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Es gibt keinen Neuschnee

Wenn du aufwärts gehst und dich hochaufatmend umsiehst, was du doch

für ein Kerl bist, der solche Höhen erklimmen kann, du, ganz allein –: dann

entdeckst du immer Spuren im Schnee. Es ist schon einer vor dir dagewesen.

Glaube an Gott. Verzweifle an ihm. Verwirf alle Philosophie. Laß dir vom

Arzt einen Magenkrebs ansagen und wisse: es sind nur noch vier Jahre, und

dann ist es aus. Glaub an eine Frau. Verzweifle an ihr. Führe ein Leben mit

zwei Frauen. Stürze dich in die Welt. Zieh dich von ihr zurück. . .

Und alle diese Lebensgefühle hat schon einer vor dir gehabt; so hat schon

einer geglaubt, gezweifelt, gelacht, geweint und sich nachdenklich in der Nase

gebohrt, genau so. Es ist immer schon einer dagewesen.

Das ändert nichts, ich weiß. Du erlebst es ja zum ersten Mal. Für dich ist

es Neuschnee, der da liegt. Es ist aber keiner, und diese Entdeckung ist zuerst

sehr schmerzlich. In Polen lebte einmal ein armer Jude, der hatte kein Geld,

zu studieren, aber die Mathematik brannte ihm im Gehirn. Er las, was er

bekommen konnte, die paar spärlichen Bücher, und er studierte und dachte,

dachte für sich weiter. Und erfand eines Tages etwas, er entdeckte es, ein ganz

neues System, und er fühlte: ich habe etwas gefunden. Und als er seine kleine

Stadt verließ und in die Welt hinauskam, da sah er neue Bücher, und das, was

er für sich entdeckt hatte, das gab es bereits: es war die Differentialrechnung.

Und da starb er. Die Leute sagen: an der Schwindsucht. Aber er ist nicht

an der Schwindsucht gestorben.

Am merkwürdigsten ist das in der Einsamkeit. Daß die Leute im Getüm-

mel ihre Standard-Erlebnisse haben, das willst du ja gern glauben. Aber

wenn man so allein ist wie du, wenn man so meditiert, so den Tod einkalkuliert,

sich so zurückzieht und so versucht, nach vorn zu sehen –: dann, sollte man

meinen, wäre man auf Höhen, die noch keines Menschen Fuß je betreten hat.

Und immer sind da Spuren, und immer ist einer dagewesen, und immer ist

einer noch höher geklettert als du es je gekonnt hast, noch viel höher.

Das darf dich nicht entmutigen. Klettere, steige, steige. Aber es gibt keine

Spitze. Und es gibt keinen Neuschnee.

Kaspar Hauser, alias Kurt Tucholsky, in
”
Die Weltbühne“ vom 7. April 1931

vi



Contents

I. Introduction 1

1. The startle response - neurobiology and animal testing 3

2. The startle response in paradigms of anxiety and fear 11

2.1. Fear potentiated startle in C57BL/6N mice . . . . . . . . . . . . . . . . . 15

2.2. Tone enhanced startle as a measure of hearing capability, stimulus adapt-

ation and attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Fear conditioning parameters - the matter of fact . . . . . . . . . . . . . . 18

2.4. Extinction of conditioned fear to context by cue extinction training . . . . 20

2.5. ASR measures in mouse-models of trait anxiety and PTSD . . . . . . . . 22

3. Pharmacological and optogenetical manipulation of prepulse inhibition 25

3.1. Prefrontal DR1 and DR2 mediate modulation of prepulse inhibition . . . 28

3.2. Mimicking pharmacological interference by optogenetic stimulation . . . . 30

II. Materials and Methods 33

4. General materials and methods 35

5. Detailed materials and methods 39

5.1. The startle response in paradigms of anxiety and fear . . . . . . . . . . . 39

5.1.1. Fear potentiated startle in C57BL/6N mice . . . . . . . . . . . . . 39

5.1.2. Tone enhanced startle as a measure of hearing capability, stimulus

adaptation and attention . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.3. Fear conditioning parameters - the matter of fact . . . . . . . . . . 44

5.1.4. Extinction of conditioned fear to context by cue extinction training 46

5.1.5. ASR measures in mouse-models of trait anxiety and PTSD . . . . 47

vii



Contents

5.2. Pharmacological and optogenetical manipulation of prepulse inhibition . . 51

5.2.1. Prefrontal DR1 and DR2 mediate modulation of prepulse inhibition 51

5.2.2. Mimicking pharmacological interference by optogenetic stimulation 53

III. Results 57

6. The startle response in paradigms of anxiety and fear 59

6.1. Fear potentiated startle in C57BL/6N mice . . . . . . . . . . . . . . . . . 59

6.1.1. Fear potentiated startle using CS light or tone . . . . . . . . . . . 59

6.1.2. Unconditioned tone effect alters startle and masks conditioned FPS 60

6.1.3. Optimising parameters to measure FPS . . . . . . . . . . . . . . . 62

6.1.4. Context dependency of FPS . . . . . . . . . . . . . . . . . . . . . . 63

6.2. Tone enhanced startle as a measure of hearing capability, stimulus adapt-

ation and attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1. Tone enhanced startle in mice . . . . . . . . . . . . . . . . . . . . . 65

6.2.2. TES as a measure of acoustic stimulus adaptation . . . . . . . . . 69

6.2.3. TES as a measure of hearing capability . . . . . . . . . . . . . . . 71

6.2.4. Attention measured by means of altered TES . . . . . . . . . . . . 72

6.3. Fear conditioning parameters - the matter of fact . . . . . . . . . . . . . . 73

6.3.1. Mice differ in their behavioural response to white noise and sine

wave stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2. Between-session extinction as a function of quality but not dura-

tion of acoustic stimuli . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.3. Stimulus quality leads to categorical differences in the FPS/TES

paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4. Extinction of conditioned fear to context by cue extinction training . . . . 76

6.4.1. Extinction of conditioned stimulus does not lead to alleviated con-

ditioned context fear . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5. ASR measures in mouse-models of trait anxiety and PTSD . . . . . . . . 79

6.5.1. ASR in mice of high and low anxiety related behaviour . . . . . . 79

6.5.2. ASR as a measure of hyperarousal in a mouse model of PTSD . . 81

7. Pharmacological and optogenetical manipulation of prepulse inhibition 87

7.1. Prefrontal DR1 and DR2 mediate modulation of prepulse inhibition . . . 87

7.1.1. Systemic blockage of DR1, but not DR2, increases PPI . . . . . . 87

viii



Contents

7.1.2. Prefrontal blockage of DR increases PPI . . . . . . . . . . . . . . . 90

7.2. Mimicking pharmacological interference by optogenetic stimulation . . . . 93

7.2.1. PPI and PPF are impaired by 5 and 50 Hz stimulation of the pre-

frontal cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

IV. Discussions 95

8. The startle response in paradigms of anxiety and fear 97

8.1. Fear potentiated startle in C57BL/6N mice . . . . . . . . . . . . . . . . . 97

8.2. Tone enhanced startle as a measure of hearing capability, stimulus adapt-

ation and attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3. Fear conditioning parameters - the matter of fact . . . . . . . . . . . . . . 102

8.4. Extinction of conditioned fear to context by cue extinction training . . . . 105

8.5. ASR measures in mouse-models of trait anxiety and PTSD . . . . . . . . 106

8.5.1. ASR in mice of high and low anxiety related behaviour . . . . . . 106

8.5.2. ASR as a measure of hyperarousal in a mouse model of PTSD . . 107

9. Pharmacological and optogenetical manipulation of prepulse inhibition111

9.1. Prefrontal DR1 and DR2 mediate modulation of prepulse inhibition . . . 111

9.2. Mimicking pharmacological interference by optogenetic stimulation . . . . 114

10.Summary and conclusion 117

Bibliography 123

Acknowledgement 157

Addendum 159

Erklärung 207

ix





List of Figures

1.1. Exemplary startle response trace of a C57BL/6N mouse to a 115 dB(A)

noise burst of 20 ms duration, recorded with a piezoelectric accelerometer

equipped system (SR-Lab™). After stimulus onset (t = 0), 50 data points

were recorded (sampling rate 1 kHz). Peak latency is ca. 15 ms, peak

voltage ca. 470 mV (= reported startle response) (Mauch, unpublished). . 5

1.2. A hypothetical circuit of brain regions mediating acoustic startle responses

(white boxes) and its modifications by sensitisation (black boxes), and

fear conditioning and sensitisation (grey boxes). Bold arrows indicate the

probably fastest route of transmission. a: inhibitory input,→: excitatory

input. Adapted from Koch (1999). . . . . . . . . . . . . . . . . . . . . . . 7

1.3. A hypothetical circuit of brain regions mediating prepulse inhibition (black

boxes) of the acoustic startle response (white boxes), and modifications

of prepulse inhibition (grey boxes). a: inhibitory input, →: excitatory

input. Adapted from Fendt and Yeomans (2001) and Swerdlow et al. (2001). 9

2.1. Number of publications dealing with auditory cue fear conditioning in

mice during the past ten years (2000 - 2010). Combinations of stimulus

parameters length and quality (A,C) as well as stimulus quality and in-

tensity (B) vary considerably in fear conditioning studies (A,B) and in

extinction of conditioned fear (C). wn: white noise, cl/bz: clicking/buzzing. 19

5.1. Parameters used in fear potentiated startle experiments. (A) Scheme of

general stimulus presentation. Black bar: CS, white bar: US. (B) Table of

parameters used in experiments 1 - 4. Note that tone frequency was 9 kHz

for all experiments and that for US-control groups US intensity was 0 mA. 40

xi



List of Figures

6.1. FPS (mean ± SEM) following presentation of conditioned stimulus light

(black circles and bars, n = 10) or tone (white circles and bars, n = 6),

expressed as startle amplitude (A), absolute amplitude change (B) or

percental change (C), and freezing to light or tone (D). *: difference light

vs. tone (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2. FPS (mean ± SEM) before (-) and after conditioning ( , +) following tone

(CS) presentation in shocked (S, black circles and bars, n = 10) and non

shocked (nS, white circles and bars, n = 10) mice. Data are expressed as

startle amplitude (A), absolute amplitude change (B) or percental change

(C), and freezing to CS (D). *: ASR changing effect of tone presentation

vs. no tone presentation before (left) and after conditioning ( , right)

(p< 0.05). #: %ASR increasing effect of shock vs. no shock (p< 0.05). . . 61

6.3. FPS (mean ± SEM) before (-) and after conditioning ( , +) following tone

(CS) presentation of 4 s (white symbols, n = 12) or 20 s (black symbols,

n = 12) duration, and startle eliciting pulses of 105 (circles) or 115 dB

(squares). Data are expressed as startle amplitude (A), absolute amp-

litude change (B) or percental change (C), and freezing to CS (D). *:

ASR (A), ∆ASR (B) or %ASR (C) changing effect of startle pulse intens-

ity (105 vs. 115 dB, p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4. FPS (mean ± SEM) before (-) and after conditioning ( , +) following

tone (CS) presentation in paired shocked (S, n = 11), unpaired shocked

(S(unpaired), n = 12) and non shocked (nS, n = 11) mice, expressed as

startle amplitude (A), absolute amplitude change (B) or percental change

(C). White circles: no shock; black squares: unpaired shock; black circles:

paired shock. *: ASR (A) and ∆ASR (B) changing effect of paired shock

vs. no shock. #: ASR (A) and ∆ASR (B) changing effect of unpaired

shock vs. no shock (p< 0.05, respectively). . . . . . . . . . . . . . . . . . . 64

6.5. Experiment 1. TES (mean ± SEM) following pre-stimulus (tone) present-

ation of 60 (white circles and bars), 70 (grey circles and bars) and 80 dB

(black circles and bars) intensity (n = 12, respectively), expressed as startle

amplitude (A), absolute amplitude change (B) or percental change (C).

*: ASR (A) and ∆ASR (B) difference 60 vs. 80 dB tone. #: ASR (A)

and ∆ASR (B) difference 70 vs. 80 dB tone. +: ASR (A) difference 60

vs. 70 dB tone (p< 0.05, respectively). . . . . . . . . . . . . . . . . . . . . 65

xii



List of Figures

6.6. Experiment 2. Absolute startle change (mean ± SEM) following pre-stimu-

lus (tone off) and prepulse (tone on) presentation at various time points

before, during or after startle eliciting pulse onset (n = 36). (A) Scheme of

pre-stimulus (top) and prepulse (bottom) position relative to pulse onset.

If interpulse interval (IPI)< 0, then tone off/tone on happened during

pulse presentation. (B) Alteration of startle response expressed as abso-

lute amplitude change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.7. Experiment 3. TES (mean ± SEM) following pre-stimulus (tone) present-

ation in sensitised mice expressed as startle amplitude (A), absolute amp-

litude change (B) or percental change (C). White circles and bars: no

shock (n = 14); light grey circles and bars: 0.5 mA (n = 15); dark grey

circles and bars: 0.7 mA (n = 15); black circles and bars: 1.5 mA foot-

shock intensity (n = 15). *: ASR (A) and ∆ASR (B) increasing effect of

1.5 mA vs. 0 (A and B) and vs. 0.5 mA (B). #: ASR (A) and ∆ASR (B)

increasing effect of 0.7 mA vs. 0 (A and B) and vs. 0.5 mA (B). +: ASR

(A) increasing effect of 1.5 vs. 0.5 mA (p< 0.05, respectively). . . . . . . . 67

6.8. Experiment 4. TES (mean ± SEM) following pre-stimulus presentation

tone (white circles and bars, n = 8) or light (black circles and bars, n = 8),

expressed as startle amplitude (A), absolute amplitude change (B) or

percental change (C). *: difference light vs. tone (p< 0.05). . . . . . . . . 67

6.9. Experiment 5. TES (mean ± SEM) after treatment of mice with 0 (white

circles and bars, n = 11), 0.3 (light grey circles and bars, n = 10), 1.0 (dark

grey circles and bars, n = 11) or 2.0 mg/kg diazepam i.p. (black circles

and bars, n = 11), expressed as startle amplitude (A), absolute amplitude

change (B) or percental change (C). *: ASR and ∆ASR changing effect

of 2.0 vs. 1.0 mg/kg diazepam (p< 0.05). . . . . . . . . . . . . . . . . . . . 68

6.10. Experiment 6. TES after treatment of mice with 0 (white circles and

bars, n = 13) or 10 mg/kg p.o. paroxetine (black circles and bars, n = 13),

expressed as startle response amplitudes (A), absolute amplitude change

(B) or percental change (C). *: ASR changing effect of tone presentation

vs. no tone presentation (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . 69

xiii



List of Figures

6.11. TES (mean ± SEM) following pre-stimulus presentation of different length

(20 s and 120 s, white and black symbols, respectively) and quality (sine

wave (sw) and white noise (wn), circles and squares, respectively) (all

n = 12, except 20 s sw: n = 11). Data are expressed as startle amplitude

(A), absolute amplitude change (B) or percental change (C). Averaged

values (day 1 - 9) of within-day habituation are shown in (D). Inset of

(D): linear regression of data depicted in (D) (scattered lines: 20 s, solid

lines: 120 s). *: Slope significantly different from zero (p< 0.05). . . . . . 70

6.12. TES in vanilloid receptor deficient mice (ko, black circles and bars, n = 12)

and wild type counterparts (wt, white circles and bars, n = 12), expressed

as startle response amplitudes (A), absolute amplitude change (B) or per-

cental change (C). *: ASR changing effect of tone presentation vs. no tone

presentation (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.13. TES (mean ± SEM) following presentation of pre-stimulus tone (+T),

light (+L) or tone superimposed by light (+T+L, black circles and bars,

n = 5). (A) Scheme of stimulus presentation. P: startle eliciting pulse

(-), black rectangle: 20 s tone presentation (+T and +T+L), white rect-

angle: 2 s light presentation (+L and +T+L). TES is expressed as startle

amplitude (B), absolute amplitude change (C) or percental change (D). *:

ASR (A), ∆ASR (B) and %ASR (C) difference [+T] vs. [+T+L] (p< 0.05,

respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.14. Startle response to acoustic pulses of different intensities and quality

(white noise (wn) squares, and sine wave (sw) circles, n = 11). *: effect of

pulse quality sw vs. wn (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . 74

6.15. Freezing to stimuli (CS) of white noise (squares) and sine wave (circles)

after conditioning to stimuli of either quality and 20 s (white symbols)

or 120 s duration (black symbols) (each group n = 12). (A) Freezing to

first stimulus on each of four days of extinction training. (B) Freezing to

extinction context on d9 20 s before (-) and during first stimulus present-

ation (+). (C) Freezing to conditioned context on d9 20 s before (-) and

during first stimulus presentation (+). *: effect of stimulus quality wn vs.

sw (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xiv



List of Figures

6.16. FPS following white noise (wn, squares) or sine wave (sw, circles) stimuli

in conditioned (black symbols and bars, S, n = 12 sw and wn respectively)

and naive (white symbols and bars, nS, n = 6 sw and wn respectively)

mice, expressed as startle amplitude (A), absolute amplitude change (B)

or percental change (C). (D) Freezing to neutral context 30 s before (-)

and during (+) 30 s stimulus presentation of respective quality. *: ASR

(A), ∆ASR (B) and %ASR changing effect of stimulus quality wn vs. sw.

#: Significant effect of conditioning (shocked vs. non shocked animals,

p< 0.05). +: effect of conditioning vs. unconditioned (p< 0.05, respect-

ively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.17. Animal movements during the course of three consecutive days of extinc-

tion training. White circles: non extinction (nex, n = 12), black circles:

extinction training (ex, n = 12). Vertical lines indicate conditioned stim-

ulus presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.18. Averaged animal movements on three consecutive extinction training ses-

sions from fig. 6.17A,B,C, respectively, 20 s before (-) and during CS pre-

sentation (+, refers to | in fig. 6.17A,B,C) (A). Freezing of extinction

trained (ex, black circles, n = 12) and extinction control (nex, white circles,

n = 12) mice during extinction training on day 1 - 3 20 s before (-) and dur-

ing CS presentation (+), on day 7 during memory retrieval of conditioned

stimulus (CS) (B) and 20 s before (-) and during first CS presentation

(+) (C), and memory retrieval of conditioned context on day 9 (D). *:

effect of extinction training ex vs. nex. #: effect of CS presentation vs.

no presentation (p< 0.05, respectively). . . . . . . . . . . . . . . . . . . . 79

6.19. Freezing before conditioning (-) and during conditioned stimulus (CS)

memory retrieval (+) (A), startle response to acoustic (B) and electric

(D,E) stimuli, and startle enhancement by pre-stimulus presentation (TES,

C) in mice of high (black circles and bars), normal (white squares and

bars) and low (white squares and grey bars) anxiety related behaviour

(HAB/NAB/LAB, n = 9/7/10 (A), n = 8/11/8 (B), n = 11/11/10 (C) and

n = 20/8/20 (D,E), respectively). *: effect of mouse line HAB vs. LAB.

#: effect of mouse line NAB vs. LAB. +: effect of mouse line NAB vs.

HAB (p< 0.05, respectively). . . . . . . . . . . . . . . . . . . . . . . . . . 80

xv



List of Figures

6.20. Startle response in mice treated with either 0.1µg CRH (black circles,

n = 7), 0.1µg CRH and 10µg αCRH (black squares, n = 7) or vehicle

(white circles, n = 7). *: effect of treatment CRH vs. veh. #: effect of

treatment CRH vs. CRH/αCRH (p< 0.05, respectively). . . . . . . . . . . 82

6.21. Startle response in mice 30 days after receiving an intense footshock (S,

black circles, n = 14) or exposure controls (nS, white circles, n = 15). *:

effect of shock vs. no shock (p< 0.05). . . . . . . . . . . . . . . . . . . . . 82

6.22. Three dimensional reconstruction of a mouse hippocampus (HPC). Im-

aged sections recorded were loaded into a 3D reconstruction software

(Amira), and models rendered using different surface effects. (a) Opaque

surface view. HPC is displayed like uncleared tissue. (b) Transparent

view. HPC is displayed like it is monitored during imaging process. The

white quadrangle indicates the light sheet illuminating the HPC in a dis-

crete plane (white highlighted tissue). . . . . . . . . . . . . . . . . . . . . 83

6.23. Volume of hippocampus (A,C) or amount of GFP fluorescence (B) of mice

after standard housing (nEE, white bar, n = 6) or enriched housing (EE,

black bar, n = 9) (A,B), and mice after enriched or standard housing and

sensitisation (S, black bars) or no shock (nS, white bars) ( nEE-nS n = 10,

nEE-S n = 9, EE-nS n = 9, EE-S n = 8) (C). *: effect of EE vs. nEE. #:

effect of S vs. nS (nEE) (p< 0.05, respectively). . . . . . . . . . . . . . . . 84

6.24. Startle response of mice measured for HPC volume (cf. fig. 6.23C, n = 16

each, except nEE-S n = 15) after either sensitisation (S, black symbols) or

no shock (nS, white symbols) and kept under either enriched (EE, circles)

or standard conditions (nEE, squares). *: significant effect of sensitisation

S vs. nS (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1. Effects of s.c. haloperidol treatment on percental change of startle (%ASR,

mean ± SEM) in BALB/c (A,B,C) and B6J mice (D,E,F) at prepulse in-

tensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across five different in-

terpulse intervals. White circles: vehicle (BALB/c: n = 12, B6J: n = 11);

grey circles: 0.3 mg/kg (n = 12 each); black circles: 1.0 mg/kg (n = 12

each). * and #: %ASR changing effect of 0.3 and 1.0 mg/kg vs. veh,

respectively (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xvi



List of Figures

7.2. Effects of s.c. sulpiride treatment on percental change of startle (%ASR,

mean ± SEM) in BALB/c (A,B,C) and B6J mice (D,E,F) at prepulse in-

tensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across five different in-

terpulse intervals. White circles: vehicle; grey sqaures: 5 mg/kg; black

squares: 20 mg/kg (each treatment BALB/c: n = 9, B6J: n = 12). . . . . . 88

7.3. Effects of s.c. SCH23390 treatment on percental change of startle (%ASR,

mean ± SEM) in BALB/c (A,B,C) and B6J mice (D,E,F) at prepulse in-

tensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across five different in-

terpulse intervals. White circles: vehicle; grey triangles: 0.1 mg/kg; black

triangles: 0.3 mg/kg (each treatment and mouse strain n = 12). *: %ASR

changing effect of 0.3 mg/kg vs. veh (p< 0.05). . . . . . . . . . . . . . . . 88

7.4. Effects of s.c. SCH23390 (0.3 mg/kg) and SCH23390 + sulpiride (0.3 +

5 mg/kg) treatment on percental change of startle (%ASR) relative to

vehicle treated BALB/c mice (∆%ASR, mean ± SEM) at prepulse intens-

ities of 55 (A), 65 (B) and 75 dB (C) across five different interpulse in-

tervals. Data for SCH23390 treatment alone are the same as displayed

in fig. 7.3A,B,C, respectively, but were normalised to vehicle treated an-

imals thereof (cf. Materials and Methods). White circles: SCH23390;

black circles: SCH23390 + sulpiride (n = 12, respectively). *: facilitat-

ing effect of additional 5 mg/kg sulpiride vs. SCH23390 alone (p< 0.05).

