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Abstract
In this article,we investigate exponential lag synchronization results for theCohen–Grossberg
neural networks with discrete and distributed delays on an arbitrary time domain by applying
feedback control.We formulate the problem by using the time scales theory so that the results
can be applied to any uniform or non-uniform time domains. Also, we provide a comparison
of results that shows that obtained results are unified and generalize the existing results.
Mainly, we use the unified matrix-measure theory and Halanay inequality to establish these
results. In the last section, we provide two simulated examples for different time domains to
show the effectiveness and generality of the obtained analytical results.

Keywords Time scales · Synchronization · Cohen–Grossberg neural networks ·
Matrix-measure

1 Introduction

Since the 1980s, neural networks (NNs), including recurrent NNs, Hopfield NNs, cellular
NNs, and bi-directional associative NNs, have been a subject of intense study because of
their large number of potential applications in many fields, such as the classification of
patterns, signal and image processing, optimization problems, associative memory, parallel
computing, and so on. In 1983, Cohen–Grossberg [1] introduced the C-GNNs which are
recognized as one of the most important and typical NNs because some other well-known
NNs, for example, recurrent NNs, cellular NNs, and Hopfield NNs are special cases of C-
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GNNs. As a result, these types of networks have attracted considerable research attention and
have been extensively studied in terms of their dynamical properties such as state estimation
[2], periodicity [3], stability [4, 5], boundedness [6], and synchronization [7, 8]. Furthermore,
due to the importance of discrete-time C-GNNs as discussed in [9], the dynamics of discrete-
time C-GNNs have become a popular research topic; see, for example, [10–13].

Synchronization is one of the most important qualitative properties of dynamic systems
and means that two or more dynamic systems lead to a common dynamical behaviour by
using some coupling or external forces. The concept of synchronization in drive-response
systems was first introduced by Pecora and Carrol [14], and since then, it has been capturing
increased attention from both a fundamental and application-driven perspective. Potential
applications of synchronization can be found in many areas of applied sciences, such as har-
monic oscillation generation, information science, human heartbeat regulation, chemical and
biological systems, and secure communication [15–17]. In the last few years, various types of
synchronization phenomena have been discovered and investigated, such as exponential syn-
chronization [18, 19], complete synchronization [20], finite-time synchronization [21, 22],
lag synchronization [23], adaptive synchronization [24, 25], and projective synchronization
[19, 26]. Among them, lag synchronization has been extensively studied [27–30] due to its
relevance in connected electronic networks, where constant time shifts between drive and
response systems can make complete synchronization difficult to implement effectively.

In practical applications, both discrete and continuous dynamic systems play a significant
role, but results for them are often studied separately. In 1988, Hilger [31], introduced the
so-called time scale theory (or measure chain theory) which unifies the separate analysis of
discrete and continuous dynamic systems into a single comprehensive analysis. Eventhough,
the study of dynamic systems is not limited to just discrete and continuous-time domains. In
fact, there are many other time domains which can be useful to study the dynamic behaviours
of dynamic systems more accurately. For example, to model the growth process of some
species like Magicicada Septendecim, Magicicada Cassini, and Pharaoh Cicada, we need a
time domain of the form T = ∪∞

k=0[k(a + b), k(a + b) + b], a, b ∈ (0,∞). Further, there
exist neurons in the brain that follow a pattern of being active during the day and inactive at
night. Intuitively, the dynamic behaviour of these neurons can be observed in the time domain
T = ⋃∞

l=0[24 l, 24 l + dl ], where dl denotes the number of active hours of the neurons in
each day; see Fig. 1.

Another example is an RLC circuit (see Fig. 2), where if the capacitor discharges with
small time units δ > 0 at periodic intervals of l time units, the dynamics of such a model can
be modelled on the time scale T = ⋃∞

l=0[l, l + 1 − δ].
These examples require a time domain which is neither discrete nor continuous. However,

the time scale theory can overcome such difficulties as it gives the freedom to work on the
general domain, i.e., the results obtained by using the time scaleswill also be valid for uniform
and non-uniform time domains such as the non-overlapping closed intervals, a mixture of
closed intervals and discrete points, and even a discrete non-uniform time domain. Thus, we
can summarize the above and state that “Unification and Extension" are two main features
of the time scale theory. Therefore, it is worth to investigate the dynamic equations on time
scales. For more studies on time scales, one can refer to the monograph [32].

Fig. 1 Red lines denote the active time of neurons during a day while the gap shows the inactive time of
neurons at night. (Color figure online)
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Fig. 2 A simple RLC circuit

In the last few years, the study of dynamic equations on time scales has drawn a tremen-
dous amount of attention across the world and many researchers found its applications in
many fields, such as epidemiology, economics, and control theory [33, 34]. Recently, many
authors have also established different types of qualitative behaviours of dynamic systems on
time scales, for example, the existence of solutions, stability analysis, stabilization, and syn-
chronization [35–39]. Also, few authors established the existence of periodic, anti-periodic,
almost-periodic solutions and their stability results of the C-GNNs [40–45]. In [43], the
authors studied the existence of an anti-periodic solution and exponential stability for C-
GNNs with time-varying delays on time scales. In [44], the authors established the existence
and global exponential stability of almost periodic solutions for C-GNNs with distributed
delays on time scales while in [45], the authors considered the impulsive C-GNNs with dis-
tributed delays on time scales and studied the existence and exponential stability of periodic
solutions by using Lyapunov functions, M-matrix theory, and coincidence degree theory.

Despite the growing interest in the study of dynamic equations on time scales, the syn-
chronization problem of C-GNNs on time scales has not been studied so far to the best of
our knowledge. Therefore, to fill this gap, in this work, we establish exponential lag synchro-
nization results for C-GNNs with discrete and distributed time delays on time scales by using
feedback control, a novel unified matrix-measure technique and the Halanay inequality. In
short, the main focus and benefit of this manuscript can be summarized as follows:

• The C-GNNs with discrete and distributed delays on arbitrary time domains are consid-
ered to study exponential lag synchronization.

• The problem is formulated by using the time scales theory and the results are derived
based on a unified matrix-measure theory and the Halanay inequality.

• The results for different special cases are given which shows that the obtained results
unify and generalize the existing results.

