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Abstract: In this article, we investigate exponential lag synchronization results for the
Cohen-Grossberg neural networks (C-GNNs) with discrete and distributed delays on an
arbitrary time domain by applying feedback control. We formulate the problem by using
the time scales theory so that the results can be applied to any uniform or non-uniform
time domains. Also, we provide a comparison of results that shows that obtained results
are unified and generalize the existing results. Mainly, we use the unified matrix-measure
theory and Halanay inequality to establish these results. In the last section, we provide a
simulated example for different time domains to show the effectiveness and generality of
the obtained analytical results.

Novelty statement: This is the first attempt to discuss the exponential lag synchro-
nization results for the generalized C-GNNs with mixed delays on time scales. The results
are obtained by applying the novel unified matrix-measure theory and Halanay inequality.
A comparison of results shows that these results unify and generalize the existing results.
An example with simulation for different time domains is given to illustrate the analytical
results.

1 Introduction

Since the 1980s, neural networks (NNs), including recurrent NNs, Hopfield NNs, cellular NNs, and
bi-directional associative NNs, have been a subject of intense study because of their large number of
potential applications in many fields, such as the classification of patterns, signal and image processing,
optimization problems, associative memory, parallel computing, and so on. In 1983, Cohen-Grossberg
[8] introduced the C-GNNs which are recognized as one of the most important and typical NNs because
some other well-known NNs, for example, recurrent NNs, cellular NNs, and Hopfield NNs are special
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cases of C-GNNs. As a result, these types of networks have attracted considerable research attention
and have been extensively studied regarding their dynamical properties such as state estimation [36],
periodicity [5], stability [34, 43], boundedness [15], and synchronization [17, 41]. Furthermore, due to
the importance of discrete-time C-GNNs as discussed in [40], the dynamics of discrete-time C-GNNs
have become a popular research topic; see, for example, [9, 18, 30, 31].
Synchronization is one of the most important qualitative properties of dynamic systems and means

that two or more dynamic systems lead to a common dynamical behaviour by using some coupling
or external forces. The concept of synchronization of drive-response systems was first introduced by
Pecora and Carrol [28]. Since then, the problem of synchronization has been capturing increasing
attention both from a fundamental application-driven point of view. Potential applications can be
found in many areas of applied sciences, such as harmonic oscillation generation, information science,
human heartbeat regulation, chemical and biological systems, and secure communication [6,26,39]. In
the last few years, various types of synchronization phenomena have been discovered and investigated
such as complete synchronization [7], exponential synchronization [23, 41], finite-time synchronization
[19, 29], lag synchronization [1], adaptive synchronization [10], and projective synchronization [2].
Among them, lag synchronization has been extensively studied [12,13,25,37] because in many connected
electronic networks we have some constant time shifts between the drive and response systems, and
due to that, the complete synchronization is hard to implement effectively.
Due to the importance of both discrete and continuous dynamical systems in many practical appli-

cations, the authors proved the results for the discrete and continuous dynamic systems but most of
these results are investigated separately. Therefore, to avoid proving the results twice, in 1988, Hilger
[11], introduced the so-called time scales theory (or measure chain theory) to unify the discrete and
continuous analysis into a single comprehensive analysis, i.e., the study of dynamic equations on time
scales turns out to be difference equations and differential equations if the time scale is chosen to be
the set of integers, and real numbers, respectively.
Furthermore, apart from the discrete and continuous-time domains, there are many other time

domains which can be very useful to study the dynamic behaviours of dynamic systems more accurately.
For example, to model the growth process of some species like Magicicada Septendecim, Magicicada
Cassini, and Pharaoh Cicada, we need a time domain of the form T = ∪∞

k=0[k(a+b), k(a+b)+b], a, b ∈
(0,∞), which is neither discrete nor continuous, and hence, neither the difference equation nor the
differential equations can give the accurate behaviour of such types of models. But the time scales
theory can overcome such difficulties as it gives the freedom to work on the general domain, i.e., the
results obtained by using the time scales will also be valid for uniform and non-uniform time domains
such as the non-overlapping closed intervals, a mixture of closed intervals and discrete points, and even
a discrete non-uniform time domain. Thus, we can summarize the above and state that “Unification
and Extension” are two main features of the time scales theory. In the last few years, the study of
dynamic equations on time scales has drawn a tremendous amount of attention across the world and
many researchers found its applications in many fields, such as epidemiology, economics, and control
theory [3, 27]. Therefore, it is worth to investigate the dynamic equations on time scales. For more
study on time scales, one can refer to the monograph [4].
Recently, many authors established different types of qualitative behaviours of dynamic systems on

time scales, for example, the existence of solutions, stability analysis, stabilization, and synchronization
[14,16,32,35,38]. Also, few authors established the existence of periodic, anti-periodic, almost-periodic
solutions and their stability results of the C-GNNs [20–22,24, 33, 42]. In [21], the authors studied the
existence of anti-periodic solution and exponential stability for C-GNNs with time-varying delays
on time scales. In [24], the authors established the existence and global exponential stability of
almost periodic solutions for C–GNNs with distributed delays on time scales while in [22], the authors
considered the impulsive C-GNNs with distributed delays on time scales and studied the existence
and exponential stability of periodic solutions by using Lyapunov functions, M-matrix theory, and
coincidence degree theory.
However, the synchronization problem of C-GNNs on time scales has not been studied so far to

the best of our knowledge. Therefore, to fill this gap, in this work, we establish exponential lag
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synchronization results for C-GNNs with discrete and distributed time delays on time scales by using
feedback control and a novel unified matrix-measure technique as well as the Halanay inequality. In
short, the essential commitment and benefit of this manuscript can be summarized as follows:

• The C-GNNs with discrete and distributed delays on arbitrary time domains are considered to
study exponential lag synchronization.

