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We study the process, within classical general relativity, in which an incident gravitational plane wave, of
weak amplitude and long wavelength, scatters off a massive spinning compact object, such as a black hole
or neutron star. The amplitude of the asymptotic scattered wave, considered here at linear order in Newton’s
constant G while at higher orders in the object’s multipole expansion, is a valuable characterization of the
response of the object to external gravitational fields. This amplitude coincides with a classical (ℏ → 0)
limit of a quantum four-point (object and graviton in, object and graviton out) gravitational Compton
amplitude, at the tree (linear-in-G) level. Such tree-level Compton amplitudes are key building blocks in
generalized-unitary-based approaches to the post-Minkowskian dynamics of binaries of spinning compact
objects. In this paper, we compute the classical amplitude using an effective worldline theory to describe the
compact object, determined by an action functional for translational and rotational degrees of freedom,
including couplings of spin-induced higher multipole moments to space-time curvature. We work here up
to the levels of quadratic-in-spin quadrupole and cubic-in-spin octupole couplings, respectively involving
Wilson coefficients C2 and C3. For the special case C2 ¼ C3 ¼ 1 corresponding to a black hole, we find
agreement through cubic-in-spin order between our classical amplitude and previous conjectures arising
from considerations of quantum scattering amplitudes. We also present new results for general C2 and C3,
anticipating instructive comparisons with results from effective quantum theories.
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I. INTRODUCTION

Since Einstein’s proposal of general relativity as the
correct description of gravity in 1915 [1,2], a significant
body of research has been developed in understanding and
testing its consequences. Even today, more than a century
later, there is still work to be done in this regard. In the
age of gravitational-wave (GW) astronomy [3–7], progress
depends on deepening our understanding of the general
relativistic two-body problem, as the primary sources of
GWs are binary systems of compact objects such as black
holes and neutron stars. Identifying and characterizing
such GW signals requires efficiently generated and highly
accurate waveform templates, constructed both from inter-
polations of large-scale numerical simulations of binary

space-times and from semianalytic approximations to
binary dynamics. The demand in accuracy has been further
enhanced in recent years, with the promise of upcoming
more sensitive detectors [8–10], with the exciting possibil-
ity of identifying finite size effects such as spin, spin-
induced deformations and tidal effects in the future. In this
work, we will primarily focus on the inclusion of spin
and spin-induced multipole moments into the dynamics of
compact bodies in the context of the two-body problem.
Black holes and compact bodies are extended objects,

and their surfaces probe very strong gravitational fields.
Nevertheless, it can be convenient to treat them as point
particles moving along worldlines when describing their
dynamics. As long as one is viewing them from afar, a
representative worldline can be chosen describing the bulk
motion, and the strong gravitation and (possibly compli-
cated) internal structure can be taken into account by letting
the “particle” couple nonminimally to the external gravi-
tational field. Frameworks which treat the dynamics of
extended bodies in this way may be collectively referred to
as “effective worldline theories.” This framework is espe-
cially useful for dealing with spinning bodies, which are
necessarily extended. Rotation also tends to deform the
body, endowing it with a tower of multipole moments, with
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the 2l-pole moment scaling as mal, where S ¼ ma is the
spin (intrinsic) angular momentum andm is the mass of the
body (with c ¼ 1). The problem of including spin and spin-
induced multipole moments into the gravitational dynamics
of the body has been tackled in various ways historically.
Focusing on effective worldline approaches, some of the
earliest works are Refs. [11,12], in which the equations of
motion for a spinning particle were established at linear
order in spin.
Beyond linear order in spin, one also needs to include the

effects of spin-induced multipole moments on the dynamics,
starting with a quadrupole moment scaling as ma2. One
approach is to construct an ansatz for an effective worldline
stress-energy tensor for the particle, including spin and
higher multipoles, and then appropriate equations of motion
follow from the conservation law ∇μTμν ¼ 0; see e.g.,
Refs. [13–16]. Alternatively, one can construct an ansatz
for a worldline action with rotational degrees of freedom and
higher multipole couplings. This was approached for a
spinning point particle in flat space-time in Ref. [17], and
generalized for curved space and arbitrary multipolar struc-
ture in Ref. [18].
In the context of the post-Newtonian (PN) approximation

of the two-body problem, the action approach was developed
in an effective field theory (EFT) treatment in Ref. [19],
which computed the leading order (LO) spin-orbit contri-
butions (at 1.5PN order) and the LO spin2-quadrupole
contributions (at 2PN order) to the effective Hamiltonian.
The effect of the spin-induced quadrupole moment was
included in this work by adding a quadratic-in-spin coupling
term, linear in the Riemann curvature tensor, to the action,
along with an undetermined coefficient to be fixed by a
further matching calculation. The leading contribution of a
generic spin-induced quadrupole moment to binary dynam-
ics and gravitational waveform was also computed earlier in
Ref. [20]. A significant amount of work has been since done
in the inclusion of spin into binary dynamics, as reviewed
e.g., in Refs. [21–23], pushing the state-of-the-art for
spinning particles to the N3LO spin orbit [24,25], N3LO
quadratic in spin [26–28], NLO cubic in spin [29], and NLO
quartic in spin [30]. Spinning binary dynamics may also be
treated in a post-Minkowskian expansion, where one works
to all orders in speeds but perturbatively in the strength of
the fields, regulated by powers of the gravitational constant
G, as in the post-Minkowskian worldline approaches in
Refs. [31–40]. Although the post-Minkowskian expansion is
more suitable for dealing with scattering encounters, one can
extract the dynamics of bound binaries as well from the
observables associated with scattering encounters. This can
be done either via boundary-to-bound maps between scatter-
ing and bound observables (see Refs. [41–44]) or by
constructing a Hamiltonian (see Refs. [45–47]).
Apart from worldline based approaches, a significant

body of recent research has been dedicated to quantum field
theory (QFT) based or amplitude-based methods. In these

approaches, the key quantity of interest is usually the 2-to-2
scattering amplitude: two particles (representing massive
compact objects) in, and two particles out. Given this
amplitude, the relevant scattering observables (see e.g.,
Refs. [48,49]) or a classical Hamiltonian (see e.g.,
Ref. [50]) can be derived from its classical limit. Similar
to the worldline approaches, there are multiple subclasses
among the QFT-based methods for tackling the classical
two-body problem as well.
One line of approaches employs an explicit quantum field,

with an action that couples it to gravitation. The quanta of this
field, in a classical limit, are used as avatars for black holes or
other compact bodies. The 2-to-2 scattering amplitude (for
two such quanta in, exchanging gravitons, and two quanta
out) can be used to derive binary conservative dynamics. For
spinless black holes, an effective conservative Hamiltonian
describing binary dynamics was derived at 2PM order
[OðG2Þ] in Ref. [50], at 3PM in Ref. [51] and at 4PM in
Refs. [52,53], where amassive scalar fieldminimally coupled
to gravity was employed. An important early work in the
inclusion of spin in these approaches was done in Ref. [54],
where the scattering amplitude for the scattering of a scalar
quantum (ϕ) and a quantum of a spinning field (ψ),
ϕψ → ϕψ , was computed and subsequently used to derive
a classical Hamiltonian describing their interaction at the
leading PN orders. It was seen that the Hamiltonian matched
that of a two-body systemwith one spinning and one spinless
black hole up to fourth order in spin when the spinning
member was a quantum of a spin-2 field minimally coupled
to gravity. The scattering amplitude for the case where both
particles were spinning, and subsequently a Hamiltonian
describing their dynamics was derived in Ref. [55] at linear
order in the spin of each particle at 2PM order (or at order
G2S), and to all orders in spin at 1PM order (at GS∞). This
was extended in Ref. [56] to G2S2, and then to G2S5 in [57].
These works used an arbitrary-spin-s quantum field, coupled
to gravity via all symmetry-permitted nonminimal coupling
terms, parametrized by unknown coefficients. These
unknown coefficients were fixed for the case of a black hole
inRef. [57] by requiring a best-behaved high-energy limit and
a certain “shift symmetry” conjecture (in addition tomatching
with known tree-level results).
An important point regarding these approaches (and

others discussed below), which is relevant here, is that the
2-to-2 scattering amplitude is constructed from simpler
building block amplitudes, namely the (gravitational)
Compton amplitude and the three-point amplitude, via
generalized unitarity. The Compton amplitude (here) is
the scattering amplitude for a graviton scattering off a
massive spinning quantum, and the three-point amplitude
is the vertex for two massive spinning particles joining a
graviton and is related directly to the classical particle’s
linearized gravitational field. These serve as building
blocks for the 2-to-2 scattering amplitude, which brings
us to another class of amplitude-based methods.
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Another series of works has sought to directly fix
or constrain the two-body scattering amplitudes or their
building blocks (Compton and three-point), without going
through an explicit QFT action functional, primarily focus-
ing on the black hole case. In Ref. [58], a particular three-
point amplitude (dubbed “minimal coupling”) for an
arbitrary-spin-s particle was singled out by its uniquely
well-behaved high-energy limit; a certain (remarkably
simple) Compton amplitude consistent with this three-point
was also singled out, though exhibiting spurious poles for
spins s > 2 (eventually corresponding to beyond fourth
order in classical spin). These three-point and Compton
amplitudes were conjectured to correspond to black holes
and used to compute the 2-to-2 scattering amplitudes to
G1S∞ and G2S4 orders in Ref. [59]. The 2-to-2 amplitudes
were later used to compute a classical aligned-spin scattering
angle function in Ref. [60], and contributions to binary
effective potentials in Ref. [61], and finally a complete
binary Hamiltonian for generic spin orientations in
Ref. [62], all through the same G1S∞ and G2S4 orders.
The sameCompton amplitude for spins s ≤ 2 fromRef. [58]
was rederived from Britto–Cachazo–Feng–Witten (BCFW)
recursion applied to the three-point in Ref. [63] employing a
heavy-particle EFT formalism; its double-copy properties
and its further applicationswere studied inRefs. [64,65], and
in Ref. [66] which first produced the Compton for both
helicity configurations from a double copy prescription.
Pushing beyond fourth order in spin, Ref. [67] gave a

parametrization of a spurious-pole-free Compton ampli-
tude, using the heavy-particle EFT formalism, while
enforcing consistency with general principles and with
the minimal coupling (black hole) three-point amplitudes,
and while conjecturally imposing a certain “black hole spin
structure” observed at lower orders (which for 2-to-2
amplitudes is equivalent to the “shift symmetry” posited
in Ref. [57]). Constructing the 2-to-2 amplitude from their
parametrized Compton, they found that all freedom therein
was fixed by additionally requiring a best-behaved high-
energy limit (also just as in Ref. [57]), producing results at
fifth order in spin in complete agreement with those from
the simultaneous Ref. [57], as well as results at higher
orders in spin.1 It was argued that these considerations in

fact fix the 2-to-2 amplitude at OðG2Þ to all orders in spin
(while leaving freedom in the Compton to which the 2-to-2
is insensitive), at least for the case of the 2-to-2 amplitude
for a spinless particle meeting a spinning black hole, at
order G2S∞, as explicitly constructed in Ref. [70].
These works represent impressive progress in con-

