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1 Introduction

Quantum field theory (QFT) represents a powerful and elaborated theoretical framework,
that unifies quantum mechanics and special relativity. However, it is widely believed that
solving the puzzle of quantum gravity will require a radical paradigm shift, since the direct
application of QFT methods to general relativity does not lead to a meaningful theory.

One possible way out is to add new degrees of freedom while increasing the symmetry
of the theory. A natural attempt is to consider theories with higher-spin fields. From the
point of view of standard QFT, interactions with such fields seem problematic: if higher-
spin (HS) fields are massive, corresponding interactions are in general non-renormalizable;
if HS fields are massless, then related gauge symmetries turn out so restrictive that at
first sight they forbid any interactions at all (for a review of HS no-go theorems see [1]).
However, thanks to symmetries, in both cases we have remarkable examples of profound and
highly nontrivial theories. String theory contains infinite sequences of massive HS fields,
but infinite-dimensional superconformal symmetry organizes them in such a way that the
whole theory is UV-finite. Vasiliev HS gravity describes massless fields of all spins and
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possesses a certain infinite-dimensional HS gauge symmetry governed by Fradkin-Vasiliev
algebra [2], but this symmetry requires a non-zero value of the cosmological constant, so
the theory is formulated in anti-de Sitter space, where it eludes the taboos of the no-go
theorems. For a partial review of the recent literature related to HS problems see [3].

Available formulations of Vasiliev HS gravity represent generating systems for classical
equations of motion, written within the framework of the unfolded dynamics approach [4–
8]. This includes Vasiliev theories in 4d [5, 6], in 3d [9], Vasiliev theory for symmetric
bosonic fields in arbitrary dimensions [10], chiral HS gravity [11, 12] etc. All this models
are purely classical.

One of the main problem of HS gravity is that its nonlinear action is unknown, al-
though some alternatives for an action principle have been put forward, see e.g. [13–20].
This provides an obstacle to the systematic study of quantum HS gravity. Nevertheless,
there is a number of results on quantum higher spins in the literature, in particular, on
1-loop partition functions [21–29], on amplitudes [30–36], on the finiteness of chiral HS
gravity [37–42] etc. In this paper we address the problem of quantization of the field the-
ory within Vasiliev’s unfolded dynamics approach, which does not directly use a classical
action. Namely, we provide a systematic procedure for an unfolded quantization of a 4d

self-interacting scalar field.
To this end we first present a classical unfolded formulation for this model. This

formulation is interesting by itself, because the number of available unfolded nonlinear
theories is very limited by now. To quantize it, we use the method proposed in [43], where
it has been shown that quantization can be performed via identifying a certain submodule
of the off-shell unfolded system with an external source, conjugate to the unfolded field, and
promoting classical unfolded equations to unfolded Schwinger-Dyson ones (other suitable
classical off-shell unfolded systems, that allow for such identification, include free integer-
spin fields in 4d Minkowski [43] and anti-de Sitter [44] spaces, as well as free chiral and
gauge supermultiplets in 4d Minkowski space [45]). For related proposal of the so-called
Lagrange anchor in application to the unfolded field theory see [46]. Developing the idea
of [43], we construct three unfolded formulations of the corresponding quantum field theory:
unfolded functional Schwinger-Dyson system, an unfolded system for correlation functions
and an unfolded effective system for vertex functions.

The paper is organized as follows. In section 2 we give a brief overview of the un-
folded dynamics approach and present and analyze a classical unfolded system for 4d

self-interacting scalar field. In section 3 we quantize this unfolded system by deducing
unfolded functional Schwinger-Dyson equations that determine a partition function of the
theory, and use them to calculate a free unfolded propagator. In section 4 we present a
closed system of equations on unfolded correlation functions and with its help evaluate
a first perturbative correction to the unfolded propagator. In section 5 we formulate a
prescription for the system of unfolded effective equations and consider a particular real-
ization, calculating a one-loop correction to the inverse unfolded propagator. In section 6
we present a toy 5d model, which leads to the classical 4d theory under consideration and
reveals some curious quasi-holographical features. In appendix A we present a general
consistency analysis of the classical unfolded system for the self-interacting scalar field and
comment on differences between its particular solutions.
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2 Unfolded dynamics approach and classical scalar field

2.1 General construction

In the unfolded dynamics approach [4–8], a classical field theory is formulated through
imposing unfolded equations

dW A(x) + GA(W ) = 0 (2.1)

on unfolded fields W A(x), where A stands for all indices of the field. The theory is formu-
lated on some space-time manifold Md with local coordinates x and de Rham differential d.
Unfolded fields W are exterior forms on Md, and GA(W ) is built from exterior products of
W (we omit the wedge symbol throughout the paper). Every unfolded field W A is provided
with one and only one own unfolded equation (2.1).

The nilpotency of the de Rham differential d2 ≡ 0 entails a consistency condition for G

GB δGA

δW B
≡ 0, (2.2)

which plays a central role in the process of "unfolding" the field theory. Different solutions
to (2.2) can, in general, provide different unfolded formulations for the same field theory.

If (2.2) holds, unfolded equations (2.1) are manifestly invariant under infinitesimal
gauge transformations

δW A = dεA(x)− εB δGA

δW B
. (2.3)

Here a gauge parameter εA(x), representing a rank-(n − 1) form, is generated by a rank-n
unfolded field W A. 0-form unfolded fields do not generate gauge symmetries and are trans-
formed only by gauge symmetries of higher-rank fields through the second term in (2.3).
At the linear level, 0-forms are transformed only due to vacuum symmetries and therefore
correspond to gauge-invariant degrees of freedom. In a nutshell, an unfolded field includes
some physical field (we call it a primary field) and all its differential descendants, param-
eterized in a coordinate-independent way. In a nonlinear theory, the basis of differential
descendants usually becomes nonlinear as well.

The two most important features of the unfolded dynamics approach are the manifest
gauge invariance, which allows one to efficiently control all gauge symmetries of a theory,
and the manifest coordinate independence, ensured by the exterior form formalism.

2.2 Unfolded Minkowski vacuum

According to the ideology of the unfolded dynamics approach, the geometry of the space-
time manifold Md must be encoded in some unfolded equations (2.1). This is achieved by
using the Cartan formalism.

One introduces a 1-form connection Ω = dxaΩA
a (x)TA that takes values in the Lie

algebra of symmetries of Md with generators TA. Then a maximally symmetric vacuum
arises via imposing Maurer-Cartan equation on Ω

dΩ + 1
2[Ω,Ω] = 0 (2.4)
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(square brackets stand for the Lie-algebra commutator). Fixing some particular solution
Ω0 to this equation breaks the associated gauge symmetry (2.3)

δΩ = dε(x) + [Ω, ε] (2.5)

down to a residual global symmetry εglob, that leaves the solution Ω0 invariant and thus
must satisfy

dεglob + [Ω0, εglob] = 0. (2.6)

In the paper we deal with 4d Minkowski space, so we consider a connection that takes
values in Poincaré algebra iso(1, 3)

Ω = eαβ̇Pαβ̇ + ωαβMαβ + ω̄α̇β̇M̄α̇β̇ , (2.7)

where Pαα̇, Mαβ and M̄α̇β̇ represent generators of space-time translations and (selfdual
and anti-selfdual part of) rotations. Fields eαβ̇ and ωαβ (ω̄α̇β̇) are 1-forms of vierbein and
Lorentz connection. Two-valued indices α and β̇ correspond to two spinor representations
of the Lorentz algebra so(3, 1) ≈ sl(2,C). The indices are raised and lowered by the
Lorentz-invariant spinor metric

ϵαβ = ϵα̇β̇ =
(

0 1
−1 0

)
, ϵαβ = ϵα̇β̇ =

(
0 1
−1 0

)
(2.8)

according to
vα = ϵβαvβ , vα = ϵαβvβ , v̄α̇ = ϵβ̇α̇v̄β̇ , v̄α̇ = ϵα̇β̇ v̄β̇ . (2.9)

