resulting
from integrals over space of auxiliary variables 7 and Y.

From (3.31) one can recover an expression for the propagator of the unfolded free scalar

field '
i _ _
<(I)iq>k>0 = mfﬁn(l’i — YilYi; T — ykyk)(sﬂ-;rk' (3.33)
Again, we see that the spacetime delta-function of the scalar propagator is replaced by the heat
kernel.

In the primary sector one has, sending 7 and Y to zero and using (3.23),

(Ola)o())” = 5

2
; — M

O(z; — xp), (3.34)

i.e. the standard expression for the propagator of the free scalar field.
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3.3 Self-interacting quantum scalar

In the case of a non-zero potential one can proceed along the same lines. We start with classical
unfolded equation

0P +

4d
TN N1

eyy (cb +m2d + gU’((I))) —0 (3.35)

and define a conjugate unfolded source as J = ®. But for J we leave the free equation, which
does not spoil the consistency

. 1
1999+ v

_ . 2 .
dJ + N eyy <J+ m J) =0. (3.36)

We want to promote system (3.35)-(3.36) to the operator equations

3 1 3G _ (2 & 7 _
{d<I>+N+1688<I>+N+1eyy (m(I)+gU(<I>)+J>}Z—O. (3.37)
dj+—codi+ L eyg(m2i+ 20| z=0 (3.38)
N+1° N1\ or o '
Then, assuming (3.17) again, self-consistency of (3.37)-(3.38) requires
(Di —m? gU”(éf)Z-)) (B, 7] = (Dk —m? gU”(@k)) (b, J] (3.39)
2 1" & 2 9 AT
(Di —m?—gU (<I>Z-)> (Dk —m? - —) (B, Ji] = 0. (3.40)
8@

To solve for (3.39) an analogy with non-relativistic quantum mechanics helps. One notices that
0; —m? — gU” (<i>,) can be considered, after performing Euclidean rotation that brings [J; to

the spatial Laplacian and assigning 7 to an imaginary non-relativistic time, as a Hamiltonian of
a particle moving in a time-dependent potential m?+gU”(®(7|z)). Then an evolution operator
U(T|x) for the corresponding imaginary-time Schrodinger equation satisfies

(aﬁ Ot 4 gU” (¢><T\x>)) Urie) =0, U(r=0f) =1, (3.41)

and has a form

U(r|z) = T exp { /0 ' dr'(0—m? — gU”(é(ﬂx))} : (3.42)

where T stands for the T-chronological ordering. Using this one can write down a solution to
(3.39)-(3.40) as

[‘iz’, jk] = W;{(Tz|$z — yi??i)e_szkKrk(l'i — Yilis Tk — YkUk)Or 7, - (3.43)

(3.40) is solved due to the heat kernel property (3.24). (3.39) is satisfied because of (3.41) and
an equal-7-time factor d,, ,. This is why we have introduced the same equal-7-time factor to
the commutator (3.20) of the free theory, because now (3.43) does have (3.20) as its free limit
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g = 0. On the other hand, (3.43) still has the correct commutator (3.5) in the primary sector
7=0,Y=0.

The commutator (3.43) has a quite complicated structure. In order to analyze it perturba-
tively, it is convenient to represent the evolution operator (3.42) in the interaction picture form
as

U(7|z) = exp {r@-m?} T exp {—g /OT dr'e™™ O " (& (' |2) e T/(D_m2)} : (3.44)

Using this one can evaluate (3.43) to the first order in g

(@, ]

S—— — ihe 2m’ T Ko (245 wk) zhg/dT /d4x’KT (T )U”( (7|2 K (2 1) +O(g%).

(3.45)

4 Unfolded correlation functions

Starting from the functional Schwinger-Dyson equation (3.2) one can deduce Schwinger—Dyson
equations for correlation functions which are v.e.v. with vanishing sources. Let us rewrite (3.2)
in the operator form

08 .+ 5

with (3.5) imposed. Acting on (4.1) with field operators anl’ QAﬁaQ,...(ZA)an and putting 7 = 0 at
the end, one finds

P ~ 08 .
Bar Paz -+ Pa, M[ 12500 = Zm@ (G il Pan Z)5—- (4.2)