• A simulated example for different time scales including continuous, discrete and non-
overlapping closed intervals, is given to verify the obtained analytical outcomes.

The remaining part of the manuscript is organized as follows: In Sect. 2, we recall basic
concepts from matrix theory and time scales that are essential for the subsequent sections. In
Sect. 3, we formulate our statement of the problem. In Sect. 4, the main results are discussed.
Finally, in Sect. 5, two numerical examples with simulation are given to verify the obtained
results.

2 Preliminaries

Throughout this paper, the notationsR,Z andN denote the set of all real, integers. and natural
numbers, respectively;T denotes the time scale;∅ denotes the empty set;Rn andRn×m denote
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the n-dimensional Euclidean space and the set of all n ×m matrices, respectively; diag{. . .}
denotes the diagonal matrix; Superscript ∗ denotes the matrix transpose; Id and O denote
the identity and zero matrices of appropriate dimensions, respectively; [a, b]T = [a, b] ∩T,
denotes the time scale interval. For any a, b ∈ R,C([a, b],Rn) denotes the set of continuous
functions from [a, b] intoRn ; ‖ ·‖p, (p = 1, 2,∞) is used to denote the p-norm for a vector
or for a matrix.

Next, we recall some basic definitions and results about time scale calculus.
A time scale is an arbitrary non-empty closed subset of the real numbers R with the

topology and ordering inherited fromR. hZ(h > 0),R, Pa,b = ∪∞
k=0[k(a+b), k(a+b)+a]

for a, b ∈ (0,∞), and any discrete set are some examples of time scales. The forward and
backward jump operators σ, ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t}
and ρ(t) = sup{s ∈ T : s < t}, respectively with the substitution supT = inf ∅ and
inf T = sup∅. Also the graininess functions μ : T → [0,∞) is given by μ(t) = σ(t)− t . A
point t ∈ T is called right-dense if t < max{T} and σ(t) = t , left-dense if t > min{T} and
ρ(t) = t , right-scattered if σ(t) > t , and left-scattered if ρ(t) < t . If T has a left-scattered
maximum M , then we set Tk = T \ {M}, otherwise Tk = T.

Definition 1 [ [35], Def. 1] Let f : T → R be a function. Then the delta derivative of f at
a point t ∈ T

k is defined as a number f �(t) (provided it exists) whenever for each ε > 0
there exists a neighborhood U of t such that

|[ f (σ (t)) − f (s)] − f �(t)[σ(t) − s]| ≤ ε|σ(t) − s| for all s ∈ U .

Further, if the neighborhood U is replaced by the right-hand sided neighborhood U+, then
the delta derivative is called the upper right Dini-delta-derivative and denoted by D+

� f (t).

Remark 1 In the above Definition 1, if μ(t) = 0, then the delta derivative f �(t) becomes
the ordinary derivative f ′(t) and the upper right Dini-delta-derivative D+

� f (t) becomes the
ordinary upper right Dini-derivative D+ f (t). Further, if T = hZ, h > 0, then the delta
derivative f �(t) becomes the h-difference operator, i.e., f �(t) = f (t+h)− f (t)

h .

Remark 2 Let f : T → R is differentiable at t ∈ T
k , then the forward operator σ and the

delta derivative of f are related by the formula f (σ (t)) = f (t) + μ(t) f �(t).

A function f : T → R is called regressive (or positive regressive) if 1 + μ(t) f (t) �=
0(or > 0) for all t ∈ T. Also, f is called regulated provided its right-side limit exists
(finite) at all right-dense points of T and its left-side limit exist (finite) at all left-dense
points of T. Furthermore, f is called a rd-continuous function if it is regulated and it is
continuous at all right-dense points of T. The collection of all rd-continuous functions and
rd-continuous regressive (or rd-continuous positive regressive) functions from T to R are
defined, respectively, by Crd(T,R) and R(or R+).

Definition 2 [ [37], Def. 2.6] For any p ∈ R and t ∈ T
k , we define 
p by

(
p)(t) = − p(t)

1 + μ(t)p(t)
.

Remark 3 If p ∈ R, then 
p ∈ R.

Next, we define the time scales version of the exponential function.

123



Exponential Lag Synchronization of Cohen–Grossberg Neural Networks... 9911

Definition 3 [ [32], Def. 2.30] Let p ∈ R, then we define the exponential function on time
scales by

ep(t, s) = exp

(∫ t

s
ζμ(z)(p(z))�z

)

for t, s ∈ T

with

ζμ(s)(p(s)) =
⎧
⎨

⎩

1

μ(s)
log(1 + p(s)μ(s)), if μ(s) �= 0,

p(s), if μ(s) = 0.

Next, we define the delta-integral on time scales.

Definition 4 [[32], Def. 1.71] Let f : T → R be a regulated function, then a function
F : T → R is called an anti-derivative of f if F�(t) = f (t) holds for all t ∈ T

k . Also, we
define the Cauchy integral by

∫ b

a
f (t)�(t) = F(b) − F(a) for all a, b,∈ T.

Remark 4 For any a, b ∈ T and f ∈ Crd(T,R), if we set T = R, then we have
∫ b

a
f (t)�t =

∫ b

a
f (t)dt .

Further, if [a, b)T consists of only isolated points, then we have

∫ b

a
f (t)�t =

⎧
⎪⎨

⎪⎩

∑
t∈[a,b)T

μ(t) f (t) if a < b,

0 if a = b,

−∑
t∈[a,b)T

μ(t) f (t) if a > b.

Next, we recall some basics from matrix-measure theory.

Definition 5 ( [39], Def. 1) The generalized matrix-measure and classical matrix-measure
of a real square matrix W = (wkl)n×n with respect to the p−norm (p = 1, 2 or ∞) are
defined by

ωp(W , h) = ‖ Id+hW‖p − 1

h
and 	p(W ) = lim

s→0+
‖ Id+sW‖p − 1

s
,

respectively, where h > 0. The matrix norms and corresponding classical matrix-measures
are given in Table 1.