The expansion of (2.4) in terms of generators gives

deαβ̇ + ωα
γeγβ̇ + ω̄β̇

γ̇eαγ̇ = 0, (2.10)
dωαβ + ωα

γωγβ = 0, (2.11)

dω̄α̇β̇ + ω̄α̇
γ̇ω̄γ̇β̇ = 0. (2.12)

The simplest solution to (2.10)–(2.12) (with a non-degenerate vierbein) is provided by
Cartesian coordinates

em
αβ̇ = (σ̄m)β̇α, ωm

αβ = 0, ω̄m
α̇β̇ = 0. (2.13)

In these coordinates, equation (2.6) is solved by

εαβ̇
glob = ξαβ̇ + ξα

γ(σ̄m)β̇γxm + ξ̄β̇
γ̇(σ̄m)γ̇αxm, εαβ

glob = ξαβ , ε̄glob
α̇β̇ = ξ̄α̇β̇ (2.14)

with x-independent ξαβ̇ , ξαβ and ξ̄α̇β̇ being parameters of global Poincaré transformations.
When we consider an unfolded scalar field in the next subsection, (2.3) with εglob will

define a representation of Poincaré algebra on the unfolded module.
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2.3 Unfolded self-interacting scalar field

Unfolded formulation of the scalar field ϕ(x) requires the introduction of an infinite se-
quence of 0-forms, which, as we will see, encode all its linearly independent differential
descendants.

We start with defining an unfolded scalar field as the following set of 0-forms

Φ(Y,τ |x)=
∞∑

n=0

∞∑
k=0

Φ(k)
n (Y,τ |x)=

∞∑
n=0

∞∑
k=0

1
(n!)2Φ

(k)
α(n),α̇(n)(x)y

α1 . . .yαn ȳα̇1 . . . ȳα̇n
τk

k! . (2.15)

Here we make use of the condensed notations for symmetric spinor-tensors, so that

fα(n) := fα1...αn . (2.16)

Contracting all spinor indices of Φα(n),α̇(n) with σ-matrices, one can see that it corresponds
to a symmetric traceless rank-n Lorentz tensor

Φa1a2...an = (σ̄a1)α̇1α1 . . . (σ̄an)α̇nαnΦα(n),α̇(n), ηa1a2Φa1a2...an = 0. (2.17)

Thus, (2.15) is equivalent to a set of symmetric traceless Lorentz tensors of all ranks,
dependent on space-time coordinate xm and additional variables yα, ȳα̇, τ .

A pair of auxiliary commuting sl(2,C)-spinors Y = (yα, ȳα̇) in (2.15) is introduced for
the convenience of operating with symmetric spinor-tensors. Due to their commutativity,
Y are null with respect to the antisymmetric spinor metric

yαyβϵαβ = 0, ȳα̇ȳβ̇ϵα̇β̇ = 0. (2.18)

We also define corresponding derivatives as

∂αyβ = δα
β , ∂̄α̇ȳβ̇ = δα̇

β̇ (2.19)

and an Euler operator N

N = 1
2yα∂α + 1

2 ȳα̇∂̄α̇. (2.20)

As becomes clear below, higher powers in yȳ and τ in (2.15) correspond to differential
descendants of a scalar field

ϕ(x) = Φ(Y = 0, τ = 0|x), (2.21)

which for this reason we call the primary field.
A consistent unfolded system, that describes a self-interacting primary scalar ϕ, is

DΦ− 1
N + 1eαβ̇∂α∂̄β̇Φ+ 1

N + 1eαβ̇yαȳβ̇

(
m2Φ+ gU′(Φ)− ∂

∂τ
Φ
)
= 0, (2.22)

where U′ corresponds to the first variation of the scalar potential, g is a coupling constant
and D is the Lorentz-covariant derivative

Df(Y, τ |x) :=
(
d + ωαβyα∂β + ω̄α̇β̇ ȳα̇∂̄β̇

)
f(Y, τ |x), (2.23)

– 5 –



J
H
E
P
1
2
(
2
0
2
3
)
1
1
9

which in Cartesian coordinates comes down to the de Rham differential. A family of all
unfolded realizations of this model, generalizing (2.22), is discussed in appendix A.

Let us analyze the content of (2.22). To this order we expand the Lorentz-covariant
derivative in the vierbein as

D = eαα̇∇αα̇ (2.24)

and act on (2.22) with
yαȳβ̇ δ

δeαβ̇
, (2.25)

which yields a relation, that completely determines Y -dependence of Φ,(
yαȳα̇∇αα̇ − N

)
Φ = 0. (2.26)

We see that the whole Y -dependence in fact arises as a simple shift of x in Φ by yαȳα̇,

Φ(Y, τ |x) = exp
(
yαȳα̇∇αα̇

)
Φ(0, τ |x), (2.27)

or, treated another way, yȳ parameterize all traceless (because of (2.18)) derivatives of
Φ(0, τ |x).

To determine τ -dependence of Φ, we act on (2.22) with(
∇αα̇ + 1

N + 1∂α∂̄α̇
)

δ

δeαα̇
, (2.28)

which, accounting for (2.26), leads to

□Φ+ m2Φ+ gU′(Φ) = Φ̇, (2.29)

where the dot stands for the τ -derivative and d’Alembertian is defined as

□ := 1
2∇αα̇∇αα̇. (2.30)

Making use of (2.27), we deduce hereof

(□+ m2)Φ(0, τ |x) + gU′(Φ(0, τ |x)) = Φ̇(0, τ |x), (2.31)

This equation fixes τ -dependence of Φ. Of course, for general U′ this equation cannot be
resolved manifestly, as opposite to the Y -equation (2.26), so the dependence on τ can be
very complicated.

But in the case of the free theory U′ = 0, a manifest solution to

(□+ m2)Φ = Φ̇ (2.32)

can be easily written as

Φfree(0, τ |x) = exp
(
τ(□+ m2)

)
ϕ(x) (2.33)

where ϕ is the primary scalar field (2.21). Combining (2.33) with (2.27), one finds the full
solution to the unfolded system (2.22) with U′ = 0 to be

Φfree(Y, τ |x) = eτ(□+m2)+yαȳα̇∇αα̇ϕ(x). (2.34)
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Now one can give a clear interpretation of Y - and τ -dependent components of the free
unfolded field Φ: they provide a basis in the space of differential descendants of the primary
scalar ϕ, with yȳ parameterizing traceless derivatives and τ parameterizing powers of the
kinetic operator (□+ m2). These two sequences exhaust all possible types of descendants
in the case of the scalar field.

In the case of general U′ ̸= 0, one can write down a formal implicit solution as

Φ(0, τ |x) = eτ(□+m2)ϕ(x) + g

τ∫
0

dτ ′e(τ−τ ′)(□+m2)U′(Φ(0, τ ′|x)). (2.35)

Here the first term coincides with the free solution (2.33), so one can solve (2.35) perturba-
tively in g. Comparing (2.35) with (2.34), we see that τ -dependence of the self-interacting Φ
plays the same role as in the free case: it encodes d’Alembertians of ϕ, but now sophisticat-
edly entangled with nonlinear corrections coming from the potential. Strictly speaking, all
systems (2.22) with different U′ are in certain sense equivalent, as they simply provide dif-
ferent parameterizations for the space of differential descendants of ϕ. However, this equiv-
alence is established, in general, by strongly non-local and non-linear field redefinitions.