straining effective black hole–graviton amplitudes at higher
orders in spin, but it is important to stress their conjectural
nature. While the three-point amplitudes have been very
concretely matched (in many of the above references) with
the linearized Kerr metric and the corresponding linearized
effective worldline action [71–74], constraints on the black
hole Compton amplitude at higher orders in spin (beyond
consistency with the three-point) have thus far been based
on good-amplitude considerations without a direct con-
nection to black hole physics.2 As suggested in Ref. [76], a
promising approach is to identify the classical limit of the
quantum Compton amplitude with the amplitude for
classical scattering of a gravitational plane wave off a
Kerr background, determined by solutions of the Teukolsky
equation describing linear gravitational perturbations of a
spinning black hole. Such calculations have a long history
[77,78], but have so far produced explicitly results of the
necessary kind only through linear order in spin [79]. (The
toy model of a massless scalar field scattering off Kerr
was studied at higher orders in spin in Ref. [76], leaving
the gravitational-wave case for future work.) In the
present work, we show that the same (tree-level) “classical
Compton amplitude” can be usefully computed from an
effective worldline action description, not only for black
holes, but also for bodies with general spin-induced multi-
pole moments.
The universally accessible nature of Compton ampli-

tudes (specifically its classical limit) suggests that it can be
a valuable tool in comparison and calibration of different
effective approaches (worldline or QFT) and also with the
real system of a (say) Kerr black hole. For instance, both the
worldline and the QFT-based methods are essentially
effective approaches to model the dynamics of spinning
compact bodies, and both approaches have free coefficients
that need to be fixed through matching to produce the
dynamics of the desired compact body. As described
earlier, in the worldline based approaches, this freedom
shows up as unspecified multipole moments, or in the
worldline stress-energy tensor, or as undetermined cou-
plings in the action. In the amplitude-(or QFT-)based

1The quintic-in-spin Compton as constrained by requiring the
best-behaved high-energy limit in Ref. [67] was shown there to be
at odds with a Compton derived in Ref. [68] from a Lagrangian
for a massive spin-5=2 particle which is uniquely determined by
its three-point satisfying “the current constraint” (known from
higher-spin theory and necessary for the existence of an under-
lying unitary theory) and requiring a minimal number of
derivatives in the coupling. An interesting question is whether
such tension may be alleviated with the generalization of such
higher-spin Lagrangians to the large-spin limit.
It is also of note that the extrapolated “shift symmetry” [57]

used (at the level of the 2-to-2 amplitude) to constrain higher-spin
tree-level Compton amplitudes has been observed not to hold in
general (directly) in the one-loop-order Compton amplitude as
computed recently in Ref. [69].

2A first confrontation of the black hole Compton amplitude
conjectures with actual black hole physics was carried out in
Ref. [75], which compared the (2-to-2) aligned-spin scattering
angle through G2S4 order from Ref. [60] with “self-force”
calculations of the linearized perturbations of a Kerr black hole
produced by a small orbiting body. This provided partial
verification of the conjectures but left open freedom which
may be best fixed by direct comparison of (classical) Compton
amplitudes.
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methods, this shows up in the freedom to choose the
quantum field and/or in its coupling to gravitation, or in
the parametrization of the building block Compton or
three-point amplitudes. However, the relation between
the freedom in these two (worldline vs amplitude) classes
of approaches is not easy to relate. It is known (since
Ref. [57]) for example that there seem to be more free
parameters in the action in QFT based approaches com-
pared to worldline-based approaches to the same order in
spin. It is thus of great interest to compare common
quantities in these two approaches with each other for
understanding the effect and physical meaning of these
parameters. This is typically done by computation of the
scattering angle, or the Hamiltonian, or other quantities
relevant to the two-body system. These are however
complicated quantities associated with the interaction
between two bodies, when the undetermined coefficients
themselves parametrize the interaction of just one body
with the external gravitational field. Thus, a convenient
quantity requiring just one body, and well defined for both
effective approaches and also easily calculable from the
full theory of general relativity is desired. The Compton
amplitude satisfies all of these requirements.
Finally, the universal accessibility of the Compton

amplitude also means that it may be computed via non
QFT-based methods and then employed in a QFT-based
framework for the computation of (the classical limit of) the
two particle scattering amplitude and subsequently dynam-
ics thus enabling the different ways of studying compact
bodies to complement and support each other. This is
particularly useful if it is sometimes simpler to compute
the Compton amplitude in certain approaches over others.
Additionally, it serves as a crucial point of comparison to
verify the conjectures that are employed in QFT/amplitude-
based methods in constructing the Compton amplitude,
which is necessary to trust that the resultant dynamics
indeed describe the desired compact body.
In this work, with these motivations in mind, we derive

the Compton amplitude for gravitational waves scattering
off a stationary-axisymmetric, parity-preserving spinning
compact body to S3 for generic values for the undetermined
coefficients (C2, C3 up to S3, see Sec. I A) in an effective
worldline approach. We do this with a multitude of
objectives in mind. Primarily, having the Compton ampli-
tude for generic spinning bodies may be subsequently used
for deriving the dynamics of generic bodies in the future.
Furthermore, this can be quite useful for comparison with
the Compton amplitude derived from effective quantum
approaches and understanding the relation between the
free coefficients in either approach such as understanding
the reason behind having more free parameters in the
QFT-based approach in Ref. [57]. Additionally, when
the coefficients C2 and C3 are fixed for the case of a
black hole, we obtain a Compton amplitude consistent
with that derived in Refs. [58,63] thus corroborating

(up to S3) the conjecture relied upon in Refs. [59–62]
that this Compton amplitude properly describes a black
hole (in the classical limit). Finally, we aim to propose the
Compton amplitude as a valuable tool for comparison
and calibration of the diverse approaches currently being
used for studying the motion of compact bodies under
gravitational interaction.
Worldline EFT approach to Compton amplitude.—For

the purpose of deriving the classical Compton amplitudes
in this work, we treat the compact body as a point particle
equipped with spin-induced quadrupole (∝S2) and octupole
(∝S3) moments in a worldline formalism as laid out in
Ref. [80]. We subject this particle to an external linearized
gravitational plane wave perturbation with a large wave-
length, i.e., λ ≫ rCB, where rCB is of the order of the size
of the compact body. The incident plane wave perturbs
the particle’s momentum, spin and subsequently the spin-
induced multipole moments which in turn perturb the
stress-energy tensor of the particle. When the perturbed
stress-energy tensor is plugged into the Einstein equation,
one finds that it generates an additional wavelike pertur-
bation in the metric, which forms a part of the scattering
of the incident wave. Additionally, owing to the nonlinear
nature of gravity, the incident wave also scatters of the
static gravitational field of the particle which adds another
contribution to the scattered wave also through the Einstein
equation. Comparing the total scattered wave to the
incident wave gives us the scattering amplitude at linear
order in G and up to third order in spin. We find that this is
consistent with the Compton amplitude derived in Ref. [58]
for the case of black holes. The following Sec. I A
succinctly summarizes our results.

A. Summary of framework and results

A spinning classical particle with spin-induced quadru-
pole and octupole moments rests in flat space-time. It is
characterized by its mass M, spin S, and two coefficients
C2, C3. The direction and magnitude of the spin is usually
written together in the spin tensor Sμν, with Sμνpν ¼ 0

and S2 ¼ ð1=2ÞSμνSμν, or the Pauli-Lubanski spin vector
sμ ¼ −ð1=2mÞϵμνρσpνSρσ, where pμ is the momentum of
the particle. C2 and C3 control the magnitude of its spin-
induced quadrupole and octupole moments. In flat space-
time, the particle sources a stationary metric perturbation
hμν ¼ ffiffiffiffiffiffi−gp

gμν − ημν, given in the linearized limit by

hμν ¼ −uμuν
�
1 −

C2

2
ða · ∂Þ2

�
4GM
r

− uðμϵνÞραβuρaα∂β
�
1 −

C3

3!
ða · ∂Þ2

�
4GM
r

; ð1:1Þ

where uμ ¼ ð1=mÞpμ is the four-velocity of the particle in
flat space-time and aμ ¼ ð1=mÞsμ, with a · u ¼ 0. The
actual nonlinear metric sourced by the body approaches
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this form asymptotically. In the rest frame of the particle,
this can be rewritten as

h00 ¼
�
1 −

C2

2
ða⃗ · ∂⃗Þ2

��
−
4GM
r

�
; hij ¼ 0;

h0i ¼ ϵijkaj∂k
�
1 −

C3

3!
ða⃗ · ∂⃗Þ2

�
2GM
r

; ð1:2Þ

where a⃗ can be identified as the spin vector. Comparison of
the above expression with the most general asymptotic
past-stationary space-time given in Eq. (36) of Ref. [21]
shows that the metric perturbation in Eq. (1.2) can be
recovered by imposing stationarity (all multipole moments
being constant in time) and identifying the mass-type
multipole moments as I ¼ M; Ii ¼ 0; Iij ¼ −C2Mahiaji,
Iijk ¼ 0 and current-type multipole moments as Ji ¼
Mai; Jij ¼ 0; Jijk ¼ −ð2=3ÞC3Mahiajaki and require that
all other multipole moments either vanish or are higher
orders in spin.
If the particle respects parity and only has spin-induced

multipole moments, the vanishing or irrelevance of all other
multipole moments follows trivially from parity invariance.
Thus, M, S, C2 and C3 parametrize the most general
axisymmetric parity-preserving stationary linearized metric
perturbation. Also note that adding trace terms to the
multipole moments (e.g., δijjaj2 to Iij) only modifies it
by terms proportional to ∂

2ð1=rÞ ∝ δð3ÞðxÞ thus modifying
the field only at the location of the particle. Such correc-
tions are expected to be irrelevant since the field at the
location of the particle is ill defined anyway.