Table 1 Matrix norms and corresponding classical matrix-measures

Matrix norm Matrix-measure

‖W‖1 = max j
∑n

i=1 |wi j | 	1(W ) = max j w j j + ∑n
i=1,i �= j |wi j |

‖W‖2 =
√

λmax(WTW ) 	2(W ) = 1

2
λmax(WT + W )

‖W‖∞ = maxi
∑n

j=1 |wi j | 	∞(W ) = maxi wi i + ∑n
j=1,�=i |wi j |
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Definition 6 ( [39], Def. 2 ) Let W ∈ R
n×n be a real matrix and let T be an arbitrary time

scale. Then the unified matrix-measure on T with respect to the p−norm (p = 1, 2 or ∞) is
defined as

Mp(W ,T) =

⎧
⎪⎪⎨

⎪⎪⎩

max

{‖ Id+μ(t)W‖p − 1

μ(t)
: t ∈ T

}

, if μ(t) > 0,∀ t ∈ T,

max

{

	p(W ), max
{‖ Id+μ(t)W‖p − 1

μ(t)
: t ∈ T, μ(t) > 0

}}

, else.

Note that for T = R and T = hZ, h > 0, Definition 6 reduces to Definition 5.

3 Statement of Problem

We consider a class of C-GNNs with discrete and distributed delays on time scales of the
following form:

⎧
⎪⎨

⎪⎩

y�(t) = −�(y(t))[ϒ(y(t)) − RF(y(t)) − SF(y(t − η1))

−T
∫ t
t−η2

F(y(s))�s − I ], t ∈ [0,∞)T,

y(s) = φ(s), s ∈ [−η, 0]T,

(1)

where y(t) = [y1(t), y2(t), . . . , yn(t)]∗ ∈ R
n is the state vector; R = (ri j )n×n ∈ R

n×n, S =
(si j )n×n ∈ R

n×n and T = (ti j )n×n ∈ R
n×n are the connection, discrete delay connection

and distributed delay connection strength matrices, respectively; η1(> 0) and η2(> 0) are
the discrete and distributed delay, respectively, such that t − η1 ∈ T and t − η2 ∈ T;
η = max{η1, η2}; �(y(t)) = diag{�1(y(t)), �2(y(t)), . . . , �n(y(t))} ∈ R

n×n is the state-
dependent amplification function; ϒ(y(t)) = [ϒ1(y(t)), ϒ2(y(t)), . . . , ϒn(y(t))]∗ ∈ R

n is
the appropriate behaviour function; F(y(·)) = [F1(y(·)),F2(y(·)), . . . ,Fn(y(·))]∗ ∈ R

n

denotes the activation function; I is the external bias term; φ ∈ Crd([−η, 0]T,Rn).
In this paper, we shall establish synchronization results by using the drive-response tech-

nique. Therefore, we consider system (1) as the drive system and, correspondingly, we
consider a response system described as follows:

⎧
⎪⎨

⎪⎩

z�(t) = −�(z(t))[ϒ(z(t)) − RF(z(t)) − SF(z(t − η1))

−T
∫ t
t−η2

F(z(s))�s − I ] + u(t), t ∈ [0,∞)T,

z(s) = ψ(s), s ∈ [−η, 0]T,

(2)

where z(t) ∈ R
n ; ψ ∈ Crd([η, 0]T,Rn); u(t) is the control function defined as

u(t) = −K (z(t) − y(t − β)), (3)

where K is the feedback gain matrix and β is the transmittal delay such that t − β ∈ T.

Remark 5 The considered class of C-GNNs is defined on the general time domain, and hence,
it contains the usual continuous-time C-GNNs, discrete-time C-GNNs, and many more. For
example, if we consider the continuous-time domain, i.e., T = R, then, see Remark 1, the
drive system (1) becomes

y′(t) = −�(y(t))[ϒ(y(t)) − RF(y(t)) − SF(y(t − η1)) − T
∫ t

t−η2

F(y(s))ds − I ] (4)
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and the response system (2) becomes

z′(t) = �(z(t))[ϒ(z(t)) − RF(z(t)) − SF(z(t − η1)) − T
∫ t

t−η2

F(z(s))ds − I ] + u(t),

(5)

where t ∈ [0,∞), and the rest of the parameters are the same as defined previously. Also, if
we choose, the h− difference discrete-time domain, i.e., T = hZ, h > 0, then, see Remark
1 and Remark 4, the drive system (1) is converted to

y(t + h) = y(t) − h�(y(t))

[

ϒ(y(t)) − RF(y(t)) − SF(y(t − η1))

− T

t
h −1∑

k= t−η2
h

hF(y(kh)) − I

]

(6)

and the response system (2) is converted to

z(t + h) = z(t) − h�(z(t))

[

ϒ(z(t)) − RF(z(t)) − SF(z(t − η1))

− T

t
h −1∑

k= t−η2
h

hF(z(kh)) − I

]

+ hu(t), (7)

where t ∈ [0,∞)hZ. Furthermore, by applying the above mentioned cases to the non-
overlapping time domain T = ∪∞

i=0[i, i + h], 0 < h < 1, the concrete expression of
the drive system (1) can be derived as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y′(t) = −�(y(t))[ϒ(y(t)) − RF(y(t)) − SF(y(t − η1))

−T
∫ t
t−η2

F(y(s))ds − I ], t ∈ ∪∞
i=0[i, i + h),

y(t + 1 − h) = y(t) − (1 − h)�(y(t))[ϒ(y(t)) − RF(y(t)) − SF(y(t − η1))

−T
∑ t

1−h −1

k= t−η2
1−h

(1 − h)F(y(k(1 − h))) − I ], t = ∪∞
i=0{i + h}

(8)

and the response system (2) can be derived as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z′(t) = −�(z(t))[ϒ(z(t)) − RF(z(t)) − SF(z(t − η1))

−T
∫ t
t−η2

F(z(s))ds − I ] + u(t), t ∈ ∪∞
i=0[i, i + h),

z(t + 1 − h) = z(t) − (1 − h)�(z(t))[ϒ(z(t)) − RF(z(t)) − SF(z(t − η1))

−T
∑ t

1−h −1

k= t−η2
1−h

(1 − h)F(z(k(1 − h))) − I ] + (1 − h)u(t),

t = ∪∞
i=0{i + h}.

(9)

The main idea of synchronization is that the response system (2) utilizes a feasible con-
troller to synchronize itself with the drive system (1). Mathematically, we can define it in the
following definition.