The unfolded system (2.22) is said to be off-shell, because the primary field ϕ(x) is not
subjected to any differential constraints like e.g. equations of motion. To put the system
on-shell, i.e. to subject ϕ to some differential constraints, one has to consistently remove
some part of descendants inside of Φ. An advantage of the system (2.22) is that the on-shell
reduction, which leads to the standard e.o.m. for the self-interacting scalar with potential
U(ϕ), is realized by a simple constraint

Φ̇ = 0, (2.36)

which eliminates all τ -descendants from Φ.
To simplify notations, from now on we omit spinor indices, contracted between a

vierbein 1-form eαβ̇ and auxiliary spinors, and write

eyȳ := eαβ̇yαȳβ̇ , e∂∂̄ := eαβ̇∂α∂̄β̇ . (2.37)

Then an unfolded equation for Φ = Φ(Y |x) becomes

DΦ− 1
N + 1e∂∂̄Φ+ 1

N + 1eyȳ
(
m2Φ+ gU′(Φ)

)
= 0 (2.38)

and imposes, as follows from (2.29), a differential constraint

(□+ m2)Φ + gU′(Φ) = 0, (2.39)

which includes, at Y = 0, e.o.m. for the primary scalar

(□+ m2)ϕ + gU′(ϕ) = 0. (2.40)

So in this case the unfolded field Φ describes the primary scalar ϕ, subjected to nonlinear
Klein-Gordon equation (2.40), and all its independent non-zero descendants encoded in
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Y -expansion (2.27) (note that the on-shell reduction (2.36) does not affect Y -sector of the
problem),

Φon-shell(Y |x) = exp
(
yαȳα̇∇αα̇

)
ϕ(x). (2.41)

Now let us return to the off-shell system (2.22). Keeping in mind the form of the
on-shell constraint (2.36), we see that Φ̇(Y = 0, τ = 0|x) can be treated as an external
source j(x) for the primary scalar ϕ(x). This follows from (2.29), projected to (Y = 0,

τ = 0)-component,

(□+ m2)ϕ + gU′(ϕ) = j(x), j(x) := Φ̇(Y = 0, τ = 0|x). (2.42)

Thus, an off-shell unfolded model can be as well treated as the on-shell one, coupled to an
external source [43]. This observation plays a decisive role when one turns to the problem
of quantization of an unfolded theory.

2.4 Relation to Vasiliev higher-spin gravity

Let us take a cursory glance at how the pieces of the unfolding formalism we considered so
far are built into Vasiliev’s unfolded formulation of 4d on-shell HS gravity [5, 6].

First, the space of 0-forms of the higher-spin theory contains spinor-tensors of all
possible ranks in dotted and undotted indices Cα(m),β̇(n), not only a scalar unfolded module
Φα(n),α̇(n). These new 0-forms correspond to gauge-invariant strength tensors of all fields of
the theory (Maxwell tensor and its descendants for s = 1, Weyl tensor and its descendants
for s = 2 and so on for higher-spin fields). Analogously, 1-forms of the theory now include
all possible ωα(m),β̇(n) besides the gravitational sector m + n = 2, which we have used to
describe Minkowski vacuum. They encode potentials of gauge fields and their gauge-non-
invariant descendants (first (s − 1) derivatives of the potential for a spin-s field). At the
linear order, 1-forms get connected to corresponding 0-forms, that makes them dynamical
(in particular, the gravitational gauge multiplet eαβ̇ , ωαβ , ω̄α̇β̇ gets connected to 0-forms
of Weyl tensor Cα(4), C̄α̇(4), that allows a metric to fluctuate). At the higher orders both
0- and 1-form equations receive nonlinear corrections that describe HS interactions.

All spinor indices are still contracted with Y -spinors, which now play the very impor-
tant role, being generating elements of infinite-dimensional associative algebra of HS gauge
symmetries.

Finally, Minkowski vacuum (2.10)–(2.12) is not a solution of Vasiliev theory. HS gauge
symmetry requires a non-zero value of the cosmological constant, so usually one considers
an expansion over AdS4 background.

For a detailed review of Vasiliev theory see e.g. [47, 48].

3 Quantization of the unfolded scalar field

In this section, we develop a method of quantization of the classical unfolded system
presented in the previous section. In short, making use of the analogy with functional
Schwinger-Dyson equations, we promote off-shell unfolded equations

dW A + GA(W ) = 0

– 8 –
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to operator equations for a partition function Z(
dŴ A + ĜA(Ŵ )

)
Z = 0

and determine an unfolded operator algebra

[Ŵ A, Ŵ B] = F A,B(Ŵ ).

3.1 Functional Schwinger-Dyson equation

In a standard QFT with the classical action S[ϕ], the partition function

Z[j] :=
∫

Dϕ exp
{

i

ℏ
S[ϕ]− i

ℏ

∫
d4xϕ(x)j(x)

}
(3.1)

satisfies the functional Schwinger-Dyson equation

δS

δϕ

[
iℏ

δ

δj

]
Z = jZ, (3.2)

which can be deduced from the fact that a functional integral of a total derivative vanishes,
so that ∫

Dϕ
δ

δϕ
e

i
ℏ (S−

∫
d4xϕj) = 0. (3.3)

Schwinger-Dyson equation (3.2) can be obtained as follows. One starts with the clas-
sical e.o.m. of the theory coupled to an external source j,

δS

δϕ
[ϕ] = j, (3.4)

and "quantize" it by promoting a field-source pair to the operators acting on a "wave
function" Z and obeying canonical commutation relations

[ϕ̂(x1), ĵ(x2)] = iℏδ4(x1 − x2), [ϕ̂(x1), ϕ̂(x2)] = [ĵ(x1), ĵ(x2)] = 0. (3.5)

Then, in j-representation, one arrives at (3.2). It should be stressed that the first-quantized
system (3.5) has no relation to usual canonical commutation relations of a second-quantized
field theory (where, of course, operators of a quantum field do not commute), and represents
just a formal trick, introduced in [49], that allows one to arrive at (3.2) starting from (3.4).

We are going to perform a similar procedure for the unfolded system (2.22). First, we
consider the simpler case of the free theory, U′(Φ) = 0.

3.2 Free quantum scalar

We start with the classical off-shell unfolded equation

(N + 1)DΦ− e∂∂̄Φ+ eyȳ(m2Φ− Φ̇) = 0. (3.6)

Accounting for (2.42), we define an unfolded external source as

J(Y, τ |x) := Φ̇(Y, τ |x) (3.7)

– 9 –
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(remarkably, this formally looks like a transition from a "velocity" Φ̇ to a conjugate "mo-
mentum" J).

Now we have a pair of unfolded equations

(N + 1)DΦ− e∂∂̄Φ+ eyȳ(m2Φ− J) = 0, (3.8)
(N + 1)DJ− e∂∂̄J + eyȳ(m2J− J̇) = 0. (3.9)

Analogously to (2.34), a solution to (3.9) is

J(Y, τ |x) = exp
(
τ(□+ m2) + yαȳα̇∇αα̇

)
j(x), (3.10)

where j(x) is a primary source. Instead of (2.32), a wave equation for Φ is now

(□+ m2)Φ = J, (3.11)

and in the primary (Y = 0, τ = 0)-sector

(□+ m2)ϕ = j. (3.12)

Treating (3.12) as a classical e.o.m. with an external source j, the theory can be quantized
as described in subsection 3.1. However, our goal is to get a closed formulation of the
unfolded quantum theory in terms of the unfolded quantum fields Φ̂ and Ĵ, without manifest
appealing to primary fields, which are just their particular components.

We want to promote the system (3.8)–(3.9) to the quantum operator equations on the
partition function Z (

(N + 1)DΦ̂− e∂∂̄Φ̂ + eyȳ(m2Φ̂− Ĵ)
)

Z = 0, (3.13)(
(N + 1)D− e∂∂̄ + eyȳ

(
m2 − ∂

∂τ

))
ĴZ = 0. (3.14)

This requires the definition of the commutator [Φ̂i, Ĵk], satisfying an "initial condition" (3.5)
and consistent with (3.13)–(3.14). From now on, a subscript of an unfolded field denotes
the full set of its arguments, i.e.