Note that in contrast to other figures, graphs do not show percental

startle change (i.e. %ASR), but the calculated difference of %ASR between

vehicle treated and SCH23390 or SCH23390 + sulpiride treated animals

(i.e. ∆%ASR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5. Effects of prefrontal NBQX (A,B,C) or muscimol (D,E,F) infusion on per-

cental change of startle (%ASR, mean ± SEM) in BALB/c mice at pre-

pulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across five differ-

ent interpulse intervals. White circles: vehicle (NBQX: n = 11, muscimol:

n = 9); black circles: 0.01µg NBQX (n = 10); black squares 0.25µg mus-

cimol (n = 9). *: %ASR changing effect of NBQX or muscimol vs. veh,

respectively (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xvii



List of Figures

7.6. Effects of prefrontal sulpiride infusion on startle percental change (%ASR,

mean ± SEM) in BALB/c (A,B,C) and B6J mice (D,E,F) at prepulse in-

tensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across five different in-

terpulse intervals. White circles: vehicle (BALB/c: n = 11); grey sqaures:

0.03µg (BALB/c: n = 10); black squares: 0.1µg (BALB/c: n = 11, B6J:

each treatment n = 11). *: %ASR changing effect of 0.1µg vs. veh (p< 0.05). 92

7.7. Effects of prefrontal SCH23390 infusion on percental change of startle

(%ASR, mean ± SEM) in BALB/c (A,B,C) and B6J mice (D,E,F) at pre-

pulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across five dif-

ferent interpulse intervals. White circles: vehicle (BALB/c: n = 10, B6J:

n = 12); grey triangles: 0.1µg (BALB/c: n = 10, B6J: n = 12); black tri-

angles: 0.5µg (BALB/c: n = 9, B6J: n = 8). *: %ASR changing effect of

0.5µg vs. veh (p< 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.8. Effects of tonic (5 Hz, n = 13) and phasic (50 Hz, n = 14) light stimula-

tion (L+) of ChR-2 positive prefrontal layer V pyramidal neurons on

startle amplitudes (A,B), and PPI and PPF of startle (C,D) in mice

(mean ± SEM, respectively). Circles: 5 Hz; squares: 50 Hz; white sym-

bols: no stimulation; black symbols: light stimulation (L+). *: ASR, PPI

or PPF changing effect of stimulation (L+) vs. no stimulation (p< 0.05). 93

xviii



Nomenclature

αCRH . . . . . . . . . . α corticotropin releasing hormone

ADHD . . . . . . . . . attention deficit/hyperactivity disorder

AMY . . . . . . . . . . . amygdala

ANOVA . . . . . . . . analysis of variance

ASR . . . . . . . . . . . acoustic startle response

BLA . . . . . . . . . . . basolateral amygdala

BNST . . . . . . . . . . bed nucleus of the stria terminalis

CA3 . . . . . . . . . . . . cornu ammonis region 3

CCD . . . . . . . . . . . charged coupled device

CeA . . . . . . . . . . . . central amygdala

ChR2 . . . . . . . . . . channelrhodopsin-2

CRH . . . . . . . . . . . corticotropin releasing hormone

CS . . . . . . . . . . . . . conditioned stimulus

CSF . . . . . . . . . . . . cerebro spinal fluid

DA . . . . . . . . . . . . . dopamine

DAT-ko . . . . . . . . dopamine transporter deficient

DR1/2 . . . . . . . . . dopamine receptor 1/2

(E)GFP . . . . . . . . (enhanced) green fluorescent protein

EPM . . . . . . . . . . . elevated plus maze

EPSP . . . . . . . . . . excitatory postsynaptic potential

EtOH . . . . . . . . . . ethanol

ExFC . . . . . . . . . . extinction of conditioned fear

FC . . . . . . . . . . . . . fear conditioning

FPS . . . . . . . . . . . . fear potentiated startle

GABA . . . . . . . . . γ aminobutyric acid

HAB . . . . . . . . . . . high anxiety related behaviour

HAB-R . . . . . . . . . high anxiety related behaviour rat

HPA . . . . . . . . . . . hypothalamus pituitary adrenal

xix



Nomenclature

HPC . . . . . . . . . . . hippocampus

i.c.v. . . . . . . . . . . . intracerebroventricular

IC . . . . . . . . . . . . . . inferior colliculus

IPI . . . . . . . . . . . . . interpulse interval

ISI . . . . . . . . . . . . . interstimulus interval

LAB . . . . . . . . . . . low anxiety related behaviour

LAB-R . . . . . . . . . low anxiety related behaviour rat

LDTg . . . . . . . . . . lateral dorsal tegmental nucleus

LES . . . . . . . . . . . . light enhanced startle

MEMRI . . . . . . . . manganese enhanced magnetic resonance imaging

MPI-P . . . . . . . . . Max-Planck-Institute of Psychiatry

MRI . . . . . . . . . . . . magnetic resonance imaging

NAB . . . . . . . . . . . normal anxiety related behaviour

NAC . . . . . . . . . . . nucleus accumbens

NMDA . . . . . . . . . N-methyl-D-aspartate

NpHR . . . . . . . . . . Natronomonas pharaonis halorhodopsin

P . . . . . . . . . . . . . . . startle eliciting acoustic pulse

p.o. . . . . . . . . . . . . per os

PAG . . . . . . . . . . . periaqueductal grey

PCR . . . . . . . . . . . polymerase chain reaction

PFC . . . . . . . . . . . prefrontal cortex

PnC . . . . . . . . . . . . caudal pontine reticular nucleus

PP . . . . . . . . . . . . . prepulse

PPA . . . . . . . . . . . prepulse augmentation

PPF . . . . . . . . . . . . prepulse facilitation

PPI . . . . . . . . . . . . prepulse inhibition

PPTg . . . . . . . . . . pedunculopontine tegmental nucleus

PS . . . . . . . . . . . . . pre-stimulus

PTSD . . . . . . . . . . posttraumatic stress disorder

rmANOVA . . . . . repeated measures analysis of variance

SC . . . . . . . . . . . . . superior colliculus

SEM . . . . . . . . . . . standard error of the mean

SNR . . . . . . . . . . . substantia nigra

SPL . . . . . . . . . . . . sound pressure level

SR . . . . . . . . . . . . . startle response

xx



Nomenclature

sw . . . . . . . . . . . . . . sine wave

TES . . . . . . . . . . . . tone enhanced startle

Thy1 . . . . . . . . . . . thymus cell antigene 1

TRPV1-ko . . . . . transient receptor potential cation channel subfamily vanilloid type 1

deficient

UR . . . . . . . . . . . . . unconditioned reaction

US . . . . . . . . . . . . . unconditioned stimulus

vi . . . . . . . . . . . . . . various interval

VTA . . . . . . . . . . . ventral tegmental area

wn . . . . . . . . . . . . . white noise

YFP . . . . . . . . . . . yellow fluorescent protein

xxi





Zusammenfassung

Ein großer Teil der Fragestellungen in den Neurowissenschaften beschäftigt sich mit

dem Thema, wie das Säugerhirn Verhalten auslöst und steuert. Die Schreckreaktion ist

ein relativ einfaches Verhalten, welches bei Säugetieren ohne großen Aufwand ausgelöst

werden kann und variabel auf eine Vielfalt von experimentellen Behandlungen reagiert.

Das Ziel der vorliegenden Arbeit war es, Schreckreaktions-Messungen am Max-Planck-

Institut für Psychiatrie in München (MPI-P) zu etablieren. Vor dem Hintergrund ak-

tueller Fragestellungen sollten die Experimente zu einsatzbereiten Messmethoden und

Verhaltensparadigmen führen.

In der vorliegenden Arbeit gelang es nicht, das Paradigma der furchtpotenzierten

Schreckreaktion (FPS) zuverlässig in einem häufig am MPI-P eingesetzten Mausstamm

anzuwenden. Das FPS maskierende Phänomen, daß die Präsentation eines unkondi-

tionierten Tons bereits zu einer deutlich verstärkten Schreckreaktion in diesen Mäusen

führt (
”
tone enhanced startle“, TES) wurde dann charakterisiert und im Folgenden als

ergänzendes Paradigma zur Messung und Abschätzung des Hörvermögens, der Stimulus

Adaptation und der Aufmerksamkeit in Mäusen vorgeschlagen.

Eine Literaturrecherche ergab, daß im Paradigma der Furchtkonditionierung (
”
fear

conditioning“, FC) und deren aktives Verlernen (
”
extinction of FC“, ExFC) verwendete

Stimulus-Parameter eine hohe Varianz zwischen verschiedenen Laboratorien aufweisen.

Der im Verhalten ausgelesene Lernerfolg während einer FC wie auch einem ExFC hingen

in den vorliegenden Experimenten wesentlich von der verwendeten Stimulusqualität ab

(d.h. sinus-Ton oder weißes Rauschen). Im Umkehrschluß empfiehlt die vorliegende

Arbeit einen überlegteren Umgang mit den eingetzten Stimulus-Parametern.

Es zeigte sich, daß eine erhöhte Schreckreaktion (Übererregbarkeit) ohne weiteres in

einem Tiermodell der Posttraumatischen Belastungsstörung (
”
posttraumatic stress dis-

order“, PTSD) gemessen werden kann. Im Weiteren konnte gezeigt werden, daß ver-

ändertes Hippocampus-Volumen in diesen Tieren, gemessen über ultramikroskopische

Aufnahmen und analog zu Hippocampusveränderungen in Patienten, unabhängig von
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Zusammenfassung

anderen PTSD-ähnlichen Symptomen dieser Mäuse ist.

In einem weiteren Abschnitt widmet sich die vorliegende Arbeit der laufenden Charak-

terisierung der Rolle von Dopaminrezeptoren (DR) in der Präpulsinhibition (PPI) und

-Faszilitierung (PPF) der Schreckreaktion. Durch lokale injektion von DR-Antagonisten

konnte gezeigt werden, daß die Blockade von DR1 wiederholbar PPI verstärkt, während

die Rolle von DR2, getestet mit zwei verschiedenen Antagonisten, als ambivalent gedeutet

werden muß.

Basierend auf diesen Experimenten wurden optogenetische Methoden in die Schreck-

reaktionsmessung eingeführt. Transgenen Mäusen, die lichtsensitive Ionenkanäle in ihren

neuronalen Zellmembranen bestimmter Zellpopulationen tragen, wurden Lichtblitze ins

Gehirn appliziert. Auf diese Weise konnten PPI und PPF unabhängig voneinander

manipuliert werden. Daraus folgend, und im Unterschied zur populären Summations-

hypothese der PPF, schlägt die vorliegende Arbeit einen eigenständigen, von der PPI

unabhängigen PPF-Schaltkreis vor, der Pyramidenneuronen der präfrontalen Kortex-

schicht V beinhaltet.

Die vorliegende Arbeit konnte erfolgreich verschiedene Protokolle und Verhaltens-

paradigmen der Schreckreaktionsmessung am MPI-P etablieren und zur sofortigen Nutzung

zur Verfügung stellen. Es wurden nicht nur neue Techniken wie z.B. optogenetische

Methoden in die Schreckreaktionsmessung eingeführt, die vorliegenden Experiemente

leisten auch ihren Beitrag zur aktiven Forschung, in dem sie z.B. die große Bedeutung

der Stimulus-Parameter für den Lernerfolg von Versuchstieren nachweisen.
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Abstract

In neuroscience major efforts are focused on the question of how the mammalian brain

generates and controls behaviour. The startle response is a relatively simple behaviour

that can be easily elicited in mammals and is sensitive to a variety of experimental

treatments.

The aim of the present work was to establish startle response measures at the Max-

Planck-Institute of Psychiatry (MPI-P), Munich, providing a set of readily applicable

methods and paradigms, and contributing to questions in behavioural neuroscience.

While the present thesis failed to robustly elicit fear potentiated startle (FPS) in a

commonly used mouse strain at the MPI-P, strong unconditioned startle enhancement

by acoustic stimulus presentation in that mouse strain was capitalised to propose tone

enhanced startle (TES) as an additional paradigm to assess hearing capability, stimulus

adaptation and attention in mice.

A literature survey revealed considerably varying parameters used in fear conditioning

(FC) and extinction of conditioned fear (ExFC). In the present work FC, ExFC as well as

FPS/TES highly depended on stimulus quality (i.e. sine wave or white noise), demanding

a more careful handling of stimulus parameters.

Hyper-arousal was readily tested in a mouse model of posttraumatic stress disorder

(PTSD). Additionally it was shown that altered hippocampal volume in these animals,

assessed by ultramicroscopic measures and mimicking patient data, was independent of

other symptoms present in this model.

The present thesis contributes to the ongoing characterisation of the role of dopamine

receptors (DR) in prepulse inhibition (PPI) and prepulse facilitation (PPF) of startle,

manipulating PPI/F by injections of DR-antagonists into the prefrontal cortex of mice.

It was found that blockade of DR1 reliably increases PPI, while the effect of DR2 was

inconsistent, using two different DR2-antagonists. Based on this work, optogenetic meth-

ods were established. Applying intracerebral light flashes to transgenic mice carrying

light sensitive ion channels on their neuronal cell membrane, PPI and PPF were ma-
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nipulated independently, proposing the existence of a discrete PPF mediating pathway

including prefrontal layer V pyramidal neurons, contrasting the popular summation hy-

pothesis of PPF.

The present work established and developed successfully different startle paradigms

that are ready to use for animal characterisation and testing. Apart from combining

startle measures with new techniques such as optogenetic methods, the present thesis

points out the stimulus parameter dependence of animal learning, suggesting a funda-

mental discussion about fear conditioning and extinction learning protocols.
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Part I.

Introduction
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Huminea natura curiosi sunt - humans are curious by nature; this phrase alone could

explain why humans study animal behaviour and underlying physiology. The first writ-

ten evidence of animal testing goes back to the ancient Greek, who used animals for ana-

tomical studies (cf. Maehle and Trohler, 1987 in Close, 2007). It was then in the 12th cen-

tury AD that Avenzoar introduced animal testing explicitly as an experimental method

to test surgical techniques before applying them to patients (Abdel-Halim, 2005). About

300 years before, al-Jahiz published several studies dealing with animal communication

and psychology (Haque, 2004) marking the beginning of the specialism of comparative

psychology. With the upcoming theory of Behaviourism in the late 19th century (cf.

McKenna, 1995), first animal models of psychiatric disorders were developed (cf. Graeff

and Jr, 2002), not only to satisfy curiosity, but to investigate underlying mechanisms

and possible treatments of these diseases (cf. Flint and Shifman, 2008).

1. The startle response - neurobiology

and animal testing

The startle response as an animal model

According to Geyer and Markou (1995), animal models must satisfy the criteria of re-

liability and predictive validity to establish its value in basic neurobiological research.

One paradigm fulfilling these criteria almost entirely and intimately connected with

the concept of Behaviourism is classical conditioning, introduced by Pavlov (cf. Pavlov,

1927). An even more fundamental behaviour matching criteria of reliability and pre-

dictive validity is the startle response. Already subject to studies as early as 1900 (e.g.

Partridge, 1900), it can be measured across species as stereotypic muscle contraction

(cf. Landis et al., 1939 in Grillon, 2008), that can be, on the other hand, modified by a

variety of internal and external factors (Koch, 1999).

The development of animal models in fields such as emotion (cf. Brown et al., 1951;

Davis, 1998), perception (Cohen et al., 1933), and psychiatric disorders (cf. e.g. Braff et

al., 1978) was supported by the comparability of startle reflex behaviour found in rats

and humans (Ison, 2001). During the past 15 years, advances in molecular biology have
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1. The startle response - neurobiology and animal testing

enabled the creation of diverse inbred, transgenic, and knock-out mice, bringing this

species also into the focus of startle research (cf. e.g. Geyer et al., 2002).

The study of the startle response and its modifications has expanded our knowledge

about biological mechanisms underlying signal processing and behavioural outcome. Re-

liability and predictive validity of the startle response have enabled detailed study of

neuronal functionality on behaviour, brain and cellular level. For the development of

a specific treatment for a disease it is indispensable to know aetiology leading to this

disease, and biological processes underlying the disorder. Since startle is comparable in a

variety of aspects in a number of species, including humans (cf. Baird et al., 1993; Briffa

et al., 2008; Cho et al., 2004; Howard and Ford, 1992; Stehouwer, 1992; Stitt et al., 1976;

Hoffman and Fleshler, 1963; Parham and Willott, 1988), the knowledge about biological

processes underlying startle mediation and modulation may have implications for clinical

applications. The startle response is found to be altered, and modifications such as pre-

pulse inhibition are disturbed, in diverse psychiatric diseases (cf. Grillon and Baas, 2002;

Swerdlow and Geyer, 1998). Thus, startle response studies in humans, in comparison

with animal models of a respective disorder, led to new theoretical framework, but also

suggestions for treatment applications (cf. Feifel and Shilling, 2010; Grillon, 2008).

Measuring startle

The acoustic startle response (ASR) is elicited by acoustic stimuli with a steep rise time

and intensities > 75 dB (Pilz et al., 1987). It can be measured electromyographically in

the neck- or limb muscles (Caeser et al., 1989; Cassella et al., 1986; Pilz et al., 1988), but

also non-invasively via automated recording systems. Automated recording systems for

rodents consist of a cage, fixed to either a mechanical or electronic transducer, with which

signals are recorded by an oscillograph or oscilloscope, respectively. Early constructions

consisted of a postage stamp scale or similar spring suspension systems, referred to as

rat stabilimeter, deviced by Mowrer (described by Brown, 1939 cited in Wilson and

Groves, 1972). Induced currents in a coil by magnets attached to the cage were the first

electronic sensors (e.g. Hoffman and Fleshler, 1964 cited in Wilson and Groves, 1972),

subsequently replaced by accelerometer transducers based on the piezoelectric effect (cf.

White and Horlington, 1969). However, also more sensitive mechanical systems based

e.g. on strain-gauges are still used (Wilson and Groves, 1972). In subsequent years,

methods have become more sophisticated and further optimised (cf. Cassella and Davis,

1986). In the late 1980s and early 90s, computer based systems were established, which
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enabled fully automated stimulus control and measurement of startle (cf. Blumenthal and

Cooper, 1990; Flaten et al., 1989). Today’s systems are completely software controlled,

triggering stimuli of various modalities and intensities, and measuring startle as voltage

output of piezoelectric accelerometer transducers, amplified and digitised by personal

computer systems.
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Figure 1.1.: Exemplary startle response trace of a C57BL/6N mouse to a 115 dB(A) noise burst of 20 ms duration,

recorded with a piezoelectric accelerometer equipped system (SR-Lab™). After stimulus onset (t = 0),

50 data points were recorded (sampling rate 1 kHz). Peak latency is ca. 15 ms, peak voltage ca.

470 mV (= reported startle response) (Mauch, unpublished).

It should be noted however, that there are various other systems, especially made for

measures of startle and its modifications for other species (cf. e.g. Hoffman and Ruppen,

1996). In humans for instance, electromyograms (EMG), preferably of the orbicularis

oculi muscle, but also other muscles (cf. e.g. Siegmund et al., 2001), are still the method

of choice, although recently infrared based measures have been introduced (Lovelace et

al., 2006).

The neuronal basis of startle

Although the basic characteristics of startle are preserved throughout taxa, differences

are reported for stimulus parameters eliciting and modifying startle already at the level

of rodents (i.e. rats and mice, cf. Ison, 2001) as well as brain areas involved in modulation

of the response (for review cf. Swerdlow et al., 2001).

However, the acoustic startle response (ASR) itself is thought to be mediated by

phylogenetically old brain areas, involving the auditory nerve, the ventral cochlear nuc-
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leus, the dorsal nucleus of the lateral lemniscus, the caudal pontine reticular nucleus

(PnC), spinal interneurons and spinal motor neurons (Davis et al., 1982a). The PnC

plays a central role in mediation of ASR, receiving direct input from different nuclei

of the auditory pathway (cf. fig. 1.2). In particular the giant reticulospinal neurons of

the contralateral PnC have been shown to receive neuronal input from cochlear nucleus,

lateral superior olive and the cochlear root nucleus (Kandler and Herbert, 1991; Lee

et al., 1996; Lingenhöhl and Friauf, 1992, 1994). Projections of the PnC neurons are

found onto cranial, facial and spinal motor neurons (Lingenhöhl and Friauf, 1992, 1994),

therefore acting as sensorimotor interfaces for the ASR. Additionally, in vivo intracellu-

lar recordings during acoustic stimulation from reticulospinal PnC giant neurons of the

rat revealed an excitation threshold of about 75 dB, fitting well with the behavioural

ASR threshold found in theses animals (Ebert and Koch, 1992; Lingenhöhl and Friauf,

1992, 1994). Furthermore, an averaged latency of ca. 2.6 ms for excitatory postsynaptic

potentials (EPSP) and mean spike latency of 4.4 ms of these neurons (Lingenhöhl and

Friauf, 1992, 1994) are consistent with the latency of 10 - 15 ms of the ASR, suggesting

the giant reticulospinal neurons of the PnC to play the central role in acoustic startle

mediation.

Startle modifications and mediating circuits

Enhancement of startle. According to the assumption of the startle reflex being a

protective response, ASR is observed enhanced in diverse situations related to fear and

anxiety. Thus, cues prediciting an aversive event (e.g. fear conditioning, cf. Pavlov, 1927;

Davis and Astrachan, 1978) enhance startle (i.e. fear potentiated startle, cf. Brown et al.,

1951; Davis, 1993). Startle is also found enhanced after sensitisation (e.g. application of

electric shocks, Plappert et al., 1999) or in the presence of bright light (i.e. light enhanced

startle, Walker and Davis, 1997a). In line with enhanced startle in animal models of fear

and anxiety, startle is increased in humans anticipating an electric shock (Grillon et al.,

1991), or being exposed to unpleasant odour or aversive pictures (Ehrlichman et al.,

1995; Lang et al., 1990). Exaggerated startle is additionally found in patients suffering

from anxiety disorders (for review see Grillon, 2008). Moreover, human startle responses

are potentiated in darkness (Grillon et al., 1997), mimicking the finding of increased

startle in rats in a bright lit environment (i.e. LES, cf. p. 13 and Walker and Davis,

1997a).

Startle enhancement is also apparent after stimulation of brain areas associated to

anxiety and fear behaviour, namely the amygdala (Koch, 1993; Koch and Ebert, 1993;
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Figure 1.2.: A hypothetical circuit of brain regions mediating acoustic startle responses (white boxes) and its

modifications by sensitisation (black boxes), and fear conditioning and sensitisation (grey boxes).

Bold arrows indicate the probably fastest route of transmission. a: inhibitory input, →: excitatory

input. Adapted from Koch (1999).

Rosen and Davis, 1988; Yeomans and Pollard, 1993), the ventral tegmental area (VTA)

and the periaqueductal grey (PAG) (Borowski and Kokkinidis, 1996). Beside stimula-

tion, results from lesion as well as microinjection studies allowed the creation of a basal

neuronal circuit that mediates startle enhancement by fear potentiation (cf. section 6.1),

and stress and sensitisation (cf. fig. 1.2). Regarding sensitisation, data suggest the en-

hancement of startle via the medial central amygdala at the level of the PnC (Boulis

and Davis, 1989; Davis et al., 1982b; Hitchcock et al., 1989), receiving amygdaloid input

directly (Rosen et al., 1991) or via several relay nuclei, such as the periaqueductal grey

(Fendt et al., 1994a), the laterodorsal tegmental nucleus (Hitchcock and Davis, 1991;

Krase et al., 1994), or the deep mesencephalic nuclei (Frankland and Yeomans, 1995).

The role of corticotropin releasing hormone (CRH) in increase of startle is complex.

Startle is enhanced after infusion of CRH into the lateral ventricle (Risbrough et al.,

2003; Swerdlow et al., 1989), into the PnC (Birnbaum and Davis, 1998), and into the

bed nucleus of the stria terminalis (BNST, Lee and Davis, 1997). Lee and Davis (1997)
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also showed that lesions of, or infusion of the specific CRH receptor blocker αCRH into

the BNST, but not the central amygdala (CeA), block CRH enhanced startle. The CeA

has been shown to be crucial for mediating conditioned fear (cf. Davis et al., 1993).

Consistently, Liang et al. (1992) reported no effect on startle after CRH infusion into

the CeA. Additionally, fear potentiated startle and other paradigms of condtioned fear

have been shown to be insensitive to infusion of CRH receptor blockers (de Jongh et al.,

2003; Walker et al., 2009) as well as to lesions of the BNST (Gewirtz et al., 1998; Lee and

Davis, 1997; Sullivan et al., 2004), while being susceptible to lesions of the CeA (Lee and

Davis, 1997; Sullivan et al., 2004; Walker and Davis, 1997b). Contrary, light enhanced

startle (LES) is not altered after CeA lesion, but disrupted after lesion of the BNST

(Walker et al., 2009) and it is also found to be affected by CRH treatment (de Jongh et

al., 2003; Walker et al., 2009). These observations led to the theory of phasic fear-like

and sustained anxiety-like responses, where fear potentiated startle would belong to the

first and light enhanced or CRH induced increase of startle to the latter phenomenon

(Walker et al., 2009).

The ASR is also increased in an environment of loud noise (Hoffman and Fleshler,

1963). However, parametric analysis revealed different efficacy depending on startle eli-

citing pulse intensity and noise frequency band, and non-monotonic function of noise

intensity (Davis, 1974; Gerrard and Ison, 1990). Additionally, Schanbacher et al. (1996)

found this phenomenon to be independent of the amygdala, overall questioning a con-

nection of this phenomenon to fear and anxiety (cf. section 6.2).

Attenuation of startle. Beside enhancement, there are several phenomenona causing

attenuation of the ASR. Among habituation and pleasure attenuated startle, prepulse

inhibition (PPI) has been most extensively studied. PPI is mediated by brainstem

structures (cf. fig. 1.3). After perception of an auditory prepulse by peripheral audit-

ory systems (ear, cochlea nuclei), the information is probably passed on to the inferior

colliculus (IC). Complete lesion of IC totally abolishes the inhibitory effect of prepulse

(Leitner and Cohen, 1985), while small lesions only decrease the amount of inhibition

(Li et al., 1998). Furthermore, stimulation of the IC mimics the effect of prepulse on

startle with an optimal interstimulus interval of 15 - 30 ms (Li et al., 1998), consistent

with maximal prepulse inhibition at intervals of about 50 - 100 ms, considering response

latencies of IC neurons of 7 - 40 ms (Li and Kelly, 1992).

The superior colliculus (SC) might serve as a integration centre, receiving inputs from

auditory, somatosensory and visual areas (Meredith et al., 1992), and passing informa-
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Figure 1.3.: A hypothetical circuit of brain regions mediating prepulse inhibition (black boxes) of the acoustic

startle response (white boxes), and modifications of prepulse inhibition (grey boxes). a: inhibitory

input, →: excitatory input. Adapted from Fendt and Yeomans (2001) and Swerdlow et al. (2001).

tion about prepulses of these modalities to the PPI mediating structures. Fendt et al.

(1994b) demonstrated that lesions of the SC attenuate and pharmacological stimulation

facilitates PPI (Fendt, 1999). Furthermore, and analogue to manipulation of the IC,

electrical stimulation of the SC mimics the effect of acoustic prepulses on startle (Li and

Yeomans, 2000).

Among other structures, the SC projects to the pedunculopontine tegmental nucleus

(PPTg, Redgrave et al., 1987; Semba and Fibiger, 1992), which in turn is crucial in

mediating PPI. Lesions as well as pharmacological inactivation of the PPTg strongly

disrupt PPI of startle (Kodsi and Swerdlow, 1997; Swerdlow and Geyer, 1993), and

stimulation of the PPTg are shown to mimic prepulse inhibition by acoustic prepulses

(Li and Yeomans, 2000). Additionally, the laterodorsal tegmental nucleus (LDTg) is

similarly critical involved in PPI mediation (cf. Jones and Shannon, 2004), while both

structures send cholinergic fibres to the PnC (cf. p. 6).

Prepulse inhibition itself is under influence of other brain structures. Koch et al. (2000)

found prepulse inhibition to be reduced after lesions of the substantia nigra (SNR). SNR

lesion protects against PPI disruption caused by treatment with PPI modulating drugs

(Bakshi and Geyer, 1998; Swerdlow et al., 1990 and cf. section 7), and the SNR has direct

connections to the PPTg as well as γ-aminobutyric acid (GABA) -ergic projections to

the PnC (Beninato and Spencer, 1986; Yasui et al., 1992). Thus, SNR is thought to be
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1. The startle response - neurobiology and animal testing

a part of the PPI mediating pathway, but also to be a relay mediating PPI modulation

by higher brain areas (cf. p. 25).
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2. The startle response in paradigms of

anxiety and fear

The repertoire of behavioural and physiological phenotypes of fear and anxiety is well

preserved within the vertebrates, including increase of heart rate and blood pressure,

freezing, startle, and flight behaviour (cf. Belzung and Philippot, 2007; Misslin, 2003;

Stiedl and Spiess, 1997). Anxiety disorders are among the most frequently diagnosed

psychiatric disorders and maladaptive fear and anxiety behaviour is found as a symp-

tom accompanying almost all psychiatric diseases (cf. Kessler et al., 2005; Lang and

McTeague, 2009). Commonly fear is stated to be object related and anxiety object

un-related. Work by Mobbs et al. (2007) additionally demonstrates that the intensity

of fear reactions is associated with threat distance, and that brain activity shifts from

higher cortical areas (prefrontal) to lower reflex related areas (periaqueductal grey) as

the threat distance decreases.