Definition 7 The drive system (1) and the response system (2) are said to be exponentially
lag-synchronized in the timescale sense under the control protocol (3) if there exist two
constants C > 0 and ν > 0 such that the following inequality holds

‖z(t) − y(t − β)‖p ≤ Ce
ν(t, 0), t ≥ 0.
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Remark 6 In the above Definition 7, if β = 0, then the drive system (1) and the response
system (2) are called exponentially synchronized.

Now, to prove the synchronization results, we define the error between the drive system
(1) and the response system (2) by ζ(t) = z(t) − y(t − β), then the error dynamics can be
written as

ζ�(t) = − K ζ(t) − �̃(ζ(t))[ϒ̃(ζ(t)) − RF̃(ζ(t)) − SF̃(ζ(t − η1))

− T
∫ t

t−η2

F̃(ζ(s))�s − I ], (10)

where ζ(t) ∈ R
n and

�̃(ζ(t))ϒ̃(ζ(t)) =�(z(t))ϒ(z(t)) − �(y(t − β))ϒ(y(t − β)),

�̃(ζ(t))RF̃(ζ(t)) =�(z(t))RF(z(t)) − �(y(t − β))RF(y(t − β)),

�̃(ζ(t))SF̃(ζ(t − η1)) =�(z(t))SF(z(t − η1))

− �(y(t − β))SF(y(t − β − η1)),

�̃(ζ(t))T
∫ t

t−η2

F̃(ζ(s))�s =�(z(t))T
∫ t

t−η2

F(z(s))�s

− �(y(t − β))T
∫ t

t−η2

F(y(s − β))�s,

�̃(ζ(t))I =�(z(t))I − �(y(t − β))I .

From the definition of ζ(t), it is clear that if the error system (10) is exponentially stable,
then the drive system (1) and the response system (2) are exponentially lag-synchronized.
Therefore, our goal is to show the exponential stability of the error system (10).

To deal with the lag delay, we set y(s) = φ(−η) for all s ∈ [−η − β,−η]T and

�(s) =
{

φ(s), s ∈ [−η, 0]T,

φ(−η), s ∈ [−η − β,−η]T,

then, we can define the initial condition for the error system (10) as follows

ζ(s) = ψ(s) − �(s − β), s ∈ [−η, 0]T.

In order to prove the main results, we need the following assumption.

Assumption 1 [ [25], Ass. A1,A2] The functions �,ϒ and F are Lipschitz continuous and
bounded. In particular, for any y, z ∈ R

n , there exist positive constants L�, Lϒ, LF such
that

‖�(y) − �(z)‖p ≤ L�‖y − z‖p, ‖ϒ(y) − ϒ(z)‖p ≤ Lϒ‖y − z‖p,

‖F(y) − F(z)‖p ≤ LF‖y − z‖p.

Also, there exist positive constants M�, Mϒ, MF such that

‖�(y)‖p ≤ M�, ‖ϒ(y)‖p ≤ Mϒ, ‖F(y)‖p ≤ MF .

Wenote that typical choices of the activation functions like tanh or sigmoid fulfil this assump-
tion. Moreover, anticipating the nature of the estimates of the following section, we can state
the following relaxation of Assumption 1.
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Remark 7 If the states can be confined a priori to a bounded set � ⊂ R
n , then the Lipschitz

and boundedness conditions need to be established on � only.

4 Exponential Lag Synchronization Results

In this section, we provide the main results of this manuscript. Before that, we are giving an
important lemma which is useful to establish these results.

Lemma 1 ( [39], Lemma 2) For any real scalars c and d such that c > d > 0 and−c ∈ R+,
let x(t) be a non-negative right-dense continuous function satisfying

D+
�x(t) ≤ −cx(t) + d sup

s∈[t−η,t]T
x(s), t ∈ [0,∞)T,

where D+
�x(t) is the upper right Dini-delta-derivative of x at t . Then the inequality

x(t) ≤ sup
s∈[t−η,t]T

x(s)e
λ(t, 0),

holds, where λ > 0 is a solution of the inequality λ + d exp(λη) < c.

Now, we are ready to give the first main result of this article in the following theorem.

Theorem 1 Let Assumption 1 hold. If, for some p ∈ {1, 2,∞}, there exist a non-singular
matrix Z and a control gain matrix K such that Mp

1 − Mp
2 > 0 and −Mp

1 ∈ R+, where

Mp
1 = − (

Mp(−ZK Z−1,T) + ‖Z‖p‖Z−1‖p((M�Lϒ + Mϒ L�)

+ (M�LF + MF L�)‖R‖p + L�‖I‖p)
)
,

Mp
2 =‖Z‖p‖Z−1‖p(M�LF + MF L�)(‖S‖p + η‖T ‖p)

and Mp(·,T) denotes the unified matrix-measure as defined in Definition 6, then the drive
system (1) and the response system (2) are exponentially lag-synchronized.

Proof For any non-singular matrix Z , we define

V (ζ(t)) = ‖Zζ(t)‖p.

Now, for any arbitrary point t ∈ T, from the definition of μ(t), we have either μ(t) = 0 or
μ(t) > 0. Therefore, we split the proof into the following two steps:

Step 1:When μ(t) > 0, then for any t ∈ T, we have

‖Zζ(σ (t))‖p − ‖Zζ(t)‖p

μ(t)

= 1

μ(t)

{

‖Zζ(t) + μ(t)Zζ�(t)‖p − ‖Zζ(t)‖p

}

= 1

μ(t)

{

‖Zζ(t) + μ(t)Z(−K ζ(t) − �̃(ζ(t))[ϒ̃(ζ(t)) − RF̃(ζ(t))

− SF̃(ζ(t − η1)) − T
∫ t

t−η2

F̃(ζ(s))�s − I ])‖p − ‖Zζ(t)‖p

}

≤ 1

μ(t)

{‖Zζ(t) + μ(t)(−ZK )ζ(t)‖p − ‖Zζ(t)‖p
}
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+ ‖Z �̃(ζ(t))ϒ̃(ζ(t))‖p + ‖Z �̃(ζ(t))RF̃(ζ(t))‖p + ‖Z �̃(ζ(t))I‖p