Φi := Φ(Yi, τi|xi). (3.15)

Resolving Y -dependence in (3.13)–(3.14) (which still comes down to a shift of space-
time coordinates x by yȳ, as in the classical theory), one extracts wave equations

(□Φ̂ + m2Φ̂− Ĵ)Z = 0, (3.16)(
□+ m2 − ∂

∂τ

)
ĴZ = 0. (3.17)

Assuming naturally
[Φ̂i, Φ̂k] = [Ĵi, Ĵk] = 0, (3.18)
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a self-consistency of these equations requires

(□i + m2)[Φ̂i, Ĵk] = (□k + m2)[Φ̂k, Ĵi], (3.19)

(□i + m2)
(
□k + m2 − ∂

∂τk

)
[Φ̂i, Ĵk] = 0. (3.20)

Any solution to this system, respecting the initial condition (3.5), defines some consistent
quantization of the unfolded system (3.6).

We pick up a particular solution, which in Cartesian coordinates (2.13) is

[Φ̂i, Ĵk] = iℏKm
τi+τk

(xi + yiȳi;xk + ykȳk), (3.21)

where
Km

τ (x1;x2) := em2τ Kτ (x1;x2) (3.22)

and the heat kernel Kτ (x1;x2) is defined in the usual way

Kτ (x1;x2) :=
1

(4πτ)2 exp
{
−(x1 − x2)2

2τ

}
(3.23)

and possesses well-known properties(
□i={1,2} + m2 − ∂

∂τ

)
em2τ Kτ (x1;x2) = 0, (3.24)

lim
τ→0

Kτ (x1;x2) = δ(x1 − x2), (3.25)∫
d4x2Kτ (x1;x2)Kτ ′(x2;x3) = Kτ+τ ′(x1;x3). (3.26)

The commutator (3.21) satisfies (3.19)–(3.20) due to (3.24) and symmetricity with respect
to τi ↔ τk, while (3.25) guarantees that (3.5) holds.

The expression for the commutator of unfolded quantum fields (3.21) is one of the
central ones in the paper. Let us pay attention to two of its most remarkable features:

(1) It naturally contains the heat kernel in the Schwinger proper-time parameterization.
However, while the proper time τ in Schwinger’s method appears as a formal inte-
gration variable which allows for the convenient representations of Green’s functions,
one-loop determinants etc., in the unfolded dynamics approach it arises already at
the classical level and possesses a clear interpretation — τ parameterizes off-shell
descendants of the primary field and generates the transform (3.7), which defines an
unfolded source conjugate to the unfolded field;

(2) Expression (3.21) does not immediately produce a singularity in coinciding space-time
points. A singularity develops only when τi = τk = 0, i.e. in the sector of primary
fields and their on-shell descendants. Effectively, the τ -dependent heat kernel replaces
for unfolded fields the space-time delta-function of a standard QFT. Thus, the proper
time τ serves as a natural regularizer, which potentially might manage and soften
quantum divergences;
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Finally, (3.21) is to some extent similar to the propagator of a non-relativistic quantum
particle, as usual for the heat kernels. An important difference, however, is that (3.21)
depends on the sum of proper times, not on the difference.

Now let us use (3.21) to complete the quantization of the free unfolded scalar. We go
to J-representation, where unfolded operators are realized, according to (3.21), as

Ĵi = J(Yi, τi|xi) (3.27)

Φ̂i = iℏ
∫

d4x′Km
τi+τ ′(xi + yȳi;x′ + yȳ′) δ

δJ(Y ′, τ ′|x′) . (3.28)

In J-representation, (3.14) coincides with the classical equation (3.9), whose solution
is (3.10). The variation δ

δJ in (3.28) is defined as

δ

δJk
Ji = Km

τi−τk
(xi + yȳi;xk + yȳk), (3.29)

which corresponds to the free variation of the primary source

δ

δj(xk)
j(xi) = δ(xi − xk), (3.30)

followed by the unfolding map (3.10).
When considering a free theory, it is more convenient to deal with a generator for

connected correlation functions W instead of Z,

W = logZ. (3.31)

Then (3.16) turns to

(□+ m2)iℏ
∫

d4x′Km
τ+τ ′(x + yȳ;x′ + yȳ′) δW

δJ(Y ′, τ ′|x′) = J(Y, τ |x), (3.32)

which can be solved as

W [J] = − i

2ℏ

∫
d4xJ(τ = 0, Y |x)

(
□+ m2

)−1
J(τ = 0, Y |x), (3.33)

if one takes into account (3.10). Substituting (3.10) into (3.33), one can express W solely
in terms of primary sources as

W [j] = − i

2ℏ

∫
d4xj(x)

(
□+ m2

)−1
j(x), (3.34)

which is standard W of a free scalar.
Using (3.33), one recovers a propagator of the unfolded free scalar field

〈
ΦiΦk

〉0 = Φ̂iΦ̂kW |J=0 = iℏ
□i + m2 Km

τi+τk
(xi + yȳi;xk + yȳk). (3.35)

Again, we see that the space-time delta-function is replaced by the heat kernel.
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In the primary sector, one has, sending τ and Y to zero and using (3.25),

〈
ϕ(xi)ϕ(xk)

〉0 = iℏ
□i + m2 δ(xi − xk), (3.36)

i.e. the standard propagator of a free scalar.
Finally, let us formulate the unfolded operator algebra (3.18), (3.21) in a coordinate-

independent way, without appealing to the Cartesian frame. To this end, we treat the
commutator

Ĉ0
ik = [Φ̂i, Ĵk] (3.37)

as a new two-point unfolded field with its own unfolded equations and certain boundary
values. Then the free unfolded quantized theory is defined by (3.13)–(3.14) plus equations
for Ĉ0

ik (
(Ni + 1)Di − (e∂∂̄)i + (eyȳ)i

(
m2 − ∂

∂τi

))
Ĉ0

ikZ = 0, (3.38)(
(Nk + 1)Dk − (e∂∂̄)k + (eyȳ)k

(
m2 − ∂

∂τk

))
Ĉ0

ikZ = 0, (3.39)

with the boundary condition in coinciding space-time points xi = xk

Ĉ0
ik|xi=xk

= iℏKm
τi+τk

(yiȳi; ykȳk). (3.40)

An unfolded operator algebra is

[Φ̂i, Φ̂k] = [Ĵi, Ĵk] = 0, [Φ̂i, Ĵk] = Ĉ0
ik, (3.41)

that obviously obeys Jacobi identities.
Let us summarize the results of this subsection. The unfolded quantum theory of

the free scalar field is determined by the set of unfolded equations (3.13)–(3.14), (3.38)–
(3.39), with the coordinate-independent boundary condition (3.40) for coinciding space-
time points, and by the unfolded operator algebra (3.41). In Cartesian coordinates, the
commutator takes a simple form (3.21) and W can be found to have a usual form (3.34),
while an unfolded propagator is (3.35), with a space-time singularity smeared by the heat
kernel. Now we turn to the more complicated case of an interacting theory.