The question, whether fear is an emotional state or merely a reflexive response is

important, since laboratory animals can only be measured for physiologic markers (e.g.

heart rate) and behaviour, but not emotion. On the other hand, emotion and the ability

to interfere with emotional states are of high interest in terms of human psychiatric

disorders, and implications for the treatment of these diseases drawn from animal ex-

periments. A shift in emotion is always accompanied by a shift in physiological markers

and the behavioural repertoire (e.g. smiling and crying). From a human point of view, a

specific sensation is intrinsically tied to these measurable biological expressions of emo-

tion, and there is no reason why one should doubt that at least higher vertebrates share

this property with humans. In fact there is evidence that some animals are able to show

empathic behaviour, while empathy implicitly requires emotional sensation (Fraser and

Bugnyar, 2010; Langford et al., 2006, cf.). Together, the author states that fear is an

emotional state, but according to work by Mobbs et al. (2007) one has to dissociate fear

to distal (avoidable) and proximal (unavoidable) threats, that can be differentiated by

their respective behavioural response.
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2. The startle response in paradigms of anxiety and fear

These different behaviours associated with fear or anxiety are excited reliably under

laboratory conditions, and can usually be easily observed and quantified. Hence, fear

and anxiety are the most studied emotional states in animal experiments.

A frequently used paradigm in fear research is classical (or Pavlovian) fear condition-

ing (Pavlov, 1927). The experimental subject is presented a neutral stimulus before

receiving a stimulus that unconditionally leads to a physiological response (uncondi-

tioned stimulus, US). The subject learns to associate the neutral stimulus (now termed

conditioned stimulus, CS) with the US, the CS itself now leading to the same physiolo-

gical response. The CS usually consists of visual or acoustic stimuli (cf. Goldstein, 1975),

the latter playing the most important role in mouse experiments (cf. fig. 2.1A). Unfortu-

nately, acoustic CS are applied in a huge variety of duration and quality combinations (cf.

fig. 2.1A,B), while it remains unclear how these different stimulus parameters interfere

with behaviour and learning of the animal. According to fear conditioning, extinction of

conditioned fear is conducted with the same variety of stimulus parameters. Extinction

is a paradigm of memory inhibition. During repeated presentation of the unreinforced

CS the experimental subject learns that the CS does not predict the US any more (cf.

Ji and Maren, 2007 and section 6.4).

Like elemental cues (light, tones, etc.), animals can be conditioned to whole contexts

(cf. Rudy and O’Reilly, 2001). There is an ongoing debate in the literature, as to whether

and under which circumstances the hippocampus (HPC), generally thought to be indis-

pensable in spatial, configural and contextual learning tasks, plays a role in contextual

conditioning (cf. Anagnostaras et al., 2001; Ji and Maren, 2007; Maren, 2008). HPC

lesions do not necessarily lead to disturbed contextual conditioning, but may lead to

impaired cue learning as well (for review see Maren, 2008). This may indicate that

the function of the HPC is to form a unitary representation of what is called a con-

text (Rudy et al., 2004) via a process of pattern completion within the hippocampus

(HPC) put forward by Marr (1971) and developed by McNaughton and Morris (1987),

as well as Wickelgren (1979), theorising the HPC to form a unitary representation from

independent experiences, and Rudy and Sutherland (1995), describing the HPC as a

configural association system. By now, theoretical network models based on empirical

findings support the idea of pattern completion and, reversely, separation as a function

of the CA3- and DG-region of the hippocampus, respectively (cf. Myers and Scharfman,

2010).
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In most studies of fear and anxiety, these emotional states are quantified by means

of the amount of freezing behaviour during a defined period of time. Usually, freezing

is defined as total immobility of the observed animal except for respiratory movements

(cf. e.g. Blanchard et al., 1975). Apart from freezing, the acoustic startle response

(ASR) is frequently used as a measure of the emotional state of an animal in fear and

anxiety related experiments. Not earlier than 1951, Brown et al. introduced the startle

response as a measure of fear in animal studies. Based on the anecdotal evidence that

humans startle more when they are afraid, Brown and colleagues showed that the ASR

is increased by a preceding acoustic stimulus that has been previously conditioned to an

averse stimulus (US).

Including drug withdrawal states, Schizophrenia or the post-traumatic stress disorder

(PTSD), the startle response is found to be altered in the context of a diverse range

of psychiatric disorders (cf. Howard and Ford, 1992). Today, the ASR has evolved to

a standard measure not only in human psychiatric research, but also in animal models

of respective diseases (cf. Braff et al., 2001; Geyer et al., 1990; Grillon, 2002). The

paradigms include light enhanced startle (LES) in rats, where ASR is augmented when

stimuli are presented in a lit environment (Walker and Davis, 1997a); fear potentiated

startle (FPS), where a previously conditioned stimulus presented before startle stimulus

presentation leads to increased reactivity (Brown et al., 1951); prepulse inhibition (cf.

section 3); sensitisation, where the animal is subjected to aversive situations or stress (e.g.

electric footshocks or forced swimming) before ASR is measured (e.g. Davis, 1972); and

baseline startle measurements elicited by stimuli of suitable parameters (e.g. Mansbach

et al., 1992).

LES is commonly interpreted as a measure of anxiety. In contrast to FPS, where fear

to a harm-predicting stimulus is tested, the light stimulus in LES does not predict any

harmful experience, but creates a potentially harmful environment for rats, which are

usually active during dawn or night and avoid bright light (Walker and Davis, 1997a).

As indicated above (p. 12), mice seem to be more susceptible to acoustic stimuli than

to light. Hence, LES is of minor interest in mouse studies, although there is some work

reporting successful application (cf. Hironaka et al., 2002; Salam et al., 2009).

As freezing behaviour, FPS is thought to be a measure of fear (e.g. Hitchcock and

Davis, 1991). The presentation of the CS predicts a concrete threat to the animal. In this

state of fear, the experimental subject is more susceptible to startling stimuli, resulting in

a higher ASR (Brown et al., 1951). As LES, FPS is susceptible to anxiolytic drugs such

as benzodiazepines (Davis, 1979; Smith et al., 2010; Walker and Davis, 2002a). Applied
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2. The startle response in paradigms of anxiety and fear

to mice only about a decade ago (Falls et al., 1997), FPS compared to analysis of freezing

behaviour has some advantages. For instance the ASR can be measured easily by means

of automated data recording, thus ensuring objective data acquisition. On the other

hand, the startle reflex can be modulated by a variety of internal and external factors (cf.

Koch, 1999), demanding careful experimental design and measuring. Additionally, the

variability of the ASR necessitates repeated measuring to achieve reliable data, including

repeated presentation of the CS, that could interfere with the experimental design in e.g.

extinction experiments.

Sensitisation of the ASR is simply achieved by putting the experimental subject

through aversive or stressful situations. Thus, sensitisation is present in almost all

paradigms of ASR measurement. Even repeated presentation of startle eliciting stimuli

may put animals to a sensitised state (Davis and Sheard, 1974; Groves and Thompson,

1970; Plappert et al., 1999), leading to increased ASR or impaired habituation of the

ASR. Sensitisation may serve as a tool to characterise animal strains in terms of stress

coping abilities (e.g. Gonzales et al., 2008), but can also be used to study the effect of

genes on the neural mechanism of behaviour (cf. Plappert and Pilz, 2001). Additionally,

the ASR is found to be increased in animal models of PTSD (e.g. Servatius et al., 1995;

Khan and Liberzon, 2004 and cf. section 6.5) like it is found in patients (e.g. Butler et

al., 1990; Grillon et al., 1996; Ornitz and Pynoos, 1989), showing the sensitising effect

of trauma-like events.

Baseline startle usually is measured presenting startle eliciting stimuli of three or more

intensities. It is a common measure of baseline emotional states, such as anxiety (cf.

Grillon, 2008) or arousal (cf. Samuels et al., 2007), but is also used to assess hearing

capabilities in animals (Willott et al., 1984 and cf. section 6.5.1).

After a short excursion characterising FPS in a mouse-strain used as background

strain of genetic mutants (e.g. Marsicano et al., 2002) and model of PTSD (e.g. Golub

et al., 2009) at the Max-Planck-Institute of Psychiatry (MPI-P), Munich (section 6.1),

this chapter introduces a paradigm which may be applicable in measures of hearing

capability, acoustic stimulus adaptation or attention in mice. Based on the work by

Hoffman and Fleshler (1963) and educed from FPS measurements, the paradigm of tone

enhanced startle (TES) is characterised and applied in three experiments which shall

demonstrate the use of TES as the proposed methods (section 6.2).

Being aware of the importance of the chosen parameters in startle paradigms, section

6.3 tries to elucidate the pitfalls of stimulus parameters in fear conditioning. Pure

14



2.1. Fear potentiated startle in C57BL/6N mice

tones (sine wave) and noise stimuli have been similarly often and uncritically applied as

conditioned stimuli in fear conditioning and extinction of conditioned fear (cf. fig. 2.1).

The present data unequivocally demonstrate that white noise and sine wave stimuli differ

markedly in their impact on animal learning and behaviour.

Fear conditioning is not only dependent of the parameters of the used conditioned

stimuli (CS), but can also depend on the context where learning takes place (cf. Effting

and Kindt, 2007). The proposed process of pattern completion might take place also

during memory retrieval upon a single reminder, such as the CS. In section 6.4 the hy-

pothesis is tested that during fear extinction training the presentation of the CS also

weakens other associations to the US acquired during conditioning, such as the condi-

tioned context. This would lead to alleviated fear response not only to the CS, but to

the conditioned context as well. The hypothesis is refused while demonstrating that the

fear response (i.e. freezing) to the CS tone can be readily measured by means of animal

movements recorded by a piezoelectric device usually used to record the startle response.

In section 6.5 the usability of measuring startle is demonstrated applying this measure

to two mouse models established at the MPI-P. It is shown that animals related to high

anxiety of the HAB/LAB mouse-model of trait anxiety (cf. Krömer et al., 2005) acquire

conditioned fear better than animals related to low anxiety. Subjecting these mice to

measures of baseline startle and TES (cf. section 6.2), and response to electric stimuli, it

is proposed that this difference cannot be attributed to differences in hearing capability

or shock sensitivity.

Measuring baseline startle in a mouse-model of PTSD (cf. Siegmund and Wotjak,

2007) it is demonstrated that the ASR can be readily used to measure hyper-arousal in

these animals (Golub et al., 2009 and section 6.5). Having shown that this measure is an

independent factor of the symptoms of this PTSD-model (Pamplona et al., 2010), the

present work also demonstrates the independence of hippocampal shrinkage following a

traumatic event (i.e. intense footshock) and hyper-arousal.

2.1. Fear potentiated startle in C57BL/6N mice

Fear potentiated startle (FPS) is a paradigm to measure and quantify fear in animals.

Introduced in 1951 by Brown et al., it is frequently used in animal studies of fear and

anxiety (for review see Davis, 1990). It involves a conditioning session, where the experi-

mental subject learns to associate a neutral stimulus, such as a tone, with a stimulus (US)

leading to an unconditioned response (UR), the now conditioned stimulus (CS) leading
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2. The startle response in paradigms of anxiety and fear

then to the same response (cf. p. 12). In the test session, the experimental subject is then

presented with a sequence of startle eliciting stimuli alone (pulse P) and preceded by the

CS (CS + P). The potentiation of the startle response (SR) is then expressed as either

difference or percental change. Since prior conditioning or drug treatment or else may

affect baseline startle of the animals compared, Walker and Davis (2002b) recommen-

ded the use of percental rather than absolute (difference) values, thereby controlling for

baseline startle changes. Grillon and Baas (2002) argue that since the nature of startle

changing effects might be unknown, difference and percental change should be analysed.

The data presented here will be reported in both ways.

FPS can be elicited across species, also in humans (Grillon and Davis, 1997). This

has the rare advantage to corroborate the idea that physiological signs of fear measured

in animals and humans reflect indeed a state of emotional fear, since these physiological

measures are accompanied by verbal reports of a state of fear in humans.

Since FPS is a paradigm based on fear conditioning, brain areas involved in mediat-

ing the enhancement of startle via CS - US association are the same (cf. fig. 1.2). The

association is built in the lateral and basolateral amygdala (Campeau and Davis, 1995;

Miserendino et al., 1990), integrating input from sensory and nociceptive brain struc-

tures (Doron and Ledoux, 1999; Linke et al., 1999; Shi and Davis, 1999). The amygdala

mediates the potentiation of the startle response via direct efferent pathways (Davis et

al., 1993), probably by corticotropin releasing hormone (CRH) or glutamate (Fendt et

al., 1996b, 1997). Additionally, other structures such as the periaqueductal grey or the

laterodorsal tegmental nucleus were shown to affect fear potentiated startle (Fendt et

al., 1996a; Fendt and Fanselow, 1999; Hitchcock and Davis, 1991) while sending pro-

jections to the startle mediating caudal pontine reticular nucleus (PnC) (Borowski and

Kokkinidis, 1996; Koch et al., 1993), suggesting these nuclei as relays between amygdala

and PnC (Koch, 1999).

As other behaviour associated with conditioned fear, FPS is attenuated by several

inhibitory manipulations such as extinction (cf. section 6.4) or latent inhibition (Schauz

and Koch, 1998, 1999, 2000). Among others, compared to freezing (cf. p. 13) (fear

potentiated) startle has the advantage not only to detect response changes by means of

increase, but also decrease. Hence, FPS could be a useful measure in experiments of

fear-, but also security learning, introducing a conditioned inhibitor that predicts the

absence of the US (cf. Falls and Davis, 1995, 1997).

Additionally there might be animal models where animals exhibit a high locomotory
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2.2. Tone enhanced startle as a measure of hearing, adaptation and attention

drive, thereby not being able to freeze even in their highest state of fear. Since the ASR

is a basic reflex, it is very reliable and thus could be used as an alternative measure of

fear in such animal models.

In the following, FPS is characterised in the C57BL/6N mouse strain in terms of CS

(i.e. light and tone), pulse intensity and context dependency. For future application of

the FPS paradigm it was of particular interest to strictly differentiate between the con-

ditioning and the test context. Thus, conditioning was conducted in the FC-apparatus

(cf. p. 35) in a room separate from the room where startle measures took place. Find-

ing strong non-associative startle enhancing tone effects (i.e. TES, cf. section 6.2) that

masked conditioned effects, FPS was not followed up further.

2.2. Tone enhanced startle as a measure of hearing

capability, stimulus adaptation and attention

Unconditioned alterations of the acoustic startle response (ASR) may occur in the pres-

ence of increased acoustic environments. Hoffman and Fleshler (1963) first described in-

creased ASR in an environment of steady background noise in rats. In subsequent studies,

they analysed temporal characteristics of this phenomenon, showing that seconds-long,

continuously presented noise facilitates ASR, while discrete noise pulses inhibits ASR

(later termed PPI, cf. section 7, Hoffman and Wible, 1969). In subsequent years the

phenomenon of startle enhancement by background sound was further characterised by

Hoffman, Ison and colleagues (Gerrard and Ison, 1990; Hoffman and Searle, 1965; Ison

and Hammond, 1971; Ison et al., 1973; Ison and Russo, 1990), evaluating dependence of

background sound intensity and spectral composition, and the intensity of the eliciting

stimulus (Davis, 1974).

The paradigm of prepulse facilitation of startle (PPF) by preceding long stimuli (> 2 s,

cf. PPF by short prepulses, p. 27) has been descibed for humans and rats (Hsieh et al.,

2006; Reijmers and Peeters, 1994; Reilly and Hammond, 2001), and sometimes applied in

measures of attention (cf. Conzelmann et al., 2010; Wynn et al., 2004). The phenomenon

is also apparent in mice, although simply described as unconditioned effects of pre-stimuli

by Falls and colleagues (Falls et al., 1997; Falls, 2002; Heldt et al., 2000) applying the

paradigm of fear potentiated startle (cf. section 6.1). While Carlson and Willott (2001)

demonstrated that the phenomenon of background sound startle alteration is apparent

and equally complex in mice as in rats, work by Hoffman and Wible (1969) already
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2. The startle response in paradigms of anxiety and fear

suggests that enhancement of startle by background sound presentation and facilitation

by startle pulse preceding stimuli is equivalent.

Having found strong and reliable enhancement of the ASR by preceding sine wave

tones in the C57BL/6NCrl mouse strain (cf. section 6.1), the phenomenon of tone en-

hanced startle (TES) is characterised and the usefulness as a tool in mouse behavioural

experiments is tested.

There is usually the need of invasive techniques or manipulation of the emotional state

(e.g. fear conditioning) to test for experimentally relevant properties of an animal, such as

hearing capability or stimulus adaptation. Startle can be reliable elicited in a variety of

species and data acquisition is today easily achieved by automated response recording.

Modifications of the startle response can be achieved by divers parameter- or envir-

onmental changes which enables to draw conclusions on stimulus neuronal processing.

Therefore the startle reaction is ideally suited as a basal measure for characterisation

of a naive animal. Since in the paradigm of TES the startle response is affected by a

preceding acoustic stimulus, TES offers the possibility to measure properties related to

stimulus perception. It is therefore proposed that TES might be applicable in terms of

measuring hearing capability, stimulus adaptation and attention.

2.3. Fear conditioning parameters - the matter of fact

Our knowledge about communicational and functional processes in the brain is based to

a large extend on studies of fear conditioning (FC) and extinction of conditioned fear

(ExFC) in rodents. During the last decade, fear conditioning as well as extinction in the

mouse gained more and more importance. Its ability to reliably acquire memory in a FC-

as well as ExFC-task together with the possibilities of genetic manipulation make the

mouse the most important animal model to study gene-memory interactions in mammals.

Stimulus parameters of startle and startle modulation have been well defined and

characterised (cf. Blaszczyk and Tajchert, 1997; Hoffman and Searle, 1965; Ison et al.,

1997; Plappert et al., 2004; Stoddart et al., 2008), demonstrating that they may have

considerable impact on animal behaviour. Nevertheless, the characteristics of applied

stimuli in FC and ExFC vary considerably between the different laboratories. This is

shown not only by the stimulus frequency-spectrum of more than three octaves, whereby

the frequencies used often do not match the perceptibility of the mouse ear (Ehret, 1976;

Marsch et al., 2007; fig. 2.1A,C). It is also shown by the use of stimulus intensities, which
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2.3. Fear conditioning parameters - the matter of fact

cover a range of about 50 dB (50 - 100dB, fig. 2.1B).

While the latter may be due to the mouse hearing abilities at different frequencies

or results from constructional aspects of the FC-system, the indifferent use of stimu-

lus length and stimulus quality (i.e. sine wave vs. noise) in FC (fig. 2.1A) and ExFC

(fig. 2.1C) could be more critical. Kamprath and Wotjak (2004) have shown that non

associative processes like sensitisation and habituation may determine expression of con-

ditioned fear. Thereby the duration of the conditioned stimulus (CS) may affect acquis-

ition and/or extinction of conditioned fear. Stimulus quality has been shown to affect

animal behaviour in measures of acoustic startle response (ASR) and prepulse inhibition

(PPI) as well as prepulse facilitation (i.e. TES, see p. 27 and section 6.2, and cf. Hsieh et

al. (2006); Stoddart et al. (2008); Wynn et al. (2000)). Additionally, the natural acoustic

environment of mice mainly consists of broadband noises and multiple-frequent sounds.

Therefore, pure sine wave tones may differ in their ecological significance from sounds

and noises. Thus, sine wave and noise stimuli could alter animal behaviour in a FC or

ExFC experiment.
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Figure 2.1.: Number of publications dealing with auditory cue fear conditioning in mice during the past ten years

(2000 - 2010). Combinations of stimulus parameters length and quality (A,C) as well as stimulus

quality and intensity (B) vary considerably in fear conditioning studies (A,B) and in extinction of

conditioned fear (C). wn: white noise, cl/bz: clicking/buzzing.

In a literature survey an indifferent use of different qualities (i.e. noise and sine wave

stimuli) and length, as well as intensity of acoustic stimuli in FC and ExFC in mice be-

came apparent (fig. 2.1). Apparatus differences, mostly regarding orientation of speaker

and FC-chamber material and structure of chamber walls, etc., could necessitate applica-

tion of different stimulus intensities. The experiments described below focused therefore

on stimulus quality and length. The following experiments shall clarify, whether stim-

ulus quality and length in terms of FC and ExFC are leading to differences in animal

behaviour and thereby could lead to different interpretations of measured data.

To assess the importance of length and quality of conditioned stimulus (CS) in fear con-
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2. The startle response in paradigms of anxiety and fear

ditioning (FC) and extinction of conditioned fear (ExFC) experiments, acoustic startle

response (ASR) and acquisition as well as extinction of conditioned fear to either sine

wave (sw) or white noise (wn) stimuli of different duration is measured. It is shown that

freezing response as well as ASR differ remarkably between sw and wn in mice during

the course of conditioning and extinction retrieval, and basal as well as fear potentiated

(FPS) and tone enhanced startle (TES, cf. section 6.2), respectively.

2.4. Extinction of conditioned fear to context by cue

extinction training

By repeated unreinforced presentation of an previously conditioned stimulus, the fear

response to this stimulus is alleviated. This process of fear extinction neither represents

forgetting of the initially learned pairing of CS and US, nor does it overwrite the initial

fear memory, but rather suggests a new memory built up (i.e. CS +��US, Bouton (2004);

Delamater (2004); Myers and Davis (2002)). This is indicated by several recovery effects

(renewal, spontaneous recovery, reinstatement), not only demonstrating an intact initial

memory trace (for review see Ji and Maren, 2007), but also that extinction is highly

context specific and context dependent (e.g. Bouton and King, 1983).

As in other spatial, configural and contextual learning tasks, context association in

conditioning was long thought to be a function exclusively of the hippocampus (HPC),

indicated by impaired context conditioning after HPC lesion. However, findings of intact

context conditioning with impaired or lesioned HPC question this concept (for review

see Maren, 2008).

Preliminary data in the group of Dr. Carsten T. Wotjak at the Max-Planck-Institute of

Psychiatry, Munich (MPI-P), show that two days after conditioning an olfactory part of

the conditioned context mimics the fear response to a contiguously conditioned stimulus

(asymptotic increase vs. exponential decrease of freezing, respectively) when an animal

is exposed to this context after the HPC was inactivated by injection of muscimol (Dr.

Carsten T. Wotjak, personal communication). This observation makes it plausible to

postulate a direct encoding of cues of all sensual modalities parallel to the encoding of the

summary of these cues (i.e. context) by the HPC. Otherwise, if contextual information

would be only processed by the HPC, a context feature would not be able to elicit a fear

reaction in retrieval when the HPC is inactivated. Interestingly, Sacco and Sacchetti

(2010) found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory
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2.4. Extinction of conditioned fear to context by cue extinction training

cortices modality-specific impaired remote, but not recent, fear memories, arguing for

direct modality-specific memory encoding.

Conversely, Rudy et al. (2004) proposed the theory of dual representation of the con-

text,

[. . . ] the features view, where context is represented as a set of independent

features or elements that each can enter into association with an event [. . . ]

and

[. . . ] the conjunctive view, where the separate features are bound into a new

unitary representation that encodes their conjunction or co-occurrence [. . . ].

Thus, context conditioning per se can also be achieved without HPC function by asso-

ciation of single features and US by neocortical systems (Nadel and Willner, 1980), but

interaction with the HPC is necessary to elaborate a unitary conjunctive representation

out of all contextual features (Rudy and O’Reilly, 2001).

If contiguously paired cues (i.e. CS) and the so called contextual features are processed

directly and through the HPC in parallel, extinction training of the CS should lead in

turn not only to a decreased fear reaction to the CS, but also to the context. The present

work therefore predicts that the presentation of the CS during extinction training leads

to a recall of the configural representation (pattern completion), and thereby also to ex-

tinction of context fear. This of course only as long as extinction training is performed in

a short time period after conditioning, when the HPC is still active in pattern completion

(i.e. memory consolidation, cf. Rudy and O’Reilly, 1999). In turn, context extinction

through CS extinction should not occur when extinction training is done a long time

after conditioning.

This hypothesis is tested by conducting fear extinction in the startle apparatus. Thus

conditioning and extinction training takes place in two very different contexts in different

rooms, ensuring complete independence of fear and extinction learning. Demonstrating

that the fear response to the CS can be readily measured by means of movement scores in

the startle apparatus, it is shown that extinction to a high degree depends on the context

while the hypothesis of context fear extinction via CS presentation induced recall of the

configural representation has to be rejected.
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2. The startle response in paradigms of anxiety and fear

2.5. ASR measures in mouse-models of trait anxiety and

PTSD

The reliability of anxiety related behaviour makes it possible to draw conclusions from

animal studies which also account for other vertebrates, including humans (cf. Belzung

and Philippot, 2007). This allows the creation of animal models to study the physiolo-

gical background of fear and anxiety, as well as circumstances which lead to pathological

changes in anxiety and fear behaviour.

One model of maladaptive behaviour established at the Max-Planck-Institute of Psy-

chiatry, Munich (MPI-P), is the high/low anxiety related behaviour mouse line (Krömer

et al., 2005).