Accounting that acting with field operators on Z with zero sources produces corresponding
correlation functions

ngémmqganzbzo = (Pa: Pas--Pan) (4.3)

and using (3.5) one recovers from (4.2) Schwinger-Dyson equations for correlation functions

< 5o Gy Das - ¢an> =0 (GuyGager- (i — Tay) B ) (4.4)
v k=1

Our goal is to provide an analogue of (4.4) for unfolded fields, so one can perturbatively
solve for unfolded correlators. We naturally define unfolded n-point correlation functions as

(D, Byy... Dy, ) = Oy, By ... Do, Z 5y, (4.5)

which in primary 7 = 0, Y = 0 sector coincides with (4.3). Acting on (3.37), which is an
unfolded substitute for (4.1), with &g, $q,...P,, we have

1 = 1 2
, . ) o, O, .. P, )+
(almL 7 7(€90); + N T(eyg)im ) (Pi®a; Py .- Do, )

1

+Ni+1

(eyd): <g ()P0, Py ®a,) + D (Pu P | Py ] ...<1>an>> — 0. (4.6)
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where [Ci)ak, jl] is defined in (3.43). (4.6) provides an unfolded form of a chain of Schwinger—Dyson

equations and allows one to iteratively calculate unfolded correlation functions.
For a multi-point unfolded system of the form

40" + G (®) = 0 (4.7)
one has a generalized consistency condition, arising from the identity {d;,d;} = 0, which is
() 3G\
x) 0G| ®oG; ) _
; (Gj 500 TGt spm | =0 (4.8)

One can check that (4.6) satisfies it.
For the free theory with U’ = 0 we get from (4.6)

1
N;

(d,- L ead), +

N1 (eyy)imQ) (BB, o, ...y, ) +

1

n

+
1 ) e _ )
N, + 1(€yy)2 Z <(I)l11 (I)a2"‘e (rit ak)KTrl-Tak (xl —YilYi; Loy, — yakyak)67i77ak"’q)an>(ﬂ‘:’ )

k=1

+ih

As expected, for unfolded fields contact terms get smoothed. In the nonlinear problem contact
terms in additional get nonlinear field dressing.

Let us use (4.6) to calculate a first-order perturbative correction to the unfolded propagator.
To this end we expand a full propagator in a coupling constant as

(Di0y) = (B;D4)" + (D;®4)" + O(g”) (4.10)
Equation for the full propagator is
1 - 1 P 1 o
(44 7 00 4 el ) (@30 + 9 ) (U (@) 0(60) +
o1 IS T
Filige g (o), < [cbk, JZ} ~0. (4.11)

In zeroth order in g

1 5 B, 0,5 1 _ _ _
. , . b K. Al T =
(dz N 7(€99); + N T 7 (eyg)im ) (©;Py) HhN,- 1 (VD)Ko e (20— Yili; Tk —YsFi)Or, e = 0,
(4.12)
whose solution, of course, coincides with (3.33).
Then for the first-order correction we have, using (3.45),
1 _
d; i y)im? ) (®;®y)° 9) (U'(®;)® 0
(a7 00 4 Cmha? ) (@00 + a5 e (U@00(60)

T

(eyﬂ)i/dT//d%/KT—T'(%CU/) (U"(@(r'a")))" Ky (25 24) 07, 7, = 0, (413)
0

MINTTT

so that

g igh / 0 / / 4 1 / XTI 0 /
(@.00)" = —— [ (U'(@)®,)° [ dar d:cKT_T/(xi;x)<U (d(r |x))> Koo (2 21)00, r,
’ 0
(4.14)
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5 Semiclassical quantization and unfolded effective equa-
tions

Quantum effective action I'[¢] is a generating functional for one-particle irreducible correlation
functions. It is defined as the Legendre transform of a generator of connected correlation
functions W (3.29)

Ig) = / g+ Wi, (5.1)

where ¢(z) is called mean (or classical) field and represents the expectation value of the corre-
sponding quantum field B

o(z) = (¢(x)), - (5.2)
A nice thing about I is that its expansion in powers of the Planck constant has a clear physical
meaning: h"-order contribution corresponds to the n-loop correction to the classical action S.