+ ‖Z �̃(ζ(t))SF̃(ζ(t − η1))‖p + ‖Z �̃(ζ(t))T
∫ t

t−η2

F̃(ζ(s))�s‖p. (11)

Now, from the definition of �̃, ϒ̃, F̃ and Assumption 1, we have

‖�̃(ζ(t))ϒ̃(ζ(t))‖p = ‖�(z(t))ϒ(z(t)) − �(y(t − β))ϒ(y(t − β))‖p

≤ ‖�(z(t))ϒ(z(t)) − �(z(t))ϒ(y(t − β))‖p

+ ‖�(z(t))ϒ(y(t − β)) − �(y(t − β))ϒ(y(t − β))‖p

≤ (M�Lϒ + Mϒ L�)‖ζ(t)‖p. (12)

Similarly, one can obtain

‖�̃(ζ(t))RF̃(ζ(t))‖p = ‖�(z(t))RF(z(t)) − �(y(t − β))RF(y(t − β))‖p

≤ (M�LF + MF L�)‖R‖p‖ζ(t)‖p, (13)

‖�̃(ζ(t))SF̃(ζ(t − η1))‖p

≤ (M�LF + MF L�)‖S‖p sup
s∈[t−η1,t]T

‖ζ(s)‖p, (14)

∥
∥
∥
∥�̃(ζ(t))T

∫ t

t−η2

F̃(ζ(s))�s

∥
∥
∥
∥
p

≤ η(M�LF + MF L�)‖T ‖p sup
s∈[t−η2,t]T

‖ζ(s)‖p (15)

and

‖�̃(ζ(t))I‖p ≤ L�‖I‖p‖ζ(t)‖p. (16)

Now, from the inequalities (11), (12), (13), (14), (15) and (16), we get

‖Zζ(σ (t))‖p − ‖Zζ(t)‖p

μ(t)

≤ ‖ Id+μ(t)(−ZK Z−1)‖p − 1

μ(t)
‖Zζ(t)‖p + ‖Z‖pL�‖I‖p‖ζ(t)‖p

+ ‖Z‖p(M�Lϒ + Mϒ L�)‖ζ(t)‖p

+ ‖Z‖p(M�LF + MF L�)‖R‖p‖ζ(t)‖p

+ ‖Z‖p(M�LF + MF L�)‖S‖p sup
s∈[t−η1,t]T

‖Zζ(s)‖p

+ η‖Z‖p(M�LF + MF L�)‖T ‖p sup
s∈[t−η2,t]T

‖ζ(s)‖p

≤ (Mp(−ZK R−1,T) + ‖Z‖pL�‖I‖p‖Z−1‖p‖Zζ(t)‖p

+ ‖Z‖p(M�Lϒ + Mϒ L�)‖Z−1‖p‖Zζ(t)‖p

+ ‖Z‖p(M�LF + MF L�)‖R‖p‖Z−1‖p‖Zζ(t)‖p

+ ‖Z‖p(M�LF + MF L�)‖S‖p‖Z−1‖p sup
s∈[t−η1,t]T

‖Zζ(s)‖p

+ η‖Z‖p(M�LF + MF L�)‖T ‖p‖Z−1‖p sup
s∈[t−η2,t]T

‖Zζ(s)‖p

≤ −Mp
1 ‖Zζ(t)‖p + Mp

2 sup
s∈[t−η,t]T

‖Zζ(s)‖p.
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Hence, using Definition 1, we get

D+
�V (ζ(t)) ≤ −Mp

1 V (ζ(t)) + Mp
2 sup
s∈[t−η,t]T

V (ζ(s)). (17)

Step 2: When μ(t) = 0, the derivative is the classical derivative, therefore, by using the

formula y(t + h) = y(t) + y′(t)h + o(h) with limh→0
‖o(h)‖p

h = 0, we can calculate

lim
h→0+

‖Zζ(t + h)‖p − ‖Zζ(t)‖p

h

= lim
h→0+

1

h

{

‖Zζ(t) + hZζ�(t) + o(h)‖p − ‖Zζ(t)‖p

}

= lim
h→0+

1

h

{

‖Zζ(t) + hZ(−K ζ(t) − �̃(ζ(t))[ϒ̃(ζ(t)) − RF̃(ζ(t))

− SF̃(ζ(t − η1)) − T
∫ t

t−η2

F̃(ζ(s))�s − I ]) + o(h)‖p − ‖Zζ(t)‖p

}

≤ (Mp(−ZK R−1,T) + ‖Z‖pL�‖I‖p‖Z−1‖p‖Zζ(t)‖p

+ ‖Z‖p(M�Lϒ + Mϒ L�)‖Z−1‖p‖Zζ(t)‖p

+ ‖Z‖p(M�LF + MF L�)‖R‖p‖Z−1‖p‖Zζ(t)‖p

+ ‖Z‖p(M�LF + MF L�)‖S‖p‖Z−1‖p sup
s∈[t−η1,t]T

‖Zζ(s)‖p

+ η‖Z‖p(M�LF + MF L�)‖T ‖p‖Z−1‖p sup
s∈[t−η2,t]T

‖Zζ(s)‖p

≤ −Mp
1 ‖Zζ(t)‖p + Mp

2 sup
s∈[t−η,t]T

‖Zζ(s)‖p.

Hence, using Definition 1 again, we get the same inequality as (17).
Thus, from the above two steps, for any t ∈ T, we have

D+
�V (ζ(t)) ≤ −Mp

1 V (ζ(t)) + Mp
2 sup
s∈[t−η,t]T

V (ζ(s)).

Therefore, from Lemma 1, we get

V (ζ(t)) ≤ sup
s∈[t−η,t]T

V (ζ(s))e
λ(t, 0),

where λ is the solution of λ + Mp
2 exp(λη) ≤ Mp

1 . Further, it is clear that

‖ζ(t)‖p = ‖Z−1Zζ(t)‖p

≤ ‖Z−1‖p‖V (ζ(t))‖p

≤ ‖Z−1‖p sup
s∈[t−η,t]T

V (ζ(s))e
λ(t, 0)

≤ Ce
λ(t, 0),

where C = ‖Z‖p‖Z−1‖p sups∈[t−η,t]T ‖ζ(s)‖ > 0. Hence, from Definition 7, the error
system (10) is exponentially stable, and hence, the drive system (1) and the response

system (2) are exponentially lag-synchronized. ��
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Remark 8 By choosing Z = Id, the constants Mp
1 and Mp

2 of Theorem 1 become

Mp
1 = −(Mp(−K ,T) + (M�Lϒ + Mϒ L�) + (M�LF + MF L�)‖R‖p + L�‖I‖p),

Mp
2 = (M�LF + MF L�)(‖S‖p + η‖T ‖p).