• The problem is formulated by using the time scales theory and the results are derived based on
a novel unified matrix-measure theory and the Halanay inequality.

• The results for different special cases are given which shows that the obtained results unify and
generalize the existing results.

• A simulated example for different time scales including continuous, discrete and non-overlapping
closed intervals, is given to verify the obtained analytical outcomes.

The remaining part of the manuscript is organized as follows: In Section 2, we recall some basics
from matrix theory and time scales which we need throughout this manuscript. In Section 3, we
formulate our statement of the problem. In Section 4, the main results are discussed and in the last
Section 5, a numerical example with simulation is given to verify the obtained results.

2 Preliminaries

Throughout this paper, the notations R,Z and N denote the set of all real, integers. and natural
numbers, respectively; T denotes the time scales; ∅ denotes the empty set; Rn and R

n×m denote the
n-dimensional Euclidean space and the set of all n ×m matrices, respectively; diag{. . .} denotes the
diagonal matrix; Superscript ∗ denotes the matrix transpose; Id and O denote the identity and zero
matrices of appropriate dimensions, respectively; [a, b]T = [a, b]∩T, denotes the time scale interval. For
any a, b ∈ R, C([a, b],Rn) denotes the set of continuous functions from [a, b] into R

n; ‖·‖p, (p = 1, 2,∞)
is used to denote the p-norm for a vector or for a matrix.
Next, we recall some basic definitions and results about time scale calculus.
A time scale is an arbitrary non-empty closed subset of the real numbers. R, hZ(h > 0), Pa,b =

∪∞
k=0[k(a + b), k(a + b) + a] and any discrete set are some examples of time scales. The forward and

backward jump operators σ, ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈
T : s < t}, respectively with the substitution supT = inf ∅ and inf T = sup ∅. Also the graininess
functions µ : T → [0,∞) is given by µ(t) = σ(t)− t. A point t ∈ T is called right-dense if t < max{T}
and σ(t) = t, left-dense if t > min{T} and ρ(t) = t, right-scattered if σ(t) > t, and left-scattered if
ρ(t) < t. If T has a left-scattered maximum M , then we set Tk = T \ {M}, otherwise T

k = T.

Definition 2.1 ([35], Def. 1). Let t ∈ T
k and f : T → R be a function. Then the delta derivative of

f at a point t is defined as a number f∆(t) (provided it exists) whenever for each ǫ > 0 there exists a
neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t) − s]| ≤ ǫ|σ(t)− s| for all s ∈ U.

Further, if the neighborhood U is replaced by the right-hand sided neighborhood U+, then the delta
derivative is called the upper right Dini-delta-derivative and denoted by D+

∆f(t).

Remark 2.1. In the above Definition 2.1, if µ(t) = 0, then we have

D+
∆f(t) = lim

h→0+

f(t+ h)− f(t)

h
.

Remark 2.2. Let f : T → R is differentiable at t ∈ T
k, then the forward operator σ and the delta

derivative of f are related by the formula f(σ(t)) = f(t) + µ(t)f∆(t).
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A function f : T → R is called regressive (or positive regressive) if 1 + µ(t)f(t) 6= 0(or > 0) for all
t ∈ T. Also, f is called regulated provided its right-side limit exists (finite) at all right-dense points
of T and its left-side limit exist (finite) at all left-dense points of T. Furthermore, f is called a rd-
continuous function if it is regulated and it is continuous at all right-dense points of T. The collection
of all regressive (or positive regressive) functions and rd-continuous functions from T to R are defined,
respectively, by R(or R+) and Crd(T,R).

Definition 2.2 ([32], Def. 3). For any p ∈ R and t ∈ T
κ, we define ⊖p by

(⊖p)(t) = −
p(t)

1 + µ(t)p(t)
.

Remark 2.3. If p ∈ R, then ⊖p ∈ R.

Next, we define the time scales version of the exponential function.

Definition 2.3 ([4], Def. 2.30). Let p ∈ R, then we define the exponential function on time scales by

ep(t, s) = exp

(
∫ t

s

ζµ(z)(p(z))∆z

)

for t, s ∈ T

with

ζµ(s)(p(s)) =







1

µ(s)
log(1 + p(s)µ(s)), if µ(s) 6= 0,

p(s), if µ(s) = 0.

Next, we define the delta-integral on time scales.

Definition 2.4 ([4], Def. 1.71). Let f : T → R be a regulated function, then a function F : T → R is
called an anti-derivative of f if F∆(t) = f(t) holds for all t ∈ T

k. Also, we define the Cauchy integral
by

∫ b

a

f(t)∆(t) = F (b)− F (a) for all a, b,∈ T.

Remark 2.4. For any a, b ∈ T and f ∈ Crd(T,R), if we set T = R, then we have

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.

Further, if [a, b)T consists of only isolated points, then we have

∫ b

a

f(t)∆t =











∑

t∈[a,b)T
µ(t)f(t) if a < b,

0 if a = b,

−
∑

t∈[a,b)T
µ(t)f(t) if a > b.

Next, we recall some basics from matrix-measure theory.