One can deduce an equation that determines I' from the functional Schwinger—Dyson equa-
tion (3.2). To this end one uses (3.29), (5.1) and

T
- 00(x)

following from (5.1) to represent Z as a functional of the mean field

J(x) (5-3)

20 = exp (01~ [ i) 0 ) (5.4

0¢(z)
From (5.3) one can also express j-variational derivative through ¢-variation derivative as
b} / | < 52T )‘1 b}
- = d y = = = . (55)
6j(¢) 0¢(z)0p(y) ) 69(y)

Substituting (5.3), (5.4) and (5.5) to the functional Schwinger—Dyson equation (3.2) one finds
following equation for I'

%5 3(z) + ih / LA L S (5.6)

3 Sa@aly) oty @)

where ¢-derivatives act to the right. This equation determines the effective action up to a
field-independent contribution I'[0].

As is seen from (5.6), this equation can be easily obtained from classical e.o.m. coupled to
an external source (3.4). One should simply replace

o(x) — o(x) + mdj(x) (5.7)
and then substitute 5T
j(z) = 5o (5.8)

Then one arrives at (5.6). Note, however, that while shift (5.7) can always be performed for
arbitrary e.o.m., the substitute (5.8) requires from the e.o.m. to be Lagrangian. For the models
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of self-interacting scalar we study in the paper this is always true, but in general one should
check this for the consistent quantization. A systematic procedure to analyze Lagrangian
properties of unfolded system is presented in [26].

It is a simple issue to repeat an analogous procedure for the unfolded theory. We want to
formulate a system of effective unfolded equations determining I'.

We start with (3.35), perform a Legendre transform ® = J and then eliminate all 7-
dependence (why we do this will be clear in the end of the Subsection). So we have an unfolded
equation

dd(Y|z) + ed0P(Y|z) +

N1 N (T o) + mPe(Y]e) + gU'(@(Y]r))) =0 (5.9)

Then we transform unfolded field ® to the combination of the unfolded mean field ®(Y|z) and
J-derivative, in analogy with (5.7)

_ ) 0
and arrive at
d® + ! e00d + ! "J+m%+-w@+7ﬁb =0 (5.11)
N+1 N1 9 arl) T '

Here the source J is treated as a function of the mean field, expandable in the Planck constant,
J=J(®,h), (5.12)

and (5.11) should be considered as an equation that determines this function.

fi-term in (5.11) generate functional derivatives a?i‘g 5, for which one needs new unfolded
equations, in order to have a closed system. These equations are generated from (5.11) by
successively acting on it with %. The higher orders in A one studies, the higher functional
derivatives appear in (5.11) and hence the more additional equations are required. Recently a
similar idea has been put forward in [27]

We present the system to the first order in A, which corresponds to the one-loop approx-
imation. In this case a% in (5.11) contributes only once, so one needs only one additional
equation.

We rewrite (5.11) as

- 1 ~ = - - ih = 0P,
P, P, s T 2, ", oU" (P,) 2y —
A5, e (€00 v (o4 4 gU'(8) + U (@G ) + O() =
(5.13)
and acting on it with (%c obtain a missing equation
0P, 1 ~ 09, 1 0P, _ 0P,
i 00; = y)i | 0(zi — 2 U"(®; -
S ALr YA G < (2 = ) +m7gm s+ gU )ajk)+
1 ih - 0P, ih _ . 0%,
7 [ — Iv) (I)z 4 o " (I)z i hg —0. 14
b (GaUT@) T + S @) o ) 00 =0 (5.14)
Now we introduce an effective action I'[®] through
- or
J(P) = —= 5.15
@) =0 (5.15)
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and expand it to the first order in h as
[ =S+ Al + O(R?). (5.16)

As was said, replacing a source with the variation of the action requires some additional con-
sistency conditions to be fulfilled. Namely, one has to check that

o) _ 0
00, 0,

(5.17)

which arises the commutativity of variational derivatives, is in agreement with (5.11). For the
theory we consider this is true.