We now subject this parity-preserving stationary axi-
symmetric body to an external linearized gravitational wave
perturbation is incident upon it, which is characterized as3

hμνwave ¼ ffiffiffiffiffiffi
−g

p
gμν − ημν ¼ ϵεμεν exp½ik · x�;

kμ ≡ ωð1; 0; 0; 1Þ; εμ ≡ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; ð1:3Þ

where ϵ is the amplitude of the incoming wave, kμ is the
wave vector, fixing the direction of propagation, ω its
frequency and εμ is a complex null vector which fixes
the helicity of the incoming wave. The metric perturbation
due to the incident wave affects the momentum, spin and
subsequently the spin-induced multipole moments. These
three quantities in turn perturb the stress-energy tensor of
the particle, leading to a radiated scattered wave through
the Einstein equation. Additionally owing to the nonlinear
nature of gravity, the incident wave also scatters off the
static metric perturbation sourced by the particle. Together,
these two contributions lead to a scattered wave. The form
of the scattered wave encodes the scattering amplitude. In
the particle’s rest frame, the scattered wave takes the form
(at large distances from the particle)

Gϵhμνscatterðr; n̂Þ≡ ϵ½M�þðn̂Þζμþ2ðn̂Þζνþ2ðn̂Þ
þM�−ðn̂Þðn̂Þζμ−2ðn̂Þζν−2ðn̂Þ�

×
exp½iωðr − tÞ�

ωr
; ð1:4Þ

where M��ðn̂Þ are the scattering amplitudes for a given
pair of incoming and outgoing helicities. n̂ is the spatial
unit vector in a given direction in the rest frame of the
particle, ζμ�ðn̂Þ are the complex null polarization vectors
for a wave vector given by lμ ≡ ωð1; n̂Þ. Thus. M��ðn̂Þ is
the amplitude for an incident wave with wave vector
kμ ≡ ωð1; 0; 0; 1Þ, helicity �2, scattering into another
wave vector lμ ≡ ωð1; n̂Þ≡ ωð1; sinðθÞ; cosðθÞ; 0Þ with
helicity �2.
At zeroth order in spin (or for the spinless case), we

obtain the amplitudes

Mab ¼
4GMω3ðεa · ζbÞ2

ðl − kÞ2 ; ð1:5Þ

Mþþ ¼ M−− ¼ GMω
cos4ðθ

2
Þ

sin2ðθ
2
Þ ; ð1:6Þ

FIG. 1. The spinning body is characterized by its mass M, spin
S and spin-induced quadrupole and octupole moments whose
magnitudes are controlled by two dimensionless coefficients C2

and C3. An incident wave moving along the þz direction, with
wave vector kμ and complex polarization vector ϵμ, scatters off
the particle producing a scattered wave. Far away from the
particle, the scattered wave is a superposition of plane waves with
wave vector lμ and polarization vector ζμ. We fix the outgoing
wave vector to be in the x-z plane for convenience. θ is the angle
between the outgoing and incident wave vectors in the rest frame
of the particle.

3Starting below, we use the notation≡ to mean the form of the
tensor object in the zero-momentum frame in the coordinate
system shown in Fig. 1. Thus kμ ≡ ωð1; 0; 0; 1Þ means the four-
vector k is pointing along theþve “z” direction in this coordinate
system.
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Mþ− ¼ M−þ ¼ GMωsin2
�
θ

2

�
; ð1:7Þ

where θ is the angle between the incoming and outgoing
wave vectors [kμ and lμ with 2ω2 sin2ðθ

2
Þ ¼ −k · l]. Note

that there is mixing of helicities (nonzero Mþ− and M−þ)
even at zeroth order in spin. This is not true for electro-
magnetic waves scattering off black holes. The above
amplitudes are consistent with those obtained in
Ref. [81] for spinless black holes. Next, to first order in
spin (or for a spinning rigid particle with no spin-induced
deformation), we obtain the amplitudes

Mþþ ¼ GMω
cos4ðθ

2
Þ

sin2ðθ
2
Þ
�
1 − tan2

�
θ

2

�
sμ

M
ðkμ þ lμÞ

− i
Sμνkμlν

Mωcos2ðθ
2
Þ
�
; ð1:8Þ

Mþ− ¼ GMωsin2
�
θ

2

��
1þ sμðkμ − lμÞ

M

�
; ð1:9Þ

M−− ¼ M̄þþðSμν → −Sμν; sμ → −sμÞ; ð1:10Þ

M−þ ¼ M̄þ−ðSμν → −Sμν; sμ → −sμÞ; ð1:11Þ

where the spin tensor Sμν; Sμνpν ¼ 0, and the Pauli-
Lubanski spin vector sμ appear for the first time. A bar
denotes complex conjugation. Note that the spin tensor/
vector appearing in the amplitude is that of the initial
undisturbed particle, prior to the wavelike perturbation.
We find that the amplitudes are related to their helicity-
flipped versions, via a spin-flip and complex conjugation.
This is because the helicities of the incoming and outgoing
gravitational wave can be flipped via a combination of
parity and time-reversal operation on the whole system,
which flips the spin ðsμ; SμνÞ, complex conjugates the
amplitudes ðM → M̄Þ but leaves the momenta (kμ, lμ)
unchanged. The differential cross section resulting from
these amplitudes agrees with Eq. (3) of [79], derived there
from black hole perturbation theory.
The coefficients C2 and C3 associated with the spin-

induced quadrupole (∝S2) and octupole (∝S3) moments
finally show themselves at second and third order in spin
respectively. For the case of a black hole, C2 ¼ C3 ¼ 1, the
scattering amplitudes to third order are found to be simply
the exponentiated version of the first order in spin ampli-
tudes [in Eqs. (1.8)–(1.11)]. We get (to third order in spin)

Mþþ ¼ GMω
cos4ðθ

2
Þ

sin2ðθ
2
Þ exp

�
−
sμ

M
ðkμ þ lμÞtan2

�
θ

2

�

−
i

Mωcos2ðθ
2
Þ S

μνkμlν

�
; ð1:12Þ

Mþ− ¼ GMωsin2
�
θ

2

�
exp

�
sμ

M
ðkμ − lμÞ

�
; ð1:13Þ

M−− ¼ M̄þþðSμν → −Sμν; sμ → −sμÞ; ð1:14Þ

M−þ ¼ M̄þ−ðSμν → −Sμν; sμ → −sμÞ; ð1:15Þ

which matches the amplitude given in spinor helicity
formalism in Ref. [63], obtained from Ref. [58] using
QFT-based methods.
The amplitudes do not exponentiate when C2 and

C3 are generic. Thus, they correct the amplitudes in
Eqs. (1.12)–(1.15) by adding terms proportional to
ðC2;3 − 1Þn. The general expressions for the amplitudes
with generic C2 and C3 for generic polarization vectors
are given in the Appendix. The expressions for the helicity-
conserving amplitudes (Mþþ andM−−) for generic C2 and
C3 after substitution of polarization vectors can be simplified
considerably with the help of the vector

wμ
S ¼ 1

2ωcos2ðθ
2
Þ ½ωðk

μ þ lμÞ − iϵμαβγkαlβuγ�; ð1:16Þ

which coincides with half of the complex conjugate of
the vector wμ from Ref. [63]. We also define aμ ¼ sμ=m.
Then, in terms of wμ

S, k
μ, lμ, and aμ, the helicity-conserving

amplitudes for the BH case C2 ¼ C3 ¼ 1 can be rewritten as

Mþþ ¼ GM
cos4ðθ

2
Þ

sin2ðθ
2
Þ exp½a · ðkþ l − 2wSÞ�; ð1:17Þ

M−− ¼ M̄þþðaμ → −aμÞ: ð1:18Þ

The helicity-conserving scattering amplitudes for a
spinning particle, with spin-induced quadrupole moments
with generic C2 and C3 to third order in spin, is given by

Mþþ¼GMω
cos4ðθ=2Þ
sin2ðθ=2Þ ðexp½a ·ðkþ l−2wSÞ�

þC2−1

2
f½ðk−wSÞ ·a�2þ½ðl−wSÞ ·a�2g

þC2−1

2
½ðk−wSÞ ·a�½ðl−wSÞ ·a�½ðkþ l−2wSÞ ·a�

−ðC2−1Þ2½ðk−wSÞ ·a�½ðl−wSÞ ·a�ðwS ·aÞ

þC3−1

6
f½ðk−wSÞ ·a�3þ½ðl−wSÞ ·a�3gÞ: ð1:19Þ

M−− ¼ M̄þþðaμ → −aμÞ: ð1:20Þ

The expressions and the corresponding basis for simplifi-
cation of helicity-reversing amplitudes is given later in
Sec. V in Eq. (5.7). Having compactly summarized the key
results, we now proceed to the main part of the text.
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In Sec. II A, the framework describing the dynamics of
spinning black holes in a worldline EFT framework is
presented, along with the Mathison-Papapetrou-Dixon equa-
tions of motion at cubic order in spin and the expressions for
the spin-induced quadrupole and octupole moments. In
Sec. II B, The expression for the skeletonized stress-energy
tensor of the black hole is presented and the static metric
sourced by the unperturbed spinning black hole is derived.
Further, it is explained how the comparison of static metric
with the linearized Kerr metric (up to a gauge transforma-
tion) can be used to fix the unknown coefficients in the spin-
induced multipole moments. In Sec. II C, the properties and
representation of the incident plane wave and its amplitude,
polarization and frequency are presented. In Sec. III, com-
putation of the perturbation to the black hole’s spin, velocity,
momentum, spin-induced multipole moments and stress-
energy tensor due to the incident plane wave is explained. In
Sec. IV, the methodology for solving for the scattered wave
is presented, as well as the relation between the scattered
wave and the scattering amplitudes. In Sec. V, the expres-
sions for the scattering amplitudes are presented. Finally, we
conclude in Sec. VI.

II. SETUP

A. The worldline action for the particle

Let zμðτÞ denote the worldline of the particle, and
dzμðτÞ=dτ ¼ uμ denote the four-velocity. Here τ is the
parameter used to characterize the worldline and not
constrained to be the proper time in the action. At the
level of equations of motion, one can fix τ to be the proper
time by imposing uμuμ ¼ −1. To describe the rotation
and subsequently the spin of the particle, we attach to the
particle a body-fixed tetrad ϵA

μ satisfying

ϵAμðτÞϵBμðτÞ ¼ ηAB; ϵAμðτÞϵAνðτÞ ¼ gμνðzðτÞÞ; ð2:1Þ

i.e., orthonormality and completeness respectively. The
body fixed tetrad spins along with the particle and thus
the variation of the tetrad ϵA

μ with τ encodes the
particle’s rotational motion. To see this more clearly, one
can also define a global background tetrad eaμðxÞ also
satisfying orthonormality (eaμebμ ¼ ηab) and completeness
[eaμðxÞeaνðxÞ ¼ gμνðxÞ] and relate it to the body-fixed
tetrad via a Lorentz transformation,

ϵA
μ ¼ ΛA

aeaμ; ΛAaΛB
a ¼ ηAB; ΛAaΛA

b ¼ ηab:

ð2:2Þ

The Lorentz matrices Λa
A contain 6 degrees of freedom,

corresponding to three boost and three rotational degrees of
freedom. However, since wewant to use the body fixed tetrad
to deal with the rotation of the body, we want to eliminate the
boost degrees of freedom. In the nonrelativistic case, this is
trivially accomplished by choosing the boost degrees of

freedom such that Λ maps the background time vector e0μ to
the four-velocity of the center-of-mass of the body. However,
there is no unique notion of center of mass in the relativistic
case and thus there is an ambiguity in choosing a worldline
zμðτÞ to represent the motion of the compact body. This can
only be resolved by imposing a spin-supplementary condition
(SSC), which removes 3 degrees of freedom. We will do that
later, at the level of equations of motion.
For now, we proceed with describing the degrees of

freedom that can enter our action. We define the covariant
angular velocity as

Ωμν ¼ ϵA
μ DϵAν

Dτ
: ð2:3Þ

In the nonrelativistic case, in the rest frame of the center-of-
mass of the body, this is equal to the 3D dual of the angular
velocity. (Ωij ∼ ϵijkwk, i, j ¼ 1, 2, 3). The dynamics of the
particle should be independent of the choice of orientation of
the body fixed frame tetrad vectors (ϵAμ), thus the body fixed
tetrad enters the worldline action only through the angular
velocity Ωμν. For a structureless spinning particle (i.e., one
without spin-induced multipole moments), the position zμðτÞ
only enters the action through the metric gμν. We implement
the presence of finite-size effects in the action by allowing
further dependence on the curvature tensor and its covariant
derivatives. Thus, our ansatz for the action is