Definition 2.5 ([38], Def. 1). The generalized matrix-measure and classical matrix-measure of a real
square matrix W = (wkl)n×n with respect to the p−norm (p = 1, 2 or ∞) are defined by

ωp(W,h) =
‖ Id+hW‖p − 1

h
and Λp(W ) = lim

s→0+

‖ Id+sW‖p − 1

s
,

respectively, where h > 0. The matrix norms and corresponding classical matrix-measures are given in
Table 1.
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Matrix norm Matrix-measure

‖W‖1 = maxj
∑n

i=1 |wij | Λ1(W ) = maxj wjj +
∑n

i=1,i6=j |wij |

‖W‖2 =
√

λmax(WTW ) Λ2(W ) =
1

2
λmax(W

T +W )

‖W‖∞ = maxi
∑n

j=1 |wij | Λ∞(W ) = maxi wii +
∑n

j=1, 6=i |wij |

Table 1: Matrix norms and corresponding classical matrix-measures

Definition 2.6 ([38], Def. 2 ). Let W ∈ R
n×n be a real matrix and let T be an arbitrary time scale.

Then the unified matrix-measure on T with respect to the p−norm (p = 1, 2 or ∞) is defined as

Mp(W,T) =















max

{

‖ Id+µ(t)W‖p − 1

µ(t)
: t ∈ T

}

, if µ(t) > 0, ∀ t ∈ T,

max

{

Λp(W ), max
{‖ Id+µ(t)W‖p − 1

µ(t)
: t ∈ T, µ(t) > 0

}

}

, else.

Note that for T = R and T = hZ, h > 0, Definition 2.6 reduces to Definition 2.5.

3 Statement of Problem

We consider a class of C-GNNs with discrete and distributed delays on time scales of the following
form:
{

x∆(t) = −Γ(x(t))[Υ(x(t)) − PF(x(t)) −QF(x(t− η1))−R
∫ t

t−η2
F(x(s))∆s − I], t ∈ [0,∞)T,

x(s) = φ(s), s ∈ [−η, 0]T,

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
∗ ∈ R

n is the state vector; P = (rij)n×n ∈ R
n×n, Q = (sij)n×n ∈

R
n×n, R = (tij)n×n ∈ R

n×n are the connection, discrete delay connection and distributed delay connec-
tions strength matrices, respectively; η1(> 0) and η2(> 0) are the discrete and distributed delay, respec-
tively, such that t−η1 ∈ T and t−η2 ∈ T; η = max{η1, η2}; Γ(x(t)) = diag{Γ1(x(t)),Γ2(x(t)), . . . ,Γn(x(t))} ∈
R

n×n is the state-dependent amplification function; Υ(x(t)) = [Υ1(x(t)),Υ2(x(t)), . . . ,Υn(x(t))]
∗ ∈ R

n

is the appropriate behaviour function; F(x(·)) = [F1(x(·)),F2(x(·)), . . . ,Fn(x(·))]∗ ∈ R
n denotes the

activation function; I is the external bias term; φ ∈ Crd([−η, 0]T,Rn).
In this paper, we shall establish synchronization results by using the drive-response technique. There-

fore, we consider system (1) as the drive system and, correspondingly, we consider a copy of the C-GNNs
as response system as follows











y∆(t) = −Γ(y(t))[Υ(y(t))− PF(y(t))−QF(y(t− η1))−R
∫ t

t−η2
F(y(s))∆s− I] + u(t),

t ∈ [0,∞)T,

y(s) = ψ(s), s ∈ [−η, 0]T,

(2)

where y(t) ∈ R
n; ψ ∈ Crd([η, 0]T,R

n); u(t) is the control function defined as

u(t) = −K(y(t)− x(t− β)), (3)

with K as the feedback gain matrix and β is the transmittal delay such that t− β ∈ T.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2022-09-02



V. Kumar, J. Heiland, P. Benner: Cohen-Grossberg Neural Networks on Time Scales 6

Remark 3.1. The considered class of C-GNNs is defined on the general time domain, and hence, it
contains the usual continuous-time C-GNNs, discrete-time C-GNNs, and many more. For example, if
we consider the continuous-time domain, i.e., T = R, then the drive system (1) becomes

x′(t) = −Γ(x(t))[Υ(x(t)) − PF(x(t)) −QF(x(t− η1))−R

∫ t

t−η2

F(x(s))ds − I] (4)

and the response system (2) becomes

y′(t) = Γ(y(t))[Υ(y(t))− PF(y(t))−QF(y(t− η1))−R

∫ t

t−η2

F(y(s))ds − I] + u(t), (5)

where t ∈ [0,∞) and the rest of the parameters are the same as defined previously. Also, if we choose,
the h−difference discrete-time domain, i.e., T = hZ, h > 0, then drive system (1) is converted to

x(t+ h) = x(t)− hΓ(x(t))






Υ(x(t))− PF(x(t)) −QF(x(t− η1))−R

t
h
−1

∑

k=
t−η2

h

hF(x(kh)) − I






(6)

and the response system (2) is converted to

y(t+ h) = y(t)− hΓ(y(t))






Υ(y(t))− PF(y(t))−QF(y(t− η1))−R

t
h
−1

∑

k=
t−η2

h

hF(y(kh))− I






+ hu(t),

(7)

where t ∈ [0,∞)hZ. Furthermore, for the non-overlapping time domain T = ∪∞
i=0[i, i+h], 0 < h <

1, the concrete expression of drive system (1) is



































x′(t) = −Γ(x(t))[Υ(x(t)) − PF(x(t)) −QF(x(t− η1))−R
∫ t

t−η2
F(x(s))ds − I],

t ∈ ∪∞
i=0[i, i+ h),

x(t+ 1− h) = x(t) − (1− h)Γ(x(t))

[

Υ(x(t)) − PF(x(t)) −QF(x(t− η1))

−R
∑

t
1−h

−1

k=
t−η2
1−h

(1 − h)F(x(k(1 − h)))− I

]

, t = ∪∞
i=0{i+ h}

(8)

and the response system (2) is



































y′(t) = −Γ(y(t))[Υ(y(t))− PF(y(t))−QF(y(t− η1))−R
∫ t

t−η2
F(y(s))ds − I] + u(t),

t ∈ ∪∞
i=0[i, i+ h),

y(t+ 1− h) = y(t)− (1− h)Γ(y(t))

[

Υ(y(t))− PF(y(t))−QF(y(t− η1))

−R
∑

t
1−h

−1

k=
t−η2
1−h

(1− h)F(y(k(1 − h)))− I

]

+ (1− h)u(t), t = ∪∞
i=0{i+ h}.