Based on the performance in the elevated plus-maze (EPM) paradigm, a bidirectional

breeding approach led to rats which are characterised as high (HAB-R) and low (LAB-R)

anxiety related behaviour rats (Liebsch et al., 1998a,b). This animal model is found to

mimic symptoms of trait anxiety like it is found in patients (Neumann et al., 2005). As

proteomic analysis already revealed differences in protein-expression patterns (Salomé et

al., 2004) and hormone activity (Landgraf et al., 1999; Murgatroyd et al., 2004) between

these animals of high and low anxiety related behaviour, the same breeding approach

was applied to mice. This enables the use of powerful genetic methods available in these

animals to study the genetic contribution to the different behavioural phenotypes and

to look for putative biomarkers of trait anxiety (Ditzen et al., 2006, 2010).

In this section it is shown that HAB mice express higher fear to conditioned stimuli

than LAB or NAB (normal anxiety related behaviour) mice. Measuring startle response

to acoustic and electric stimuli, and tone enhanced startle (TES, cf. section 6.2), it is

proposed that differences in hearing capability or electric footshock susceptibility do not

account for these differences. Interestingly, HAB mice differ tremendously from LAB

and NAB mice, showing very low ASR, but high TES.

Another model recently established at the MPI-P is a model of the post-traumatic

stress disorder (PTSD) in mice (Siegmund and Wotjak, 2007) based on a single intense

electric footshock.

PTSD was first defined in Diagnostic and Statistical Manual of Mental Disorders, 3rd

edition (Spitzer, 1980). Early following studies already effectively identified significant
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2.5. ASR measures in mouse-models of trait anxiety and PTSD

risk factors and established the disorders symptoms (Peleg and Shalev, 2006). Although

in subsequent years animal models were established to study the pathophysiology of

PTSD, the processes of sensitisation and conditioning, named as critical psychobiological

processes underlying PTSD (Charney et al., 1993), were studied in independent branches

of research (Siegmund and Wotjak, 2006). Emphasising the involvement of associative

(i.e. conditioning) and nonassociative (i.e. sensitisation) processes in the development

of PTSD, Siegmund and Wotjak (2006) defined criteria to establish animal models of

PTSD that meet not only face, but also predictive as well as construct validity.

The model subsequently presented by these authors (Siegmund and Wotjak, 2007)

was then shown to fulfil criteria for face and predictive validity and was further studied

in terms of risk and prediction factors (Siegmund et al., 2009a,b), treatment strategies

(Golub et al., 2009) and interdependency of the observed symptoms (Pamplona et al.,

2010; Siegmund and Wotjak, 2007).

Among others, known symptoms of PTSD are abnormal levels of corticotropin-releasing

hormone (CRH) and increased startle responsiveness, as well as decreased hippocampal

(HPC) volume. PTSD patients have been shown to exhibit high CRH concentrations in

the corticospinal fluid (CSF) compared to healthy people (Baker et al., 1999; Bremner et

al., 1997; Sautter et al., 2003) and dysfunction of hypothalamus-pituitary-adrenal (HPA)

axis (Yehuda et al., 1991; Handwerger, 2009). Pharmacological enhancement of cortical

CRH elevate the startle response at least in animal experiments (Risbrough et al., 2003;

Swerdlow et al., 1986; Walker et al., 2009) which suggests a linkage between CRH hy-

perfunction and exaggerated startle response found in these patients (e.g. Holstein et

al., 2010; Kinzie et al., 1984).

Among other structural changes found in the brain of PTSD patients compared to

healthy people, the decrease in hippocampal (HPC) volume is very prominent. It is still

controversially discussed whether the observed HPC volume and functional alterations

are related to the symptomatology of PTSD or merely to trauma experience per se.

Brohawn et al. (2010) stated that the HPC, in interplay with the amygdala, is closely

related in processes mediating the enhancement of emotional memory and the integrity of

this interplay may be compromised in PTSD. On the other hand, Winter and Irle (2004)

failed to find differences in HPC volume between healthy trauma-exposed individuals

and trauma-exposed PTSD patients. Furthermore, Gilbertson et al. (2002) found an

association between HPC volume and PTSD prevalence in monozygotic twins which

indicates HPC volume to be a risk factor for rather than a symptom of PTSD. These

different observations demand further studies, presumably under controlled conditions
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2. The startle response in paradigms of anxiety and fear

that can only be provided by animal models.

The PTSD mouse model of Siegmund and Wotjak (2007) has been shown to be a useful

tool to study PTSD in various aspects of the disease (Golub et al., 2009; Pamplona et al.,

2010; Siegmund and Wotjak, 2007; Siegmund et al., 2009a). This is further illustrated by

the present work, applying measures of acoustic startle response (ASR) and hippocampal

volume on mice that experienced the PTSD-protocol (i.e. single electrical footshock, cf.

Siegmund and Wotjak, 2007). It is shown that also in terms of startle reactivity and

HPC volume this mouse model of PTSD resembles patient data. Demonstrating that

intracerebroverntricular CRH injections lead to increased ASR, which is prevented by

co-treatment with alphahelical CRH (αCRH), a CRH-receptor blocker, and that mice

which underwent the PTSD-protocol show increased ASR, too, further investigations

are suggested, addressing a linkage between increased cerebral CRH levels and PTSD

symptoms in this mouse model. Additionally, while hyper-arousal (i.e. increased startle

response) has been recently shown to be an independent emotional dimension in this

model (Pamplona et al., 2010), the present data demonstrate that hyper-arousal is also

independent of HPC function and, by analysing HPC volume with the imaging technique

ultramicroscopy (cf. Dodt et al., 2007), these mice have decreased HPC volume which is

prevented by enriched housing conditions.
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manipulation of prepulse inhibition

Prepulse inhibition (PPI) of the acoustic startle response (ASR) is a reliable behavioural

tool to measure sensorimotor gating in vertebrates (cf. e.g. Burgess and Granato, 2007;

Sasaki et al., 1998; Schall et al., 1999; Swerdlow et al., 2001). Most excessively studied

in rats, this paradigm is also well characterised in the mouse (cf. Plappert et al., 2004)

and frequently used preferably in animal models of schizophrenia, resembling the finding

of disturbed sensorimotor gating in these patients (for review see van den Buuse, 2010).

Inhibitory reflex modification was first studied and described in 1862 by Sechenov

(quoted in Ison and Hoffman, 1983). He found the cutaneous flexor reflex in the frog

inhibited after presentation of midbrain stimulations preceding the tactile stimulus. In

the auditory system, Peak (1939) reported an inhibition of the perceived intensity of an

acoustic stimulus when it followed the same stimulus by 177 ms. The paradigm of PPI is

based on the work by Hoffman and Fleshler (1963), who studied the effects of different

background sounds on the ASR in rats. They found the ASR to be inhibited when startle

eliciting pulses (P) were presented in a pulsed background noise of 1 Hz. Eventually it

was found that a single prepulse (PP) presented in a certain time interval before the pulse

is sufficient to decrease the ASR up to 80 - 90 %, depending on the chosen parameters

(Hoffman and Searle, 1965). Findings by Buckland et al. (1969) and Pinckney (1976)

that the ASR is also inhibited by visual and tactile prepulses, respectively, supported

the hypothesis of PPI as a general mechanism of reflex inhibition.

Although some authors describe PPI simply as an attentional deficit caused by the

distracting prepulse (cf. Filion et al., 1998; Schell et al., 2000), most authors follow the

theory of Graham (1975). He proposed low-intensity changes in the sensory environment

to automatically trigger a gating mechanism attenuating irrelevant responses, thereby

protecting the perceptional processing of the leading stimulus.

This process of sensorimotor gating is modulated under a variety of experimental
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conditions. Alterations of PPI have been found among others to depend on ovarian

hormones (Koch, 1998, but cf. Plappert et al., 2005), breeding conditions (Geyer et al.,

1993) and genetic background (Swerdlow et al., 2007), and is also found to be disrupted

in some psychiatric disorders, such as Huntington’s disease (for review see Abbruzzese

and Berardelli, 2003), Tourette Syndrome (Castellanos et al., 1996), obsessive compulsive

disorder (Swerdlow et al., 1993), or, most prominent, Schizophrenia (for review see Powell

et al., 2009).

Brain structures associated with modulation of PPI are the hippocampus (HPC),

amygdala (AMY), nucleus accumbens (NAC), and the prefrontal cortex (PFC, cf. p. 29)

(fig. 1.3). Prepulse inhibition is modulated by cholinergic as well as glutamatergic activity

within the hippocampus (Caine et al., 1991; Koch, 1996; Wan et al., 1996). The HPC

has been shown to have direct projections to the prefrontal cortex (Ferino et al., 1987;

Swanson, 1981), which in turn affects PPI mainly in a manner of dopamine, but also

glutamate activity (Bubser and Koch, 1994; Koch and Bubser, 1994; Schwabe and Koch,

2004; Swerdlow et al., 2006 and cf. section 7.1.2). The nucleus accumbens has a pivotal

role in mediating modulation of PPI. HPC as well as PFC directly innervate the NAC

(cf. Carr et al., 1999; French and Totterdell, 2002). As within the PFC, dopaminergic

(Swerdlow et al., 1986, 1990; Wan et al., 1994; Zhang et al., 2000) as well as glutamatergic

transmission in the NAC is crucially involved in PPI modulation (Grauer and Marquis,

1999; Reijmers et al., 1995; Wan and Swerdlow, 1996).

In addition, Decker et al. (1995) and in more detail Wan and Swerdlow (1997) found

that also the amygdala, in particular the basolateral part (BLA) is involved in modula-

tion of prepulse inhibition. Other manipulations, such as electrical kindling (Koch and

Ebert, 1998), or microinfusions of GABA(A)- or NMDA-receptor antagonists (Fendt et

al., 2000) also potently disrupt PPI. Fendt et al. (2000) also demonstrated that these

effects are reversed by haloperidol, suggesting a dopamine dependency of BLA mediated

PPI disruption. As described above, also alteration of PPI via the PFC is dopamine de-

pendent, and like the PFC, the BLA innervates the core region of NAC (cf. Groenewegen

and Trimble, 2007), which suggests a mechanism of direct subcortical dopamine trans-

mission for PPI effects of PFC and BLA. Hippocampal effects on the other hand are not

dopamine dependent, and may be mediated by glutamatergic mechanisms within the

NAC shell (Wan and Swerdlow, 1996), which is innervated by parts of the hippocampal

system (cf. Groenewegen et al., 1987).

PPI can be measured across species (cf. Burgess and Granato, 2007; Sasaki et al.,
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1998; Schall et al., 1999; Swerdlow et al., 2001), and findings suggesting similarities also

in the neurochemical regulation such as the dopaminergic system and disturbed dopam-

inergic neurotransmission in some of the before mentioned disorders (cf. e.g. Swerdlow

et al., 2001) lit the development of animal models of these diseases. On the other hand,

even mice of different strains seem to differ in their response to dopamine interference

(DR-antagonists, agonists, transporter blocker, etc.) (Varty et al., 2001), and pharma-

cological models such as apomorphine treatment cannot readily be transferred from one

species to another (for review see Geyer, 2006). Hence, there is still a need for detailed

characterisation of gating processes and associated neuronal substrates in animals sub-

jected to disorder models.

Prepulses may not only induce inhibition, but also enhancement of ASR. This only

rarely studied phenomenon is termed prepulse facilitation (PPF) (cf. Ison et al., 1997),

sometimes prepulse augmentation (PPA) (cf. Willott and Carlson, 1995). There are

apparently two types of PPF: facilitation caused by short prepulses at short interpulse

intervals (IPI< 15 ms) (cf. Plappert et al., 2004) and facilitation caused by long stimuli

and long IPI (> 1 s) (cf. Reijmers and Peeters, 1994). The latter is a phenomenon of

increased startle response in an environment of high background sound (cf. Hoffman and

Fleshler, 1963) and related to measures of tone enhanced startle (cf. section 6.2). With

respect to short IPIs, some authors propose PPF as a functional mechanism like PPI

(e.g. Plappert et al., 2004), others see PPF as kind of an artefact of PP + P summation

in the startle mediating circuit (Hoffman and Ison, 1980). PPF can be observed only

at short IPIs, supporting the summation hypothesis; on the other hand, PP-intensity in

PPF does not follow a linear but an “inverted U-shaped” function (Plappert et al., 2004)

and is found to be more pronounced at lower intensities (Ison et al., 1997; Plappert et

al., 2004). Yet, there are only hints that dopamine in the nucleus accumbens might play

a role in net PPF (Mohr et al., 2007), but no studies that examined the neuronal basis

of PPF.

Like the startle response itself, PPI/F can be elicited and measured almost infinitely

with the experimental subject serving as internal control. This fact and the possibility

to boost or to constrain PPI/F via various parametric adjustments makes it a valu-

able paradigm to study inter brain-region functionality and communication. Applying

methods such as systemic or intra-cerebral administration of drugs (e.g. Swerdlow et

al., 2005), local electrolytic or excitotoxic lesion (e.g. Pouzet et al., 1999) or local elec-
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tric stimulation (e.g. Yeomans et al., 2006), there are multiple ways to interfere with

and study neuronal processes by means of PPI/F. An only recently introduced way of

intra-cerebral interference is the optogenetic approach (Arenkiel et al., 2007). Employing

transgenic mice that carry light sensitive ion-channels in their neuronal cell membranes,

it is possible to put these cells to a depolarised (channelrhodopsin-2, ChR2, cf. Nagel

et al., 2003) or hyperpolarised (halorhodopsin, NpHR, cf. Hegemann et al., 1982) state.

Using genetic approaches which enable the expression of these light-sensitive proteins in

specific populations of neurons, these neurons can be depolarised or hyperpolarised by

short, area specific light-flashes to study their contribution in for example behavioural

tasks or to oscillation patterns.

Although parameters for eliciting PPI/F are well known, most of the studies published

examine the effects of treatment on PPI only in a very small range of parameters. The

present work presents a protocol which covers a wider range of parameters, showing

that also other areas of the parametric spectrum than those usually applied can provide

useful information.

Interfering with the dopaminergic system in mice of the BALB/c and the C57BL/6J

strain, it is shown that systemic blockage of dopamine (DA) receptor type 1 (DR1), but

not DR2 (cf. section 7.1.1), and prefrontal blockage of DR1 or DR2 (cf. section 7.1.2),

both result in increased PPI and decreased PPF. Showing that the prefrontal cortex

(PFC) is involved in mediating PPI in the mouse, PPI and PPF are also successfully

manipulated by applying light stimuli to the PFC of transgenic ChR2-positive mice

(section 7.2).

3.1. Prefrontal DR1 and DR2 mediate modulation of

prepulse inhibition

The dopamine (DA) receptor (DR) 1 and 2 play an essential role in mediating prepulse

inhibition (PPI) of startle. Various studies show that direct or indirect DA-agonists,

such as apomorphine or d-amphetamine (Mansbach et al., 1988; Swerdlow et al., 1991)

result in disruption of PPI. In rats, this effect is reliably prevented by DR2-antagonists

(Mansbach et al., 1988; Swerdlow et al., 1991; Wan et al., 1996) and it has been shown

that the disrupting effects largely depend on DR2, since direct stimulation of DR2 de-

creases PPI (Peng et al., 1990; Wan et al., 1996). Contrary, DR1 seems to have a more

limited role in mediating modulation of PPI. Studies by Peng et al. (1990) and Wan et
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al. (1996) suggest an auxiliary function of DR1 over DR2 in rats, since sub threshold

DR2 agonists potently disrupt PPI in the presence of DR1 agonists, while each alone

does not yield any PPI change.

In mice, DR1 has a more prominent role in PPI mediation. Like in rats, amphetamine

effects have been shown to be a function of DR2 (Ralph et al., 1999; Ralph-Williams et

al., 2002). Similarly, PPI deficits shown by DA transporter deficient mice are ameliorated

by DR2-antagonists, but not by DR1 blockage. On the other hand, DR1 agonists are

found to be much more effective than DR2 agonists in disrupting PPI in mice (Ralph-

Williams et al., 2002, 2003; Ralph and Caine, 2005).

Animals were treated with DR-agonists (direct or indirect) in most studies published

so far reporting successful PPI alteration by DR-antagonists. Baseline PPI alterations by

DR blockage were reported by Schwarzkopf et al. (1993), who found PPI to be enhanced

when rats were treated with a DR1- or DR2-antagonist (SCH23390 and haloperidol,

respectively). Contrary, Ellenbroek et al. (1996) reported PPI disruption after sys-

temic or prefrontal infusion of DR1- or DR2-antagonist. Also Swerdlow et al. (2005)

found PPI in rats decreased after systemic or intra-prefrontal injections of the DR1-

antagonist SCH23390, although shown only for prepulse intensities of 6 5 dB above back-

ground. Here, SCH23390 mimicked PPI decrease after treatment with amphetamine,

but SCH23390 mediated decrease in PPI was not completely reversed by pretreatment

with DR2-antagonist haloperidol, while amphetamine effects were successfully rescued

by DR2 blockage, indicating that this effect was not entirely mediated by increased DA

transmission at DR2.

BALB/c mice have been shown to have higher cerebral DA levels compared to

C57BL/6J (B6J) mice (George et al., 1995). To further examine the role of DR1 and

DR2 in mice and clarify the effect of baseline DR1 and DR2 blockage also in an environ-

ment of high DA concentrations, BALB/c and B6J mice are treated with DR2-antagonist

haloperidol or sulpiride, and DR1-blocker SCH23390 and are subsequently measured for

PPI/F of startle. While haloperidol potently encreased baseline PPI (and decreased

PPF), sulpiride treatment did not yield any PPI change. On the other hand, SCH23390

reliably increased PPI, but effects were less pronounced than with haloperidol.

The prefrontal cortex (PFC) has been shown to play a key role in regulation of PPI (cf.

p. 25) and being susceptible to dopaminergic interference in terms of PPI. In rats, under

some experimental conditions PPI is disrupted by systemic administration (Swerdlow et

al., 1991, 2005; Wan et al., 1996) or prefrontal infusion (Ellenbroek et al., 1996; Shoe-

maker et al., 2005; Swerdlow et al., 2005; Zavitsanou et al., 1999) of DR1-antagonists.
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Since blockage of systemic and prefrontal DR1 leads to the same phenotype in rats,

PFC is considered a reasonable target to investigate the side of action of DR1 blockage

enhancing PPI in mice. Asking whether prefrontal infusion of specific inhibition of DR1

or DR2 by receptor-antagonists would mimic the findings in systemic treated animals,

BALB/c and B6J mice are subjected to intra-cerebral drug infusion. It is demonstrated

that the PFC indeed is involved in mediating PPI in the subjected mouse lines and that

DR1 blockage in the PFC successfully increased PPI in BALB/c, and in B6J mice.

3.2. Mimicking pharmacological interference by

optogenetic stimulation

A recently introduced method to interfere with neuronal circuits in vitro (Boyden et al.,

2005) and in vivo (Arenkiel et al., 2007) is the optogenetic approach. Here, light sensitive

ion-channels/-pumps are expressed in neuronal cells which can then be triggered by illu-

mination with the appropriate wavelength. To date, the cation-channel channelrhodopsin-

2 (ChR2), originating from the alga Chlamydomonas reinhardtii, and the chloride-pump

halorhodopsin (NpHR), found in the archaea Halobacterium Natronomonas pharaonis,

are applied for neuron excitation or inhibtion, respectively (e.g. Grossman et al., 2010;

Tønnesen et al., 2009). Using transgenic mice that express the gene for these channels

on specific cell types or transfecting cells in vivo via viral vectors (Kravitz et al., 2010)

or electroporation (de Vry et al., 2010), the contribution to e.g. behaviours, memory

encoding, or neuronal oscillation patterns of these cells can be studied. Although elec-

trical stimulation has been successfully used for brain stimulation as well as inhibition

(cf. Deniau et al., 2010), it is unspecific for cell types. Genetic tools such as the cre/lox-

system (Sauer and Henderson, 1988) and the transgenic channel type with its corres-

ponding excitation wavelength define for cell-type specificity and excitation or inhibition,

respectively.

The ChR2-positive mouse line Thy1-YFP-18 has been shown to have strong expression

of ChR2 on cortical layer V pyramidal neurons (Wang et al., 2007). As has been shown

by Bubser and Koch (1994) and others, as well as above (cf. section 7.1.2), function of

prefrontal cortex is crucial for modulation of PPI and anatomical changes of layer V pyr-

amidal neurons are found in parallel with altered modulation of PPI (Grant et al., 2007).

Subjecting Thy1-YFP-18-mice to measures of PPI/F while applying light flashes to the

PFC, the present work demonstrates the usability of optogenetic manipulation in startle

experiments. Showing that PPI and PPF are affected by light stimulation, a neuronal
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basis of prepulse facilitation different than the suggested prepulse/pulse summation (cf.

Hoffman and Ison, 1980; Stoddart et al., 2008) is proposed.

Aims

The rise of new technologies, such as genetic manipulation two decades ago, or more

recently the possibility of specific excitation and inhibition of defined cell populations

via optogenetics (cf. Arenkiel et al., 2007), has opened the doors to new aspects and

deeper insights into the neurobiology, also of startle; hence, startle is still not only a tool

to study aspects of mood disorders, but also an object of research itself. The aim of

the present work was to establish behavioural paradigms of the startle response and its

modifications at the Max-Planck-Institute of Psychiatry:

• Fear potentiated startle as a tool for security learning: possible implications for

treatment of specific phobia.

• Parameters governing fear conditioning, fear potentiation of startle, and extinction

of conditioned fear: stimulus parameters are crucial for animal learning.

• Applicability of startle measuring systems in control of animal movements: com-

pound via cue extinction.

• Startle response as a tool for animal characterisation: hearing capability and elec-

tric susceptibility assessed by startle measures in an animal model of trait anxiety.

• Symptomatology of an animal model of post-traumatic stress disorder: hyper-

arousal and its independence of hippocampal volume changes.

• Prepulse inhibition of startle: contribution to understand the complex interactions

of dopamine receptor subtypes in the prefrontal cortex.

• Elucidate the startle paradigm: feasibility study of optogenetical manipulation of

startle response.
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4. General materials and methods

Animals

In the present work, a total of 1187 animals were used. Mice were kept under stand-

ard laboratory housing conditions in the animal facility of the Max-Planck-Institute of

Psychiatry (inverse 12:12 h light-dark schedule with lights off at 09:00 am, at 22 ± 2 ◦C

room temperature and 55 ± 5 % humidity). Mice were single housed in Macrolon type II

cages with sawdust bedding and food and water ad libitum for at least ten days before

starting the experiments. All experiments were performed during the activity phase of

the animals between 09:30 am and 08:00 pm.

All experiments were approved by the Committee on Animal Health and Care of

the State of Bavaria (Regierung von Oberbayern, Germany) and performed in strict

compliance with the European Economic Community recommendations for the care and

use of laboratory animals.

Fear conditioning and sensitisation

Procedures were performed in conditioning chambers (ENV-307A, MED Associates Inc.,

Georgia, VT, USA) with house light (0.6 Lux, ENV-215M, MED Associates), and a

floor of stainless steel rods for electrical footshock application (grid harness package:

ENV-407; Shocker/Scrambler: ENV-414, MED Associates). The chamber has a cubic

shape with two walls made of aluminium and two of acrylic glass. This context was

cleaned with 70 % ethanol after each session. The same chambers were also used to

test contextual fear memory. For extinction training and test of conditioned stimulus

(CS) memory, chambers of cylindric form were used. The acrylic glass cylinder with

sawdust as bedding was illuminated with a light (0.3 Lux, ENV-215M, MED Associates)

and cleaned with 1 % acetic acid. It has been shown that mice perceive sine wave

tones best in a frequency-range of 9 - 14 kHz (Ehret, 1976; Marsch et al., 2007). Since

many investigators have problems perceiving frequencies above 10 kHz at least at lower

intensities, it was decided to utilise stimuli of the lower border of the animals optimal

35



4. General materials and methods

perception window. Therefore, 9 kHz sine wave tones (sw) and white noise (wn) were

used as acoustic stimuli in the experiments described below.

Note that fear conditioning and extinction training was also conducted partly in the

startle apparatus (cf. p. 37).

All chambers were located in soundproof isolation cubicles (ENV-018M, MED As-

sociates) that were additionally isolated with acoustic foam (Conrad Electronic SE,

Hirschau, Germany). Tones were generated by audio stimulus generators (ANL-926,

MED Associates) and applied by speakers (DTW 110 NG, Visaton GmbH & Co. KG,

Haan, Germany) mounted to the ceiling of the isolation cubicle above each chamber.

Sound pressure levels (SPL) were checked by means of the SPL Measurement Package

(ANL-929A-PC, MED Associates) at floor level. Animal behaviour was observed and

videotaped using charged coupled device (CCD) cameras (Conrad Electronic), mounted

to the back plane of the isolation cubicles. Offline analysis of freezing behaviour (im-

mobility except for respiration movements) was performed using counter based analysis

software (EVENTLOG, Robert Henderson, 1986) and the amount of freezing is displayed

as percentage in a defined time window. Experiments were controlled by commercial soft-

ware (MED-PC for Windows v1.17) via interfaces (DIG 715) and the respective control

panels (SG 215, all MED Associates). Two conditioning or four testing setups were used

simultaneously.

Acoustic startle response

The startle reflex was measured in the dark in up to eight identical mouse cages, consist-

ing of non-restrictive acrylic glass cylinders (inner diameter 4 cm, length 8 cm) mounted

on an acrylic glass platform. Each cage was placed in a sound attenuated chamber

(SR-LAB™, San Diego Instruments, San Diego, CA, USA) which was located in cu-

bicles isolated with acoustic foam (Conrad Electronic). Cages were cleaned with soap

water after each session. The cylinder movement was detected by a piezoelectric ele-

ment mounted under each platform and the voltage output of the piezoelectric device

was amplified and then digitised (sampling rate 1 kHz) by a computer interface (all San

Diego Instruments, SDI). The startle amplitude was defined as the peak voltage output

within the first 50 ms after stimulus onset (cf. fig. 1.1). To assure identical output levels

for each chamber, response sensitivity was calibrated before each startle experiment.