3.3 Self-interacting quantum scalar

To quantize a nonlinear system, we start with the classical unfolded off-shell equation (2.22)
and reformulate it as

(N + 1)DΦ− e∂∂̄Φ+ eyȳ(m2Φ+ gU′(Φ)− J) = 0 (3.42)
(N + 1)DJ− e∂∂̄J + eyȳ(m2J− J̇) = 0. (3.43)

Note that the equation for J is the free one (3.9), which does not spoil the consistency
of (3.42)–(3.43), but implies that the relation between Φ̇ and J is much more complicated
than in the free case.
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We want to promote the system (3.42)–(3.43) to the operator equations

[(N + 1)DΦ̂− e∂∂̄Φ̂ + eyȳ(m2Φ̂ + gU′(Φ̂)− Ĵ)]Z = 0, (3.44)[
(N + 1)D− e∂∂̄ + eyȳ

(
m2 − ∂

∂τ

)]
ĴZ = 0. (3.45)

Assuming (3.18) again, the self-consistency of (3.44)–(3.45) requires (in Cartesian coordi-
nates) (

□i + m2 + gU′′(Φ̂i)
)
[Φ̂i, Ĵk] =

(
□k + m2 + gU′′(Φ̂k)

)
[Φ̂k, Ĵi], (3.46)(

□i + m2 + gU′′(Φ̂i)
)(

□k + m2 − ∂

∂τk

)
[Φ̂i, Ĵk] = 0. (3.47)

One can write down a particular solution to (3.46)–(3.47) as

[Φ̂i,Ĵk]=
iℏ

(□i+m2+gU′′(Φ̂i))

∫
d4zKm

τi
(xi+yȳi;z)

(
□z+m2+gU′′(Φ̂(0,0|z))

)
Km

τk
(z;xk+yȳk).

(3.48)
Eq. (3.47) is solved due to (3.24), while (3.46) is satisfied because the integral in (3.48) is
symmetric under i ↔ k. Moreover, (3.48) still has the correct form (3.5) in the primary
(τ = 0, Y = 0)-sector. Note that the commutator (3.48) is not symmetric with respect to
an exchange of the arguments of operators, [Φ̂i, Ĵk] ̸= [Φ̂k, Ĵi], in contrast to the standard
QFT (3.5) and unfolded free theory (3.21) cases.

The commutator (3.48) has a quite complicated structure, being non-local and field-
dependent. To the first order in g it is

[Φ̂i, Ĵk] = Ĉ0
ik − g

(□i + m2)U
′′(Φ̂i)Ĉ0

ik − ig

ℏ(□i + m2)

∫
d4xuĈ0

iuU′′(Φ̂u)Ĉ0
uk|Yu,τu=0 + O(g2),

(3.49)
where Ĉ0

ik is the commutator of the free theory (3.21).
It is possible to formulate the quantized nonlinear theory in a coordinate-independent

way as well. One introduces a two-point unfolded operator field

Ĉik = [Φ̂i, Ĵk], (3.50)

subjected to

[(Ni + 1)Di − (e∂∂̄)i + (eyȳ)i(m2 + gU′′(Φ̂i))]ĈikZ = (eyȳ)if̂ikZ, (3.51)[
(Nk + 1)Dk − (e∂∂̄)k + (eyȳ)k

(
m2 − ∂

∂τk

)]
ĈikZ = 0, (3.52)

where f̂ik = f̂(τi, xi + yȳi; τk, xk + yȳk) is an arbitrary two-point operator, symmetric in
its arguments f̂ik = f̂ki. Specifying f̂ determines Ĉ. In our case, in Cartesian coordinates,
where Ĉ is (3.48), we have

f̂ik = iℏ
∫

d4zKm
τi
(xi + yȳi; z)

(
□z + m2 + gU′′(Φ̂(0, 0|z))

)
Km

τk
(z;xk + yȳk). (3.53)
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But instead of trying to find a coordinate-independent description of (3.53), we impose
coordinate-independent boundary conditions for Ĉ, leaving f̂ undetermined. They are

Ĉik|τi=0;xi=xk
= iℏKm

τk
(yȳi; yȳk), (3.54)

plus a free-limit constraint, that Ĉik(g = 0) turns to the commutator of the free theory,
determined by (3.38)–(3.40).

An unfolded operator algebra looks like in the free case,

[Φ̂i, Φ̂k] = [Ĵi, Ĵk] = 0, [Φ̂i, Ĵk] = Ĉik, (3.55)

but the check of Jacobi identities is more complicated now. Namely, the identity for
[[Φ̂, Ĵ], Ĵ] is not obvious anymore, because now Ĉ is Φ̂-dependent. One should use the
standard relations for the commutators in an associative algebra

[AB, C] = A[B, C] + [A, C]B, [A−1, B] = −A−1[A, B]A−1, (3.56)

in order to find

[Ĉij , Ĵk] =
(iℏ)2g

(□i + m2 + gU′′(Φ̂i))

(
−U′′′(Φ̂i)ĈijĈik (3.57)

+
∫

d4zU′′′(Φ̂(0, 0|z))Km
τi
(xi + yȳi; z)Km

τj
(xj + yȳj ; z)Km

τk
(xk + yȳk; z)

)
which is manifestly symmetric under j ↔ k and hence guarantees the Jacobi identity for
[[Φ̂, Ĵ], Ĵ].

Thus, the unfolded self-interacting scalar can be quantized along the same lines as the
free one, but the commutator of Φ̂ and Ĵ in this case becomes much more complicated,
representing a Φ̂-dependent nonlocal expression. This makes the problem of solving for Z

too difficult. Therefore, it looks reasonable to use the system we built, in order to formulate
equations directly for unfolded correlation functions. This is done in the next section.

4 Unfolded correlation functions

Starting from the functional Schwinger-Dyson equation (3.2), one can deduce standard
Schwinger-Dyson equations for correlation functions. Let us rewrite (3.2) in the operator
form

δS

δϕi
[ϕ̂]Z = ĵiZ (4.1)

(here ϕi ≡ ϕ(xi)) with (3.5) imposed. Acting on (4.1) with field operators ϕ̂a1 , ϕ̂a2 , . . . ϕ̂an

and putting ĵ = 0 at the end, we find

ϕ̂a1 ϕ̂a2 . . . ϕ̂an

δS

δϕi
[ϕ̂]Z|ĵ=0 =

n∑
k=1

ϕ̂a1 ϕ̂a2 . . . [ϕ̂ak
, ĵi] . . . ϕ̂anZ|ĵ=0. (4.2)

Considering that the action of field operators on Z at zero sources produces corresponding
correlation functions,

ϕ̂a1 ϕ̂a2 . . . ϕ̂anZ|ĵ=0 =
〈
ϕa1ϕa2 . . . ϕan

〉
, (4.3)
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one makes use of (3.5) and recovers from (4.2) the Schwinger-Dyson equation for correlation
functions, 〈 δS

δϕi
ϕa1ϕa2 . . . ϕan

〉
= iℏ

n∑
k=1

〈
ϕa1ϕa2 . . . δ4(xi − xak

) . . . ϕan

〉
. (4.4)

Our goal is to provide an analogue of (4.4) for unfolded fields, so one can perturba-
tively solve for unfolded correlators. We naturally define an unfolded n-point correlation
function to be 〈

Φa1Φa2 . . .Φan

〉
= Φ̂a1Φ̂a2 . . . Φ̂anZ|J=0, (4.5)

which in the primary (τ = 0, Y = 0)-sector coincides with (4.3). Acting with Φ̂a1Φ̂a2 . . . Φ̂an

on (3.44), which is an unfolded substitute for (4.1), we have(
(Ni + 1)Di − (e∂∂̄)i + (eyȳ)im

2
) 〈

ΦiΦa1Φa2 . . .Φan

〉
+

+(eyȳ)i

(
g
〈
U′(Φi)Φa1Φa2 . . .Φan

〉
+

n∑
k=1

〈
Φa1Φa2 . . .Cak,i . . .Φan

〉)
= 0. (4.6)

with Ĉak,i ≡ [Φ̂ak
, Ĵi] from subsection 3.3. The system (4.6) provides an unfolded form

of a chain of Schwinger-Dyson equations and allows one to iteratively calculate unfolded
correlation functions.