(9)

The main idea of synchronization is that the response system (2) utilizes a feasible controller to
synchronize itself with the drive system (1). Mathematically, we can define it in the following definition.

Definition 3.1. The drive system (1) and the response system (2) are said to be exponentially lag
synchronized in the timescale sense under the control protocol (3) if there exist two constants C > 0
and ν > 0, such that the following inequality holds

‖y(t)− x(t− β)‖p ≤ Ce⊖ν(t, t0), t ≥ t0.
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Remark 3.2. In the above Definition 3.1, if β = 0, then the drive system (1) and the response system
(2) are called exponentially synchronized.

Now, to prove the synchronization results, we define the error between drive system (1) and response
system (2) by ζ(t) = y(t)− x(t − β), then the error dynamics can be written as

ζ∆(t) = −Kζ(t)− Γ̃(ζ(t))[Υ̃(ζ(t)) − P F̃(ζ(t)) −QF̃(ζ(t − η1))−R

∫ t

t−η2

F̃(ζ(s))∆s − I], (10)

where ζ(t) ∈ R
n and

Γ̃(ζ(t))Υ̃(ζ(t)) = Γ(y(t))Υ(y(t)) − Γ(x(t− β))Υ(x(t − β)),

Γ̃(ζ(t))P F̃(ζ(t)) = Γ(y(t))PF(y(t)) − Γ(x(t − β))PF(x(t − β)),

Γ̃(ζ(t))QF̃(ζ(t − η1)) = Γ(y(t))QF(y(t− η1))− Γ(x(t− β))QF(x(t − β − η1)),

Γ̃(ζ(t))R

∫ t

t−η2

F̃(ζ(s))∆s = Γ(y(t))R

∫ t

t−η2

F(y(s))∆s − Γ(x(t− β))R

∫ t

t−η2

F(x(s− β))∆s,

Γ̃(ζ(t))I = Γ(y(t))I − Γ(x(t− β))I.

From the definition of ζ(t), it is clear that if the error system (10) is exponentially stable, then the
drive system (1) and the response system (2) are exponentially lag synchronized. Therefore, our goal
is to show the exponential stability of the error system (10).
To deal with the lag delay, we set x(s) = φ(−η) for all s ∈ [−η − β,−η]T and

Ψ(s) =

{

φ(s), s ∈ [−η, 0]T,

φ(−η), s ∈ [−η − β,−η]T,

then, we can define the initial condition for the error system (10) as follows

ζ(s) = ψ(s)−Ψ(s− β), s ∈ [−η, 0]T.

In order to prove the main results, we need the following assumption.

Assumption 1. For any x, y ∈ R
n, there exist positive constants LΓ, LΥ, LF such that

‖Γ(x)− Γ(y)‖p ≤ LΓ‖x− y‖p, ‖Υ(x)−Υ(y)‖p ≤ LΥ‖x− y‖p, ‖F(x)−F(y)‖p ≤ LF‖x− y‖p.

Also, there exist positive constants MΓ,MΥ,MF such that

‖Γ(x)‖p ≤MΓ‖x‖p, ‖Υ(x)‖p ≤MΥ‖x‖p, ‖F(x)‖p ≤MF‖x‖p.

4 Exponential Lag Synchronization Results

In this section, we provide the main results of this manuscript. Before that, we are giving an important
lemma which is useful to establish these results.

Lemma 4.1 ([38], Lemma 2). For any real scalars a and b such that a > b > 0 and −a ∈ R+, let x(t)
be a non-negative right-dense continuous function satisfying

D+
∆x(t) ≤ −ax(t) + bx̂, t ∈ [t0,∞)T,

where D+
∆x(t) is the upper right Dini-∆-derivative of x at t, x̂ = sups∈[t−η,t]T x(s). Then the inequality

x(t) ≤ x̂(t0)e⊖λ(t, t0),

holds, where λ > 0 is a solution of the inequality λ+ b exp(λη) < a.
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Now, we are ready to give the first main result of this article in the following theorem.

Theorem 4.1. Let Assumption 1 hold. Then the drive system (1) and response system (2) are ex-
ponentially lag synchronized if for some p ∈ {1, 2,∞}, there exist a non-singular matrix Z, a control
gain matrix K such that Mp

1 −Mp
2 > 0 and −Mp

1 ∈ R+, where

Mp
1 = −(Mp(−ZKZ

−1,T) + ‖Z‖p‖Z
−1‖p((MΓLΥ +MΥLΓ) + (MΓLF +MFLΓ)‖P‖p + LΓ‖I‖p)),

Mp
2 = ‖Z‖p‖Z

−1‖p(MΓLF +MFLΓ)(‖Q‖p + η‖R‖p)

and Mp(·,T) denotes the unified matrix-measure as defined in Definition 2.6.

Proof. For any non-singular matrix Z, we define

V (ζ(t)) = ‖Zζ(t)‖p.