Startle stimuli and background noise were delivered through a high-frequency speaker

placed 20 cm above each cage. Sine wave stimuli were generated by a SDI-Software con-

trolled function generator (BK Precision 4011A, B & K Precision Corporation, Yorba
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Linda, CA, USA). The signal was amplified (STR-DE197 FM Receiver, Sony Corpor-

ation, New York, NY, USA) and the stimuli were delivered through a high frequency

speaker mounted 10 cm above the cage (SDI, pure tone kit). Stimulus intensities were

measured in decibel with filter A (dB(A)) sound pressure level (SPL, re. 20µPa) using

an audiometer (33-2055, RadioShack Corporation, Fort Worth, TX, USA). All stimuli

were presented in background noise of 50 dB(A). On control trials only background noise

was present.

For measures of baseline ASR, white noise pulses of 75, 90, 105, and 115 dB(A) (30

times each) were presented to the animal. On 18 no-stimulus trials, only background

noise was present. Pulses were presented after an acclimation period of 5 min in a

pseudo-randomised order, where each stimulus was repeated only once before another

stimulus-type was presented.

Fear conditioning and extinction training took place in the same cages where the

startle response was measured. For fear conditioning and extinction training, sine wave

tones were generated using SDI pure tone kit (cf. p. 36). For fear conditioning, grids

of seven stainless steel rods were added to the floor of the cages for electric footshock

application. Scrambled shocks were produced and parameters adjusted using SDI fear

potentiated startle kit.

Surgery

Surgery was performed by fixing the animal to a stereotactic frame (TSE Systems GmbH,

Bad Homburg, Germany). Animals received an injection of analgesic before surgery star-

ted (0.5 mg/kg Metacam®, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim,

Germany). During surgery, mice were deeply anaesthetised by inhalation of isoflurane

(Forene®, Abbott GmbH & Co. KG, Ludwigshafen, Germany) using a self-made in-

halation apparatus. Body temperature was kept at constant 36 ◦C by a heating pad

(Harvard Apparatus, Holliston, MA, USA). The skull of the animal was exposed and a

cannula to guide the injection cannula during injections (cf. below) was implanted and

a screw was inserted into the skull. This guide cannula was fixed to the skull and the

screw by dental cement (Paladur®, Heraeus Kulzer GmbH, Hanau, Germany). The

wound was disinfected and closed with sutures. Analgesic treatment was continued at

0.5 mg/kg for another 3 - 4 days via drinking water and mice were allowed to recover for

10 - 12 days before starting an experiment.
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Drug administration

Drug administration was carried out 40 min intra peritoneal (i.p.), 60 min subcutaneously

(s.c.) or 30 min intracerebral or intracerebroventricular (i.c.v.) before testing after a

short isoflurane anaesthesia. Intracerebral and i.c.v. injections were performed with a

30 G cannula connected to a microlitre syringe via a calibrated tubing. The infusion

device was filled with distilled water. A small air bubble was sucked into the injection

cannula in front of the injection solution. The air bubble provided protection against

contamination of the syringe with the injection solution and provided a visual mean of

volume control by calibration marks on the tubing. The injection cannula topped the

guide cannula by 1 mm and by this was able to reach the target area. After insertion

the solutions were infused slowly over the course of 30 - 60 s. After injection, the cannula

remained in place for another 30 s to allow complete diffusion. Animals were then taken

back to their home cages. The injection cannula was cleaned carefully with 70 % eth-

anol and Ringer solution (Fresenius Kabi AG, Bad Homburg v.d.H., Germany) between

injections. Different injection devices were used for vehicle and drugs.

For detail experimental material and methods please refer to the respective section.
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5.1. The startle response in paradigms of anxiety and fear

5.1.1. Fear potentiated startle in C57BL/6N mice

Animals

A total of 98 male single housed C57BL/6NCrl mice purchased from Charles River

(Charles River Laboratories, Research Models and Services, Germany GmbH, Sulzfeld,

Germany) or bred at the Max-Planck-Institute of Psychiatry, Munich (MPI-P) were

subjected to fear conditioning and measures of freezing behaviour and startle at the age

of 8 - 12 weeks.

Procedures

Mice were subsequently subjected to baseline acoustic startle response (ASR) meas-

urements, fear conditioning, measures of freezing behaviour to CS and fear potentiated

startle (FPS). In Experiment 2, 3, and 4 animals were also measured for startle following

unconditioned tone presentation, before being subjected to fear conditioning. According

to baseline ASR, animals were assigned to the experimental groups in a counterbalanced

manner. Fear conditioning was conducted in the fear conditioning apparatus or in the

startle apparatus (cf. p. 37 and Experiment 4).

The conditioned stimulus (CS) consisted of a sine wave tone of 9 kHz and 70 dB(A)

(80 dB(A) in Experiment 4) intensity with a duration of either 4 s (Experiment 1 - 3)

or 20 s (Experiment 3 and 4) or light (4 s, 12 Lux, Experiment 1). Unconditioned stim-

ulus (US) was an electric footshock of 0.4 (experiment 4), 0.5 (Experiment 1 and 2)

or 0.7 mA (Experiment 3) of 500 ms duration which co-terminated with the CS. After

an acclimation period of 180 s, six (five, Experiment 4) CS - US pairings were presented

to the animals at a various interstimulus intervall (ISI) of 15 to 145 s. After the last

CS - US pairing, animals remained in the apparatus for another 60 s before they were

carried back to their home cage (Experiments 1 - 3) or were carried back immediately to
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B

A

US intensity (mA) CS type CS duration (s)
Exp 1 0.5 70dB tone vs. light 4
Exp 2 0.5 70dB tone 4
Exp 3 0.7 70dB tone 4 vs. 20
Exp 4 0.4 80dB tone 20

Figure 5.1.: Parameters used in fear potentiated startle experiments. (A) Scheme of general stimulus presentation.

Black bar: CS, white bar: US. (B) Table of parameters used in experiments 1 - 4. Note that tone

frequency was 9 kHz for all experiments and that for US-control groups US intensity was 0 mA.

minimise context conditioning (Experiment 4). For parameters used see also fig. 5.1.

Baseline ASR was measured as described above (cf. p. 36). For measures of FPS in

Experiment 1 - 3, 60 startle eliciting pulses (P) were presented, half of them preceded by

the particular CS (i.e. light or tone of the assigned duration). Pulses had an intensity

of 115 dB(A) (Experiment 1 and 2) or half of the pulses and half of the CS + P had an

intensity of 105 or 115 dB(A), respectively (Experiment 3). In Experiment 4, 20 pulses

and 20 CS + P were presented to the animal at an intensity of 105 dB(A) and six control

readings were taken where no stimulus was present.

All stimuli were presented in a pseudo-randomised order after 5 min acclimation period,

where no stimulus was repeated more than once before another stimulus-type was presen-

ted.

Freezing behaviour was measured and analysed as described above (cf. p. 35). To

control for CS memory, animals were presented a 30 s CS after 180 ms acclimation time

in a neutral context. After CS presentation, animals remained in the context for another

60 s.

Statistics

Alteration of the startle response (SR) was calculated as either percental change (%ASR)

SR(CS + P )− SR(P )

SR(P )
· 100%

or difference between ASR of P and CS + P trials (∆ASR)
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5.1. Tone enhanced startle as a measure of hearing, adaptation and attention

SR(CS + P )− SR(P )

Measured values of a given animal and trial-type were averaged and data were then

analysed using Statistica v5.0 (StatSoft Europe GmbH, Hamburg, Germany). Analyses

of variance (ANOVA) with factor CS duration (4 s and 20 s) and repeatedly measured

factors pulse intensity (105 and 115 dB(A)) and CS presentation (+CS, and -CS for no

CS presentation) was calculated with SPSS® v19.0 (SPSS Inc., Chicago, IL, USA). Data

of freezing behaviour were analysed as freezing per 30 s interval, calculating t-test with

Graphpad Prism v5.0 (GraphPad Software Inc., La Jolla, CA, USA). For startle amp-

litudes 1-way repeated-measures (rm)ANOVA was conducted with the between-subjects

factor group (CS light or tone, or shock and no shock, or shock, no shock and unpaired).

Within-subject factors were CS presentation or pulse intensity, and 1-way ANOVA or

t-test for difference values and percental change. Newman-Keuls posthoc was calculated

if appropriate. Statistical significance was accepted if p< 0.05, and data are presented

as mean values ±SEM.

5.1.2. Tone enhanced startle as a measure of hearing capability,

stimulus adaptation and attention

Animals

A total of 276 male single housed C57BL/6NCrl mice purchased from Charles River or

bred at the MPI-P, and 24 transient receptor potential vanilloid 1 deficient (TRPV1-ko)

mice bred at die Max-Planck-Institute of Biochemistry, Martinsried, were subjected to

startle measurements at the age of 8 - 12 weeks. In Experiment 2, animals were measured

six times for either TES or PPI/F. All other animals were measured only once for TES.

Procedures

Mice were subsequently subjected to baseline acoustic startle response (ASR) measure-

ments and tone enhanced startle (TES). According to baseline startle, mice were assigned

to different groups in a counterbalanced fashion.

The pre-stimulus (PS) consisted of a sine wave tone of 9 kHz, or white noise (Experi-

ment 7), and 70 dB(A) (and 60 and 80 dB(A), Experiment 1) intensity with a duration

of 20 s, or PS was light (1445 Lux, 2 s or 20 s, Experiment 4 and 7, respectively).
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Baseline ASR was measured and animals of Experiment 3 were sensitised in the appar-

atus described above (cf. p. 36 and p. 35, respectively). For sensitisation, a single electric

footshock of 0, 0.5, 0.7 or 1.5 mA and 2 s duration was given to the animal after 198 s

acclimation time. After the footshock, animals remained in the apparatus for another

60 s and TES was measured 30 days after. For measures of TES in Experiment 1 - 6, 40

startle eliciting pulses (P) of 105 dB(A) intensity were presented, half of them preceded

by the particular pre-stimulus (PS, i.e. light or tone). On PS + P trials in Experiment

2, pulses were presented at different time points during pre-stimulus presentation (cf.

fig. 6.6A).

Experiment 2 aimed to characterise possible prepulse effects of prestimulus offset on

startle response changes (i.e. prepulse inhibition, -facilitation, PPI/F, cf. section 3). For

measures of PPI/F in Experiment 2, prepulse again was a 9 kHz, 70 dB(A) pre-stimulus.

Duration was either 10 ms or 20 s. For 10 ms duration, onset of the pre-stimulus (PS)

served as prepulse, while for 20 s PS prepulse was stimulus offset. Two protocols were

used, both starting with an acclimation period of 5 min, followed by 20 initial startle

eliciting pulses of 105 dB(A) for startle habituation. Then, the first protocol was designed

to measure PPI/F at different interpulse-intervals (IPI, cf. p. 52, and fig. 6.6A), presenting

28 pulses and nine conditions where a prepulse (PP) preceded the pulse (IPI = 3000, 1000,

500, 50, 10, 0, -10, -20 ms), 16 times each. If IPI< 0, then prepulse onset was after pulse

onset. If startle enhancement observed in experiments of sections 6.1 and 6.2 was due to

prepulse like effects of pre-stimulus offset and not pre-stimulus presentation pre se, then

10 ms and 20 s pre-stimuli should lead to comparable startle enhancement, especially at

PI< 0. The second protocol was designed to extend the first protocol by IPI = 3 ms. 24

pulses and three PP + P conditions (IPI = 10, 3, 0 ms), 16 times each, were presented.

In Experiment 7, the testing-protocol was designed to enable measurement of TES and

habituation of TES. After 5 min acclimation period, ten habituation pulses were followed

by another ten pulses, which served to assess habituated baseline ASR as reference value

to enable calculation of TES habituation. Then, twelve pulses and 24 PS + P were

presented for measures of TES. For calculation of TES per se (see below, p. 43), average

of the twelve pulses during pre-stimulus presentation phase were used as reference value.

This protocol was also used in Experiment 8.

In Experiment 9, animals were presented 78 startle eliciting pulses. 16 of these pulses

were preceded by the tone, 16 by 2 s of light and another 16 by both, tone and light,

where the light stimulus was presented during the last 2 s of tone presentation. All other

pulses were presented without any pre-stimulus. Additionally, animal movements were
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measured during presentation of six light stimuli which were not followed by a pulse,

and also six times when only background noise was present. In addition, the animal’s

reaction was also controlled during onset of tone.

All stimuli were presented in a pseudo-randomised order after 5 min acclimation period,

where no stimulus was repeated more than once before another stimulus-type was presen-

ted.

Drugs

In Experiment 5, mice were treated with the GABA(A) agonist diazepam (Diazepam-

Lipuro®, Braun Melsungen AG, Melsungen, Germany). Diazepam was freshly dissolved

in saline (0.9 %) and injected as described on p. 38. Drugs were administered i.p. 40 min

before measuring TES in dosages of 0 (vehicle), 0.3, 1 and 2 mg/kg.

In Experiment 6 the effect of the selective serotonin reuptake inhibitor paroxetine

(Desitin Arzneimittel GmbH, Hamburg, Germany) on TES was tested. Paroxetine was

administered per os (p.o.) on oat flakes. 10 mg saccharin was dissolved in tap water and

a suspension was made with 20 mg paroxetine. 15µl of this suspension were pipet on one

oat flake and given to an animal after the suspension on the flake was dry. Thus an oat

flake carried a dosage of 10 mg/kg, assuming a body weight of 25 g per mouse. Control

animals got oat flakes with saccharin-water only. Animals were habituated to oat flakes

by feeding them saccharin carrying oat flakes for four days before the experiment. On

the day of the experiment, one flake per mouse was dropped into the animal’s cage, and

the mice ate the flakes within a latency of about 30 s. Feeding was conducted 1 h before

TES measures started.

Statistics

Alteration of the startle response (SR) to an intense noise burst (pulse P) caused by a

acoustic pre-stimulus (PS) was calculated as either percental change

SR(PS + P )− SR(P )

SR(P )
· 100%

or difference between ASR of pulse and PS + P trials

SR(PS + P )− SR(P )

It was observed that ASR is affected by pre-stimuli, even in measures where pre-stimuli

were not presented contiguously to the pulses, suggesting dehabituation of ASR resulting
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from arousing effects of the pre-stimulus after habituation phase. To analyse stimulus

adaptation, %ASR was therefore calculated relative to the last ten pulses averaged during

habituation phase, where ASR is habituated to the presented pulse. ASR to pulse alone

trials during the phase of pre-stimulus presentation (i.e. after habituation phase) were

used for analysis of TES (%ASR or ∆ASR) per se. Analysis of TES to assess pre-stimulus

adaptation was calculated using SPSS® with within-subject factors day and trial (i.e.

repeated presentation) and between-subject factors pre-stimulus quality and -duration.

Linear regression to assess the amount of habituation was calculated using Graphpad

Prism.

For analysis of TES, measured values of a given animal and trial-type were averaged

and data were then analysed using Statistica. 1-way repeated-measures analyses of vari-

ance (rmANOVA) were conducted with the between-subjects factor group (PS intensity,

shock intensity, PS type, PS duration, treatment, or genotype) and the within-subject

factors PS presentation (+PS, or -PS for no PS presentation) for startle amplitudes and

1-way ANOVA or t-test for percental change and difference scores. For measured of

attention or distraction, respectively, 1-way rmANOVA was calculated with the within

subject factor PS + P condition. Newman-Keuls posthoc was calculated if appropriate.

Statistical significance was accepted if p< 0.05, and data are presented as mean values

±SEM.

5.1.3. Fear conditioning parameters - the matter of fact

Animals

A total of 96 male single housed C57BL/6NCrl mice bred at the MPI of Biochemistry,

Martinsried, were subjected to fear conditioning and extinction of conditioned fear, and

startle measurements at the age of 8 - 12 weeks.

Procedures

Mice were subjected to either baseline acoustic startle response (ASR) measurements,

fear conditioning and fear extinction, or fear potentiated (FPS) and tone enhanced startle

(TES), respectively.

Baseline ASR was measured presenting startle eliciting pulses (P) of 75, 90, 105 or

115 dB(A) intensity. Pulses consisted of 9 kHz sine wave (sw) tones or white noise (wn).

Each intensity in combination with each quality was presented 20 times together with

eight control readings in a pseudo-randomised order after 5 min acclimation period.
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For fear conditioning (FC), a single electric footshock of 0.7 mA of 2 s duration co-

terminated with the conditioned stimulus (CS, 9 kHz sine wave tone (sw) of 80 dB or

white noise (wn) of 80 dB, 20 s or 120 s duration), which was presented to the animal

after 180 s acclimation time. After the footshock, animals remained in the apparatus for

another 60 s. For extinction training, animals received ten CS-presentations (all 20 s in

duration presented at various interstimulus intervals of 20 - 170 s) of the respective quality

(i.e. sw or wn) after 180 s acclimation time, and remained in the apparatus for another

60 s after the last CS. Extinction of conditioned fear (ExFC) following FC was conducted

on three consecutive days (day 1 - 3) and test of ExFC memory was performed on day

9 post shock. While FC and test of context memory was conducted in the conditioning

context, ExFC test of CS memory took place in the extinction context (cf. p. 35).

TES and FPS were measured as described above (cf. p. 42). However, in the current

experiment all 20 initial startle eliciting pulses were discarded as habituation phase,

and TES and FPS were calculated using average response of twelve pulses that were

presented after habituation phase as reference value (see below).

Statistics

Alteration of the startle response (SR) was calculated as either percental change

SR(CS + P )− SR(P )

SR(P )
· 100%

or difference between ASR of pulse alone (P) and conditioned stimulus (CS) + P trials

SR(CS + P )− SR(P )

where SR-data were analysed after averaging measured values of a given animal and trial-

type. Data of freezing behaviour were analysed by freezing in 20 s intervals. 2-factor

repeated-measures analyses of variance (rmANOVA) was conducted with the within-

subject factors pulse quality and pulse intensity using SPSS®. 2-way rmANOVA was

calculated using Statistica with the between-subjects factor CS duration (20 s and 120 s)

and CS quality (sw and wn), or CS quality and conditioning (shock and no shock). The

within-subject factor were CS presentation number (i.e. 1 - 10), day of measurement,

and +CS (CS presentation) or -CS (no CS presentation) for SR amplitude and differ-

ences. For ASR percental change, 2-way ANOVA with between subject factor CS quality

and conditioning was calculated. Newman-Keuls posthoc was calculated if appropriate.

Statistical significance was accepted if p< 0.05, and data are presented as mean values

±SEM.
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Between session extinction was measured comparing the freezing response to the very

first CS of each day of testing (cf. Plendl and Wotjak, 2010).

5.1.4. Extinction of conditioned fear to context by cue extinction

training

Animals

A total of 24 male singlely housed C57BL/6NCrl mice bred at the MPI-P were subjected

to fear conditioning and extinction of conditioned fear at the age of 8 - 12 weeks.

Procedures

Mice were subjected to trace fear conditioning (FC), extinction of conditioned fear

(ExFC), and test of CS- and context memory.

Fear conditioning (FC) was conducted as described above (p. 44), except that a 15 s

interval (“trace”) was inserted between CS offset and shock onset to favour importance

of the hippocampus (HPC) in this experiment. HPC function has been shown to be

critical for trace-conditioning (cf. McEchron et al., 1998; Moyer et al., 1990; Wanisch et

al., 2005). After footshock, animals remained in the apparatus for another 60 s.

For ExFC, animals were transported to another room where extinction training took

place in the startle apparatus (cf. p. 36). After 3 min acclimation period, half of the

animals received ten CS presentations of 20 s duration at various interstimulus-intervals

(ISI, 20 - 170 s) on three consecutive days (days 1 - 3 post shock). To allow quantification

of the animal’s fear response while not being able to monitor freezing behaviour, voltage

output of the peizo element of the startle apparatus was recorded. Instead of analysing

peak values of a given time interval (cf. p. 36), all recorded values were averaged during

a 10 s interval during the whole procedure. CS presentation was omitted for the other

animals (extinction control).

After the last extinction session, animals were transported back to the FC facilities

and were measured for CS- and context-memory on day 7 and 9 post shock, respectively.

Memory for CS was tested in a new, neutral context, while test for context memory took

place in the context of shock application during conditioning. During memory tests,

mice were presented four CS spaced by various ISI (40 - 120 s) after 180 s acclimation

time, and remained in the apparatus for another 60 s after the last CS presentation.
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Statistics

Freezing-data were averaged to 20 s intervals. 1-way repeated-measures analyses of vari-

ance (rmANOVA) was calculated using Statistica with the between-subjects factor ex-

tinction (ex or no ex) and the within-subject factors CS presentation or interval (1 - 4

for CS, 1 - 9 for context-memory, respectively). For statistical analysis of animal move-

ment during extinction training, acquired data before and during CS presentation were

averaged, respectively, and compared day by day calculating independent t-test with

Graphpad Prism. Newman-Keuls posthoc was calculated if appropriate. Statistical

significance was accepted if p< 0.05, and data are presented as mean values ±SEM.

5.1.5. ASR measures in mouse-models of trait anxiety and PTSD

Animals

To achieve mice of high, low, and normal anxiety related behaviour (HAB, LAB, NAB),

male CD1 mice had been selectively inbred in the animal facilities of the MPI-P as de-

scribed by Krömer et al. (2005). Briefly, inbreeding started with > 250 animals from

25 litters of outbred Swiss CD1 mice purchased from Charles River. With at least six

families routinely maintained within each selected line, males and females that spent

either the least, intermediate or most time on the open arms of the elevated plus-maze

(EPM) were mated to establish the HAB, NAB, and LAB mouse lines, respectively. 49

HAB, 37 NAB and 48 LAB (all male) were subjected to either fear conditioning (FC)

and subsequent CS memory test, startle response (SR, acoustic or electric) or tone en-

hanced startle (TES) measures. Mice were single housed for at least two weeks before

the experiment started.

Measuring CRH enhanced startle and enhanced ASR in the mouse model of post-

traumatic stress disorder (PTSD), 21 male single housed C57BL/6NCrl mice, bred at

the MPI of Biochemistry, Martinsried, and 29 male singlely housed C57BL/6NCrl pur-

chased from Charles River, both at the age of 8 - 12 weeks, were subjected to either

cerebroventricular injection-cannula implantation, and ASR measures after CRH or

αCRH infusion, or to PTSD-protocol and ASR measures 30 days after, respectively.

To evaluate the applicability of ultramicroscopy in terms of measures of HPC volume

and arborisation of hippocampal (HPC) pyramidal neuron dendrites, HPC of 24 male

mice expressing green fluorescing protein (GFP, thy1-GFP mouse line M, (cf. Feng et

al., 2000)) and bred at the MPI-P were dissected and cleared for imaging (cf. p. 49).
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Animals were housed in groups of four and either kept under standard (cf. p. 35) or

enriched housing conditions (enriched environment, EE), the latter providing a bigger

cage (Makrolon type IV), a running wheel and weekly changed toys.

For measures of ASR and hippocampal (HPC) volume in the PTSD model, 64 male

C57BL/6NCrl mice were purchased from Charles River and assigned to four groups of

16 animals, each. Animals were housed in groups of four animals per cage, either under

standard conditions or in an enriched environment.

Surgery and drug treatment

For intracerebroventricular (i.c.v.), CRH-injection surgery was performed as described

above (p. 37). Coordinates for injection based on the stereotaxic mouse brain atlas

(Franklin and Paxinos, 1997) were 0.3 mm posterior, 1 mm lateral and 1.2 mm deep from

the level of the skull surface with respect to bregma. I.c.v. injection of vehicle (0.9 %

saline), 0.1µg CRH, or 0.1µg CRH and 10µg αCRH was performed as described on

p. 38.

Procedures

Fear conditioning (FC) in HAB/NAB/LAB mice was conducted, and TES and SR were

measured as described above (cf. p. 44, p. 42, and p. 36, respectively), except that CS - US

pairing during FC was repeated twice with an interstimulus interval (ISI) of 20 and 30 s.

CS memory was tested analysing freezing behaviour during presentation of a 180 s long

CS in a neutral context (cylinder, cf. p. 35) on the following day. To assess footshock

sensitivity in HAB/LAB/NAB mice, ten CS - US (footshock, 0.7 mA, 1 s duration) pair-

ings were presented with an interstimulus interval of 30 - 160 s, and animal movements

(cf. p. 46) were measured after 5 min adaptation to the startle chamber.

For test of CRH-enhanced startle response, baseline ASR was measured as described

on p. 37.

To achieve trauma-related behaviour, half of the animals were subjected to a single

electric footshock (1.5 mA, 2 s) after acclimation time of 198 s, and then remained in the

apparatus for another 60 s. For the other half of the animals, footshock was omitted

(exposure control). One month later mice were consecutively analysed for contextual

freezing in the shock context, a context containing a shock-context reminder (grid), and

a neutral context (data not shown, cf. Golub et al., 2009) and ASR.

To study HPC volume changes during development of PTSD symptoms, animals were
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housed six weeks under either enriched or standard conditions. Then, half of the animals

of each housing condition were subjected to a single electric footshock (PTSD-protocol).

For the other half of the animals, footshock was omitted (exposure control). Mice were

then returned to their homecage and kept under the respective conditions for another

month. Mice were then tested for hyper-arousal (i.e. ASR) as described above (p. 37).

Behavioural measurements were followed by manganese enhanced magnetic resonance

imaging (MEMRI, cf. Kay et al., 1987; Golub et al., 2010) and ultramicroscopy (Dodt

et al., 2007 and see below).

Ultramicroscopy

For measures of hippocampal volume, tissue clearing and ultramicroscopic imaging were

performed and the setup used as described by Dodt et al. (2007). Briefly, brains were

fixed in 4 % and then 0.4 % paraformaldehyde (PFA) at 4 ◦C for ten and four days,

respectively, followed by HPC dissection blind to the history of the animals. Hippocampi

were then dehydrated using a series of graded ethanol (EtOH, 50 %, 80 % and 96 %, for

1 h each). After 100 % EtOH over night and a final step of 100 % EtOH for 1 h, HPC

were transferred to a mixture of benzylalcohol and benzylbenzoat (BABB, Sigma-Aldrich

Chemie GmbH, Munich, Germany) at a ratio of 1:2.