S½zμðτÞ; ϵAμðτÞ� ¼
Z

dτL½uμ;Ωμν; gμν; Rμνρσ;∇λRμνρσ�:

ð2:4Þ

This ansatz is sufficient to derive the equations of motion
(see Ref. [80]). Here, we simply write them down. We first
define the quantities

pμ ¼
∂L
∂uμ

; Sμν ¼ 2
∂L
∂Ωμν ;

JμνρσQ ¼ −6
∂L

∂Rμνρσ ; JλμνρσO ¼ −12
∂L

∂∇λRμνρσ
; ð2:5Þ

where pμ and Sμν are identified with the physical four-
momentum and spin tensor of the black hole respectively,
related to the black hole’s angular momentum as
SμνSμν ¼ 2J2, where J is the magnitude of the intrinsic
angular momentum of the spinning black hole. JμνρσQ and

JλμνρσO are the quadrupole and octupole4 moments

4Strictly speaking, the quadrupole moment can also couple
with the covariant derivative of the Riemann curvature tensor,
and thus the octupole moment JλμνρσO as defined in Eq. (2.5)
may not be a pure octupole moment. We will however continue to
refer to JμνρσQ and JλμνρσO as quadrupolar and octupolar moments
respectively.
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respectively. In this manner, as mentioned before, allowing
the action to depend on Rμνλρ and its covariant derivatives
implements finite size effects. We will neglect all higher
multipole moments in this work. The equations of motion
are then given by

DSμν

Dτ
− 2p½μuν� ¼ Nμν ¼ 4

3
R½μ

λρσJ
ν�λρσ
Q

þ 2

3
∇λR½μ

τρσJOλ
ν�τρσ þ 1

6
∇½μRλτρσJ

ν�λτρσ
O ;

ð2:6Þ
Dpμ

Dτ
þ 1

2
RμνρσuνSρσ ¼ Fμ ¼ −

1

6
JλνρσQ ∇μRλνρσ

−
1

12
JτλνρσO ∇μ∇τRλνρσ: ð2:7Þ

Solving these equations in the presence of an incident wave
will reveal the perturbation to the spin and motion of the
black hole. However, note that these equations are not
sufficient to solve for pμ Sμν and uμ. We have ten equations
of motion, but 14 quantities. Thus we need four constraints.
One constraint is obtained from the normalization condition
uμuμ ¼ −1. Three more constraints are obtained from the
spin-supplementary condition (SSC), which eliminates the
boost degrees of freedom in the Lorentz matrices as
mentioned before. In this work, we choose the covariant
SSC defined by Sμνpν ¼ 0. This is equivalent to the
requirement that the mass-dipole moment of the body vanish
in the zero-momentum frame of the body. The SSC helps fix
the relation between pμ and uμ thus completing the set of
equations. More generally, one can work with an action
that has an additional gauge invariance associated with
changing the SSC and a corresponding shift in the choice
of the worldline (see Ref. [83]). However, it is much more
convenient to work directly with covariant SSC at the level
of equations of motion (equivalently via a Lagrange multi-
plier in the action). The two approaches are physically
equivalent (see Ref. [84]).
In this work, we only work with spin-induced moments

as opposed to tidally induced moments. Thus, the multipole
moments cannot depend on the external curvature or its
derivatives, but only upon the spin of the black hole and the
momentum (or four-velocity). Since we are only interested
to third order in spin in this paper, since the multipole
moments start at S2, we can conveniently switch pμ with
muμ in the expression for multipole moments since the
p is aligned with u until S2. The indices of the multipole
moments obey the same symmetries as that of the Riemann
tensor and its derivatives by definition [see Eq. (2.5)].
Finally, the traces of the quadrupole moment are irrelevant,
since all dependence in the action on Rμν; R (traces of
the Riemann tensor) can be removed as their dependence
can be absorbed into a redefinition of variables (see
Refs. [85,86]). The same reasoning (along with the

Bianchi identity) implies that the traces of octupole
moment should be irrelevant as well. Thus, we can modify
both Jμνρσ and Jλμνρσ up to trace terms to make them
simpler.
These considerations along with the covariant SSC

constraint (Sμνpν ≈mSμνuν þOðS3Þ ¼ 0) were used to
fix their form in Ref. [80] as given below:

JμνρσQ ¼ 3C2

m
u½μSν�λSλ½ρuσ�; ð2:8Þ

JλμνρσO ¼ C3

4m2
½Θλ½μuν�Sρσ þ Θλ½ρuσ�Sμν − Θλ½μSν�ρuσ

− Θλ½ρSσ�½μuν� − Sλ½μΘν�½ρuσ� − Sλ½ρΘσ�½μuν��; ð2:9Þ

where Θμν ¼ SμλSνλ, m ¼
ffiffiffiffiffiffiffiffiffi
−p2

p
and the prefactors have

been chosen such that C2 ¼ C3 ¼ 1 for Kerr black holes
(see Sec. II B).
As an explicit check that any additions to the above

expressions for multipole moment tensors that are either
trace terms or terms that violate the SSC are irrelevant for
the final result, we added some additional terms to the
multipole tensors with arbitrary coefficients and ensured
that the results were in line with expectations. For example,
we used the following modified expression for the quadru-
pole moment tensor:

JμνρσQ ¼ 3C2

m
u½μSν�λSλ½ρuσ� þ αSαβSαβgμρuνuσ

þ βSμαSραgνσ þ σSαβSαβgμρgνσ þ
3H2

4m
SμρSνσ;

ð2:10Þ

where α, β, γ are coefficients next to various nonvanishing
traces of the original C2 term. H2 is next to a term that is
identical to the original C2 term up to trace terms and terms
violating the covariant SSC constraint. Thus, the final
Compton amplitude should be independent of α, β, σ and
should only depend on the combination C2 þH2. This is
indeed what we found. We added similarly parametrized
corrections to the octupolar moment tensor and observed
that the final Compton amplitude was appropriately in line
with the expectation that we can neglect trace terms and
consistently work with the covariant SSC constraint.

B. Stress-energy tensor and the static gravitational field

The particle has a stress-energy tensor arising from its
mass, spin and the spin-induced multipole moments. The
expression for the stress-energy tensor can obtained from
the action. We first rewrite the action as

S½zμðτÞ; ϵAμðτÞ� ¼
Z

d4x
Z

dτLδð4Þðx − zðτÞÞ; ð2:11Þ
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and then the stress-energy tensor is given simply by

Tμν ¼ 1ffiffiffiffiffiffi−gp δS
δgμν

; ð2:12Þ

where all dependency (implicit and explicit) of the action
on gμν needs to be taken into account during the variation.
This variation was performed in Ref. [80] to obtain
Eq. (2.13):

Tμν ¼ Tμν
pole−dipole þ Tμν

quadrupole þ Tμν
octupole; ð2:13aÞ

Tμν
pole−dipole ¼

Z
dτpðμuνÞ

δð4Þðx − zÞffiffiffiffiffiffi−gp

−∇ρ

Z
dτSρðμuνÞ

δð4Þðx − zÞffiffiffiffiffiffi−gp ; ð2:13bÞ

Tμν
quadrupole ¼

Z
dτ

1

3
Rðμ

λρσJ
νÞλρσ
Q

δð4Þðx − zÞffiffiffiffiffiffi−gp

−∇ρ∇σ

Z
dτ

2

3
JρðμνÞσQ

δð4Þðx − zÞffiffiffiffiffiffi−gp ; ð2:13cÞ

Tμν
octupole ¼

Z
dτ

�
1

6
∇λRðμ

ξρσJOλνÞξρσ þ
1

12
∇ðμRξτρσJ

νÞξτρσ
O

�
δð4Þðx − zÞffiffiffiffiffiffi−gp þ∇ρ

Z
dτ

�
−
1

6
Rðμ

ξλσJ
jρjνÞξλσ
O −

1

3
Rðμ

ξλσJ
νÞρξλσ
O

þ 1

3
Rρ

ξλσJ
ðμνÞξλσ
O

�
δð4Þðx − zÞffiffiffiffiffiffi−gp þ∇λ∇ρ∇σ

Z
dτ

1

3
JσρðμνÞλO

δð4Þðx − zÞffiffiffiffiffiffi−gp : ð2:13dÞ

Equation (2.13) contains the stress-energy tensor for a
spinning particle with spin-induced quadrupole and octu-
pole moments at all times. We want to compute the static
metric in harmonic gauge (∂μhμν ¼ 0) sourced by the black
hole in flat background space-time. Thus, we disregard the
curvature dependent terms in the stress-energy tensor and
substitute it in the Einstein equation:

Gμν ¼ −
8πG
c4

Tμνjin flat space-time; ð2:14Þ

Tμν ¼
Z

dτ

�
muμuν − ∂ρSρðμuνÞ − ∂ρ∂σ

2

3
JρðμνÞσQ

þ ∂λ∂ρ∂σ
1

3
JσρðμνÞλO

�
δð4Þðx − uτÞ; ð2:15Þ

where we have used zμ ¼ uμτ which holds as the motion is
uniform and pμ ¼ muμ, which holds true in flat space even
for spinning particles in the covariant SSC.Wewill onlywork
at linear order inG and thus linearize the Einstein equation by
substitutingGhαβ ¼ ffiffiffiffiffiffi−gp

gαβ − ηαβ anddiscarding allOðG2Þ
terms. This yields the linearized Einstein equation,

□hαβstatic ¼
16π

c2
Tαβ; ð2:16Þ

where□ ¼ ημν∂μ∂ν. It is easiest to solve in the rest frame of
the unperturbed (by external curvature) black hole since the
metric is then static i.e., it does not varywith background time.
In this frame, we have _zμ ¼ uμ ≡ ð1; 0; 0; 0Þ, S0ν ≡ 0

3 and
the equation takes the form

δij∂i∂jh
μν
static ¼

16π

c2

�
muμuν − SjðμuνÞ∂j −

2

3
JkðμνÞlQ ∂k∂l

þ 1

3
JkjðμνÞiO ∂i∂j∂k

�
δð3ÞðxÞ; ð2:17Þ

where the indices i, j run over 1,2,3 whereas μ, ν run over
0,1,2,3. In 3D Fourier space, the solution to this is simply

h̃μνstatic ¼
−16π
c2q⃗2

�
muμuν þ iqjSjðμuνÞ þ qkql

2

3
JkðμνÞlQ

þ iqiqjqk
1

3
JkjðμνÞiO

�
; ð2:18Þ

where h̃μνstatic ≡
R
d3x⃗ exp½−iq⃗ · x⃗�hμνðx⃗Þ and i ¼ ffiffiffiffiffiffi

−1
p

. We
can Fourier invert Eq. (2.18) to find the expression in
position space which gives

hμνstatic ¼ −
4

c2

�
muμuν

�
1

r

�
− SjðμuνÞ∂j

�
1

r

�

−
2

3
JkðμνÞlQ ∂k∂l

�
1

r

�
þ 1

3
JkjðμνÞiO ∂i∂j∂k

�
1

r

��
: ð2:19Þ

Substituting the expressions for the multipole moments,
and switching to the use of the mass-normalized Pauli-
Lubanski spin vector aμ ¼ −ð1=2mÞϵμνρσuνSρσ we get

hμνst ¼ −uμuν
�
1 −

C2

2
ða · ∂Þ2

�
4GM
r

− uðμϵνÞραβuρaα∂β
�
1 −

C3

3!
ða · ∂Þ2

�
4GM
r

þ terms containing ð∂2ð1=rÞ ¼ δð3ÞðxÞÞ; ð2:20Þ
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where we can neglect the delta function corrections since
they only affect the metric at the location of the particle,
where the field is anyway ill defined. These terms essen-
tially come from the nonzero traces of the quadrupole and
octupole tensors in Eqs. (2.8) and (2.9). As mentioned
below Eqs. (2.8) and (2.9), they do not contribute to the
final result.
Comparing the above metric perturbation (after dropping

the delta function terms) to the linearized Kerr metric (see
Ref. [74]), we can fix the coefficients to C2 ¼ C3 ¼ 1 for
the case of a black hole. However, we will continue to
work with generic C2 and C3 for the rest of this work as it
may be useful to have Compton amplitudes for generic
compact bodies (satisfying parity symmetry, stationarity
and axisymmetry).