Now, for any arbitrary point t ∈ T, from the definition of µ(t), we have either µ(t) = 0 or µ(t) > 0.
Therefore, we split the proof into the following two steps:
Step 1: When µ(t) > 0, then for any t ∈ T, we have

‖Zζ(σ(t))‖p − ‖Zζ(t)‖p
µ(t)

=
1

µ(t)

{

‖Zζ(t) + µ(t)Zζ∆(t)‖p − ‖Zζ(t)‖p

}

=
1

µ(t)

{
∥

∥

∥

∥

Zζ(t) + µ(t)Z(−Kζ(t)− Γ̃(ζ(t))[Υ̃(ζ(t)) − P F̃(ζ(t))

−QF̃(ζ(t − η1))−R

∫ t

t−η2

F̃(ζ(s))∆s − I])

∥

∥

∥

∥

p

− ‖Zζ(t)‖p

}

≤
1

µ(t)

{

‖Zζ(t) + µ(t)(−ZK)ζ(t)‖p − ‖Zζ(t)‖p
}

+ ‖ZΓ̃(ζ(t))Υ̃(ζ(t))‖p + ‖ZΓ̃(ζ(t))P F̃(ζ(t))‖p + ‖ZΓ̃(ζ(t))I‖p

+ ‖ZΓ̃(ζ(t))QF̃(ζ(t− η1))‖p +

∥

∥

∥

∥

ZΓ̃(ζ(t))R

∫ t

t−η2

F̃(ζ(s))∆s

∥

∥

∥

∥

p

. (11)

Now, from the definition of Γ̃, Υ̃, F̃ and the Assumption 1, we have

‖Γ̃(ζ(t))Υ̃(ζ(t))‖p = ‖Γ(y(t))Υ(y(t))− Γ(x(t− β))Υ(x(t − β))‖p

≤ ‖Γ(y(t))Υ(y(t))− Γ(y(t))Υ(x(t− β))‖p

+ ‖Γ(y(t))Υ(x(t − β))− Γ(x(t− β))Υ(x(t − β))‖p

≤ (MΓLΥ +MΥLΓ)‖ζ(t)‖p, (12)

Similarly, one can obtain

‖Γ̃(ζ(t))P F̃ (ζ(t))‖p = ‖Γ(y(t))PF(y(t))− Γ(x(t− β))PF(x(t − β))‖p

≤ (MΓLF +MFLΓ)‖P‖p‖ζ(t)‖p, (13)

‖Γ̃(ζ(t))QF̃(ζ(t− η1))‖p ≤ (MΓLF +MFLΓ)‖Q‖p sup
s∈[t−η1,t]T

‖ζ(s)‖p, (14)

∥

∥

∥

∥

Γ̃(ζ(t))R

∫ t

t−η2

F̃(ζ(s))∆s

∥

∥

∥

∥

p

≤ η(MΓLF +MFLΓ)‖R‖p sup
s∈[t−η2,t]T

‖ζ(s)‖p (15)

and

‖Γ̃(ζ(t))I‖p ≤ LΓ‖I‖p‖ζ(t)‖p. (16)
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Now, from the inequalities (11), (12), (13), (14), (15) and (16), we get

‖Zζ(σ(t))‖p − ‖Zζ(t)‖p
µ(t)

≤
‖ Id+µ(t)(−ZKZ−1)‖p − 1

µ(t)
‖Zζ(t)‖p + ‖Z‖pLΓ‖I‖p‖ζ(t)‖p

+ ‖Z‖p(MΓLΥ +MΥLΓ)‖ζ(t)‖p

+ ‖Z‖p(MΓLF +MFLΓ)‖P‖p‖ζ(t)‖p

+ ‖Z‖p(MΓLF +MFLΓ)‖Q‖p sup
s∈[t−η1,t]T

‖Zζ(s)‖p

+ η‖Z‖p(MΓLF +MFLΓ)‖R‖p sup
s∈[t−η2,t]T

‖ζ(s)‖p

≤ (Mp(−ZKP
−1,T) + ‖Z‖pLΓ‖I‖p‖Z

−1‖p‖Zζ(t)‖p

+ ‖Z‖p(MΓLΥ +MΥLΓ)‖Z
−1‖p‖Zζ(t)‖p

+ ‖Z‖p(MΓLF +MFLΓ)‖P‖p‖Z
−1‖p‖Zζ(t)‖p

+ ‖Z‖p(MΓLF +MFLΓ)‖Q‖p‖Z
−1‖p sup

s∈[t−η1,t]T

‖Zζ(s)‖p

+ η‖Z‖p(MΓLF +MFLΓ)‖R‖p‖Z
−1‖p sup

s∈[t−η2,t]T

‖Zζ(s)‖p

≤ −Mp
1‖Zζ(t)‖p +Mp

2 sup
s∈[t−η,t]T

‖Zζ(s)‖p.

Hence, using Definition 2.1, we get

D+
∆V (ζ(t)) = −Mp

1V (ζ(t)) +Mp
2 sup
s∈[t−η,t]T

V (ζ(s)). (17)

Step 2: When µ(t) = 0, the derivative is the classical derivative, therefore, by using the formula

x(t+ h) = x(t) + x′(t)h+ o(h) with limh→0
‖o(h)‖p

h
= 0, we can calculate

lim
h→0+

‖Zζ(t+ h)‖p − ‖Zζ(t)‖p
h

= lim
h→0+

1

h

{

‖Zζ(t) + hZζ∆(t) + o(h)‖p − ‖Zζ(t)‖p

}

= lim
h→0+

1

h

{

‖Zζ(t) + hZ(−Kζ(t)− Γ̃(ζ(t))[Υ̃(ζ(t)) − P F̃(ζ(t))