Specimens were placed on a black platform in a small chamber with glass-walls filled

with BABB. The argon-ion laser beam (Innova 90, Coherent) with a wavelength of

488 nm was channelled to the specimens via two mirrors. A cylinder lens (80 mm focal

distance) and a slit aperture (4 mm) were used to form the light sheet. Images were

recorded by a charge-coupled device (CCD) camera (CoolSnap Cf, 1392 x 1040 pixels,

Roper Scientific, Ottobrunn, Germany) using a 2.5 x objective (NA = 0.12, Zeiss Fluar,

Carl Zeiss AG, Oberkochen, Germany). Above the objective a band pass filter was

positioned (Brightline HC536/40, AHF analysentechnik AG, Tübingen, Germany). In

this configuration, 1 pixel accounted for 13.32µm2. The camera was mounted on a

modified microscope (Zeiss) which was oriented perpendicular to the light beam. About

700 images were then taken by moving the specimen chamber in increments of 3.65µm

vertically through the light sheet. Images were processed using Amira (Visage Imaging

GmbH, Berlin, Germany).

For analysing HPC volume and dendritic arborisation, images were loaded into a self-

written IGOR routine (WaveMetrics Inc., Portland, OR, USA). The area containing the

HPC image on each recorded image was calculated by counting the number of pixels

containing a grey value above a given threshold (i.e. fluorescence resulting from GPF
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excitation for assessing volume occupied by cells and dendrites, or scattered light from

HPC tissue assessing total HPC volume). This number was multiplied with the image

thickness (i.e. 3.65µm, the step size the specimen was moved through the laser beam),

giving the number of voxels per image. The sum of all recorded voxels was then reported

as the neuronal or HPC volume in mm3, respectively.

Note that the calculated thickness of the light sheet illuminating the image area during

recording was higher than the chosen step size (cf. Addendum); since the equation of

thickness calculation also takes into account areas of low light beam intensity, which

are not sufficient for GFP excitation, the step size was chosen based on test series and

imaging experience (cf. Dodt et al., 2007).

Genotyping

To verify green fluorescent protein (GFP) expression, a tissue biopsy from the animal’s

tail was taken and digested over night at 56 ◦C adding 100µl EDTA, 480µl nuclein

lysis solution and 20µl proteinase K (both Qiagen GmbH, Hilden, Germany). DNA

purification was achieved by subsequently adding 200µl protein precipitate (Qiagen) and

600µl isopropyl alcohol (Sigma), and 2 min centrifugation. After discarding supernatant,

600µl ethanol (70 %) were added, centrifuged, and the supernatant discarded again.

After drying for 20 min at 37 ◦C, DNA was resolved with 200µl rehydration solution

(Qiagen) and 2 h incubation on a shaker at 65 ◦C.

Polymerase chain reaction (PCR) was conducted adding 3µl MgCl2, 5µl Buffer, 1µl

dNTPs (all Qiagen), 39.3µl H2O, 0.1µl primer (100 pM, Sigma, sense 5´- CCT-ACG-

GCG-TGC-AGT-GCT-TCA-GC -3´ and anti-sense 5´- CGG-CGA-GCT-GCA-CGC-

TGC-GTC-CTC -3´, respectively) and 0.5µl Taq polymerase (Sigma) to 1µl DNA solu-

tion. PCR parameters were:

5 min 94 ◦C

start cycle (32 x)

30 s 94 ◦C — 30 s 60 ◦C — 1 min 72 ◦C

end cycle

5 min 72 ◦C

∞ 4 ◦C

The PCR product (EGFP sense/antisense = 345 bp, respectively) was then analysed

in an agarose gel (1.5 %) containing ethidium bromide (both Sigma).
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Statistics

Freezing-data were averaged to 20 s intervals and ASR values were averaged for a given

animal and a given pulse intensity. 1-way repeated-measures analyses of variance (rmAN-

OVA) was calculated using Statistica with the between-subjects factor mouse line (HAB,

LAB, NAB), treatment, or footshock, and the within-subject factor pulse intensity (0,

75, 90, 105 or 115 dB(A)). ANOVA was calculated on tone enhanced startle change and

difference scores (cf. p. 43) and electric footshock susceptibility was assessed by subtract-

ing animal movement scores before tone and shock pairing from animal movement scores

during tone and shock pairing. Then, ANOVA was calculated to compare difference val-

ues. 2-way rmANOVA was calculated with the between-subject factors enrichment and

shock (EE, nEE and S, nS, respectively) and the within-subject factor pulse intensity for

ASR analysis, or 2-way ANOVA for analysis of HPC volume. Newman-Keuls posthoc

was calculated if appropriate. t-tests to evaluate differences in HPC volume and GFP

volume in the HPC were calculated using Graphpad Prism. Statistical significance was

accepted if p< 0.05, and data are presented as mean values ±SEM.

5.2. Pharmacological and optogenetical manipulation of

prepulse inhibition

5.2.1. Prefrontal DR1 and DR2 mediate modulation of prepulse

inhibition

Animals

A total number of 208 singlely housed BALB/cAnNCrl (BALB/c) and 175 singlely

housed C57BL/6JAX (B6J) mice purchased from Charles River or bred at the MPI-P,

were subjected to startle measurements at the age of 8 - 12 weeks. For all data reported

here, animals were treated only once with the respective compound, except for data

displayed in fig. 7.4. Here, animals treated with 0.3 mg/kg SCH23390 were injected the

same again two days later, and animals treated with 0.1 mg/kg SCH23390 were used as

vehicle control injecting 0.9 % saline.

Surgery

Surgery was performed as described above (cf. p. 37). After exposure of the skull, a hole

was drilled and a guide cannula (23 Gauge, stainless steel) was implanted. Coordinates

51



5. Detailed materials and methods

based on the stereotaxic mouse brain atlas (Franklin and Paxinos, 1997) were anterior

+ 1.9 mm, lateral + 0.8 mm and ventral + 2.0 mm with an angle of 20◦ for PFC infusions

as referred from the animal’s bregma.

Drugs

For systemic drug administration mice were treated subcutaneously (s.c.) with 0.1 or

0.3 mg/kg SCH23390 (BIOZOL Diagnostica Vertrieb GmbH, Eching, Germany), 5 or

20 mg/kg sulpiride (Dogmatil®, Sanofi-Aventis GmbH, Frankfurt, Germany), or 0.3 or

1.0 mg/kg haloperidol (Haldol®, Janssen-Cilag GmbH, Neuss, Germany). The injection

volume was 0.01 ml/g body weight. For PFC injection, 100 or 500 ng SCH23390, 30 or

100 ng sulpiride, 250 ng muscimol (BIOZOL) or 10 ng NBQX (Sigma) were administered

in a volume of 0.5µl. For systemic injections 0.9 % saline, and for PFC injections Ringer

solution (Fresenius Kabi AG, Bad Homburg v.d.H., Germany) was applied as vehicle.

Drugs were applied as described on p. 38.

Startle-procedure

ASR was elicited using short noise pulses of 115 dB(A) (startle eliciting pulse P) intensity

with a duration of 20 ms at a background noise level of 50 dB(A). Each test session

consisted of a 5 min acclimation period followed by 20 pulses for habituation to the ASR

eliciting stimulus. Another 22 pulses, 210 prepulse (PP) -condition trials and 18 prepulse

control trials were arranged in a pseudo-randomised order where no stimulus condition

was presented repeatedly more than once before another stimulus type was presented.

Intertrial interval (ITI) was 15 s averaged, ranging from 13 to 17 s. 15 different prepulse

conditions were presented, each for 14 times. Three different prepulse intensities were

used (55, 65 or 75 dB(A)) with an interpulse interval (IPI, prepulse onset to pulse onset)

of 5, 10, 25, 50 or 100 ms. The prepulse duration was 10 ms, or 5 ms if IPI was 5 ms.

On prepulse control trials only the prepulse was presented. Each of the three prepulse

intensities was presented six times without any startle pulse. Each animal was tested for

baseline PPI and PPF before any drug-treatment. According to basal PPI, each animal

was then assigned to one of the differently treated groups, so as that statistical analysis

revealed no significant group differences under basal conditions, respectively.

Statistics

Alteration of the startle response (SR) was calculated as percental change (%ASR):
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SR(PP + P )− SR(P )

SR(P )
· 100%

where on (PP + P)-trials a prepulse (PP) preceded the startle eliciting pulse (P) and on

(P)-trials P was presented without prepulse.

For normalisation of %ASR (∆%ASR) of each mouse (yi) to vehicle treated animals it

was calculated:

x̄− yi

with the average value of vehicle treated animals x̄ and the %ASR of each pharmacolo-

gical treated mouse yi. Measured values of a given animal and trial-type were averaged

and data were then analysed using Statistica. 1-way repeated-measures analyses of vari-

ance (rmANOVA) were conducted with the between-subjects factor group (verum high

dose and low dose, vehicle) and the within-subject factor IPI. Newman-Keuls posthoc

was calculated if appropriate. Statistical significance was accepted if p< 0.05, and data

are presented as mean values ±SEM.

5.2.2. Mimicking pharmacological interference by optogenetic

stimulation

Animals

14 male singlely housed B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J-mice, bred at the MPI-

P (parental generation: The Jackson Laboratory, Bar Harbor, ME, USA), were subjec-

ted to surgery and startle measurement at the age of 4 - 5 month. These transgenic

mice, founder line 18 (cf. Wang et al., 2007) express the light activated ion channel

channelrhodopsin-2 derived from the green alga Chlamydomonas reinhardtii, and yel-

low fluorescent protein (YFP) fusion gene (ChR2-YFP) under the control of the mouse

thymus cell antigen 1 (Thy1) promoter.

Surgery

Procedure and coordinates were the same as described above (cf. p. 51). Instead of

injection cannula, a guide cannula (external guide, PlasticsOne Inc., Roanoke, VA, USA)

to hold the glass-fibre was implanted.
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Apparatus

Glass fibres of 70 cm length were purchased from Thorlabs (Thorlabs GmbH, Dachau,

Germany). A cap (PlasticsOne) with a hole was pulled over the glass fibre, which was

later on used to fix the glass fibre to the external guide. The coating was removed and

the bare glass fibre was inserted into a guide cannula (internal guide, PlasticsOne) and

fixed with superglue. To minimise tissue damage, the length of the internal guide was

chosen to round off with the external guide and the excess length of the glass fibre was

defined to reach the target area .

The glass fibre was connected to another glass fibre (5 m, Thorlabs) via an optical

commutator (custom made, Doric Lenses Inc., Québec, Canada) to prevent fibre twisting

during animal movements. The light of a laser (488 nm wavelength, Sapphire 488-75

CDRH, Coherent (Deutschland) GmbH, Dieburg, Germany) was coupled into the glass

fibre. Light pulses were generated using a shutter (Uniblitz® LS3ZM2-NL, and driver

VCM-D1, Vincent Associates, Rochester, NY, USA), which was triggered by a function

generator (Master 8, A.M.P.I., Jerusalem, Israel). This in turn was triggered by a

modified SR-Lab™ system (cf. p. 36), where the SDI-software driven tactile-out interface

(cf. SR-Lab™ manual) triggered a 5 V voltage source to generate TTL-pulses for function

generator control.

Stimulation consisted of light pulses of 10 or 15 ms at 50 or 5 Hz (cf. Tsai et al., 2009),

respectively, at 70 % Laser power (max. = 75 mW).

To ease animal plugging and unplugging to the glass fibre and to ensure free animal

movement and accurate glass fibre position in the measuring cage during testing, a self-

made cage and sensor platform were built. The cage consisted of an acrylic glass cylinder

on an acrylic glass platform with a gap in the ceiling ranging from end to end of the

cylinder to guide the glass fibre. The cage was removable mounted with two clips to

another acrylic glass platform that carried a piezoelectric element (Conrad Electronic

SE, Hirschau, Germany) on the rear side, which signals were amplified and digitised by

the equipment described above (cf. p. 36).

The glass fibre was plugged onto the animal and the animal was carried to the meas-

urement cage after a short isoflurane anaesthesia. Testing was started after the animal

started showing exploring behaviour (cf. e.g. Brennan MJ, 1981).
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Startle-procedure

ASR was elicited using short noise pulses of 115 dB(A) (startle eliciting pulse P) intensity

with a duration of 20 ms at a background noise level of 50 dB(A). Each test session

consisted of a 5 min acclimation period followed by 20 pulses for habituation to the

ASR eliciting stimulus. Another 40 pulses, 80 prepulse (PP) -condition trials and eight

no-pulse control trials were arranged in a pseudo-randomised order where no stimulus

condition was presented repeatedly more than once before another stimulus condition

was presented. Intertrial interval (ITI) was 15 s on average, ranging from 13 to 17 s.

Two different prepulse conditions were presented, a “PPI condition” (interpulse interval

IPI = 100 ms) and a “PPF condition” (IPI = 10 ms), based on PPI/F measures in section

7.1.1. Prepulses were of 10 ms duration and were presented at 65 dB(A) intensity. Half

of all stimuli of each type were preceded by a period of light (1 and 5 s for 50 and 5 Hz

stimulation, respectively), where prepulse or pulse (on pulse alone trials) was presented

after the last light-pulse cycle.

Statistics

Alteration of the startle response (SR) was calculated as percental change (%ASR) for

PPI and PPF of ASR:

SR(PP + P )− SR(P )

SR(P )
· 100%

for effects of light stimulation on PPI/F:

SR(L+ PP + P )− SR(P )

SR(P )
· 100%

for effects of light stimulation on ASR:

SR(L+ P )− SR(P )

SR(P )
· 100%

where on (PP + P)-trials a prepulse (PP) preceded the startle eliciting pulse (P), on (P)-

trials pulse was presented without prepulse, and on (L+)-trials light stimulation preceded

prepulse or pulse presentation, respectively. Measured values of a given animal and trial-

type were averaged and data were then analysed by paired t-test or one-sample t-test

(for effects of light stimulation on ASR when %ASR was calculated) using Graphpad

Prism. Statistical significance was accepted if p< 0.05, and data are presented as mean

values ±SEM.
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6. The startle response in paradigms of

anxiety and fear

6.1. Fear potentiated startle in C57BL/6N mice

6.1.1. Fear potentiated startle using CS light or tone

The first experiment was designed to test whether CS light or sine wave tone can be

paired with US to measure fear potentiated startle (FPS) when the CS is afterwards

presented before startle eliciting noise pulses of 115 dB(A) in a context (startle con-

text, cf. p. 36) different from the fear conditioning context. Mice were conditioned to

either a sine wave tone or a light CS. On the following day, 115+ trials (CS presenta-

tion) showed augmented startle response compared to 115- trials (no CS presentation,

four mice were excluded from analysis due to apparatus malfunction), but not equal

for both CS type, indicated by significant interaction of CS type and CS presenta-

tion (F(1,14) = 31.51 p< 0.05; fig. 6.1A). CS tone significantly increased startle (posthoc

-CS vs. +CS: p< 0.05). Contrary, CS light did not yield potentiated startle responses

(p> 0.05), while tone and light groups did not differ in baseline startle (p> 0.05). Con-

gruent, light conditioned animals showed significant less freezing when confronted with

the respective CS compared to tone conditioned mice (t(12) = 6.04 p< 0.05; fig. 6.1D).

Additionally, tone conditioned animals differed significantly in percental ASR change

(%ASR) and difference values (∆ASR) from light conditioned animals (fig. 6.1B,C), the

latter showing almost no change from baseline ASR after CS presentation (t(15) = 5.04

p< 0.05 and t(15) = 5.61 p< 0.05, respectively).

Therefore, tone appeared to be an adequate CS to train animals for measures of FPS,

while light stimuli seemed to be largely ignored by the animals. Following experiments

will thus apply acoustic stimuli for conditioning.
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Figure 6.1.: FPS (mean ± SEM) following presentation of conditioned stimulus light (black circles and bars, n = 10)

or tone (white circles and bars, n = 6), expressed as startle amplitude (A), absolute amplitude change

(B) or percental change (C), and freezing to light or tone (D). *: difference light vs. tone (p< 0.05).

6.1.2. Unconditioned tone effect alters startle and masks conditioned

FPS

Although Experiment 1 indicated successful FPS by footshock conditioning applying

tone CS, the possibility of unconditioned ASR enhancing effects demanded a pre-shock

FPS-test to show that observed ASR increase could indeed be attributed to animal

conditioning. Unconditioned stimulus enhancing effects on startle have been described

for rats in detail by Hoffman and colleagues (Hoffman and Fleshler, 1963; Hoffman and

Wible, 1969) and were also mentioned for mice by Falls and co-workers (Falls et al., 1997;

Falls, 2002; Heldt et al., 2000), and partly characterised by Carlson and Willott (2001).

Thus, in Experiment 2 two groups of mice were first measured for startle alterations

after unconditioned tone presentation. Then, one group was conditioned to tone, while

for the other group footshock was omitted (no-shock control), and FPS was measured

with the same protocol that was used for unconditioned measurements before.

Statistical analysis revealed a significant effect of unconditioned tone presentation

(F(1,18) = 47.85 p< 0.05), while group had no significant effect (p> 0.05; fig. 6.2A, left).

This was also indicated by %ASR and ∆ASR (fig. 6.2B,C), where no significant dif-

ferences were found between the groups (p>0.05, respectively), but showed a startle
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increase after tone presentation of 60 - 70 % (cf. fig. 6.1C, Experiment 1: FPS ca. 60 % !).

FPS after conditioning was apparent in both groups (fig. 6.2A, right), indicated by

significant effect of CS (F(1,18) = 53.92 p< 0.05); effect of group (i.e. conditioning) and

interaction of CS and group were not significant (both p> 0.05), as it was seen in uncon-

ditioned measures of startle enhancement (fig. 6.2A, left). In parallel to unconditioned

data, no significant differences occurred in ∆ASR (p> 0.05, fig. 6.2B). Significant dif-

ferences with shocked group showing higher potentiation than unshocked control only

appeared in %ASR values (t(18) = 2.39 p< 0.05, fig. 6.2C). Comparing all parameters

(i.e. conditioning +/- and measure 1/2), ANOVA detected an interaction of these factors

(F(1,18) = 6.05 p< 0.05) indicating strong FPS in the conditioned group on measure 2

(posthoc p< 0.05). However, testing startle behaviour of shocked animals before and

after conditioning alone using paired t-test, no significance occurred (p> 0.05), indic-

ating that this significant difference was at least partly due to a decrease of FPS from

measure 1 (i.e. conditioning -) to measure 2 (i.e. conditioning +) in unconditioned an-

imals (cf. fig. 6.2C).

A B

C D

* *

#

Figure 6.2.: FPS (mean ± SEM) before (-) and after conditioning ( , +) following tone (CS) presentation in

shocked (S, black circles and bars, n = 10) and non shocked (nS, white circles and bars, n = 10) mice.

Data are expressed as startle amplitude (A), absolute amplitude change (B) or percental change (C),

and freezing to CS (D). *: ASR changing effect of tone presentation vs. no tone presentation before

(left) and after conditioning ( , right) (p< 0.05). #: %ASR increasing effect of shock vs. no shock

(p< 0.05).

Thus, this experiment suggests that FPS observed in Experiment 1 was rather due to
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unconditioned tone effects. However, freezing to CS was insignificantly different between

no-shock control and shocked animals (fig. 6.2D, p> 0.05), the latter showing only about

20 % freezing to CS (Experiment 1: ca. 40 %), indicating weak conditioning, probably

resulting from latent inhibition effects that occur after the CS was frequently presented

in the unconditioned test-session before it was eventually conditioned, and which may

have resulted in low FPS, too.

6.1.3. Optimising parameters to measure FPS

Experiment 2 suggested that FPS found in Experiment 1 may have been simply due to

unconditioned effects of the tone preceding the startle eliciting pulse, but also revealed

only weak CS memory in terms of freezing behaviour, which could account for weak

FPS. In the next Experiment 3, shock intensity was increased and the influence of pulse

intensity and CS duration was examined to find optimal parameters favouring FPS.

Unconditioned tone presentation again revealed strong enhancement of ASR (fig. 6.3A,

left). ANOVA with within subject factors tone presentation and pulse intensity and the

between subject factor tone duration showed significant effects of within subject factors

(tone: F(1,22) = 66.13 p< 0.05 and P(int): F(1,22) = 95.12 p< 0.05). Tone duration had

no significant effect (p> 0.05), but an interaction of tone duration and tone presenta-

tion only marginally failed significance (p = 0.060). Significant effects of pulse intensity

were also apparent when analysing %ASR (F(1,22) = 16.12 p< 0.05), while ∆ASR was

insignificantly affected by pulse intensity and rather tone duration seemed to play a role

(p = 0.060), with 20 s tone resulting in stronger ASR enhancement (fig. 6.3B,C).

FPS post conditioning resembled pre conditioning results (fig. 6.3A, right). ANOVA

detected significant effects of CS (i.e. tone) presentation and a significant interaction of

pulse intensity and CS duration (F(1,22) =82.23 p< 0.05 and F(1,22) = 5.20 p< 0.05,

respectively), indicating that 20 s CS duration were more effective in eliciting FPS with

105 dB(A) pulses than 4 s CS presentation. Also freezing to CS was a little bit stronger

in mice conditioned to 20 s tone compared to mice with 4 s tone (fig. 6.3D), although by

no means significant (p> 0.05). Pulse intensity significantly influenced %ASR as well as

∆ASR, where 105 dB(A) led to much higher percental change, but revealed less change

of startle amplitude (F(1,22) = 6.16 p< 0.05 and F(1,22) = 5.20 p< 0.05, respectively).

Calculating ANOVA on %ASR and ∆ASR with within subject factors conditioning

and pulse intensity and between subject factor CS duration let one assume, that again

unconditioned tone effects masked conditioned FPS, despite pronounced freezing to CS.

ANOVA revealed neither significant effects of conditioning nor interactions of condition-
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Figure 6.3.: FPS (mean ± SEM) before (-) and after conditioning ( , +) following tone (CS) presentation of 4 s

(white symbols, n = 12) or 20 s (black symbols, n = 12) duration, and startle eliciting pulses of 105

(circles) or 115 dB (squares). Data are expressed as startle amplitude (A), absolute amplitude change

(B) or percental change (C), and freezing to CS (D). *: ASR (A), ∆ASR (B) or %ASR (C) changing

effect of startle pulse intensity (105 vs. 115 dB, p< 0.05).

ing and other examined factors (all p> 0.05).

6.1.4. Context dependency of FPS

Although the aim was to establish a FPS protocol that strictly differentiates between

conditioning and test context, FPS-studies published so far mostly use the same context

for conditioning and testing (e.g. Fadok et al., 2010; Gewirtz et al., 2008; Walker et al.,

2009). Additionally, Davis and Astrachan (1978) found that higher shock intensities are

inversely related to FPS magnitude in rats. As a proof of concept, conditioning as well as

FPS testing were conducted in the startle apparatus and shock intensity was decreased to

0.4 mA, after FPS protocols tested so far were not successful (cf. experiments described

above). 105 dB(A) pulses seemed to favour potentiation in Experiment 3. Thus, this

pulse intensity was applied in Experiment 4. To be congruent with freezing data of

other fear related experiments of the current work, 20 s CS duration was chosen for the

following experiments. To control for unconditioned tone effects and context conditioning

effects, one group of animals received shocks and CS presentation in a not contiguously
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manner with varied time intervals between CS and US on each trial of a test session

(i.e. temporally unpaired; context control); a second group received no shock (no-shock

control), while one group was fear conditioned as usual (cf. p. 12).

As expected, unconditioned tone led to potentiated startle response as indicated by

significant effect of tone (F(1,31) = 30.43 p< 0.05), and unconditioned potentiation did

not differ significantly between the groups (p> 0.05, %ASR and ∆ASR respectively;

fig. 6.4A, left). Unlike unconditioned tone effects, conditioned tone (i.e. FPS) on day

1 post conditioning revealed a significant interaction of group (i.e. paired conditioned,

unpaired conditioned and not conditioned) and CS presentation (fig. 6.4A, right), indic-

ating stronger potentiation in the shocked groups than in the no-shock control animals

(F(2,31) = 6.71 p< 0.05). However, group effect of %ASR only approached the signi-

ficance threshold (p = 0.062, fig. 6.4C), and while ANOVA on ∆ASR showed significant

effect of group (F(2,31) = 6.71 p< 0.05), posthoc comparison revealed only significant

differences between paired conditioned animals and no-shock controls as well as un-

paired conditioned and no-shock controls (p< 0.05, respectively); in contrast, significant

differences between paired and unpaired conditioned mice were not observed (p> 0.05),

indicating that FPS rather resulted from the CS context than contiguously CS tone

presentation (fig. 6.4B).

A B C
*
#

*
#

Figure 6.4.: FPS (mean ± SEM) before (-) and after conditioning ( , +) following tone (CS) presentation in

paired shocked (S, n = 11), unpaired shocked (S(unpaired), n = 12) and non shocked (nS, n = 11)

mice, expressed as startle amplitude (A), absolute amplitude change (B) or percental change (C).

White circles: no shock; black squares: unpaired shock; black circles: paired shock. *: ASR (A) and

∆ASR (B) changing effect of paired shock vs. no shock. #: ASR (A) and ∆ASR (B) changing effect

of unpaired shock vs. no shock (p< 0.05, respectively).
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6.2. Tone enhanced startle as a measure of hearing

capability, stimulus adaptation and attention

6.2.1. Tone enhanced startle in mice

Startle is found enhanced during presentation of intense background noise, as well as

after presentation of prepulses (i.e. prepulse facilitation, but cf. p. 27) with prepulses of

long duration (> 2 s, cf. p. 27) and equally long interpulse intervals (i.e. IPI = duration).

These phenomena have been described and characterised in rats and partly in humans,

and mice. In the present experiments, detailed information of several aspects of ASR

enhancing tone effects are reported and putative applications are presented.

A B C#
*

*
#
+

Figure 6.5.: Experiment 1. TES (mean ± SEM) following pre-stimulus (tone) presentation of 60 (white circles and

bars), 70 (grey circles and bars) and 80 dB (black circles and bars) intensity (n = 12, respectively),

expressed as startle amplitude (A), absolute amplitude change (B) or percental change (C). *: ASR

(A) and ∆ASR (B) difference 60 vs. 80 dB tone. #: ASR (A) and ∆ASR (B) difference 70 vs. 80 dB

tone. +: ASR (A) difference 60 vs. 70 dB tone (p< 0.05, respectively).