For the free theory with U′ = 0, (4.6) in Cartesian coordinates reads as(
(Ni + 1)di − (e∂∂̄)i + (eyȳ)im

2
) 〈

ΦiΦa1Φa2 . . .Φan

〉0 +
+iℏ(eyȳ)i

n∑
k=1

〈
Φa1Φa2 . . . Km

τi+τak
(xi + yȳi;xak

+ yȳak
) . . .Φan

〉0 = 0. (4.7)

As expected, for the unfolded fields the contact terms get smoothed, having the heat kernel
in place of the delta-function. In the nonlinear problem, the contact terms get additional
field dressing, due to Φ̂-dependence of Ĉ.

Let us use (4.6) to calculate a first-order perturbative correction to the unfolded prop-
agator. To this end we expand a full propagator in a coupling constant as〈

ΦiΦk

〉
=
〈
ΦiΦk

〉0 + g
〈
ΦiΦk

〉g + O(g2). (4.8)

An exact equation for the full propagator is(
(Ni + 1)Di − (e∂∂̄)i + (eyȳ)im

2
) 〈

ΦiΦk

〉
+ g(eyȳ)i

〈
U′(Φi)Φk

〉
+ iℏ(eyȳ)i

〈
Cki

〉
= 0. (4.9)

In zeroth order in g and in Cartesian coordinates this yields(
(Ni + 1)di − (e∂∂̄)i + (eyȳ)im

2
) 〈

ΦiΦk

〉0+iℏ(eyȳ)iK
m
τi+τk

(xi+yȳi;xk+yȳk) = 0, (4.10)

whose solution, of course, coincides with the free propagator (3.35).
Then for the first-order correction we have, using (3.49),(

(Ni + 1)di − (e∂∂̄)i + (eyȳ)im
2
) 〈

ΦiΦk

〉g + (eyȳ)i
〈
U′(Φi)Φk

〉0 (4.11)

+(eyȳ)i
1

□k + m2

(〈
U′′(Φk)

〉0C0
k,i +

i

ℏ

∫
d4xuC0

k,u

〈
U′′(Φu)

〉0C0
u,i|Yu,τu=0

)
= 0.
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The free equation (4.7) allows us to find

〈
U′(Φi)Φk

〉0 = 1
□k + m2C

0
i,k

〈
U′′(Φi)

〉0
. (4.12)

For a translation-invariant ground state, correlation functions of Φ taken in coinciding
points (Y, τ |x) can only depend on τ , therefore〈

U′′(Φi)
〉0 =: Λ2(τi), (4.13)

and finally we arrive at

〈
ΦiΦk

〉g = − iℏ
(
Λ2(τi) + Λ2(τk)− Λ2(0)

)
(□i + m2)(□k + m2) em2(τi+τk)Kτi+τk

(xi + yȳi;xk + yȳk). (4.14)

The first-order correction to the unfolded propagator (4.14) generalizes the standard QFT
result, which arises upon sending all τ and Y to zero. The latter usually diverges, con-
taining a factor Λ2(0) =

〈
U′′(ϕ(x))

〉0, and therefore requires regularization. This factor is
presented in the unfolded expression (4.14) as well, but now in a special additive combina-
tion

(
Λ2(τi) + Λ2(τk)− Λ2(0)

)
. This may have interesting consequences for the problem of

renormalizations of the unfolded QFT: we see that, in effect, Λ2(τ) defined by (4.13) serves
as a built-in regularizer of the unfolded theory, smearing the divergent self-energy Λ2(0)
with the proper time τ . And although the unfolded expression (4.14) still diverges, now one
sees that the problem of renormalization amounts to the redefinition of Λ2(τ). The system-
atic development of perturbative calculation and renormalization methods for the unfolded
QFT requires a separate thorough consideration, and we leave this for future work.

5 Semiclassical quantization and unfolded effective equations

Starting from the unfolded system for the partition function Z, formulated in section 3,
it is possible to construct a different unfolded realization of the QFT, which involves a
quantum effective action. It allows one to calculate iteratively (in powers of ℏ) unfolded
one-particle irreducible vertex functions. They generalize 1PI vertex functions of standard
QFT in the same way as unfolded correlators of section 4 generalize the standard ones.

Let us begin with a short reminder of the standard construction. Quantum effective
action Γ[ϕ̄] is a generating functional for 1PI vertex functions. It is defined as the Legendre
transform of a generator of connected correlators W (3.31)

Γ[ϕ̄] =
∫

d4xϕ̄j + W [j], (5.1)

where a mean (or classical) field ϕ̄(x) represents an expectation value of the corresponding
quantum field at non-vanishing sources

ϕ̄(x) =
〈
ϕ(x)

〉
J
. (5.2)

Expansion of Γ in powers of the Planck constant corresponds to the expansion in loop
corrections to the classical action S.

– 17 –



J
H
E
P
1
2
(
2
0
2
3
)
1
1
9

One can deduce an equation that determines Γ from the functional Schwinger-Dyson
equation (3.2). To this end, one uses (3.31), (5.1) and

j(x) = δΓ
δϕ̄(x)

, (5.3)

following from (5.1), to represent Z as a functional of the mean field

Z[j(ϕ̄)] = exp
(

i

ℏ
(1−

∫
d4xϕ̄(x) δ

δϕ̄(x)
)Γ[ϕ̄]

)
. (5.4)

From (5.3), one can also express j-variational derivative through ϕ̄-variational derivative as

δ

δj(ϕ̄)
=
∫

d4y

(
δ2Γ

δϕ̄(x)δϕ̄(y)

)−1
δ

δϕ̄(y)
. (5.5)

Substituting (5.3), (5.4) and (5.5) to the functional Schwinger-Dyson equation (3.2), one
finds the following equation for Γ

δS

δϕ
[ϕ̄(x) + iℏ

∫
d4y( δ2Γ

δϕ̄(x)δϕ̄(y)
)−1 δ

δϕ̄(y)
] = δΓ

δϕ̄(x)
, (5.6)

where ϕ̄-derivative acts to the right. This equation determines the effective action up to
a field-independent contribution Γ[0].

As is seen from (5.6), this equation can be easily obtained from the classical e.o.m.
coupled to an external source (3.4). One should simply replace

ϕ(x) → ϕ̄(x) + iℏ
δ

δj(x) (5.7)

and substitute (5.3). Then one arrives at (5.6). Note, however, that while the shift (5.7) can
always be performed for arbitrary e.o.m., the substitute (5.3) requires from the e.o.m. to be
Lagrangian. For the models of self-interacting scalar we study in the paper, this is always
true, but in general one should check this for the consistency of quantization. A systematic
procedure to analyze Lagrangian properties of the unfolded systems is presented in [50].

For our needs it is more convenient to reformulate (5.6) in the form without variations,
like was done in subsection 3.1. To this end, we define a classical Poisson bracket

{j(x1), ϕ(x2)} = δ4(x1 − x2), {ϕ(x1), ϕ(x2)} = {j(x1), j(x2)} = 0, (5.8)

which obviously satisfies Jacobi identity. Then the equation for the effective action can be
reformulated in the form

δS

δϕ
[ϕ̄(x) + iℏ

∫
d4yGxy{j(y), •}] = {j(x),Γ}, (5.9)

where {j(y), •} acts to the right and a propagator Gxy is an inverse to Γxy∫
d4yΓxyGyz = δ4(x − z), Γxy[ϕ̄] = {j(y), {j(x),Γ}}. (5.10)
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Note that the symmetricity of Γxy is ensured by the Jacobi identity for the Poisson
bracket (5.8). The same is true for higher vertex functions Γx1x2...xn , which result from the
successive application of {j(xi), •} to Γ.

Separating a classical part G0
xy of the full propagator,

Gxy = G0
xy + O(ℏ),

∫
d4ySxyG0

yz = δ4(x − z), (5.11)

which is determined by the classical action S[ϕ], from (5.10) one can deduce a relation

Gxy = G0
xy −

∫
d4z1d4z2G0

xz1(Γz1z2 − Sz1z2)Gz2y, (5.12)

which allows for an iterative recovering of the ℏ-corrections to G0
xy.