C. Incident wave

To compute the gravitational Compton amplitude, cor-
responding to the process of gravitational waves scattering
off a black hole, we subject the black hole to an incoming
gravitational wave. Although a realistic setup would
involve a localized wave packet that eventually reaches
the black hole and scatters off (and partially absorbed), we
treat this situation in the manner of time-independent
perturbation theory, and instead consider a monochromatic
plane wave that had always been present. The monochro-
matic plane wave adds an additional metric perturbation
(hμν ¼ ffiffiffiffiffiffi−gp

gμν − ημν) which we characterize as5

hμνw ¼ ϵεμεν exp½ik · x�; εμεμ ¼ 0;

εμuð0Þμ ¼ 0; εμkμ ¼ 0; kμuμ ¼ −ω; ð2:21Þ
where ϵ is the field strength and εμ is a complex null vector.
The conditions ensure that hμνwave is spatial, transverse and
traceless, in the rest frame of the unperturbed particle and
propagates at the speed of light. In this way, only the
relevant radiative degrees of freedom are included. There
are only two linearly independent vectors we can choose
for εμ, which fixes the helicity/polarization of the incoming
gravitational wave. In the initial rest frame of the particle,
choosing εμþ2 ≡ ð1= ffiffiffi

2
p Þð0; 1;�i; 0Þ fixes the wave in �2

helicity respectively. In the rest frame of the particle, we
also choose the wave to be propagating along the þve “z”
direction, kμ ≡ ωð1; 0; 0; 1Þ.
Subject to this incident plane linearized gravitational

wave, the black hole experiences the following metric
tensor:

gμν ¼ ημν þ hμνw ; gμν ¼ ημν − hw;μν;ffiffiffiffiffiffi
−g

p ¼ 1þOðϵ2Þ: ð2:22Þ

The leading order Christoffel connection and the curvature
due to the wave are given by

Γρ
μν ¼ −iϵ

2
ðερενkμ þ ερεμkν − kρενεμÞ exp½ik · x�

¼ ϵ exp½ik · x�ΔΓρ
μν; ð2:23Þ

Rμ
ναβ ¼ ∂αΓ

μ
νβ − ∂βΓ

μ
να ¼ ϵ exp½ik · x�ΔRμ

ναβ; ð2:24Þ

where we have defined ΔΓρ
μν and ΔRμ

ναβ as the leading
order in ϵ corrections to Christoffel connection after
removing the factor ϵ exp½ik · x� for later convenience.
The particle’s dynamics (momentum, spin, etc.) are
affected by the incident wave, subsequently perturbing
stress-energy tensor given in Eq. (2.13) in an oscillatory
fashion. We study the dynamics of the particle subject to
this weak perturbation in the next section.

III. GRAVITATIONAL WAVE PERTURBATION
TO THE BLACK HOLE’S MOTION, SPIN AND

STRESS-ENERGY TENSOR

A. Solving for momentum, spin and four-velocity

As mentioned earlier in Sec. II A, the equations of
motion in Eqs. (2.6) and (2.7) are incomplete. They are
completed by the spin supplementary condition (SSC)
Sμνpν ¼ 0 and the normalization condition uμuμ ¼ −1.
Further, the four-velocity uμ appears in the spin equation of
motion [see Eq. (2.6)], and thus they cannot be solved
independently. We need to identify the relation between pμ

and uμ to solve for the spin. For that, we act upon the SSC
with a (D=Dτ) and get

DSμν

Dτ
pν þ Sμν

Dpν

Dτ
¼ 0 ¼ 2p½μuν�pν þ Nμνpν

þ SμνFν −
1

2
RναρσuαSρσSμν; ð3:1Þ

¼ pμðu · pÞ þm2uμ þ Nμνpν

þ SμνFν −
1

2
RναρσuαSρσSμν; ð3:2Þ

−uμ ¼ pμ u ·p
m2

þ 1

m2
ðNμνpνþSμνFνÞ−

1

2m2
RναρσuαSρσSμν;

ð3:3Þ

where Fμ and Nμν were defined earlier in Eqs. (2.6)
and (2.7). Now, contracting with uμ on both sides and
using pμ ¼ muμ þOðRÞ (i.e., momentum and four-
velocity are parallel in the absence of external curvature)
and uμuμ ¼ −1, we get

1 ¼ ðu:pÞ2
m2

þOðR2Þ: ð3:4Þ
5Note that the metric perturbation should be real, and not a

complex function but it is fine to work with exp½−ik · x� as long as
we truncate at linear order in ϵ.
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Note that the m that appears here is not a fixed parameter,
but a time-dependent mass function defined as p2 ¼ −m2.
We can compute the mass function as follows:

−2p ·
Dp
dτ

¼ −
Dp2

dτ
¼ dm2

dτ

≈m
D
Dτ

�
1

3
JλνρσQ Rλνρσ þ

1

6
JτλνρσO ∇τRλνρσ

�
;

⇒ m ¼ M þ 1

6
JλνρσQ Rλνρσ þ

1

12
JτλνρσO ∇τRλνρσ;

ð3:5Þ

where M is the constant of integration to be interpreted as
the constant mass in the absence of spin-induced multipole
moments and curvature. We also note that m can be treated
as a constant up to S2. In the absence of curvature, or up to
second order in spin, we can also write pμ ¼ Muμ.
Now, substituting the expression for force Fμ, and torque

Nμν, from Eqs. (2.6) and (2.7), in Eq. (3.3) and simplifying,
we get

uμ ¼ pμ

m
þ 1

m2
ðNμνpν þ SμνFνÞ ð3:6Þ

−
1

2m2
RναρσuαSρσSμν: ð3:7Þ

The commutator p½μuμ� that enters the expression for
DSμν=Dτ [see Eq. (2.6)] can now be computed. Thus,
we have now assembled all the expressions needed to solve
for the perturbations to the four-velocity, momentum and
spin of the particle due to the incident gravitational wave
perturbation.

B. Correction to momentum, spin and spin-induced
multipole moments

The gravitational perturbation is an incident plane wave,
which goes as exp½ik · x� ≈ exp½−iωτ� at the particle’s
location. Thus, we anticipate that at linear order in wave
strength ϵ, the dynamical variables are going to be affected
in an oscillatory fashion, and expand them as

pμ ¼ pð0Þμ þ ϵ exp½−iωτ�Δpμ; ð3:8Þ

uμ ¼ uð0Þμ þ ϵ exp½−iωτ�Δuμ; ð3:9Þ

Sμν ¼ Sð0Þμν þ ϵ exp½−iωτ�ΔSμν; ð3:10Þ

where ϵ is the strength of the wave, and uð0Þμ ≡ ð1; 0; 0; 0Þ,
pð0Þμ ¼ muð0Þμ, and Sð0Þμν are the undisturbed original
constant values in the absence of the external perturbation.
The correction to the momentum can be easily solved by
substituting the expansions in Eqs. (3.8), (2.23), and (2.24)
into Eq. (2.7) which gives

−iωΔpμ ¼ þMΔΓν
μγuð0Þγu

ð0Þ
ν −

1

2
uνSρσΔRμνρσ

−
i
6
Jð0ÞλνρσQ kμΔRλνρσ þ

1

12
Jð0ÞτλνρσO kμkτΔRλνρσ;

ð3:11Þ

where ΔRλνρσ is proportional to the curvature perturbation
due to the incident wave defined earlier in Eq. (2.24).
The connection term arises from expanding the covariant
derivative. The correction to the four-velocity can be easily
obtained by taking the variation of either Eq. (3.3) or
Eq. (3.6) (here we use the former expression), which gives

Δuμ ¼ Δðpμ=mÞ − 1

iωM2
ðMNμνpð0Þ

ν þ Sð0ÞμνFνÞ

−
1

2M2
ΔRναρσuð0ÞαSð0ÞρσSð0Þμν: ð3:12Þ

Finally, we can solve for the spin by taking the variation
on both sides of Eq. (2.6) to get

−iωΔSμν ¼ −2uð0ÞλSð0Þδ½νΔΓμ�
λδ − 2iωΔðp½μuν�Þ

þ 4

3
ΔR½μ

λρσJ
ð0Þν�λρσ
Q þ 2

3
ikλΔR½μ

τρσJ
ð0Þν�τρσ
Oλ

þ ik½μ

6
ΔRλτρσJ

ð0Þν�λτρσ
O ; ð3:13Þ

where ∇Γμ
νδ is proportional to the Christoffel connection

defined in Eq. (2.24). The correction to the worldline can be
obtained from the correction to the four-velocity as

zμðτÞ ¼
Z

dτuμðτÞ ¼
Z

dτ½uð0Þ þ ϵ exp½−iωτ�Δuμ�

ð3:14Þ

¼ uð0Þτ −
1

iω
ϵ exp½−iωτ�Δuμ: ð3:15Þ

The correction to the spin-induced multipole moments
can be obtained by substituting into their expressions into
Eqs. (2.8) and (2.9), the expansions in Eqs. (3.8), (3.9),
(3.10) (for p, u, and S) and Eq. (2.22) (as the metric enters
the expressions for multipole moments through contrac-
tions). The explicit expressions are not very illuminating
but it is useful to separate the two ways in which the
multipole moments are perturbed. We first rewrite the
expressions for the multipole moments in Eqs. (2.8)
and (2.9) as