Experiment 1

Sine wave (sw, 9 kHz) stimuli of 20 s duration at an intensity of 70 dB(A) were presen-

ted preceding 105 dB(A) startle eliciting pulses and a clear-cut ASR increase in tone-

compared to no-tone-presentation trials was observed (i.e. ∆ASR� 0).

Fig. 6.5 shows that TES shares the basic properties of sensory tone perception, viz. be-

ing susceptible to different tone intensities. Statistical analysis of Experiment 1 revealed

significant interaction of tone and tone intensity (F(2,33) = 10.09 p< 0.05), showing that

ASR was significantly increased when pulses were preceded by a tone (pre-stimulus, PS)

and that this increase was stronger with higher pre-stimulus intensity (posthoc analysis

p< 0.05 for 60, 70, and 80 dB(A), respectively). Enhancement differed significantly with

increased stimulus intensity (∆ASR: F(2,33) = 10.09 p< 0.05), although no significant

enhancement differences were found in %ASR (p> 0.05).
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Figure 6.6.: Experiment 2. Absolute startle change (mean ± SEM) following pre-stimulus (tone off) and prepulse

(tone on) presentation at various time points before, during or after startle eliciting pulse onset

(n = 36). (A) Scheme of pre-stimulus (top) and prepulse (bottom) position relative to pulse onset. If

interpulse interval (IPI)< 0, then tone off/tone on happened during pulse presentation. (B) Alteration

of startle response expressed as absolute amplitude change.

Experiment 2

To exclude that this increase was simply due to prepulse like effects of pre-stimulus

(PS) off-flank (tone off, i.e. prepulse facilitation by short IPI, PPF (cf. p. 27)), ASR

increase resulting from tone-off was compared to ASR increase due to prepulse (10 ms

duration, tone on) presentation in Experiment 2. Tone off and prepulse (PP, tone on)

were presented at various time intervals between tone off/tone on and startle pulse onset

(interpulse interval IPI, fig. 6.6A). While at IPI> 10 ms tone off led to prepulse inhibition

(PPI, cf. section 3) as did the prepulse, tone off and prepulse led to almost the same

amount of ASR increase at IPI = 10 ms (enhancement and facilitation, respectively). At

IPI6 3 ms, prepulse presentation had no pronounced effect on ASR, while tone off led to

strong startle enhancement. This indicates that at time intervals t6 3 ms TES (resulting

from tone presentation) rather than PPF (due to tone off) took place (fig. 6.6B).

Experiment 3

To assess the susceptibility of TES to prior sensitisation, four groups of animals were

subjected to electrical footshock of four different intensities and tested for TES 30 days

later in Experiment 3 (fig. 6.7). Statistical analysis of startle amplitudes again revealed

enhancement of ASR, and amplitudes differed between animals that experienced differ-

ent shock intensities (fig. 6.7A), indicated by significant interaction of PS presentation

and shock intensity (F(3,55) = 5.56 p< 0.05). This was resembled by significant effects

of shock intensity when statistics were calculated on ∆ASR (fig. 6.7B), but %ASR values

(fig. 6.7C) failed to reach significance (F(3,55) = 5.56 p< 0.05 and p> 0.05, respectively).
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Figure 6.7.: Experiment 3. TES (mean ± SEM) following pre-stimulus (tone) presentation in sensitised mice

expressed as startle amplitude (A), absolute amplitude change (B) or percental change (C). White

circles and bars: no shock (n = 14); light grey circles and bars: 0.5 mA (n = 15); dark grey circles and

bars: 0.7 mA (n = 15); black circles and bars: 1.5 mA footshock intensity (n = 15). *: ASR (A) and

∆ASR (B) increasing effect of 1.5 mA vs. 0 (A and B) and vs. 0.5 mA (B). #: ASR (A) and ∆ASR

(B) increasing effect of 0.7 mA vs. 0 (A and B) and vs. 0.5 mA (B). +: ASR (A) increasing effect of

1.5 vs. 0.5 mA (p< 0.05, respectively).

Experiment 4

The next Experiment 4 aimed to clarify whether ASR is exclusively enhanced by

acoustic stimuli. Mice were presented either light or a sine wave tone (sw) stimulus pre-

ceding a startle eliciting pulse. While sw led to expected enhancement of ASR, light did

not have any significant effect on ASR amplitude, indicated by significant interaction of

pre-stimulus (PS) type and PS presentation (F(1,14) = 52.79 p< 0.05) as well as signi-

ficant difference between %ASR light and tone, and ∆ASR light and tone (t(14) = 2.90

p< 0.05 and t(14) = 4.11 p< 0.05, respectively).

A B C*

*

*

Figure 6.8.: Experiment 4. TES (mean ± SEM) following pre-stimulus presentation tone (white circles and bars,

n = 8) or light (black circles and bars, n = 8), expressed as startle amplitude (A), absolute amplitude

change (B) or percental change (C). *: difference light vs. tone (p< 0.05).
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6. The startle response in paradigms of anxiety and fear

This clearly shows that light stimuli are not useful in terms of ASR enhancement at

least in the mouse line evaluated in this study. However, acoustic stimuli cannot be

chosen freely by means of stimulus quality, either (cf. section 6.2.2 below).

In a last set of experiments, the susceptibility of TES to pharmaceuticals commonly

used in anxiety disorders was tested. The enhancing effect of background noise on startle

has been demonstrated to be attenuated by treatment with anxiolytic diazepam in rats

(Kellogg et al. 1991, but cf. Ison et al. 1997). It was further hypothesised that TES

might be an analogous to light enhanced startle (LES) in rats, which measures anxiety

in these animals and is also susceptible to benzodiazepine treatment (Walker and Davis,

2002a).

A B C*
*

Figure 6.9.: Experiment 5. TES (mean ± SEM) after treatment of mice with 0 (white circles and bars, n = 11), 0.3

(light grey circles and bars, n = 10), 1.0 (dark grey circles and bars, n = 11) or 2.0 mg/kg diazepam i.p.

(black circles and bars, n = 11), expressed as startle amplitude (A), absolute amplitude change (B) or

percental change (C). *: ASR and ∆ASR changing effect of 2.0 vs. 1.0 mg/kg diazepam (p< 0.05).

Experiment 5

In Experiment 5, again tone enhanced startle response, but this differently in the

differently treated animals (five animals had to be excluded from analysis due to appar-

atus malfunction), indicated by significant interaction of tone presentation and diazepam

dosage (F(3,39) = 2.92 p< 0.05). Only 2 mg/kg diazepam significantly altered the en-

hancing effect of the pre-stimulus (posthoc analysis, 1 vs. 2 mg/kg, p< 0.05, all other

comparisons p> 0.05, respectively), but surprisingly had a facilitating effect (fig. 6.9A).

Baseline startle (i.e. without pre-stimulus) was not affected by diazepam treatment

(posthoc p> 0.05, respectively). This effect of 2 mg/kg was of course also apparent

in ∆ASR (F(3,39) = 2.92 p< 0.05, fig. 6.9B). However, when calculating %ASR, analys-

ing enhancement relative to baseline ASR, no significant effect of diazepam was found
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6.2. Tone enhanced startle as a measure of hearing, adaptation and attention

(p> 0.05, fig. 6.9C).

Experiment 6

Figure 6.10 displays TES after mice were treated with paroxetine. Pre-stimulus

presentation significantly enhance startle (F(1,24) = 15.28 p< 0.05), although not dif-

ferently in differently treated animals (p> 0.05, fig. 6.10A). Paroxetine insignificantly in-

creased both, startle without and startle after pre-stimulus presentation (p> 0.05). Ad-

ditionally, no significant effects were found analysing ∆ASR and %ASR (both p> 0.05,

fig. 6.10B,C).

Thus, it appears that TES is not susceptible to anxiolytic treatment, demonstrating

a surprisingly strong immunity to pharmacological intervention.

A B C*

Figure 6.10.: Experiment 6. TES after treatment of mice with 0 (white circles and bars, n = 13) or 10 mg/kg p.o.

paroxetine (black circles and bars, n = 13), expressed as startle response amplitudes (A), absolute

amplitude change (B) or percental change (C). *: ASR changing effect of tone presentation vs. no

tone presentation (p< 0.05).

6.2.2. TES as a measure of acoustic stimulus adaptation

Hoffman and Fleshler (1963) have shown that steady background noise results in en-

hanced startle response in rats. This increase persists even after hour-long presentation

of noise (Hoffman and Wible, 1969). The present data demonstrate enhancing effects

of long pre-stimuli or background stimuli since TES is not a tone off-flank but tone

presentation effect (cf. p. 66). Are noise stimuli equally effective in the subjected mouse

line and does the enhancing effect, in contrast to findings in rats, decrease with ongo-

ing presentation; viz. can the paradigm of tone enhanced startle (TES) be applied to

investigate sensory adaptability to acoustic stimuli?

To answer these questions, four groups of animals were presented sine wave tone (sw)

or white noise (wn) pre-stimuli (PS) of 20 s or 120 s duration over four days (day 1 - 3 and
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6. The startle response in paradigms of anxiety and fear

day 9, one animal was excluded from analysis due to apparatus malfunction). Again,

stimulus presentation significantly altered ASR, but differently with sw and wn stimuli,

indicated by significant interaction of stimulus presentation and stimulus quality (i.e.

sw or wn, F(1,160) = 200.44 p< 0.05). While sw stimuli significantly enhanced ASR as

expected, wn stimuli led to significant inhibition of ASR (fig. 6.11A) (posthoc analysis

-PS vs. +PS, both p< 0.05). Stimulus duration had no significant effect (p> 0.05), and

also day of measurement was not tested significant (p> 0.05), indicating that there was

no stimulus adaptation from day to day, at least in terms of ASR alteration effects. This

was true also for %ASR and ∆ASR (fig. 6.11B,C), where statistical analysis revealed

significance only for stimulus quality (F(1,160) = 154.76 p< 0.05 and F(1,160) = 200.44

p< 0.05, respectively).

A B

C D

*
*

Figure 6.11.: TES (mean ± SEM) following pre-stimulus presentation of different length (20 s and 120 s, white and

black symbols, respectively) and quality (sine wave (sw) and white noise (wn), circles and squares,

respectively) (all n = 12, except 20 s sw: n = 11). Data are expressed as startle amplitude (A),

absolute amplitude change (B) or percental change (C). Averaged values (day 1 - 9) of within-day

habituation are shown in (D). Inset of (D): linear regression of data depicted in (D) (scattered lines:

20 s, solid lines: 120 s). *: Slope significantly different from zero (p< 0.05).

Contrary, within-session TES decreased with repeated presentation of PS + P (i.e. trial

number) and this decrease was different between animals presented pre-stimuli of dif-

ferent quality and duration (fig. 6.11D). This was indicated by significant interaction of

pre-stimulus quality, pre-stimulus duration and trial number (i.e. repeated presentation),

calculating ANOVA on ASR amplitudes (F(23,989) = 1.55 p< 0.05). When looking at
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6.2. Tone enhanced startle as a measure of hearing, adaptation and attention

percental change (i.e. relative to last ten trials of habituation phase, cf. methods pp. 42),

ANOVA found significant interaction of trial and pre-stimulus quality (F(23,989) = 2.20

p< 0.05). Additionally, linear regression calculated on ∆ASR as well as on %ASR re-

vealed negative slopes for each stimulus type (positive and close to zero (slope = 0.01) for

20 s wn stimuli in %ASR). Moreover, slopes were tested significantly different from zero

only for 120 s stimulus duration (∆ASR: R2 = 0.03, F = 9.56 and R2 = 0.12, F = 40.42;

%ASR: R2 = 0.03, F = 7.92 and R2 = 0.07, F = 21.93, p< 0.05, wn and sw, respectively),

viz. the effect of wn (i.e. startle inhibition) got even stronger with prolonged stimulus

presentation (fig. 6.11D, inset). These results suggest that stimuli of 20 s duration, but

white noise pre-stimuli of any duration in particular are less prone to habituation (which

would result in weaker enhancement/inhibition of ASR) than sine wave stimuli of longer

duration.

Although ASR to pulse alone trials (-PS) was found to be significantly affected by trial

number, too (F(11,473) = 2.27 p< 0.05), ASR(-PS) was not affected by any factor when

related to baseline ASR (%ASR, p> 0.05, respectively). Thus, TES indeed measured

adaptation to (long) sine wave stimuli.

6.2.3. TES as a measure of hearing capability

TES was shown to be susceptible to different intensities of the pre-stimulus (cf. fig. 6.5).

To further illustrate the potency of TES as a primary perception measure paradigm,

TES measured in transient receptor potential vanilloid 1 deficient (TRPV1-ko) mice.

These mice have been shown to have less pronounced fear response than their wild-type

counterparts (Marsch et al., 2007), but do not differ in stimulus perception measured by

acoustic brainstem responses. In line with the observation of low fear/anxiety-behaviour

by Marsch and colleagues, lower baseline ASR was observed in TRPV1-ko mice (i.e. no

pre-stimulus trials, one-tailed t-Test: t(22) = 1.78 p< 0.05). On the other hand, there

was no significant effect of genotype in %ASR or ∆ASR (i.e. comparable amount of

TES, t-Test: p> 0.05, respectively), although tone presentation significantly enhanced

ASR in both mouse lines (F(1,22) = 29.28 p< 0.05), indicating equal tone perceptibility

in animals of low anxiety and fear (TRPV1-ko) and wt animals (fig. 6.12), resembling

the findings by Marsch et al. (2007).
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6. The startle response in paradigms of anxiety and fear

A B C*

Figure 6.12.: TES in vanilloid receptor deficient mice (ko, black circles and bars, n = 12) and wild type counter-

parts (wt, white circles and bars, n = 12), expressed as startle response amplitudes (A), absolute

amplitude change (B) or percental change (C). *: ASR changing effect of tone presentation vs. no

tone presentation (p< 0.05).

6.2.4. Attention measured by means of altered TES

Attention to the tone preceding the startle eliciting pulse is probably necessary to achieve

strong enhancement of the startle response resulting from tone presentation (i.e. TES).

This could be used to measure attention in mice by means of TES. To measure distrac-

tion, a second stimulus was introduced to shift the animal’s attention to this stimulus.

Startle of several mouse lines has been reported to be at most marginally affected by

short light prepulses at interpulse intervals of 2 s (Aubert et al., 2006). To make sure

that the animal perceives the light stimulus, the last two seconds of the tone preceding

the startle eliciting pulse were superimposed with a bright light.

Two animals had to be excluded from analysis due to chamber malfunction and es-

cape from measuring cage. ANOVA detected no influence on animal behaviour of light

or tone presentation per se (fig. 6.13A), indicated by insignificant differences between

startle measures during light (+L), tone (+T) or background noise presentation only (-)

(p> 0.05). Contrary, repeated measures ANOVA found significant differences between

startle amplitudes of pulses that were either preceded by tone, light, or tone and light

stimuli (F(3,12) = 5.68 p< 0.05). Acoustic startle response (ASR) was significantly

higher when preceded by tone alone compared to all other pulse conditions, respect-

ively (posthoc: all p< 0.05, respectively). All other conditions did not differ signi-

ficantly among each other (posthoc p> 0.05, respectively). Additionally, %ASR as

well as ∆ASR differed significantly depending on which pre-stimulus was presented

(F(2,8) = 7.80 p< 0.05 and F(2,8) = 5.96 p< 0.05, respectively), and in both cases pos-

thoc analysis revealed significant differences between tone and the other both pre-

stimulus conditions (p< 0.05, respectively), but only insignificant differences between
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6.3. Fear conditioning parameters - the matter of fact

changes resulted from light and combined light and tone presentation (fig. 6.13B,C,

p> 0.05, respectively). This clearly indicates that an additional introduced stimulus

attenuates TES resulting from tone presentation, and this attenuation did not simply

result from summation of inhibitory and enhancing effect of light and tone presentation,

respectively, but was rather due to shift of the animal’s attention.
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Figure 6.13.: TES (mean ± SEM) following presentation of pre-stimulus tone (+T), light (+L) or tone superim-

posed by light (+T+L, black circles and bars, n = 5). (A) Scheme of stimulus presentation. P: startle

eliciting pulse (-), black rectangle: 20 s tone presentation (+T and +T+L), white rectangle: 2 s light

presentation (+L and +T+L). TES is expressed as startle amplitude (B), absolute amplitude change

(C) or percental change (D). *: ASR (A), ∆ASR (B) and %ASR (C) difference [+T] vs. [+T+L]

(p< 0.05, respectively).

6.3. Fear conditioning parameters - the matter of fact

6.3.1. Mice differ in their behavioural response to white noise and sine

wave stimuli

The acoustic startle response (ASR) of mice is an unbiased measure of reflexive beha-

viour. To test animal behaviour for a priori perception differences to stimuli of different

quality (i.e. sw or wn), the ASR to sw and wn startle eliciting pulses (P) was meas-

ured (one animal was excluded from analysis due to apparatus malfunction). Statistical

analysis revealed a significant interaction of pulse intensity and quality (F(3,30) = 15.79
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6. The startle response in paradigms of anxiety and fear

p< 0.05). As shown in fig. 6.14, at 105 and 115 dB(A) animals showed differences in their

ASR to different stimulus qualities (posthoc analysis: p< 0.05, respectively). However,

no significant differences occurred at lower intensities, making it convenient to use stimuli

of these low intensities in fear conditioning (all p> 0.05).

*

*

Figure 6.14.: Startle response to acoustic pulses of different intensities and quality (white noise (wn) squares, and

sine wave (sw) circles, n = 11). *: effect of pulse quality sw vs. wn (p< 0.05).

6.3.2. Between-session extinction as a function of quality but not

duration of acoustic stimuli

To clarify the role of conditioned stimulus (CS) duration and CS quality in fear condi-

tioning and extinction, on day 0 four groups of mice were conditioned to either sw or wn

stimuli of either 20 s or 120 s duration, respectively. Extinction training was performed

on day 1 - 3 and extinction retrieval was tested on day 9, presenting each mouse ten times

20 s CS of their respective quality, respectively. CS were presented at various intervals

(vi) which has been shown to be most effective in terms of extinction learning (Plendl

and Wotjak, 2010).

There was no significant effect of CS duration (p> 0.05). In contrast, there was a signi-

ficant interaction of CS quality and day of measurement (F(3,126) = 11.74 p< 0.05). CS

quality strongly affected fear-memory retrieval (day 1) and extinction retrieval (day 9)

(fig. 6.15A, posthoc analysis: p< 0.05, respectively). There was also a significant inter-

action of stimulus quality and stimulus presentation on day 9 in freezing behaviour meas-

ured in the extinction- (fig. 6.15B) and conditioning context (fig. 6.15C, F(1,44) = 27.30

p< 0.05 and F(1,44) = 13.84 p< 0.05, respectively). During extinction retrieval in the

extinction context, freezing levels of wn conditioned mice were significantly higher com-

pared to sw conditioned mice (posthoc analysis sw vs. wn: p< 0.05), indicating poor

extinction memory acquisition. On the other hand, wn conditioned animals showed de-
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creased freezing to CS in the conditioned context (posthoc analysis sw vs. wn: p< 0.05),

which, contrary to the finding in the extinction context, would indicate good extinction-

memory performance. Importantly, mice did not differ significantly in their freezing

behaviour to extinction- and conditioned context per se (posthoc analysis sw vs. wn:

p> 0.05 extinction and conditioned context, respectively), excluding influences of dif-

ferent context-memory between sw and wn group on freezing behaviour, and in both

groups freezing to context was much higher in the conditioned context than in the ex-

tinction context, showing strong conditioned context memory (cf. fig. 6.15B,C, CS- and

CS+, respectively). Additionally, there were significant interactions of CS quality and

CS number (i.e. number of CS presentations, 1 - 10) on day 1 and day 2 (F(9,396) = 6.84

p< 0.05 and F(9,396) = 3.54 p< 0.05, respectively) as well as significant effects of CS

quality and CS number on day 3 of extinction training (F(1,42) = 8.94 p< 0.05 and

F(9,378) = 2.08 p< 0.05, respectively), indicating impaired within-session extinction in

wn conditioned animals (data not shown). This supports the hypothesis of CS quality

having strong impact on animal learning, since freezing behaviour to either CS quality

did not differ significantly in unconditioned mice (t-Test: p> 0.05).

A B C
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Figure 6.15.: Freezing to stimuli (CS) of white noise (squares) and sine wave (circles) after conditioning to stimuli

of either quality and 20 s (white symbols) or 120 s duration (black symbols) (each group n = 12).

(A) Freezing to first stimulus on each of four days of extinction training. (B) Freezing to extinction

context on d9 20 s before (-) and during first stimulus presentation (+). (C) Freezing to conditioned

context on d9 20 s before (-) and during first stimulus presentation (+). *: effect of stimulus quality

wn vs. sw (p< 0.05).

6.3.3. Stimulus quality leads to categorical differences in the FPS/TES

paradigm

The previous experiment showed that freezing behaviour is strongly affected by stimulus

quality, and white noise pre-stimuli were shown to inhibit rather than enhance ASR in the
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TES-paradigm (cf. section 6.2.2). How does stimulus quality affect animal behaviour in a

FPS/TES experiment? Four groups of mice were conditioned to either sw or wn stimuli

of 20 s duration, respectively. In control animals unconditioned stimulus (footshock) was

omitted (no-shock control). The day after conditioning, animals were measured for FPS

(conditioned mice) and TES (control mice).

Significant interaction of CS quality and CS presentation, and CS quality and con-

ditioning in ASR amplitudes indicated that again CS quality markedly affected mouse be-

haviour (fig. 6.16A, cf. section 6.2.2) (F(1,32) = 69.81 p< 0.05 and F(1,32) = 5.41 p< 0.05,

respectively). In addition to insignificant interaction of conditioning, CS quality and CS

presentation (p> 0.05), there was only a significant effect of CS quality in ∆ASR and

%ASR (i.e. FPS/TES, F(1,32) = 69.81 p< 0.05 and F(1,32) = 41.38 p< 0.05, respect-

ively), but not conditioning (fig. 6.16B,C; p> 0.05). This indicates that pronounced

TES effects masked FPS, supporting the previous conclusions (cf. p. 61 and p. 97).

As seen before (cf. section 6.2.2), sw stimuli led to potentiated ASR (posthoc analysis

-CS vs. +CS: p< 0.05). In contrast, there was no significant effect of CS presentation

in wn group (posthoc analysis -CS vs. +CS: p> 0.05). CS wn rather decreased ASR

when it preceded the pulse in both conditioned and unconditioned mice. Freezing be-

haviour measured on day 7 after conditioning in a neutral context revealed significant

effects only for the factors conditioning and CS presentation (F(1,31) = 20.92 p< 0.05 and

F(9,279) = 9.74 p< 0.05). No significant effects of CS quality were observed (p> 0.05),

indicating that the effect of stimulus quality on FPS/TES again was not simply due to

differences in perception of the different stimuli, but affected animal behaviour on higher

levels of brain function.

6.4. Extinction of conditioned fear to context by cue

extinction training

6.4.1. Extinction of conditioned stimulus does not lead to alleviated

conditioned context fear

To test the hypothesis of parallel context extinction while cue conditioned stimulus (CS)

extinction training, animals were subjected to trace fear conditioning in the conditioning

context (cf. p. 35) and extinction training in the startle apparatus (cf. p. 36) to ensure

context dependent learning. Trace (i.e. gap between cue CS offset and unconditioned

stimulus (US) footshock onset) conditioning has been shown to be highly dependent on
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Figure 6.16.: FPS following white noise (wn, squares) or sine wave (sw, circles) stimuli in conditioned (black

symbols and bars, S, n = 12 sw and wn respectively) and naive (white symbols and bars, nS, n = 6

sw and wn respectively) mice, expressed as startle amplitude (A), absolute amplitude change (B) or

percental change (C). (D) Freezing to neutral context 30 s before (-) and during (+) 30 s stimulus

presentation of respective quality. *: ASR (A), ∆ASR (B) and %ASR changing effect of stimulus

quality wn vs. sw. #: Significant effect of conditioning (shocked vs. non shocked animals, p< 0.05).

+: effect of conditioning vs. unconditioned (p< 0.05, respectively).

hippocampus (HPC) function (cf. McEchron et al., 1998; Moyer et al., 1990), and was

performed to favour HPC participation in this paradigm since the working hypothesis

argues that context extinction will take place via pattern completion in the HPC during

cue CS presentation. Since animal observation was not possible during extinction train-

ing, animal movement scores were analysed by means of startle sensor voltage output.

CS presentation resulted in significant movement inhibition (fig. 6.18A,B and fig. 6.17).

This behaviour was apparent only on day 1 and (less) on day 2 of extinction training

indicated by significant interaction of training (i.e. extinction training (ex) or extinction

control (nex)) and CS presentation (F(1,18) = 22.22 p< 0.05, F(1,18) = 9.85 p< 0.05

and p> 0.05 for day 1, 2 and 3, respectively), suggesting successful extinction learning

(fig. 6.18C). To ensure successful extinction of CS memory, freezing behaviour (cf. p. 13)

was measured in a neutral context presenting a sequence of four CS tones. CS-extinction

was highly context dependent. Freezing to neutral context and during first tone presenta-

tion (fig. 6.18C) were not significantly different between ex (i.e. extinction training) and
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nex (i.e. extinction control) mice (p> 0.05). However, ANOVA revealed a significant

interaction of CS number (i.e. 1 - 4) and training (F(3,66) = 6.52 p< 0.05). While nex

animals remained on high freezing levels throughout CS presentation, freezing scores of

extinction trained animals decreased from this high to about mottled levels during the

course of CS presentations (fig. 6.18B), demonstrating that extinction memory can be

contextually generalised after short additional training. Contrary, both groups of mice

demonstrated equally intact context memory during exposure to the initial conditioning

context, where no significant effect of training was detected (p< 0.05, fig. 6.18D).