Next, we consider a particular case of the considered problem by setting �(y(t)) = Id and
ϒ(y(t)) = Qy(t), where Q = diag{q1, q2, . . . , qn} ∈ R

n×n with qi > 0, i = 1, 2, . . . , n,
then the drive system (1) and the response system (2) become

⎧
⎪⎨

⎪⎩

y�(t) = −Qy(t) + RF(y(t)) + SF(y(t − η1)) + T
∫ t
t−η2

F(y(s))�s

+I , t ∈ [0,∞)T,

y(s) = φ(s), s ∈ [−η, 0]T
(18)

and
⎧
⎪⎨

⎪⎩

z�(t) = −Qz(t) + RF(z(t)) + SF(z(t − η1)) + T
∫ t
t−η2

F(z(s))�s

+I + u(t), t ∈ [0,∞)T,

z(s) = ψ(s), s ∈ [−η, 0]T,

(19)

respectively. Also, the error system (10) becomes

ζ�(t) = −(Q + K )ζ(t) + RF̂(ζ(t)) + SF̂(ζ(t − η1)) + T
∫ t

t−η2

F̂(ζ(s))�s, (20)

where F̂(ζ(·)) = F(z(·)) − F(y(· − β)).

Remark 9 One could have a remark similar to Remark 5 for the drive system (18) and the
response system (19).

Now, we will give some sufficient conditions for the exponential lag synchronization for
the systems (18)–(19) as follows.

Theorem 2 Let F satisfy the Lipschitz and bounded conditions as stated in Assumption 1.
If, for some p ∈ {1, 2,∞}, there exist a non-singular matrix Z and a control gain matrix K
such that Mp

3 − Mp
4 > 0 and −Mp

3 ∈ R+, where

Mp
3 = −(Mp(−Z(Q + K )Z−1,T) + ‖Z‖p‖Z−1‖p‖R‖pLF ),

Mp
4 = ‖Z‖p‖Z−1‖pLF (‖S‖p + η‖T ‖p),

then the drive system (18) and response system (19) are exponentially lag-synchronized.

Proof For any non-singular matrix Z , we define

V (ζ(t)) = ‖Zζ(t)‖p.

Similar to the proof of Theorem 1, we consider the following two steps: Step 1: When
μ(t) > 0, then for any t ∈ T, we have

‖Zζ(σ (t))‖p − ‖Zζ(t)‖p

μ(t)

= 1

μ(t)

{

‖Zζ(t) + μ(t)Zζ�(t)‖p − ‖Zζ(t)‖p

}
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= 1

μ(t)

{

‖Zζ(t) + μ(t)Z(−(Q + K )ζ(t) + RF̂(ζ(t)) + SF̂(ζ(t − η1))

+ T
∫ t

t−η2

F̂(ζ(s))�s)‖p − ‖Zζ(t)‖p

}

≤ 1

μ(t)

{‖Zζ(t) + μ(t)(−Z(Q + K ))ζ(t)‖p − ‖Zζ(t)‖p
} + ‖Z RF̂(ζ(t))‖p

+ ‖ZSF̂(ζ(t − η1))‖p + ‖ZT
∫ t

t−η2

F̂(ζ(s))�s‖p

≤ −Mp
3 ‖Zζ(t)‖p + Mp

4 sup
s∈[t−η,t]T

‖Zζ(s)‖p.

Hence, from Definition 1, we get

D+
�V (ζ(t)) ≤ −Mp

3 V (ζ(t)) + Mp
4 sup
s∈[t−η,t]T

V (ζ(s)). (21)

Step 2:When μ(t) = 0, then, using the same analysis as in Step 1, we get

lim
h→0+

‖Zζ(t + h)‖p − ‖Zζ(t)‖p

h

= lim
h→0+

1

h

{

‖Zζ(t) + hZζ�(t) + o(h)‖p − ‖Zζ(t)‖p

}

≤ lim
h→0+

1

h

{

‖Zζ(t) + hZ(−(Q + K )ζ(t) + RF̂(ζ(t))

+ SF̂(ζ(t − η1)) + T
∫ t

t−η2

F̂(ζ(s))�s) + o(h)‖p − ‖Zζ(t)‖p

}

≤ −Mp
3 ‖Zζ(t)‖p + Mp

4 sup
s∈[t−η,t]T

‖Zζ(s)‖p.

Hence, using Definition 1 again, we get the same inequality as (21).
Thus, from the above two steps, for any t ∈ T, we have

D+
�V (ζ(t)) ≤ −Mp

3 V (ζ(t)) + Mp
4 sup
s∈[t−η,t]T

V (ζ(s)).

Therefore, from Lemma 1, we get V (ζ(t)) ≤ sups∈[t−η,t]T V (ζ(s))e
λ(t, 0), where λ is the
solution of λ + Mp

4 exp(λη) ≤ Mp
3 . Further, it is clear that ‖ζ(t)‖p = ‖Z−1Zζ(t)‖p ≤

Ce
λ(t, 0), where C = ‖Z‖p‖Z−1‖p sups∈[t−η,t]T ‖ζ(s)‖ > 0. Hence, from Definition 7,
the error

System (10) is exponentially stable, and hence, the drive system (1) and the response
system (2) are exponentially lag-synchronized. ��
Remark 10 Similar to Remark 8, by choosing Z = Id, the constantsMp

3 andM
p
4 of Theorem

2 become

Mp
3 = −(Mp(−(Q + K ),T) + ‖R‖pLF ), Mp

4 = LF (‖S‖p + η‖T ‖p).