−QF̃(ζ(t − η1))−R

∫ t

t−η2

F̃(ζ(s))∆s − I]) + o(h)‖p − ‖Zζ(t)‖p

}

≤ (Mp(−ZKP
−1,T) + ‖Z‖pLΓ‖I‖p‖Z

−1‖p‖Zζ(t)‖p

+ ‖Z‖p(MΓLΥ +MΥLΓ)‖Z
−1‖p‖Zζ(t)‖p

+ ‖Z‖p(MΓLF +MFLΓ)‖P‖p‖Z
−1‖p‖Zζ(t)‖p

+ ‖Z‖p(MΓLF +MFLΓ)‖Q‖p‖Z
−1‖p sup

s∈[t−η1,t]T

‖Zζ(s)‖p

+ η‖Z‖p(MΓLF +MFLΓ)‖R‖p‖Z
−1‖p sup

s∈[t−η2,t]T

‖Zζ(s)‖p

≤ −Mp
1‖Zζ(t)‖p +Mp

2 sup
s∈[t−η,t]T

‖Zζ(s)‖p.

Hence, using Definition 2.1 again, we get the same inequality as (17). Thus, from the above two steps,
for any t ∈ T, we have

D+
∆V (ζ(t)) = −Mp

1V (ζ(t)) +Mp
2 sup
s∈[t−η,t]T

V (ζ(s)).

Therefore, from Lemma 4.1, we get

V (ζ(t)) ≤ sup
s∈[t−η,t]T

V (ζ(s))e⊖λ(t, t0),
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where λ is the solution of λ+Mp
2 exp(λη) ≤ Mp

1. Further, it is clear that

‖ζ(t)‖p = ‖Z−1Zζ(t)‖p

≤ ‖Z−1‖p‖V (ζ(t))‖p

≤ ‖Z−1‖p sup
s∈[t−η,t]T

V (ζ(s))e⊖λ(t, t0)

≤ Ce⊖λ(t, t0),

where C = ‖Z‖p‖Z−1‖p sups∈[t−η,t]T ‖ζ(s)‖ > 0. Hence, from Definition 3.1, the error dynamic (10)
is exponentially stable, and hence, the drive system (1) and the response system (2) are exponentially
lag-synchronized.

Remark 4.1. One could notice that in Theorem 4.1, the matrix Z is non-singular, so by choosing
Z = Id, the constants Mp

1 and Mp
2 of Theorem 4.1 become

Mp
1 = −(Mp(−K,T) + (MΓLΥ +MΥLΓ) + (MΓLF +MFLΓ)‖P‖p + LΓ‖I‖p),

Mp
2 = (MΓLF +MFLΓ)(‖Q‖p + η‖R‖p).

Next, we consider a particular case of the considered problem by setting Γ(x(t)) = Id and Υ(x(t)) =
Ax(t), where A = diag{q1, q2, . . . , qn} ∈ R

n×n with qi > 0, i = 1, 2, . . . , n, then the drive system (1)
and the response system (2) become

{

x∆(t) = −Ax(t) + PF(x(t)) +QF(x(t− η1)) +R
∫ t

t−η2
F(x(s))∆s + I, t ∈ [0,∞)T,

x(s) = φ(s), s ∈ [−η, 0]T
(18)

and
{

y∆(t) = −Ay(t) + PF(y(t)) +QF(y(t− η1)) +R
∫ t

t−η2
F(y(s))∆s+ I + u(t), t ∈ [0,∞)T,

y(s) = ψ(s), s ∈ [−η, 0]T,
(19)

respectively. Also, the error system (10) becomes

ζ∆(t) = −(A+K)ζ(t) + P F̂(ζ(t)) +QF̂(ζ(t− η1)) +R

∫ t

t−η2

F̂(ζ(s))∆s, (20)

where F̂(ζ(·)) = F(y(·))−F(x(· − β)).

Remark 4.2. One could have a remark similar to Remark 3.1 for the drive system (18) and the
response system (19).

Now, we will give some sufficient conditions for the exponential lag synchronization for the systems
(18)-(19) as follows.

Theorem 4.2. Let Assumption 1 hold. Then the drive system (18) and response system (19) are
exponentially lag synchronized if for some p ∈ {1, 2,∞}, there exist a non-singular matrix Z, a control
gain matrix K such that Mp

3 −Mp
4 > 0 and −Mp

3 ∈ R+, where

Mp
3 = −(Mp(−Z(A+K)Z−1,T) + ‖Z‖p‖Z

−1‖p‖P‖pLF),

Mp
4 = ‖Z‖p‖Z

−1‖pLF(‖Q‖p + η‖R‖p).

Proof. For any non-singular matrix Z, we define

V (ζ(t)) = ‖Zζ(t)‖p.
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Now, consider the following two steps:
Step 1: When µ(t) > 0, then for any t ∈ T, we have

‖Zζ(σ(t))‖p − ‖Zζ(t)‖p
µ(t)

=
1

µ(t)

{

‖Zζ(t) + µ(t)Zζ∆(t)‖p − ‖Zζ(t)‖p

}

=
1

µ(t)

{∥

∥

∥

∥

Zζ(t) + µ(t)Z(−(A+K)ζ(t) + P F̂(ζ(t)) +QF̂(ζ(t− η1))

+R

∫ t

t−η2

F̂(ζ(s))∆s)

∥

∥

∥

∥

p

− ‖Zζ(t)‖p

}

≤
1

µ(t)

{

‖Zζ(t) + µ(t)(−Z(A+K))ζ(t)‖p − ‖Zζ(t)‖p
}

+ ‖ZP F̂(ζ(t))‖p

+ ‖ZQF̂(ζ(t− η1))‖p +

∥

∥

∥

∥

ZR

∫ t

t−η2

F̂(ζ(s))∆s

∥

∥

∥

∥

p

≤ −Mp
3‖Zζ(t)‖p +Mp

4 sup
s∈[t−η,t]T

‖Zζ(s)‖p.