JμνρσQ ¼ 3C2

m
u½μSν�λgλαSα½ρuσ�; ð3:16Þ

JλμνρσO ¼ C3

4m2
½Θλ½μuν�Sρσ þ Θλ½ρuσ�Sμν − Θλ½μSν�ρuσ

− Θλ½ρSσ�½μuν� − Sλ½μΘν�½ρuσ� − Sλ½ρΘσ�½μuν��;
Θμν ¼ SμλSναgλα; ð3:17Þ
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and define

ΔJμνρσQ;contact ¼ −
∂JμνρσQ

∂gαβ
εαεβ; ð3:18Þ

ΔJμνρσQ;matter ¼
∂JμνρσQ

∂Sαβ
ΔSαβ þ ∂JμνρσQ

∂uα
Δuα; ð3:19Þ

ΔJλμνρσO;contact ¼ −
∂JλμνρσO

∂gαβ
εαεβ; ð3:20Þ

ΔJλμνρσO;matter ¼
∂JλμνρσO

∂Sαβ
ΔSαβ þ ∂JλμνρσO

∂uα
Δuα: ð3:21Þ

The quantities with subscript “contact” are corrections to
the multipole moments through the explicit dependence on
metric tensor (after removing the factor ϵ exp½−iωτ�). The
quantities with subscript “matter” are corrections acquired
through the corrections to four-velocity and spin tensor
(variables describing the dynamics of matter). This sepa-
ration is gauge dependent and purely for our convenience.
With these conventions, the expressions for the perturbed
spin-induced multipole moments are given by

JμνρσQ ¼ Jð0ÞμνρσQ þ ϵ exp½−iωτ�
�
ΔJμνρσQ;contact þ ΔJμνρσQ;matter

�
:

ð3:22Þ
JμνρσO ¼ Jð0ÞμνρσO þ ϵ exp½−iωτ�

�
ΔJμνρσO;contact þ ΔJμνρσO;matter

�
:

ð3:23Þ

C. Correction to the stress-energy tensor

Finally, equipped with the perturbations to momentum,
spin, four-velocity and the worldline [Eqs. (3.11)–(3.14)],
and the spin-induced multipole moments [Eqs. (3.18) and
(3.21)], we can compute the perturbation to the stress-
energy tensor of the particle. This is accomplished by
simply substituting the expansions in Eqs. (3.9), (3.8),
(3.10), (3.22), and (3.23) and expressions for curvature
tensor and connection coefficients given in Eqs. (2.24) and
(2.23) into the expression for the stress-energy tensor given
in Eq. (2.13) and then truncating at leading order in ϵ. We
also discard any OðS4Þ contributions.
The explicit expressions for the corrections to the stress-

energy tensor are quite complicated and thus will not be
written here, but we find it convenient to separate them
into pieces in a manner similar to how we separated the
corrections to the multipole moments [see Eqs. (3.18)
and (3.21)]. The stress-energy tensor too gains corrections
from two sources: (i) from the correction to the dynamical
variables describing the particle (matter content, p, u, S, z)
and (ii) from the explicit dependence on the curvature
tensor (and derivatives), Christoffel connection terms
(from the covariant derivatives), and on the metric tensor
(that enters the multipole moments) in Eq. (2.13). The latter
contributes even if the particle’s motion and dynamics
are unaffected. Thus, after expanding out the covariant
derivatives in the stress-energy tensor in Eq. (2.13),
we define

ΔTμν
contactðxÞ ¼

∂Tμν

∂Rαβγδ ΔR
αβγδ exp½ik · x� þ ∂Tμν

∂ð∂λRαβγδÞΔR
αβγδikλ exp½ik · x� −

∂Tμν

∂ð∂λ∂ρRαβγδÞΔR
αβγδkλkρ exp½ik · x�

þ ∂Tμν

∂Γα
βγ

ΔΓα
βγ exp½ik · x� þ

∂Tμν

∂JαβγδQ;contact

ΔJαβγδQ;contact exp½−iωτ� þ
∂Tμν

∂JταβγδO;contact

ΔJταβγδO;contact exp½−iωτ� ð3:24Þ

ΔTμν
matterðxÞ ¼

∂Tμν

∂pα Δpα exp½−iωτ� þ ∂Tμν

∂Sαβ
ΔSαβ exp½−iωτ� þ

∂Tμν

∂uα
Δuα exp½−iωτ� þ ∂Tμν

∂zα
Δzα exp½−iωτ�

þ ∂Tμν

∂JαβγδQ;matter

ΔJαβγδQ;matter exp½−iωτ� þ
∂Tμν

∂JταβγδO;matter

ΔJταβγδO;matter exp½−iωτ�: ð3:25Þ

Once again, the idea is to separate the perturbation
due to matter/dynamical variables (p, S, u, z) and that
due to explicit corrections to metric, connection and
Christoffel coefficients. Note that there is no difference
between ϵ exp½ik · x� and ϵ exp½−iωτ� as all terms in
the stress-energy tensor contain δð4Þðx − zðτÞÞ or its
derivatives. Thus, as zμðτÞ ¼ uμτ þOðϵÞ, ϵ exp½ik · x� ¼
ϵ exp½−iωτ� þOðϵ2Þ.

With these conventions, the perturbed stress-energy
tensor is thus given by

TμνðxÞ ¼ Tð0Þμν þ ϵΔTμν

¼ Tð0ÞμνðxÞ þ ϵΔTμν
matterðxÞ þ ϵΔTμν

contactðxÞ; ð3:26Þ

where Tð0ÞμνðxÞ is the unperturbed stress-energy tensor
of the free particle given in Eq. (2.15). The correction
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terms to the stress-energy tensor consist of terms of
the form

ΔTμν
m=c ¼

XZ
dτAμνKL

m=c ½eα; Sð0Þαβ; uð0Þα; m�

× ∂K½exp½ik · x�∂Lδð4Þðx − uð0ÞμτÞ�; ð3:27Þ

where we are using the multi-index notation L ¼ μ1μ2…μl,
to denote a chain of indices. The

P
shows that the net

result is a linear combination of such terms (with different l,
k and Aμν). m=c refers to “matter/contact,” both types of
corrections have the same form. We now proceed to
compute the scattering amplitude by solving the Einstein
equation for the scattered wave.

IV. COMPUTATION OF THE SCATTERING
AMPLITUDE

A. Differential equation for the scattered wave

To derive a differential equation governing the scattered
wave, we first rewrite the Einstein equation in Landau-
Lifshitz form (see Ref. [21]), i.e.,

ηρσ∂ρ∂σhαβ ¼ 16πGταβ; ð4:1aÞ

ταβ ¼ jgjTαβ þ 1

16πG
Λαβ; ð4:1bÞ

Λαβ ¼ −hμν∂2μνhαβ þ ∂μhαν∂νhβμ þ
1

2
gαβgμν∂λhμτ∂τhνλ

− gαμgντ∂λhβτ∂μhνλ − gβμgντ∂λhατ∂μhνλ

þ gμνgλτ∂λhαμ∂τhβν þ
1

8
ð2gαμgβν − gαβgμνÞ

× ð2gλτgϵπ − gτϵgλπÞ∂μhλπ∂νhτϵ; ð4:1cÞ

hμν ¼ ffiffiffiffiffiffi
−g

p
gμν − ημν: ð4:1dÞ

We then substitute

ffiffiffiffiffiffi
−g

p
gμν−ημν¼hμν¼Ghμνstaticþϵεμεν exp½ik ·x�þGϵhμνscatter;

ð4:2Þ

anticipating the scaling of the various metric pertu-
rbations. Here, hμνstatic is the static metric correction
given in Eq. (2.19), sourced by the compact body and
∝G. The second term is the incident wave given ear-
lier in Eq. (2.21) and ∝ϵ. Finally, the last term is the
scattered wave which starts at leading order in Gϵ. To
isolate the leading order (in G) scattered wave, we

take the coefficient of Gϵ in both sides of Eq. (4.1) after
substitution. This gives us

ηρσ∂ρ∂σh
μν
scatterðxÞ ¼ 16πΔTμν

matterðxÞ þ 16πΔTμν
contactðxÞ

þ Λð1;1Þ;μνðxÞ; ð4:3Þ

where ΔTμν
matter;contact are the leading order (in ϵ) perturba-

tions to the stress-energy tensor of the particle due to the
incident plane wave defined in Eqs. (3.24) and (3.25).
Λð1;1Þ;μν is the term proportional to Gϵ when we substituteffiffiffiffiffiffi−gp

gμν − ημν ¼ Ghμνstatic þ ϵεμεν expðik · xÞ in Λμν.6 This is
the contribution from nonlinear interactions in gravity,
between the incident wave and the static curvature. Thus
the scattered wave obeys a wave equation with a source
term derived from three contributions, a matter part from
ΔTμν

matter which comes from perturbing the dynamics (pμ,
Sμν) and kinematics (uμ, zμ) of the particle, a contact part
from ΔTμν

contact which is due to the explicit dependence of
the stress-energy tensor on the metric and its derivatives.
This also includes the corrections to the stress-energy
tensor arising from the explicit metric dependence in the
expression for multipole moments. The last part which
comes from Λð1;1Þμν is due to the nonlinear interactions in
gravity, wherein the incident wave scatters off the static
linearized gravitational field sourced by the particle. We
refer to the last contribution as the “graviton” part. This
separation is primarily for convenience and is gauge
dependent, i.e., they mix with each other under coordinate
transformations.

B. Solving for the scattered wave

It is more convenient to solve the differential equa-
tion (4.3) for the scattered wave in Fourier space.
Furthermore, we are only interested in the radiative on-
shell modes whose mode vectors lμ satisfy the null
condition (l2 ¼ 0). In Fourier space, Eq. (4.3) becomes

−l2h̃μνscatterðlÞ ¼ F ½16πΔTμν
matterðxÞ þ 16πΔTμν

contactðxÞ
þ Λð1;1Þ;μνðxÞ�ðlÞ; ð4:4Þ

where F is the Fourier transform operator defined
as F ðfðxÞÞ ¼ R

d4x exp½−il · x�fðxÞ.
The form of Fourier transform of ΔTμν

matter=contactðxÞ can
be evaluated using the fact that both of these corrections
consist of terms of the form given in Eq. (3.27) as shown
below:

6Thus, we are not interested in the nonlinear interactions
proportional to G2 or ϵ2 in this work. They do not contribute to
the leading order scattered wave which goes as Gϵ.