Substitution of the expansion (5.16) to (5.13) and (5.14) gives, after simplification, a closed
unfolded system

_ 1 - 1 ) s i S .
dq)i+Ni+ 1688<I>2-+Ni 1 eyy (8(1)@ ﬁ@@ +m*®; + gU'(P;) t3 gU" (®; )(a@a@) )+O(ﬁ ) =0,
(5.18)
’2S 1 N I
W ogger) N; + 199 g5
1 _ ., 0S| _ S
. - _ 0y 1
Ni+1(eyy)z (6(:@ x) +m (8<I>i8<1>’f) + gU"( )(8<I>18<I>’f) + O(h) = 0(5.19)

which determines the effective action of the theory in the semiclassical approximation.
Analysis of this system goes as follows. First one uses (5.19) to solve for (%)_1. The one
substitutes the answer to (5.18) and solves for 2 % and 92 (the last one being purely classical
is determined, of course, by (5.18) itself and does not need (5.19)). Then one can try to restore
S and T'!, provided that consistency condition (5.17) is fulfilled.
For the sake of formality, one may want to have unfolded equations for g—g and %—g as
well. This is not a problem: one can always consistently write down unfolded stub equations.

Consider, say, 3 S . Let us introduce a new unfolded field ¥ havmg as the primary

oS

V=YY, (Y, T=0 —_—. 5.20
We impose the simplest unfolded off-shell equation on ¥
1 _ .
v v gv = 0. 5.21
d +N+1688 +N+1eyy 0 (5.21)
This equation puts no restrictions on g—g, while the value of g—g extracted from (5.18) will
determine 7-dependence of ¥ according to
oS
w(Y, = 5.22
(¥.7la) = 2 s (522)

The same can be done for the whole 25 q) as well. This also explains why we removed 7-dependence
of the mean field ® and source J from the very beginning: as we saw, in order to determine
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I', their 7 = 0 components are enough, while all would-be 7-dependent components would be
expressed in terms of 7-components of the stub-field .

Another question one can address by analyzing unfolded effective equations, is the dynamics
of the mean field ®. If one takes or

then off-shell effective equations become on-shell and determine the possible v.e.v. of the
unfolded quantum scalar field (®). For instance, the system (5.18)-(5.19) with

oS ot

determines possible values of (®) in the one-loop approximation.

6 5Hd auxiliary model and 7 as a physical time

Finally, let us briefly address the following issue: in a nutshell, quantization procedures we
performed for the unfolded systems consisted in taking the equation

0 — m?® — gU'(®) = & (6.1)

and quantizing it by identifying ® with momentum conjugate to the field ®; one may wonder
if there is any model which has 7 as a physical time and somehow leads to the equation (6.1).

Such model does exist. In order to construct it, we first notice that upon identifying ® with
the momentum, one cannot treat (6.1) as the classical equation of motion, because it is of first
order in the time 7. Instead, one should consider (6.1) as the solution to the e.o.m, which in
turn can be derived by 7-differentiating (6.1)

® — (O—m?* - gU")(OP — m*® — gU’) = 0. (6.2)

This e.o.m. can be derived from the action

“+oo

S = / dT/d4x% (ci>2 (0P — gU’((I)))2> : (6.3)

0

which indeed leads to ® as a canonically conjugate momentum for ®. This 5d model is non-
relativistic and contains higher-derivatives, so its meaning is not immediately clear. But
curiously, it mimics some holographical features. Namely, if one evaluates the action (6.3)
on its minimal trajectory (6.1), then one gets 4d action of the underlying primary scalar
¢(z) = (1 =0, 7)

Gon-shell _ / iz (g0 + U()) + const, (6.4)

assuming that asymptotics ®(7 — 00) is fixed. Thus, a classical 4d primary action arises as an
on-shell 5d action (6.3) treated as a functional of the initial value ¢.

However, it is not straightforward to continue this relation on the quantum level, because
from the standpoint of 5d model the quantization procedure we perform is far from the standard
one: we quantize a classical solution (6.1) by imposing equal-time commutation relation (3.43),
which is canonical only at the initial moment 7 = 0.
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7 Conclusion

In the paper we have studied the problem of quantization of the unfolded system of the 4d scalar
field with a self-interaction potential of the general form. We have presented and analyzed
corresponding classical unfolded system, which is of interest in itself, since the number of
available unfolded models is quite limited.