Hence, from Definition 2.1, we get

D+
∆V (ζ(t)) = −Mp

3V (ζ(t)) +Mp
4 sup
s∈[t−η,t]T

V (ζ(s)). (21)

Step 2: When µ(t) = 0, then using the same analysis as in Step 1, we get

lim
h→0+

‖Zζ(t+ h)‖p − ‖Zζ(t)‖p
h

= lim
h→0+

1

h

{

‖Zζ(t) + hZζ∆(t) + o(h)‖p − ‖Zζ(t)‖p

}

≤ lim
h→0+

1

h

{

‖Zζ(t) + hZ(−(A+K)ζ(t) + P F̂(ζ(t))

+QF̂(ζ(t− η1)) +R

∫ t

t−η2

F̂(ζ(s))∆s) + o(h)‖p − ‖Zζ(t)‖p

}

≤ −Mp
3‖Zζ(t)‖p +Mp

4 sup
s∈[t−η,t]T

‖Zζ(s)‖p.

Hence, using Definition 2.1 again, we get the same inequality as (21). Thus, from the above two steps,
for any t ∈ T, we have

D+
∆V (ζ(t)) = −Mp

3V (ζ(t)) +Mp
4 sup
s∈[t−η,t]T

V (ζ(s)).

Therefore, from Lemma 4.1, we get V (ζ(t)) ≤ sups∈[t−η,t]T V (ζ(s))e⊖λ(t, t0), where λ is the solution

of λ + Mp
4 exp(λη) ≤ Mp

3. Further, it is clear that ‖ζ(t)‖p = ‖Z−1Zζ(t)‖p ≤ Ce⊖λ(t, t0), where
C = ‖Z‖p‖Z−1‖p sups∈[t−η,t]T ‖ζ(s)‖ > 0. Hence, from Definition 3.1, the error dynamics (10) is
exponentially stable, and hence, the drive system (1) and the response system (2) are exponentially
lag-synchronized.

Remark 4.3. Similar to Remark 4.1, by choosing Z = Id, the constants Mp
3 and Mp

4 of Theorem 4.2
become

Mp
3 = −(Mp(−(A+K),T) + ‖P‖pLF), Mp

4 = LF(‖Q‖p + η‖R‖p).

Remark 4.4. In the case when there is no distributed time-delay in the systems (1)-(2) (or (18)-(19)),
i.e., when η2 = 0, then one can establish all the above results by setting the corresponding terms to
zero in the computation of the constants Mp

1 and Mp
2 (or Mp

3 and Mp
4).
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Remark 4.5. The results of Theorem 4.1 and Theorem 4.2 cover the problem in all generality, there-
fore, one can obtain the results for particular time domains, such as the continuous-time domain
(when T = R) and discrete-time domain (when T = Z), by replacing the matrix-measures evolves in
the constants Mp

1,M
p
2,M

p
3 and Mp

4 from the known Definition 2.5.

Remark 4.6. For the continuous-time domain, few authors reported the synchronization results for the
C-GNNs with mixed delays [1,10,12,29]. Particularly, in [1], the authors considered a class of C-GNNs
with mixed delays and studied the exponential lag synchronization via periodically intermittent control
and mathematical induction technique. In [29], the authors studied finite-time synchronization of C-
GNNs with mixed delays by using the Lyapunov-Krasovskii functional approach. Furthermore, there
are only a few authors who studied the synchronization problem of the discrete-time C-GNNs [18,31].
In particular, the authors in [18], studied the exponential synchronization results for an array of cou-
pled discrete-time C-GNNs with time-dependent delay by applying the Lyapunov-Krasovskii functional
approach while in [31], the authors investigated the existence of a bounded unique solution, exponential
stability, and synchronization by using some fixed point techniques and inequality techniques.

Remark 4.7. All the results obtained on continuous-time [1, 10, 12, 29] and discrete-time [18, 31] C-
GNNs are studied separately. The continuous-time or discrete-time C-GNNs results cannot be directly
applied and easily extended to the case of arbitrary time C-GNNs. And, there is no manuscript on the
continuous-time or discrete-time domain which discussed the exponential lag synchronization results
for the C-GNNs with mixed delays by using the matrix-measure and Halanay inequality, therefore, the
results of this manuscript are completely new even for the continuous case (T = R) and discrete case
(T = Z).

5 An Example

Example 5.1. Consider the drive system (1) and response system (2) with the following coefficients

Γ(x(t)) =

[

0.4 + 0.2 cos(x1(t)) 0.0
0.0 0.4− 0.2 sin(x2(t))

]

, Υ(x(t)) =

[

0.3 + 0.2 sin(x1(t))
0.3− 0.2 cos(x2(t))

]

,

P =

[

0.8 0.0
−0.2 −0.7

]

, Q =

[

−0.4 0.1
−0.2 0.5

]

, R =

[

−0.5 0.6
−0.6 0.5

]

, I =

[

0.4
0.3

]

,

F =

[

0.8 tanh
0.8 tanh

]

, φ(s) =

[

0.5
1

]

, ψ(s) =

[

−1
−0.5

]

for s ∈ [−η, 0]T, Z = Id .