Our goal is to formulate a system of effective unfolded equations, which determines Γ
and allows one to calculate unfolded vertex functions.

We start with a classical unfolded system

(N + 1)DΦ− e∂∂̄Φ+ eyȳ(m2Φ+ gU′(Φ)− J) = 0, (5.13)
(N + 1)DJ− e∂∂̄J + eyȳ(m2J− J̇) = 0, (5.14)

and, introducing a notation

Âi ≡ Â(Yi, τi|xi) := □i + m2 + gU′′(Φi), (5.15)

define an unfolded classical Poisson bracket,

π0
ik ≡ {Ji,Φk}0 = Â−1

k

∫
d4zKm

τk
(xk + ykȳk; z)Â(0, 0|z)Km

τi
(z;xi + yiȳi), (5.16)

{Φi,Φk} = {Ji, Jk} = 0, (5.17)

which is nothing but an image of the commutator (3.48) of the corresponding quantum
operators. We work here in Cartesian coordinates for simplicity, but one can write down
a coordinate-independent formulation of the Poisson bracket algebra, in a straightforward
analogy with subsection 3.3.

We quantize the classical system (5.13)–(5.14) with the Poisson bracket (5.16)–(5.17)
by replacing in (5.13)

Ji → Γi ≡ {Ji,Γ}, U′(Φi) → U′
eff(Φi) ≡ U′(Φi + iℏGik

k◦ {Jk, •}), (5.18)

where Γ[Φ] is an unfolded quantum effective action and an unfolded propagator Gik = Gki

is related to its inverse as

Γij
j
◦ Gjk = πik, Gij

j
◦ Γjk = πki, Γik ≡ {Ji,Γk}, (5.19)

where πik is a quantum generalization of the classical bracket π0
ik (5.16) and is discussed

below. A contraction operation ◦ in (5.18) and (5.19) is defined as

Fi
i◦ Gi :=

∫
d4xiF (τi = 0;xi)G(τi = 0;xi), (5.20)
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that corresponds to the integration of primary components of unfolded scalar fields F and
G (note that Y -dependence vanishes automatically, because it has the form x + yȳ for the
functions in question).

Finally, unfolded quantum equations for the mean field and the source are

(Ni + 1)DiΦi − (e∂∂̄)iΦi + (eyȳ)i

(
m2Φi + gU′

eff(Φi)− Γi

)
= 0, (5.21)

(Ni + 1)DiJi − (e∂∂̄)iJi + (eyȳ)i(m2Ji − J̇i) = 0. (5.22)

These must be supported with unfolded equations determining πik = {Ji,Φk}, which in
general is different from the classical bracket (5.16). To find them, one takes the bracket
of (5.21) with J, producing an equation for the second argument of πik

((Nk + 1)Dk − (e∂∂̄)k + m2(eyȳ)k)πik + (eyȳ)k

(
g{Ji,U′

eff(Φk)} − Γik

)
= 0, (5.23)

and takes the bracket of (5.22) with Φ, producing an equation for the first argument

((Ni + 1)Di − (e∂∂̄)i + (eyȳ)i(m2 − ∂

∂τi
))πik = 0. (5.24)

An analogue of (5.12) for the unfolded system is

π0
ia

i◦ Gib = G0
ai

i◦ πib − gG0
ai

i◦ {Ji,U′
eff(Φj)}

j
◦ Gjb + gG0

aiU′′(Φi)
i◦ Gib, (5.25)

Gai
i◦ π0

ib = πia
i◦ G0

ib − gGai
i◦ {Ji,U′

eff(Φj)}
j
◦ G0

jb + gGaiU′′(Φi)
i◦ G0

ib, (5.26)

and a classical propagator can be checked to be

G0
ab = Â−1

a π0
ab. (5.27)

The system of unfolded quantum effective equations (5.21)–(5.24) requires the defini-
tion of concrete πik, that obeys (5.23)–(5.24) and Jacobi identities and leads to symmetric
Γik. A special feature of (5.23) is that the bracket πik is determined by the effective poten-
tial U′

eff (5.18), which in its turn is determined by πik. The way out is to work within the
semiclassical expansion, restoring πik order by order in ℏ, with (5.16) being the zeroth term.

ℏ-term in U′
eff(Φ) in (5.18) results in the appearance of the higher unfolded vertex

functions
Γi1...in = {Jin . . . {Ji2{Ji1 ,Γ}}} (5.28)

(whose symmetricity is ensured by the Jacobi identity for {•, •}), for which one needs new
unfolded equations, in order to have a closed system. These equations can be obtained
by the successive application of {J, •} to (5.21). In general, vertex functions of all orders
contribute to (5.21), which leads to an infinite system of entangled unfolded equations for
all Γi1...in . But when one restricts oneself to some specific order in ℏ, the system reduces
to a finite number of equations. Thus again, from the practical point of view, the unfolded
effective system (5.21)–(5.24) should be analyzed within the frame of the semiclassical
expansion. A similar idea of evaluating loop corrections via formulating Schwinger-Dyson
equations in terms of an infinite set of descendant fields has been put forward in [51].
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To illustrate how the analysis of the system (5.21)–(5.22) goes, let us use it to calculate
a one-loop correction to the inverse unfolded propagator Γik.

We choose the following particular (and implicit) solution to (5.23)–(5.24) in Cartesian
coordinates

πik = π0
ik + gÂ−1

k ({Jk,U′
eff(Φi)} −U′′(Φi)πki)

−g

2Â
−1
k

∫
d4z

∫
d4z′Km

τi
(xi + yȳi; z)

(
{j(z′),U′

eff(ϕ(z))}+ {j(z),U′
eff(ϕ(z′))}

−2U′′(ϕ(z))δ(z − z′))
)
Km

τk
(z′;xk + yȳk). (5.29)

Here the bracket πik is expressed in terms of itself, so one has to perform a semiclassical
expansion. We expand up to a linear order in ℏ

Γik[Φ]=Sik+ℏΓℏ
ik+O(ℏ2), πik =π0

ik+ℏπℏ
ik+O(ℏ2), U′

eff(Φi)=U′(Φi)+ℏU′
ℏ(Φi)+O(ℏ2),

(5.30)
and for the variation of a one-loop effective potential one finds

U′
ℏ(Φi) =

i

2U
′′′(Φi)G0

ii. (5.31)

Let us note that here the proper time τ again plays the role of the regularizer, so that the
propagator in coinciding points

G0
ii =

∫
d4z

(
Â−1

i Km
τi
(z;xi + yȳi)

)
Â(0, 0|z)

(
Â−1

i Km
τi
(z;xi + yȳi)

)
(5.32)

is singular only when τi → 0.
Using this, from the exact equation (5.23) one calculates a one-loop correction Γℏ

ik

Γℏ
ik = g{Ji,U′

ℏ(Φk)}0 − g

2

∫
d4z

∫
d4z′Km

τi
(xi + yȳi; z′){j(z′),U′

ℏ(ϕ(z)}0Km
τk
(z;xk + yȳk)

+ (i ↔ k) , (5.33)

with

{Ji,U′
ℏ(Φk)}0 = iℏ

2 U(IV)(Φk)G0
kkπ0

ik−iℏgU′′′(Φk)
∫

dξu

(
Â−1

k δ(ξk−ξu)
)
gU′′′(Φu)π0

iuG0
uk

+ iℏg

2 U′′′(Φk)
∫

d4z
(
Â−1

k Km
τk
(z;xk+yȳk)

)2
U′′′(ϕ(z))Km

τi
(z;xi+yȳi), (5.34)

where ξ stands for the full set of coordinates,

ξk := (τk, Yk|xk). (5.35)

Using that both the heat kernel and π0
ik come down to space-time delta-functions

when (τ, Y ) → 0, one can see that in this limit (5.33) correctly reproduces a standard QFT
expression.
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6 5d auxiliary model and τ as a physical time

Finally, let us briefly address the following issue: in a nutshell, quantization procedures we
performed consisted in taking the equation

□Φ+ m2Φ+ gU′(Φ) = Φ̇ (6.1)

and quantizing it by identifying Φ̇ with momentum conjugate to the field Φ; one may
wonder if there is any model which has τ as a physical time and somehow leads to the
equation (6.1).