We have proposed three different but related ways of formulating unfolded quantum field
theory. All of them require classical off-shell unfolded system as the starting point. The first
one consists in imposing functional Schwinger—Dyson equations as unfolded operator equations
on the partition function of the theory. This requires finding a consistent commutation rela-
tion between unfolded field and unfolded source operators. This relation turns out to be quite
remarkable: instead of delta-function presented in a standard QFT, an unfolded commutator
represents a heat kernel, dependent on an auxiliary variable 7, which appears already in the
classical unfolded system, where it parametrizes off-shell descendants of the primary scalar field.
In the commutator of unfolded quantum fields 7 plays the role of a natural regularizer and thus
one may hope that unfolded dynamics approach will provide new instruments for dealing with
the problem of divergences in QFT. Another curious feature is that the mentioned unfolded
commutator becomes field-dependent in the nonlinear theory, that reflects the nonlinearity of
relations between descendants and primaries in the unfolded module. We present this formu-
lation and use it to solve the free model, while for nonlinear theories two other formulations
seems more handy and promising.

The second way to formulate unfolded QFT is in terms of the infinite chain of unfolded
Schwinger—Dyson equations for correlators, which allows one to perturbatively calculate un-
folded correlation functions. However, to construct a corresponding unfolded system one has to
have a unfolded functional Shwinger—Dyson system from the previous paragraph. We present
corresponding unfolded system and use it to evaluate a first perturbative correction to the
unfolded propagator.

The third way to quantize unfolded field theory is to write down an unfolded effective
equations, which allows one to systematically restore an effective action from the semiclassical
expansion. This, however, requires form the model in question to be Lagrangian, which is obvi-
ously true for the self-interacting scalar but may not be so clear for more complicated unfolded
theories. We give a general prescription how to generate unfolded effective equations for the
scalar theory to any order in A and present a manifest form in the one-loop approximation.

Finally we present an auxiliary 5d model, which has 7-variable as the physical time, 7-
equation of the 4d unfolded system as its classical solution and generates a correct 4d scalar
action as an on-shell 5d action evaluated as a functional of initial values of the field. Although
the status of this model is not entirely clear, its very existence indicates that the auxiliary
variable 7 of the unfolded dynamics approach may have some deeper meaning than a cursory
glance suggests.

In this paper, we have focused mainly on the problem of formulating unfolded QFT, limiting
ourselves to a few calculations for illustration purposes. Therefore it would be interesting
to consider some concrete scalar field theory in order to develop a systematic technique of
calculations in unfolded QFT, including Feynman diagrams, renormalizations etc.

On the other hand, the problem of formulating an unfolded quantum gauge field theory
raises new questions related to gauge symmetry, ghosts etc. This requires additional thorough
analysis, which is beyond the scope of this paper.
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Appendix A. General unfolded frame for the scalar field
Ansatz for unfolded equation
d® + aneddd + byeyiy(® + m>®) + cxeyigU’ (fy®) = 0, (7.1)

where U’ is understood as a formal series

o

U'(fn®) : Z% Fa®)" (7.2)

n=2

with every fy acting only on the one following ®.
Consistency condition from d? = 0 then requires

b
by = , 7.3
NTUN(N + ay_ (7:3)
c
¢ ) 7.4
N = (N+ 1) (CLQ aj - : a'N—l) ( )
fN:f-N!(ao-al-...-aN_l). (75)
Then Y-dependence of ® is resolved as
o a avaa)
(Y, 7|z) = ; e an_1)®(0,r|m), (7.6)
and 7-dependence has to be determined from
00 — m2® — e (N + 1)U (fn®) = @. (7.7)
In the paper we pick up a particular solution
1 1 1
an N_l_lu N N—l—l’CN N—i—]_’fN ) (78)

But different choices are also possible. In the HS literature a standard choice for any unfolded
equation is to demand ay = 1. For the model under consideration this choice entails (up to
overall scaling of variables)

1 1
an y ON N(N+1),CN (N+1)!>fN ) (7.9)
so that Y-dependence is resolved as
O, 7lz) = O (1407 Vaa) d(x), (7.10)

21



where oF1(; 1; ) is a confluent hypergeometric limit function, which can be expressed through
the modified Bessel function as F;(;1; z) = Ip(24/z), and T-equation takes the form

1 .
00 — m?® — ﬁgU’(N!CD) = . (7.11)

We see that the solution (7.8) has two important advantages over (7.9): first, Y-dependence
comes down to a simple shift of z-coordinate by (—yy) as seen from (2.27); second, Y- and
T-dependencies are completely separated and unfolded potential arises by trivially replacing
the primary field ¢ with the unfolded field ®.
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