One can confirm that for Example 5.1, Γ,Υ, and F satisfy Assumption 1 with LΓ = LΥ = 0.2, LF =
MF = 0.8,MΓ = 0.6,MΥ = 0.5. Now, we consider the following three different time domains as follows.
Case 1. T = R. Let η1 = 0.5, η2 = 0.8 and β = 0.4. Here, η = 0.8 and the graininess function µ(t) = 0
for all t ∈ R. The state trajectories and the error trajectories of the systems (1)-(2) without feedback
control are shown in Figure 1 and Figure 2, respectively. Clearly, from Figure 1 and Figure 2, the
drive system (1) and the response system (2) are not synchronized. However, for the control gain
matrix

K =

[

2.2 0.0
0.0 2.2

]

,

we can calculate
M1

2 = 0.9472, M2
2 = 0.9542, M∞

2 = 1.0112

and

Λ1(−K) = −2.2000, Λ2(−K) = −4.4000, Λ∞(−K) = −2.2000.

Hence,
M1

1 = 0.7800, M2
1 = 3.2242, and M∞

1 = 1.0840.
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when T = R
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Figure 2: Uncoupled synchronization error curves
when T = R
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Figure 3: Coupled synchronization curves
when T = R
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Figure 4: Coupled synchronization error curves
when T = R

Therefore, we can see that M1
1 −M1

2 = −0.1672 < 0, M2
1 − M2

2 = 2.2700 > 0, and M∞
1 − M∞

2 =
0.0728 > 0. Also, −M2

1,−M∞
1 ∈ R+. Hence, for p = 2,∞, all the conditions of Theorem 4.1 hold,

and thus, the systems (1)-(2) with feedback control (3) are exponentially lag synchronized with the
maximum rate of convergence for p = 2,∞ are 1.0366 and 0.0394, respectively. The synchronized
curves and synchronized errors curves with feedback control are shown in Figure 3 and Figure 4,
respectively.
Case 2. T = 0.5Z. Let η1 = η2 = β = 0.5. Here, η = 0.5 and the graininess function µ(t) = 0.5 for all
t ∈ R. The state trajectories and the error trajectories of the systems (1)-(2) without feedback control
are shown in Figure 5 and Figure 6, respectively which are clearly not synchronized. However, for
the control gain matrix

K =

[

2.0 0.0
0.0 2.0

]

,

we can calculate
M1

2 = 0.7360, M2
2 = 0.7430, M∞

2 = 0.8000

and

Λ1(−K) = −2.000, Λ2(−K) = −2.000, Λ∞(−K) = −2.000.

Hence,
M1

1 = 0.5800, M2
1 = 0.8242, and M∞

1 = 0.8840.
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Figure 5: Uncoupled synchronization curves
when T = 1
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Figure 6: Uncoupled synchronization error curves
when T = 1
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Figure 7: Coupled synchronization curves
when T = 1
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Figure 8: Coupled synchronization error curves
when T = 1

2Z

Therefore, we can see that M1
1 −M1

2 = −0.1560 < 0, M2
1 − M2

2 = 0.0812 > 0, and M∞
1 − M∞

2 =
0.0840 > 0. Also, −M2

1,−M∞
1 ∈ R+. Hence, for p = 2,∞, all the conditions of Theorem 4.1 hold,

and thus, the systems (1)-(2) with feedback control (3) are exponentially lag synchronized with the
maximum rate of convergence for p = 2,∞ are 0.0583 and 0.0590, respectively. The synchronized
curves and synchronized errors curves with feedback control are shown in Figure 7 and Figure 8,
respectively.
Case 3. T = P = [−1, 0]∪∞

i=0 [i, i+0.7]. Let η1 = η2 = β = 1. Here, η = 1 and the graininess function
µ(t) is given by

µ(t) =

{

0, t ∈ [−1, 0] ∪∞
i=0 [i, i+ 0.7),

0.3, t = ∪∞
i=0{i+ 0.7}.

The state trajectories and the error trajectories of the systems (1)-(2) without feedback control are
shown in Figure 9 and Figure 10, respectively which are clearly not synchronized. However, for the
control gain matrix

K =

[

2.4 0.0
0.0 2.4

]

,

we can calculate
M1

2 = 1.0880, M2
2 = 1.0950, M∞

2 = 1.1520

and

Λ1(−K) = −2.4000, Λ2(−K) = −2.4000, Λ∞(−K) = −2.4000.
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Figure 9: Uncoupled synchronization curves
when T = P
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Figure 10: Uncoupled synchronization error curves
when T = P
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Figure 11: Coupled synchronization curves
when T = 1
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Figure 12: Coupled synchronization error curves
when T = 1

2Z

Hence,
M1

1 = 0.9800, M2
1 = 1.2242, and M∞

1 = 1.2840.

Therefore, we can see that M1
1 −M1

2 = −0.1080 < 0, M2
1 − M2

2 = 0.1292 > 0, and M∞
1 − M∞

2 =
0.1320 > 0. Also, −M2

1,−M∞
1 ∈ R+. Hence, for p = 2,∞, all the conditions of Theorem 4.1 hold

and thus, the systems (1)-(2) with feedback control (3) are exponentially lag synchronized with the
maximum rate of convergence for p = 2,∞ are 0.0602 and 0.0599, respectively. The synchronized
curves and synchronized errors curves with feedback control are shown in Figure 11 and Figure 12,
respectively.

Conclusion

We have successfully established the exponential lag synchronization results for a new class of C-GNNs
with discrete and distributed time delays on arbitrary time domains by using the theory of time scales
and feedback control law. We have also studied some special cases of the considered problem. We
mainly used a unified matrix-measure theory and Halanay inequality to establish these results. The
obtained results are verified by providing a simulated example for different time domains including the
continuous-time domain (case 1 of Example 5.1), discrete-time domain (case 2 of Example 5.1), and
non-overlapping time domain (case 3 of Example 5.1).
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