SCATTERING OF GRAVITATIONAL WAVES OFF SPINNING … PHYS. REV. D 106, 124026 (2022)

124026-13



F ðΔTμν
m=cÞðlÞ ¼

Z
dτd4xexp½−il · x�ΔTμν

m=cðxÞ ¼
X

AμνKL
m=c

Z
exp½−il · x�

Yk
i¼1

∂μi exp½ik · x�
Yl
j¼1

∂μjδ
ð4Þðx−uð0ÞμτÞ; ð4:5aÞ

¼
X

AμνKL
m=c ðiÞl

Z
dτd4x

Yk
i¼1

lμi exp½−iðl − kÞ · x�
Yl
j¼1

∂μjδ
ð4Þðx − uð0ÞμτÞ; ð4:5bÞ

¼
X

ðiÞnAμνKL
m=c

Z
dτd4x

Yk
i¼1

lμi
Yl
j¼1

ðl − kÞμj exp½iðl − kÞ · x�δð4Þðx − uð0ÞμτÞ; ð4:5cÞ

¼
X

ðiÞn2πAμνKL
m=c lKðl − kÞLδðl · uð0Þ − k · uð0ÞÞ ¼

X
ðiÞn2πAμνKL

m=c lKðl − kÞLδðl · uð0Þ þ ωÞ; ð4:5dÞ

where we see that the frequency preserving delta function
δðl · uð0Þ þ ωÞ ensures that the outgoing wave has the same
frequency as the incoming wave. We have included the

P
operator to indicate that the net result is a sum of multiple
such terms.
The form of the Fourier transform of the graviton part

from Λð1;1Þ can be evaluated using the fact that it consists of
the sum of products of the static metric perturbation
sourced by the particle given in Eq. (2.18) and the incident
wave described in Eq. (2.21). Thus, Λð1;1Þ is a sum of terms
of the form AμνK

λ exp½ik · x� × ∂Kð1rÞ, in the rest frame of the
particle, and we have once again used the multi-index
notation K ¼ μ1μ2…μk. We have

F ðΛð1;1ÞðxÞÞ ∼
XZ

d4xAμνK
λ exp½−il · x�

×

�
exp½ik · x�

Yk
i¼1

∂μi

�
1

r

��
ð4:6aÞ

¼
XZ

AμνK
λ d4x exp½−iðl − kÞ · x�

Yk
i¼1

∂μi

�
1

r

�
;

¼
X

ðiÞn
Z

d4xAμνK
λ ½ðl − kÞL� exp½iðl − kÞ · x�

�
1

r

�

¼
X

AμνK
λ ð−1Þnðl − kÞK

4πδðl0 − k0Þ
ð⃗l − k⃗Þ2

; ð4:6bÞ

in the rest frame of the particle; we can make this covariant
by writing l0 ¼ l · uð0Þμ (similarly for k) and using
ð⃗l − k⃗Þ2 ¼ ðl − kÞ2 þOðG; ϵÞ. Thus, we get

F ðΛð1;1ÞðxÞÞ ¼
X

AμνK
λ ðl − kÞK

4πδðl · uð0Þ þ ωÞ
ðl − kÞ2 ; ð4:7Þ

where once again we find the frequency preserving delta
function.
Substituting the Fourier transforms of the matter, contact

and graviton parts from Eqs. (4.5) and (4.7) into Eq. (4.4),

we get the scattered wave in the Fourier domain with
the form

h̃μνscatterðlμÞ ¼
−1
4π

X	
½AμνKL

m þ AμνKL
c �ðiÞnlKðl − kÞL

− 2AμνK
λ

ðl − kÞK
ðl − kÞ2



8π2δðωþ l · uð0ÞÞ

ωl2
ð4:8Þ

¼ Aμνððl − kÞα; kα; εα; Sð0Þαβ; uð0Þα; mÞ

×
8π2δðωþ l · uð0ÞÞ

ωl2
; ð4:9Þ

where the amplitude tensor Aμν contains the scattering
amplitudes for on-shell modes (l2 → 0). Finally, we define
the amplitudes as

M�þ ¼ GAμνζ−2νζ−2ν; M�− ¼ GAμνζþ2νζþ2ν;

ð4:10Þ

where the first sign is fixed by the polarization of the
incoming wave. The form of the wave in Fourier domain in
Eq. (4.9) may seem a bit odd. It is much simpler to
understand the form of the scattered wave in position space,
where it is just a spherical wave with an angle dependent
amplitude (in the rest frame of the particle). To see that,
we will evaluate the Fourier transform of the scattered
wave. We follow the procedure given in Ref. [49]. We first
rewrite the differential equation in position space given in
Eq. (4.3) as

□hμνscatterðxÞ ¼ JμνðxÞ; ð4:11Þ

and write the solution as

hμνðxÞ ¼
Z

d4x0Gðx − x0ÞJμνðx0Þ; ð4:12Þ

GðxÞ ¼ 1

2π
θðxð0ÞÞδðx2Þ: ð4:13Þ
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We now Fourier transform only with respect to time in the
rest frame of BH (defined by uμ) to get

hμνðω; x⃗Þ ¼
Z

dt exp½iωt�hμνðt; x⃗Þ ð4:14Þ

¼
Z

dt0d3x⃗0
exp½iωðt0 þ jx⃗ − x⃗0jÞ�

4πjx⃗ − x⃗0j Jμνðt0; x⃗0Þ;

ð4:15Þ

¼ 1

4π

Z
d3x0

expðiωjx⃗ − x⃗0jÞ
jx⃗ − x⃗0j Jμνðω; x⃗0Þ: ð4:16Þ

Far away from the black hole, we can approximate
jx⃗0j ≪ jx⃗j, and thus write jx⃗ − x⃗0j ≈ jx⃗j − iωx̂ · x⃗0 and
ignore the correction to jx⃗ − x⃗0j in the denominator to get

hμνðω; x⃗Þ ≈ exp½iωjx⃗j�
4πjx⃗j

Z
d3x⃗0 exp½−iωx̂ · x⃗0�Jμνðω; x⃗0Þ

¼ exp½iωjx⃗j�
4πjx⃗j J̃μνðk̄Þ; ð4:17Þ

where J̃μνðk̄Þ is the 4D Fourier transform of JμνðxÞ
evaluated at k̄ ¼ ðω;ωx̂Þ. Now, substituting the expression
for J̃μνðk̄Þ from Eq. (4.9), we get

hμνðω; x⃗Þ ¼ 2π exp½iωjx⃗j�
ω ⃗x⃗

δðωþ l · uð0ÞÞAμν; ð4:18Þ

and finally inverting the Fourier transform along time, we
get the result

hμνðt; x⃗Þ ¼ exp½iωðr − tÞ�
ωr

Aμν; r ¼ jx⃗j: ð4:19Þ

We find that the Aμν defined in Eq. (4.9) is simply the
amplitude of a spherical wave [exp½iωðr − tÞ�=ðωrÞ] in
position space, centered at the particle. Further, using
the definition of the scattering amplitudes as given in
Eq. (4.10), we can rewrite the relevant part of the scattered
wave (the part that contributes to the amplitudes, M��) as

hμνðt; x⃗Þjrelevant ¼
exp½iωðr − tÞ�

Gωr

�
M�þζ

μ
þ2ζ

ν
þ2

þM�−ζ
μ
−2ζ

ν
−2

�
; ð4:20Þ

where the first sign of the amplitudes is fixed by the
polarization of the incoming wave.

V. COMPTON AMPLITUDES

Finally, in this section, we project out the amplitude
function Aμν onto an appropriate set of polarization vectors
and write down the scattering amplitudes to third order in

spin, for generic C2, C3. To do that, we first fix the incident
wave at a given helicity (�2), by choosing the polarization
vectors appropriately [εμ ≡ ð1= ffiffiffi

2
p Þð0; 1;�i; 0Þ]. Then, the

scattering amplitude for measuring an outgoing wave with
wave vector lμ, with þ2ð−2Þ helicity is given by M�þ ¼
GAμνζ−2;μζ−2;ν [M�− ¼ GAμνζþ2;μζþ2;ν] respectively,
where we are using the notation M�� for the scattering
amplitudes from a given incoming helicity to a given
outgoing helicity. Here, ζμ�2 are the complex null polari-
zation vectors orthogonal to the outgoing wave vector lμ

(just as εμ are the complex null polarization vectors for the
incoming wave with wave vector kμ), and they satisfy
ζa · ζb ¼ ð1 − δabÞ, ζa · l ¼ 0.
With this formula, we obtain the following expressions

for the amplitudes for the black hole (BH) case, i.e.,
C2 ¼ C3 ¼ 1:

Mþþ ¼ GMω
cos4ðθ

2
Þ

sin2ðθ
2
Þ exp

�
−
sμ

M
ðkμ þ lμÞtan2

�
θ

2

�

−
i

Mωcos2ðθ
2
Þ S

μνkμlν

�
þOðS4Þ; ð5:1Þ

Mþ− ¼ GMωsin2
�
θ

2

�
exp

�
sμ

M
ðkμ − lμÞ

�
þOðS4Þ;

ð5:2Þ

M−− ¼ M̄þþðSμν → −Sμν; sμ → −sμÞ; ð5:3Þ

M−þ ¼ M̄þ−ðSμν → −Sμν; sμ → −sμÞ; ð5:4Þ

where kμ ≡ ωð1; 0; 0; 1Þ is the incoming wave vector and
lμ ≡ ωð1; n̂Þ is the outgoing wave vector, with n̂ showing
the spatial direction and we are using the notation f̄ to
denote the complex conjugate of f. θ is the angle between
the incident wave vector and the outgoing wave vector and
related to the wave vectors via −k · l ¼ ω2 − ω2 cosðθÞ ¼
2ω2 sin2ðθ

2
Þ. sμ ¼ −ð1=2ÞϵμνρσuνSρσ is the Pauli-Lubanksi

spin vector. The spin Sμν ¼ Sð0Þμν and four-velocity uμ ¼
uð0Þν appearing here are the unperturbed zeroth order spin
and four-velocity of the black hole. The above amplitudes,
although written as an exponential are only verified by this
method to third order in spin, as shown by the þOðS4Þ in
the above expressions.
It is worth noting that there is mixing of polarization

(i.e., nonzero Mþ− and M−þ) even in the absence of spin
(Sμν → 0). This is a known result and does not happen
for electromagnetic wave scattering off black holes (see
Ref. [87]). The above amplitudes are also consistent with
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the scattering cross sections in the spinless case given in
Ref. [81]. They are also consistent with Eq. (22) in
Ref. [82], valid at first order in spin. Most importantly,
these amplitudes are identical to the exponentials in
Eqs. (5.14) and (5.17) in Ref. [63] in which the amplitudes
of Ref. [58] were rewritten as an expansion in spin
multipoles in spinor-helicity formalism.7

The expressions for amplitudes prior to substituting the
incoming and outgoing polarization vectors and for generic
C2, C3 are given in the Appendix. However, after sub-
stitution of the polarization vectors, the expressions for the
helicity-conserving(-reversing) amplitudes, Mþþ, M−−
(Mþ−, M−þ) for generic C2 and C3 up to S3 can be
separately simplified by choosing the appropriate basis of
vectors for writing them. For helicity-conserving ampli-
tudes (Mþþ;M−−), we choose the vectors

kμ; lμ; wμ
S ¼ 1

2ωcos2ðθ
2
Þ ½ωðk

μ þ lμÞ − iϵμαβγkαlβuγ�;

aμ ¼ sμ=M: ð5:5Þ

For helicity-reversing amplitudes (Mþ−;M−þ), we
choose the vectors

kμ; lμ; wμ
O ¼ −1

2ωsin2ðθ
2
Þ ½ωðk

μ − lμÞ þ iϵμαβγkαlβuγ�;

aμ ¼ sμ=M: ð5:6Þ

In terms of these vector bases, the amplitudes for generic
axisymmetric, parity-preserving, stationary compact bodies
to third order in spin can be written as