Remark 11 In the case when there is no distributed time-delay in the systems (1)–(2) (or
(18)–(19)), i.e., when η2 = 0, then one can establish all the above results by setting the
corresponding terms to zero in the computation of the constants Mp

1 and Mp
2 (or Mp

3 and
Mp

4 ).
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Remark 12 The results of Theorem 1 and Theorem 2 cover the problem in all generality,
therefore, one can obtain the results for particular time domains, such as the continuous-time
domain (when T = R) and discrete-time domain (when T = Z), by replacing the matrix-
measures evolves in the constants Mp

1 ,Mp
2 ,Mp

3 and Mp
4 from the known Definition 5.

Remark 13 For the continuous-time domain, few authors reported the synchronization results
for the C-GNNs with mixed delays [21, 23, 24, 28]. Particularly, in [23], the authors consid-
ered a class ofC-GNNswithmixed delays and studied the exponential lag synchronization via
periodically intermittent control and mathematical induction technique. In [21], the authors
studied finite-time synchronization of C-GNNs with mixed delays by using the Lyapunov-
Krasovskii functional approach. Furthermore, there are only a few authors who studied the
synchronization problem of the discrete-time C-GNNs [11, 13]. In particular, the authors in
[13], studied the exponential synchronization results for an array of coupled discrete-time C-
GNNs with time-dependent delay by applying the Lyapunov-Krasovskii functional approach
while in [11], the authors investigated the existence of a bounded unique solution, exponential
stability, and synchronization by using somefixed point techniques and inequality techniques.

Remark 14 All the results obtained on continuous-time [21, 23, 24, 28] and discrete-time [11,
13] C-GNNs are studied separately. The continuous-time or discrete-time C-GNNs results
cannot be directly applied and easily extended to the case of arbitrary time C-GNNs. And,
there is no manuscript on the continuous-time or discrete-time domain which discussed
the exponential lag synchronization results for the C-GNNs with mixed delays by using
the matrix-measure and Halanay inequality, therefore, the results of this manuscript are
completely new even for the continuous case (T = R) and discrete case (T = Z).

5 Illustrated Examples

In this section, we provide two examples to illustrate the obtained results for different time
domains.Whereas the first example is tailored to best illustrate the potentials of our theoretical
results with respect to arbitrary time domains, the second example is borrowed from [46] to
show the general applicability of our methods.

Example 1 Consider the drive system (1) and response system (2) with the following coeffi-
cients

�(y(t)) =
[
0.4 + 0.2 cos(y1(t)) 0.0

0.0 0.4 − 0.2 sin(y2(t))

]

, ϒ(y(t)) =
[
0.3 + 0.2 sin(y1(t))
0.3 − 0.2 cos(y2(t))

]

,

R =
[
0.8 0.0

−0.2 −0.7

]

, S =
[−0.4 0.1
−0.2 0.5

]

, T =
[−0.5 0.6
−0.6 0.5

]

, I =
[
0.4
0.3

]

,

F(y(t)) =
[
0.8 tanh(y1(t))
0.8 tanh(y2(t))

]

, φ(s) =
[
0.5
1

]

, ψ(s) =
[ −1
−0.5

]

for s ∈ [−η, 0]T, Z = Id .

One can confirm that for Example 1, �,ϒ , and F satisfy Assumption 1 with L� =
Lϒ = 0.2, LF = MF = 0.8, M� = 0.6, Mϒ = 0.5. Now, we consider the following three
different time domains as follows.
Case 1. T = R. Let η1 = 0.5, η2 = 0.8 and β = 0.4. Here, η = 0.8 and the graininess
functionμ(t) = 0 for all t ∈ R. The state trajectories and the error trajectories of the systems
(1)–(2) without feedback control are shown in Figs. 3 and 4, respectively. Clearly, fromFigs. 3
and 4, the drive system (1) and the response system (2) are not synchronized.
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Fig. 3 Uncoupled
synchronization curves when
T = R

Fig. 4 Uncoupled
synchronization error curves
when T = R

However, for the control gain matrix

K =
[
2.2 0.0
0.0 2.2

]

,

we can calculate

M1
2 = 0.9472, M2

2 = 0.9542, M∞
2 = 1.0112

and

	1(−K ) = −2.2000, 	2(−K ) = −4.4000, 	∞(−K ) = −2.2000.

Hence,

M1
1 = 0.7800, M2

1 = 3.2242, and M∞
1 = 1.0840.

Therefore, we can see that M1
1 − M1

2 = −0.1672 < 0, M2
1 − M2

2 = 2.2700 > 0, and
M∞

1 − M∞
2 = 0.0728 > 0. Also, −M2

1,−M∞
1 ∈ R+. Hence, for p = 2,∞, all the

conditions of Theorem 1 hold, and thus, the systems (1)–(2) with feedback control (3) are
exponentially lag-synchronized with the maximum rate of convergence for p = 2,∞ are
1.0366 and 0.0394, respectively. The synchronized curves and synchronized errors curves
with feedback control are shown in Figs. 5 and 6, respectively.
Case 2. T = 0.5Z. Let η1 = η2 = β = 0.5. Here, η = 0.5 and the graininess function
μ(t) = 0.5 for all t ∈ R. The state trajectories and the error trajectories of the systems
(1)–(2) without feedback control are shown in Figs. 7 and 8, respectively which are clearly
not synchronized.

However, for the control gain matrix

K =
[
2.0 0.0
0.0 2.0

]

,
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Fig. 5 Coupled synchronization
curves when T = R

Fig. 6 Coupled synchronization
error curves when T = R

Fig. 7 Uncoupled
synchronization curves when
T = 1

2Z

Fig. 8 Uncoupled
synchronization error curves
when T = 1

2Z
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Fig. 9 Coupled synchronization
curves when T = 1

2Z

Fig. 10 Coupled synchronization
error curves when T = 1

2Z

we can calculate

M1
2 = 0.7360, M2

2 = 0.7430, M∞
2 = 0.8000

and

	1(−K ) = −2.000, 	2(−K ) = −2.000, 	∞(−K ) = −2.000.

Hence,

M1
1 = 0.5800, M2

1 = 0.8242, and M∞
1 = 0.8840.