Such model does exist. In order to construct it, we first notice, that upon identifying
Φ̇ with the momentum, one cannot treat (6.1) as the classical equation of motion, because
it is of first order in the time τ . Instead, one should consider (6.1) as the solution to the
e.o.m, which in turn can be deduced by τ -differentiating (6.1),

Φ̈− (□+ m2 + gU′′)(□Φ+ m2Φ+ gU′) = 0. (6.2)

This e.o.m. can be derived from the action

S =
+∞∫
0

dτ

∫
d4x

1
2

(
Φ̇2 +

(
□Φ+ m2Φ+ gU′(Φ)

)2
)

, (6.3)

which indeed leads to Φ̇ as a canonically conjugate momentum for Φ. This 5d model is non-
relativistic and contains higher-derivatives, so its meaning is not immediately clear. But
curiously, it mimics some holographic features. Namely, if one evaluates the action (6.3)
on its minimal trajectory (6.1), then one gets 4d action of the underlying primary scalar
ϕ(x) = Φ(τ = 0, x)

Son-shell =
∫

d4x

(
1
2ϕ□ϕ + m2

2 ϕ2 +U(ϕ)
)
+ const, (6.4)

assuming that asymptotics Φ(τ → ∞) is fixed. Thus, a classical 4d primary action arises
as an on-shell 5d action (6.3) treated as a functional of the initial value ϕ.

However, it is not straightforward to extend this relation to the quantum level, because
from the standpoint of 5d model the quantization procedure we perform is far from the
standard one: we quantize a classical solution (6.1) by imposing equal-time commutation
relation (3.48), which is canonical only at the initial moment τ = 0.

7 Conclusion

In the paper we have studied the problem of quantization of the unfolded system of the
4d scalar field with a self-interaction potential of the general form. We have presented and
analyzed corresponding classical unfolded system, which is of interest in itself, since the
number of available nonlinear unfolded models is quite limited.

We have proposed three different but related ways of formulating unfolded quantum
field theory. All of them require classical off-shell unfolded system as the starting point.
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The first one consists in imposing functional Schwinger-Dyson equations as unfolded op-
erator equations on the partition function of the theory. This requires finding a consistent
commutation relation between operators of an unfolded field and an unfolded source. This
relation turns out to be quite remarkable: instead of delta-function presented in a standard
QFT, an unfolded commutator represents (in the free case) a heat kernel, dependent on
an auxiliary variable τ , which appears already in the classical unfolded system, where it
parameterizes off-shell descendants of the primary scalar field. In the commutator of un-
folded quantum fields, τ plays the role of a natural regularizer and thus one may hope that
unfolded dynamics approach will provide new instruments for dealing with the problem of
divergences in QFT. Another curious feature is that the mentioned unfolded commutator
becomes field-dependent in the nonlinear theory, that reflects the nonlinearity of relations
between descendants and primaries in the unfolded module. We have constructed this for-
mulation and have used it to solve the free model, while for nonlinear theories two other
formulations seems more handy and promising.

The second way to formulate unfolded QFT is in terms of the infinite chain of unfolded
Schwinger-Dyson equations for correlators, which allows one to perturbatively calculate
unfolded correlation functions. However, to construct it, one needs an unfolded functional
Schwinger-Dyson system from the previous paragraph. We have presented a corresponding
unfolded correlators system and have used it to evaluate a first perturbative correction to
the unfolded propagator.

The third way to quantize unfolded field theory is to write down an unfolded effective
equations, which allows one to systematically restore unfolded vertex functions within the
framework of the semiclassical expansion. Here the central object is the unfolded quantum
Poisson bracket. We have built a general unfolded effective system for an arbitrary bracket
and have analyzed a particular example, evaluating a one-loop correction to the inverse
propagator.

Finally, we have presented an auxiliary 5d model, which has τ -variable as the physical
time, τ -equation of the 4d unfolded system as its classical solution and generates a correct
4d scalar action as an on-shell 5d action evaluated as a functional of initial values of the
field. Although the status of this model is not entirely clear, its very existence indicates
that the auxiliary variable τ of the unfolded dynamics approach may have some deeper
meaning than a cursory glance suggests.

In this paper, we have focused mainly on the problem of formulating unfolded QFT,
limiting ourselves to a few calculations for illustration purposes. Therefore, it would be
interesting to consider some concrete scalar field theory in order to develop a systematic
technique of calculations in unfolded QFT, including Feynman diagrams, renormalizations
etc. In particular, it looks prominent to try to apply general heat-kernel methods, consid-
ering that the heat kernel plays the central role in formulating unfolded QFT.

On the other hand, the problem of formulating an unfolded quantum gauge field theory
raises new questions related to gauge symmetries, ghosts etc. This is the next natural
step towards the quantization of the unfolded HS gravity, which is the ultimate goal of
the presented analysis. In this regard, it may be useful to relate the approach of this
paper to the approach of the Lagrange anchor [46, 49, 52–54], which is also aimed at non-
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Lagrangian quantization of field theories. All this requires additional thorough analysis,
which is beyond the scope of this paper.
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A General unfolded frame for the scalar field

We consider a following general Ansatz for an unfolded equation of a self-interacting scalar

DΦ+ aN e∂∂̄Φ+ bN eyȳ(Φ̇ + m2Φ) + cN eyȳgU′(fNΦ) = 0, (A.1)

where aN , bN , cN , fN depend on Euler operator N (2.20) and U′ is understood as a formal
series

U′(fNΦ) :=
∞∑

n=2

un

n! (fNΦ)n, (A.2)

with every fN acting only on the one following Φ.
An unfolded consistency condition, arising from D2 ≡ 0, requires

bN = b

N(N + 1)aN−1
, (A.3)

cN = c

(N + 1)!(a0 · a1 · . . . · aN−1)
, (A.4)

fN = f · N !(a0 · a1 · . . . · aN−1). (A.5)

Then Y -dependence of Φ is resolved as

Φ(Y, τ |x) =
∞∑

n=0

(−yαȳα̇∇αα̇)n

(n!)2(a0 · . . . · an−1)
Φ(0, τ |x), (A.6)

and τ -dependence is determined by

□Φ− m2Φ− cN (N + 1)U′(fNΦ) = Φ̇. (A.7)

In the paper we pick up a particular solution

aN = 1
N + 1 , bN = 1

N + 1 , cN = 1
N + 1 , fN = 1, (A.8)

but different choices are also possible. In the HS literature a standard choice for unfolded
equations is to demand aN = 1. For the model under consideration this choice entails (up
to overall scaling of variables)

aN = 1, bN = 1
N(N + 1) , cN = 1

(N + 1)! , fN = N !, (A.9)
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so that Y -dependence is resolved as

Φ(Y, τ |x) = 0F1(; 1; yαȳα̇∇αα̇)Φ(0, τ |x), (A.10)

where 0F1(; 1; z) is a confluent hypergeometric limit function, which can also be expressed
through the modified Bessel function as 0F1(; 1; z) = I0(2

√
z), and τ -equation takes the

form
□Φ− m2Φ− 1

N !gU
′(N !Φ) = Φ̇. (A.11)

We see that the solution (A.8) has two important advantages over (A.9): first, Y -
dependence comes down to a simple shift of x-coordinate by yȳ as seen from (2.27); second,
Y - and τ -dependencies are completely separated and unfolded potential arises by trivially
replacing the primary field ϕ with the unfolded field Φ.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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