Mþþ ¼ GMω
cos4ðθ=2Þ
sin2ðθ=2Þ

�
exp½a · ðkþ l − 2wSÞ� þ

C2 − 1

2
½ðk − wSÞ · a�2 þ ½ðl − wSÞ · a�2

þ C2 − 1

2
½ðk − wSÞ · a�½ðl − wSÞ · a�½ðkþ l − 2wSÞ · a� − ðC2 − 1Þ2½ðk − wSÞ · a�½ðl − wSÞ · a�ðwS · aÞ

þ C3 − 1

6
f½ðk − wSÞ · a�3 þ ½ðl − wSÞ · a�3g

�
: ð5:7Þ

M−− ¼ M̄þþðaμ → −aμÞ; ð5:8Þ

Mþ− ¼ GMωsin2
�
θ

2

��
exp½a · ðk − lÞ� þ ðC2 − 1Þ

2cos2ðθ=2Þ ð½ðk − lÞ · a�2 − sin2ðθ=2Þf½ðk − wOÞ · a�2

þ ½ðlþ wOÞ · a�2 − 4ðwO · aÞ2gÞ þ ðC2 − 1Þ
2

tan2ðθ=2Þ½ðk − l − 6wOÞ · a�½ðl − wOÞ · a�½ðkþ wOÞ · a�

þ ðC2 − 1Þ2tan2ðθ=2Þ½ðwO þ kÞ · a�½ðwO − lÞ · a�ðwO · aÞ þ ðC3 − 1Þ
6cos2ðθ=2Þ ð½ðk − lÞ · a�3

− sin2ðθ=2Þf½ðk − wOÞ · a�3 − ½ðlþ wOÞ · a�3 þ 8ðwO · aÞ3gÞ
�
; ð5:9Þ

M−þ ¼ M̄þ−ðaμ → −aμÞ: ð5:10Þ

This remarkable simplification of the Compton amplitudes
in the appropriate vector basis can be helpful in the
subsequent derivation of two-body dynamics. Unfortu-
nately, the simplification for helicity-reversing amplitudes
is not as nice as that of helicity-conserving amplitudes, but
thus far we have not been able to find a better basis for
simplification of helicity-reversing amplitudes.

Finally, it is also worth noting that the helicity flip
(þ ↔ −) at the level of amplitudes can be carried out by
reversing the direction of spin and a complex conjugation
even in the most general case (C2; C3 ≠ 1). This can be
understood as a combination of time-reversal and parity
transformation, which flips the helicities and the spin but
leaves the (incoming and outgoing) momenta invariant.
Thus, we have

Mðϵþ; ζþ; kμ; lμ; aμÞ⟶Time reversal

Parity flip
M̄ðϵ−; ζ−; kμ; lμ;−aμÞ;

ð5:11Þ
Mðϵþ; ζ−; kμ; lμ; aμÞ⟶

Parity flip

Time reversal
M̄ðϵ−; ζþ; kμ; lμ;−aμÞ;

ð5:12Þ

7Note that the conventions regarding helicity states are slightly
different in Refs. [58,63]. They have chosen the momenta of both
gravitons to be incoming. In our case, this means lμ → −lμ and
the helicity of the outgoing wave/graviton is flipped. As a result,
their “same-helicity” (þþ) amplitude is our helicity-reversing
(þ−) amplitude, and their “opposite helicity” (þ−) amplitude is
our helicity-conserving (þþ) amplitude. Also, they have written
the results in a spinor helicity formalism.

M. V. S. SAKETH and JUSTIN VINES PHYS. REV. D 106, 124026 (2022)

124026-16



yielding the previously seen relationsM−− ¼ M̄þþðaμ →
−aμÞ and Mþ− ¼ M̄−þðaμ → −aμÞ.

VI. CONCLUSION

In this work, we solved for the dynamics of a spinning
compact body with spin-induced multipole moments sub-
ject to an external linearized gravitational plane wave, and
solved for the scattered wave produced in response, to third
order in spin of the body, at linear order in G. The compact
body was described with an effective worldline formalism,
where it was treated as a spinning point particle with
nonminimal couplings of higher multipole moments to
space-time curvature. The spin-induced (electric) quadru-
pole and (magnetic) octupole moments of the particle could
be controlled by varying two parameters C2 and C3,
respectively, normalized so that C2 ¼ C3 ¼ 1 corresponds
to the black hole case. We extracted the scattering ampli-
tude for the scattering of gravitational waves off compact
spinning bodies for generic C2 and C3, again up to
order GS3.
For the special case C2 ¼ C3 ¼ 1 corresponding to a

black hole, we verified that our classical scattering ampli-
tude matches the classical limit of the Compton amplitude
originating from Ref. [58], in particular using its form in
terms of the heavy-particle EFT variables from Ref. [63].
Assuming that the effective worldline theory is sufficiently
general, and given that its only free parameters (contrib-
uting through orderGS3), C2 and C3, are fixed by matching
to the linearized Kerr solution, this provides further
evidence that the Compton amplitude from Refs. [58,63]
is indeed suitable for describing the dynamics of a black
hole, at least to third order in spin. We note that a BCFW
construction of Compton amplitudes for generic C2 and C3

(and so forth) has been given in Appendix B of Ref. [62];
the result for the helicity conserving (opposite helicity)
amplitude notably differs from our result (5.8) by the
absence of terms quadratic in C2 (CS2) at third order in spin.
We have verified that our Compton amplitudes for generic
C2 and C3 (for both helicity configurations) are in agree-
ment with the classical limits of the Compton amplitudes
derived by the authors of Ref. [57] for use in their
computation of the 2-to-2 scattering amplitudes, for a
certain choice of their extra free parameter (specifically
when their parameter H2 equals 1).
An important direction for future work is to extend our

results to fourth and fifth orders in spin, where the world-
line theory will encounter additional Wilson coefficients
multiplying couplings quadratic in the curvature. Input
from the worldline theory may help to clarify issues such
as the counting and interpretation of additional free
parameters at higher orders in spin, in the comparison
with effective quantum theories, and may facilitate the
comparison of both of those approaches with results from
black hole perturbation theory. Beyond the (fundamentally

conservative) spin-induced multipole couplings of the type
considered here, it will also be necessary, at sufficiently
high orders in the long-wavelength scattering expansion, to
include absorptive effects (e.g., absorption of mass energy
and angular momentum down a black hole horizon), as
have been treated in an effective worldline theory (e.g., in
Ref. [88]) and using black hole perturbation theory (e.g.,
in Ref. [89]).
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APPENDIX: COMPTON AMPLITUDES FOR
GENERIC POLARIZATION VECTORS AND

GENERIC C2, C3

In this Appendix, we write down the Compton ampli-
tudes for generic incoming and outgoing polarization
vectors. However, as with the rest of the paper, we continue
to work in the traceless-transverse gauge, where hμνkν ¼ 0
and hμμ ¼ 0. Thus, our incoming polarization vector,
denoted by εμ and the outgoing polarization vector, denoted
by ζμb with a; b ¼ �2 satisfy ε2 ¼ 0; ζ2 ¼ 0. For spinless
bodies, the Compton amplitude to linear order in G prior to
substitution of polarization vectors is given by

Mab ¼
4GMω3ðεa · ζbÞ2

ðl − kÞ2 ; ðA1Þ

where kμ and lμ are the incoming and outgoing momenta/
wave-vectors and εμa and ζμb are the polarization vectors
for the incoming and outgoing waves, respectively.M is the
mass of the compact body and ω is the frequency of the
incident wave in the initial rest frame of the particle
(ω ¼ −k · uð0Þ).
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At linear order in spin andG, the addition to the Compton
amplitude for generic polarization vectors is given by

ΔMabjS ¼
i4Gω2ðqμSμνεμaÞðq · ζbÞðεa · ζbÞ

q2

−
i4Gω2ðkμqνSμνÞðεa · ζbÞ2

q2

−
i4Gω2ðq · εaÞðεa · ζbÞðqμSμνζνbÞ

q2

þ 2iGω2ðεa · ζbÞðSμνεμaζνbÞ; ðA2Þ

which is also independent of C2, C3. The amplitude is thus
universal to linear order in spin.
At second order in spin, the coefficient controlling the

strength of spin-induced quadrupole moment, C2 enters
the amplitude. The addition to the Compton amplitude for
generic polarization vectors at S2 is given by

ΔMabjS2 ¼ −C2

2Gω3ðqμqνSμρSνρÞðεa · ζbÞ2
mq2

−
2GωðkμSμνενaÞðεa · ζbÞðlμSμνζνbÞ

m

þ C2

2Gω3ðεa · ζbÞðSμγSνγεμaζνbÞ
m

: ðA3Þ

Finally, at third order in spin, the amplitude depends on
both C2 and C3. The addition to the amplitude at S3 has
terms proportional to C2, C2

2 and C3. Interestingly, there are
no terms that are independent of C2 and C3 at this order in
spin. It is useful to separate the various contributions, since
the overall expression is very long. Thus, the addition to the
Compton amplitude for generic polarization vectors that is
linear in C2 is given by

ΔMabjS3;C2
¼ C2

iGω2

m2
½ðSμγSνγεμaενaÞðk · ζbÞðlμSμνζνbÞ

− 2ðkμSμγSνγενaÞðεa · ζbÞðlμSμνζνbÞ
− ðkμ ↔ lμ; εμa ↔ ζμbÞ�: ðA4Þ

Then, the addition to the Compton amplitude ∝C2
2 is

given by

ΔMabjS3;C2
2
¼ −C2

2

2iGω4

m2
½ðSμνεμaζνbÞðSμγSνγεμaζνbÞ

− ðεa · ζbÞðSμγSνδSγδεμaζνbÞ�: ðA5Þ

Finally, the addition to the Compton amplitude at third
order in spin, ∝C3 is given by

ΔMabjS3;C3
¼ C3

iGω2

3m2q2
½−2ðqμqνSμγSνγÞðqμSμνενÞðq · ζÞðε · ζÞ þ ðkμqνSμνÞðqμqνSμγSνγÞðε · ζÞ2

− q2ðSμαSναεμενÞðk · ζÞðlαSαβζβÞ þ 2q2ðkμSμγSνγενÞðε · ζÞðlαSαβζβÞ − 2q2ðlμSμγSνγεγÞðε · ζÞðlαSαβζβÞ
− q2ðkμkνSμγSνγÞðε · ζÞðSαβεαζβÞ þ q2ðkμlνSμγSνγÞðε · ζÞðSαβεαζβÞ − 2q2ðlμSμνενÞðk · ζÞðSμγSνγεμζνÞ
− q2ðkμlνSμνÞðε · ζÞðSμγSνγεμζνÞ − q2ðk · lÞðSμνεμζνÞðSμγSνγεμζνÞ − ðkμ ↔ lμ; εμa ↔ ζμbÞ�; ðA6Þ

where we have written simply ε ¼ εa and ζ ¼ ζb for brevity. With this, we have written down the complete expression for
the Compton amplitude for generic polarization vectors for generic C2, C3 to third order in spin.
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