Therefore, we can see that M1
1 − M1

2 = −0.1560 < 0, M2
1 − M2

2 = 0.0812 > 0, and
M∞

1 − M∞
2 = 0.0840 > 0. Also, −M2

1,−M∞
1 ∈ R+. Hence, for p = 2,∞, all the

conditions of Theorem 1 hold, and thus, the systems (1)–(2) with feedback control (3) are
exponentially lag-synchronized with the maximum rate of convergence for p = 2,∞ are
0.0583 and 0.0590, respectively. The synchronized curves and synchronized errors curves
with feedback control are shown in Figs. 9 and 10, respectively.
Case 3. T = P = [−1, 0] ∪∞

i=0 [i, i + 0.7]. Let η1 = η2 = β = 1. Here, η = 1 and the
graininess function μ(t) is given by

μ(t) =
{
0, t ∈ [−1, 0] ∪∞

i=0 [i, i + 0.7),

0.3, t = ∪∞
i=0{i + 0.7}.

The state trajectories and the error trajectories of the systems (1)–(2)without feedback control
are shown in Figs. 11 and 12, respectively which are clearly not synchronized.

However, for the control gain matrix

K =
[
2.4 0.0
0.0 2.4

]

,
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Fig. 11 Uncoupled
synchronization curves when
T = P

Fig. 12 Uncoupled
synchronization error curves
when T = P

Fig. 13 Coupled synchronization
curves when T = 1

2Z

we can calculate

M1
2 = 1.0880, M2

2 = 1.0950, M∞
2 = 1.1520

and

	1(−K ) = −2.4000, 	2(−K ) = −2.4000, 	∞(−K ) = −2.4000.

Hence,

M1
1 = 0.9800, M2

1 = 1.2242, and M∞
1 = 1.2840.

Therefore, we can see that M1
1 − M1

2 = −0.1080 < 0, M2
1 − M2

2 = 0.1292 > 0, and
M∞

1 − M∞
2 = 0.1320 > 0. Also, −M2

1,−M∞
1 ∈ R+. Hence, for p = 2,∞, all the

conditions of Theorem 1 hold and thus, the systems (1)–(2) with feedback control (3) are
exponentially lag-synchronized with the maximum rate of convergence for p = 2,∞ are
0.0602 and 0.0599, respectively. The synchronized curves and synchronized errors curves
with feedback control are shown in Figs. 13 and 14, respectively.
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Fig. 14 Coupled synchronization
error curves when T = 1

2Z

Fig. 15 Uncoupled
synchronization curves

Fig. 16 Uncoupled
synchronization error curves

Next, we provide another example to illustrate our main Theorem 2.

Example 2 Consider the continuous-time case of the drive and response systems (18)–(19)
with the following coefficients as in [46, Ex. 2]

Q =
[
1 0
0 1

]

, R =
[
2.0 −0.1

−5.0 2.8

]

, S =
[−1.6 −0.1
−0.3 −2.5

]

, T =
[
0.5 0.6
0.7 0.2

]

, I =
[
0.0
0.0

]

,

F(y(t)) =
[
tanh(y1(t))
tanh(y2(t)))

]

, η1 = 0.6, η2 = 0.2, β = 0,

φ(s) =
[
0.2
0.4

]

, ψ(s) =
[−0.4
−0.6

]

for s ∈ [−1, 0]T, Z = Id .

One can confirm that for Example 2, F satisfies the Lipschitz conditions with LF = 1. The
state trajectories and the error trajectories of the systems (18)–(19) without feedback control
are shown in Figs. 15 and 16, respectively. Clearly, from Figs. 15 and 16, the drive system
(18) and the response system (19) are not synchronized.
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Fig. 17 Coupled synchronization
curves

Fig. 18 Coupled synchronization
error curves

However, for the control gain matrix

K =
[
3.8 0.0
0.0 3.8

]

,

we can calculate

M1
4 = 3.320, M2

4 = 3.1331, M∞
4 = 3.460,

and

	1(−(Q + K )) = −4.80, 	2(−(Q + K )) = −9.60, 	∞(−(Q + K )) = −4.80.

Hence,

M1
3 = −2.200, M2

3 = 3.5892, and M∞
3 = −3.0.

Therefore, we see that M1
3 − M1

4 = −5.520 < 0, M2
3 − M2

4 = 0.4561 > 0, and
M∞

3 − M∞
4 = −6.460 < 0. Also, −M2

3 ∈ R+. Hence, for p = 2, all the conditions
of Theorem 2 hold, and thus, the systems (18)–(19) with feedback control (3) are expo-
nentially synchronized with the maximum rate of convergence 0.1533. The synchronized
curves and synchronized errors curves with feedback control are shown in Figs. 17 and 18,
respectively.

Comparing the results quantitatively, we note that our approach provides a faster error
convergence rate 0.1533, compared to the convergence rate of 0.01 reported in [46].

Remark 15 Previous works, such as [11, 13, 19, 21, 23–25, 28, 46], have considered sim-
ilar types of examples on either continuous or discrete-time domains. To the best of our
knowledge, there is currently no other example in the literature that has addressed lag syn-
chronization of CGNNs on hybrid-type time domains (as presented in case 3 of Example
1).
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Conclusion

We have successfully established the exponential lag synchronization results for a new class
of C-GNNs with discrete and distributed time delays on arbitrary time domains by using
the theory of time scales and feedback control law. We have also studied some special cases
of the considered problem. We mainly used a unified matrix-measure theory and Halanay
inequality to establish these results. The obtained results are verified by providing some sim-
ulated examples for different time domains including the continuous-time domain (case 1 of
Example 1, Example 2), discrete-time domain (case 2 of Example 1), and non-overlapping
time domain (case 3 of Example 1). Possible future research could concern an extension of
the results to non-smooth though still bounded functions. Another potential future direction
is to further investigate the stability and synchronization results for C-GNNs with delays and
impulsive conditions on arbitrary time domains. This could include studying the effects of
different types of delays, such as time-varying delays or distributed delays, on the synchro-
nization of C-GNNs. Additionally, it could be interesting to investigate the robustness and
reliability of the synchronization results for C-GNNs with delays and stochastic effects on
time scales. This could include studying the effects of random disturbances or noise on the
synchronization of C-GNNs, and how the proposed approach can be modified to handle these
types of effects.
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