A

B

C

tone presentation

Figure 6.17.: Animal movements during the course of three consecutive days of extinction training. White circles:

non extinction (nex, n = 12), black circles: extinction training (ex, n = 12). Vertical lines indicate

conditioned stimulus presentation.
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Figure 6.18.: Averaged animal movements on three consecutive extinction training sessions from fig. 6.17A,B,C,

respectively, 20 s before (-) and during CS presentation (+, refers to | in fig. 6.17A,B,C) (A). Freezing

of extinction trained (ex, black circles, n = 12) and extinction control (nex, white circles, n = 12) mice

during extinction training on day 1 - 3 20 s before (-) and during CS presentation (+), on day 7 during

memory retrieval of conditioned stimulus (CS) (B) and 20 s before (-) and during first CS presentation

(+) (C), and memory retrieval of conditioned context on day 9 (D). *: effect of extinction training

ex vs. nex. #: effect of CS presentation vs. no presentation (p< 0.05, respectively).

6.5. ASR measures in mouse-models of trait anxiety and

PTSD

6.5.1. ASR in mice of high and low anxiety related behaviour

To assess fear learning in mice of the high and low anxiety related behaviour model, an-

imals were conditioned and subsequently tested for conditioned stimulus (CS) memory.

Conditioning led to significant differences in freezing behaviour between the different

mouse lines (F(2,23) = 24.36 p< 0.05). HAB and - less - NAB mice showed pronounced

freezing during CS presentation, while LAB mice showed almost no freezing (fig. 6.19A).

As expected, HAB mice showed significantly higher freezing behaviour to the CS com-

pared to NAB and LAB mice. While this could have arisen either from principal differ-

ences in anxiety related behaviour, as the model of HAB/LAB rats suggests (cf. Salomé

et al., 2002), it might have resulted also simply from differences in hearing capabilities

or shock sensitivity.

To test for hearing capabilities of the three mouse lines, baseline acoustic startle
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Figure 6.19.: Freezing before conditioning (-) and during conditioned stimulus (CS) memory retrieval (+) (A),

startle response to acoustic (B) and electric (D,E) stimuli, and startle enhancement by pre-stimulus

presentation (TES, C) in mice of high (black circles and bars), normal (white squares and bars)

and low (white squares and grey bars) anxiety related behaviour (HAB/NAB/LAB, n = 9/7/10 (A),

n = 8/11/8 (B), n = 11/11/10 (C) and n = 20/8/20 (D,E), respectively). *: effect of mouse line HAB

vs. LAB. #: effect of mouse line NAB vs. LAB. +: effect of mouse line NAB vs. HAB (p< 0.05,

respectively).

response (ASR) was measured. Lines differed tremendously in their startle response

(fig. 6.19B), indicated by significant interaction of startle eliciting pulse (P) intensity and

line (F(8,96) = 13.01 p< 0.05). While HAB, showing pronounced freezing to CS, showed

almost no SR even to high intense pulses, LAB mice, which show almost no freezing

behaviour, reacted potently to each presented pulse intensity. NAB mice showed inter-

mediate responses, thus SR inversely mirroring findings in freezing behaviour of these

mouse lines (cf. fig. 6.19A). HAB/NAB/LAB mice were also measured for tone enhanced

startle (TES, cf. section 6.2), since it is proposed to be putative applicable as a basal

measure of hearing capabilities (cf. section 6.2.3). Tone presentation was differently ef-

fective in enhancing ASR, indicated by significant interaction of tone presentation and

mouse line (F(2,29) = 30.97 p< 0.05). Posthoc analysis revealed significant enhancement

by tone presentation for HAB and LAB mice, while baseline startle resembled data found

before (cf. fig. 6.19B, data not shown). Mouse lines also differed significantly in %ASR

(F(2,29) = 50.83 p< 0.05) as well as in difference scores (F(2,29) = 30.98 p< 0.05), where

HAB mice showed highest potentiation, followed by LAB and NAB mice (fig. 6.19C). Al-
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6.5. ASR measures in mouse-models of trait anxiety and PTSD

though startle data and TES data are not consistent, which indicates different hearing

abilities of the subjected mouse lines, these results render it very unlikely that differences

found in fear acquisition can be assigned to differences in hearing capabilities.

To assess susceptibility to electric footshocks, HAB/NAB/LAB mice were subjected

to conditioning and their reaction by means of startle amplitude was measured. Fig-

ure 6.19D shows animal behaviour during the course of ten condition trials. Statistics

calculated on difference values (animal movement before tone and shock pairing (-), sub-

tracted from animal movement during tone and shock pairing (+), fig. 6.19E) revealed

significant differences between strains (F(2,45) = 8.74 p< 0.05), showing that LAB mice

increased movements during tone and shock pairing significantly less than HAB and

NAB animals (posthoc p< 0.05, respectively). This cannot be attributed solely to less

shock sensitivity of LAB animals. In fact the absolute movement scores of LAB mice

were the highest of all measured mouse lines also during tone and shock pairing, and

smaller difference values resulted from very high baseline movement scores in these an-

imals. NAB and HAB mice did not differ significantly in their response to tone and

shock pairings (posthoc, p> 0.05). Together these data indicate that different freezing

scores do not result from differences in shock susceptibility during fear conditioning.

6.5.2. ASR as a measure of hyperarousal in a mouse model of PTSD

CRH and PTSD model, both increase startle responses in mice

Increased corticotropin releasing hormone (CRH) levels and elevated startle responsive-

ness are found in patients suffering from post-traumatic stress disorder (PTSD). To pave

the way for studies of possible interrelations of these symptoms in the mouse-model of

PTSD, animals were treated with CRH and mice of the PTSD model were subjected to

startle measures to establish the CRH enhanced and PTSD associated enhancement of

startle, respectively.

After animals had recovered from surgery, acoustic startle response was measured after

intracerebroventricular (i.c.v.) injection of CRH, or CRH in combination with the specific

CRH-receptor blocker αCRH. Significant interaction of treatment and startle eliciting

pulse intensity showed successful acoustic startle response (ASR) enhancement by CRH

treatment (F(8,72) = 4.71 p< 0.05). This in turn was prevented by co-treatment with

αCRH (fig. 6.20). While CRH treated animals showed significantly higher ASR than

vehicle or CRH/αCRH treated mice (posthoc, p< 0.05, respectively), the latter two

did not differ significantly (p> 0.05). Thus, ASR is specifically enhanced by increased
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Figure 6.20.: Startle response in mice treated with either 0.1µg CRH (black circles, n = 7), 0.1µg CRH and 10µg

αCRH (black squares, n = 7) or vehicle (white circles, n = 7). *: effect of treatment CRH vs. veh.

#: effect of treatment CRH vs. CRH/αCRH (p< 0.05, respectively).

cerebral CRH.

To examine ASR in mice of the PTSD model, animals received a single intense foot-

shock and were measured for startle response 30 days later. ANOVA observed a sig-

nificant interaction of footshock and pulse intensity (fig. 6.21), proving that shocked

animals had stronger startle reactions than animals which did not experience a foot-

shock (F(4,108) = 4.22 p< 0.05). Significant differences occurred at 105 and 115 dB(A)

(posthoc p< 0.05, respectively) as it was observed in CRH treated animals, resembling

observations in patients.

*

*

Figure 6.21.: Startle response in mice 30 days after receiving an intense footshock (S, black circles, n = 14) or

exposure controls (nS, white circles, n = 15). *: effect of shock vs. no shock (p< 0.05).

Enriched housing prevents HPC shrinkage in the PTSD model, but has no

influence on startle response

Another prominent symptom found in PTSD patients is decreased HPC volume. While

on the one hand it is still discussed whether this finding results from the traumatic ex-
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6.5. ASR measures in mouse-models of trait anxiety and PTSD

perience or is merely a risk factor for developing PTSD after trauma, or whether it even

is a reliable symptom (cf. e.g. Golub et al., 2010), on the other hand it is still unknown,

what anatomical changes account for volume loss. To evaluate whether HPC volume

changes are a symptom in the PTSD mouse model, too, and - continuative - whether

these issues can be studied in the presented model, these mice were subjected to enriched

housing, known to favour HPC volume and function (cf. Goshen et al., 2009; van Praag

et al., 2000). Subsequently, animals were behaviourally analysed and their HPC volume

measured by means of ultramicroscopic imaging.

(a) (b)

Figure 6.22.: Three dimensional reconstruction of a mouse hippocampus (HPC). Imaged sections recorded were

loaded into a 3D reconstruction software (Amira), and models rendered using different surface effects.

(a) Opaque surface view. HPC is displayed like uncleared tissue. (b) Transparent view. HPC is

displayed like it is monitored during imaging process. The white quadrangle indicates the light sheet

illuminating the HPC in a discrete plane (white highlighted tissue).

As a proof of concept, GFP-M mice (derived from founder line M, cf. Feng et al.,

2000) tested positive for carrying the gene for expression of GFP were housed in stand-

ard cages or under enriched conditions. Animals were then measured for HPC volume

and neuronal density by means of amount of fluorescence recorded. After four weeks,

animals were killed and their HPC dissected and cleared for ultramicroscopic imaging

(nine animals had to be excluded from this study due to loss of either left or right HPC

during dissection). Analysis of image stacks were compared between the two animal

groups (i.e. housing). Statistical analysis revealed indeed significant differences in HPC

83



6. The startle response in paradigms of anxiety and fear

A B C
*

# *

Figure 6.23.: Volume of hippocampus (A,C) or amount of GFP fluorescence (B) of mice after standard housing

(nEE, white bar, n = 6) or enriched housing (EE, black bar, n = 9) (A,B), and mice after enriched

or standard housing and sensitisation (S, black bars) or no shock (nS, white bars) ( nEE-nS n = 10,

nEE-S n = 9, EE-nS n = 9, EE-S n = 8) (C). *: effect of EE vs. nEE. #: effect of S vs. nS (nEE)

(p< 0.05, respectively).

volume (fig. 6.23A), with enriched animals showing larger HPC than animals kept under

standard conditions (t(13) = 3.13 p< 0.05). On the other hand, differences in GFP fluor-

escence, thought to be a quantitative measure of neuronal tissue in mice expressing this

protein in neuronal cells and cellular extensions, did not significantly differ between the

animals (p> 0.05, fig. 6.23B). Fluorescence did also not differ significantly when analysed

for laterality, or differences between dorsal and ventral HPC (data not shown, p> 0.05,

respectively).

Having shown that HPC volume can be readily quantified by means of ultramicro-

scopic imaging, the next experiment aimed to analyse HPC volume of animals of the

PTSD mouse model. Four groups of mice, either kept under enriched or standard hous-

ing conditions, underwent the PTSD-protocol or were exposed to the shock context

only (exposure control), respectively. After incubation time, animals were subjected to

measures of ASR (one animal had to be excluded due to apparatus malfunction) and

HPC volume (28 mice had to be excluded due to loss of either left or right HPC during

dissection).

ANOVA detected significant interactions of shock and startle eliciting pulse intensity

as well as enrichment and shock intensity (F(4,236) = 4.27 p< 0.05 and F(4,236) = 2.81

p< 0.05, respectively). As seen before (cf. section 6.5.2), posthoc analysis revealed signi-

ficant differences between shocked animals and exposure controls at 105 and 115 dB(A)

pulse intensity (p< 0.05, respectively), indicating that enrichment did neither facilitate,

nor prevent the PTSD symptom hyper-arousal in this model (fig. 6.24). Analysing HPC
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Figure 6.24.: Startle response of mice measured for HPC volume (cf. fig. 6.23C, n = 16 each, except nEE-S n = 15)

after either sensitisation (S, black symbols) or no shock (nS, white symbols) and kept under either

enriched (EE, circles) or standard conditions (nEE, squares). *: significant effect of sensitisation S

vs. nS (p< 0.05).

volume, a significant interaction of shock and enrichment was observed (F(1,32) = 7.30

p< 0.05). Calculating posthoc comparisons showed that shocked, non enriched animals

had significant smaller HPC volume than all other three groups of animals (p< 0.05,

respectively), indicating that shock experience led to HPC shrinkage, which in turn

was prevented by enriched housing. However, enriched housing alone did not lead to

increased HPC volume (fig. 6.23C).

In summary, enrichment prevented HPC shrinkage after traumatic shock experience,

but could not prevent increased hyper-arousal.
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7. Pharmacological and optogenetical

manipulation of prepulse inhibition

7.1. Prefrontal DR1 and DR2 mediate modulation of

prepulse inhibition

7.1.1. Systemic blockage of DR1, but not DR2, increases PPI

To validate the present protocol of prepulse inhibition (PPI) and prepulse facilita-

tion (PPF) measurement in the B6J and BALB/c mouse strains, both strains were

treated with low (0.3 mg/kg) and high (1.0 mg/kg) dose of the typical antipsychotic drug

haloperidol. In both strains, PPI was strongly increased (i.e. more negative percental

ASR change, %ASR) by haloperidol (fig. 7.1).
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Figure 7.1.: Effects of s.c. haloperidol treatment on percental change of startle (%ASR, mean ± SEM) in BALB/c

(A,B,C) and B6J mice (D,E,F) at prepulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across

five different interpulse intervals. White circles: vehicle (BALB/c: n = 12, B6J: n = 11); grey circles:

0.3 mg/kg (n = 12 each); black circles: 1.0 mg/kg (n = 12 each). * and #: %ASR changing effect of

0.3 and 1.0 mg/kg vs. veh, respectively (p< 0.05).

In detail, haloperidol treatment significantly affected %ASR at 55 dB (F(8,132) = 6.02
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Figure 7.2.: Effects of s.c. sulpiride treatment on percental change of startle (%ASR, mean ± SEM) in BALB/c

(A,B,C) and B6J mice (D,E,F) at prepulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across five

different interpulse intervals. White circles: vehicle; grey sqaures: 5 mg/kg; black squares: 20 mg/kg

(each treatment BALB/c: n = 9, B6J: n = 12).
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Figure 7.3.: Effects of s.c. SCH23390 treatment on percental change of startle (%ASR, mean ± SEM) in BALB/c

(A,B,C) and B6J mice (D,E,F) at prepulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across

five different interpulse intervals. White circles: vehicle; grey triangles: 0.1 mg/kg; black triangles:

0.3 mg/kg (each treatment and mouse strain n = 12). *: %ASR changing effect of 0.3 mg/kg vs. veh

(p< 0.05).

p< 0.05), at 65 dB (F(2,33) = 32.09 p< 0.05) and at 75 dB PP-intensity (F(2,33) = 11.63

p< 0.05). In B6J mice, %ASR at 55 dB PP-intensity was not significantly affected,

while significant changes occurred at 65 dB and 75 dB (F(8,128) = 5.41 p< 0.05 and

F(8,128) = 2.68 p< 0.05, respectively).
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Admittedly, 1.0 mg/kg haloperidol decreased startle response on startle alone trials

(i.e. startle pulse without prepulse) in BALB/c mice, indicated by significant interac-

tion of day of measurement (i.e. day of baseline measures without treatment and day

of measures after acute treatment) and treatment (F(2,33) = 3.78 p = 0.05). However,

1.0 mg/kg haloperidol decreased overall activity of the animals, thus probably not startle

per se, and a decrease of startle would rather lead to decreased percental PPI scores.

Hence, this observation does not question the results described above.
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Figure 7.4.: Effects of s.c. SCH23390 (0.3 mg/kg) and SCH23390 + sulpiride (0.3 + 5 mg/kg) treatment on per-

cental change of startle (%ASR) relative to vehicle treated BALB/c mice (∆%ASR, mean ± SEM) at

prepulse intensities of 55 (A), 65 (B) and 75 dB (C) across five different interpulse intervals. Data

for SCH23390 treatment alone are the same as displayed in fig. 7.3A,B,C, respectively, but were nor-

malised to vehicle treated animals thereof (cf. Materials and Methods). White circles: SCH23390;

black circles: SCH23390 + sulpiride (n = 12, respectively). *: facilitating effect of additional 5 mg/kg

sulpiride vs. SCH23390 alone (p< 0.05). Note that in contrast to other figures, graphs do not show

percental startle change (i.e. %ASR), but the calculated difference of %ASR between vehicle treated

and SCH23390 or SCH23390 + sulpiride treated animals (i.e. ∆%ASR).

To test for effects of dopamine (DA) receptor (DR) blockage in unchallenged (i.e. no

pretreatment with direct or indirect DA-agonist) mice with comparatively low (B6J) or

high (BALB/c) cerebral DA levels (cf. George et al., 1995), mice were treated s.c. with

the specific DR1-antagonist SCH23390 and the specific DR2-antagonist sulpiride.

Surprisingly, PPI was unaltered after acute injection of the specific DR2-antagonist

sulpiride. Neither 5, nor 20 mg/kg sulpiride led to a significant increase of PPI in BALB/c

or in B6J mice (fig. 7.2). Contrary, systemic treatment with the specific DR1-antagonist

SCH23390 potently increased PPI in BALB/c (fig. 7.3A,B,C). While there was no ef-

fect with 0.1 mg/kg SCH23390 (posthoc p> 0.05), 0.3 mg/kg SCH23390 significantly

increased PPI at 65 dB (F(2,33) = 6.41 p< 0.05) and 75 dB PP-intensity (F(2,33) = 6.90

p< 0.05). In contrast, PPI changes in B6J mice after SCH23390 treatment were not

significant (all p> 0.05, fig. 7.3D,E,F).

While haloperidol strongly affected PPI, sulpiride did not. To address the relat-
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ive contribution of DR2-antagonism by sulpiride on PPI, BALB/c mice were further

treated with a combination of 5 mg/kg sulpiride and 0.3 mg/kg SCH23390. The com-

bined treatment of sulpiride and SCH23390 increased PPI as did SCH23390 alone (i.e.

∆%ASR> 0), but this increase was facilitated by adding sulpiride (fig. 7.4) as indicated

by a significantly higher normalised %ASR at 55 dB (F(4,88) = 2.78 p< 0.05), 65 dB

(F(4,88) = 4.69 p< 0.05) and 75 dB PP-intensity (F(4,88) = 5.76 p< 0.05). However,

combined treatment of SCH23390 and sulpiride increased startle response (i.e. reaction

to startle pulse without prepulse), indicated by significant interaction of day of measure-

ment (i.e. day of baseline measures vs. day of measures after treatment) and treatment

(F(1,22) = 9.30 p< 0.05). This is in favour of increased percental PPI scores; although

startle response amplitudes of prepulse condition trials were lower in mice of combined

SCH23390/sulpiride treatment compared to mice treated with SCH23390 only, this dif-

ference was in fact not significant. Even though animals were beforehand not matched

for startle amplitudes but prepulse inhibition scores, this finding could interfere with the

data reported, weakening the above described effect of facilitated PPI by combination

of SCH23390 and sulpiride DR blockage.

7.1.2. Prefrontal blockage of DR increases PPI

The PFC has been shown to play a key role in regulation of PPI and being susceptible

to dopaminergic treatment in terms of PPI. To validate the theory of PFC effects on

PPI in the present study, prefrontal synaptic transmission was inhibited by increasing

inhibitory inputs via infusion of the GABA(A)-agonist muscimol, or by blockage of

AMPA-receptors with the specific antagonist NBQX in BALB/c mice. Four mice had

to be excluded from analysis of muscimol data due to cannula misplacement.

Local prefrontal infusions of muscimol as well as NBQX led to a pronounced increase

of PPI (fig. 7.5). While %ASR at 55 dB PP-intensity were not significantly changed by

muscimol or NBQX, significant changes where observed at 65 dB (F(4,64) = 3.87 p< 0.05

and F(1,19) = 8.52 p< 0.05, muscimol and NBQX infusions, respectively) and 75 dB

PP-intensity (F(1,16) = 15.98 p< 0.05, muscimol treatment only). However, muscimol

infusion increased startle response, as shown by significant interaction of day of measure-

ment (i.e. day of baseline measures vs. day of measures after treatment) and treatment

(F(1,16) = 11.69 p< 0.05). As mentioned above (p. 90) this is in favour of increased

percental PPI scores, even though animals were not matched beforehand for startle

amplitudes but prepulse inhibition scores. Additionally, also startle response of prepulse

condition trials were significantly higher in muscimol compared to vehicle treated mice
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Figure 7.5.: Effects of prefrontal NBQX (A,B,C) or muscimol (D,E,F) infusion on percental change of startle

(%ASR, mean ± SEM) in BALB/c mice at prepulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F)

across five different interpulse intervals. White circles: vehicle (NBQX: n = 11, muscimol: n = 9);

black circles: 0.01µg NBQX (n = 10); black squares 0.25µg muscimol (n = 9). *: %ASR changing

effect of NBQX or muscimol vs. veh, respectively (p< 0.05).

(F(4,16) = 4.51 p< 0.05). These observations suggest that PPI increase by muscimol

might be partly due to its startle enhancing effect.

Since the PFC was found to be involved in PPI of startle in the present experiment,

the effects of locally infused sulpiride and SCH23390 were investigated next. Three mice

of the BALB/c and B6J stain, respectively, had to be excluded from SCH23390 data and

two BALB/c mice from sulpiride data. Exclusion was carried out based on histological

brain slices indicating cannula misplacement. B6J did not respond to systemic treatment

with sulpirid or with SCH23390. According to the hypothesis of mimicking findings

by systemic treatment with prefrontal treatment, it was proposed that B6J would not

respond to PFC injections of the used drugs, either.

Contrary, sulpiride as well as SCH23390 infusion significantly increased prepulse in-

hibition of startle in both, BALB/c and B6J (fig. 7.6 and fig. 7.7). Although signific-

ant only at 75 dB PP-intensity (F(2,28) = 8.28 p< 0.05 and F(8,120) = 2.28 p< 0.05,

respectively), insignificant increase after sulpiride treatment was also observed at 65 dB

and slightly 55 dB and short IPI (fig. 7.6), indicating the sensitivity of PPF (i.e. short

IPI) to PPI changes. PFC infusion of SCH23390 at a dosage of 0.1µg led to a small

but not significant increase of PPI, again observed at mostly short IPIs (fig. 7.7). 0.5µg

caused a significant increase of PPI at 65 dB (F(2,26) = 5.83 p< 0.05 and F(8,116) = 2.35

p< 0.05) and at 75 dB PP-intensity (F(2,26) = 6.30 p< 0.05 and F(2,29) = 3.47 p< 0.05)
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for BALB/c and B6J, respectively.
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Figure 7.6.: Effects of prefrontal sulpiride infusion on startle percental change (%ASR, mean ± SEM) in BALB/c

(A,B,C) and B6J mice (D,E,F) at prepulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F) across

five different interpulse intervals. White circles: vehicle (BALB/c: n = 11); grey sqaures: 0.03µg

(BALB/c: n = 10); black squares: 0.1µg (BALB/c: n = 11, B6J: each treatment n = 11). *: %ASR

changing effect of 0.1µg vs. veh (p< 0.05).
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Figure 7.7.: Effects of prefrontal SCH23390 infusion on percental change of startle (%ASR, mean ± SEM) in

BALB/c (A,B,C) and B6J mice (D,E,F) at prepulse intensities of 55 (A,D), 65 (B,E) and 75 dB (C,F)

across five different interpulse intervals. White circles: vehicle (BALB/c: n = 10, B6J: n = 12); grey

triangles: 0.1µg (BALB/c: n = 10, B6J: n = 12); black triangles: 0.5µg (BALB/c: n = 9, B6J: n = 8).

*: %ASR changing effect of 0.5µg vs. veh (p< 0.05).
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7.2. Mimicking pharmacological interference by

optogenetic stimulation

7.2.1. PPI and PPF are impaired by 5 and 50 Hz stimulation of the

prefrontal cortex

To assess the impact of light driven stimulation of prefrontal cortex (PFC) in ChR2-

transgenic mice on PPI and PPF, light flashes of 5 Hz and 50 Hz were applied. Due to

apparatus malfunction, one animal had to be excluded from analysis of 5 Hz stimulation.

A B

C D

*

*

*

**

Figure 7.8.: Effects of tonic (5 Hz, n = 13) and phasic (50 Hz, n = 14) light stimulation (L+) of ChR-2 positive

prefrontal layer V pyramidal neurons on startle amplitudes (A,B), and PPI and PPF of startle (C,D)

in mice (mean ± SEM, respectively). Circles: 5 Hz; squares: 50 Hz; white symbols: no stimulation;

black symbols: light stimulation (L+). *: ASR, PPI or PPF changing effect of stimulation (L+) vs.

no stimulation (p< 0.05).

While light stimulation had no significant effects on ASR amplitudes and on %ASR

(p> 0.05, respectively), significant effects of 5 Hz stimulation on PPI were observed,

regardless whether statistics were calculated on amplitudes (t(12) = 4.99 p< 0.05) or

%ASR (t(12) = 3.89 p< 0.05). 50 Hz stimulation did not reveal any significant PPI

changes (p> 0.05), although normalised (i.e. %ASR) values nearly differed signific-

antly (p = 0.067). Contrary, significant PPF changes occurred during 50 Hz (amplitude:

t(13) = 3.37 p< 0.05; %ASR: t(13) = 4.73 p< 0.05) as well as 5 Hz stimulation (%ASR:

t(13) = 2.54 p< 0.05), although significance was failed when calculation did not control
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for individual startle amplitudes (i.e. normalising) after 5 Hz stimulation (amplitudes:

p = 0.061). Interestingly, significant changes due to stimulation decreased PPI, as it de-

creased PPF, viz. stimulation always led to ASR changes more close to zero percent.

Pharmacological manipulation of dopamine receptors in the PFC on the other hand al-

ways led to parallel shifts of PPI/F, viz. an increase of PPI and a decrease of PPF (cf.

section 7.1.2).
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Discussions
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8. The startle response in paradigms of

anxiety and fear

8.1. Fear potentiated startle in C57BL/6N mice

The present experiments suggest that fear potentiated startle (FPS) is masked by strong

unconditioned pre-stimulus effects in C57BL/6N mice. Fear potentiated startle was

measured after conditioning mice to light stimuli or sine wave tone stimuli of various

duration with electric footshocks of various intensities. None of the parameters applied

led to significant higher startle potentiation as had been observed with unconditioned

pre-stimuli.

FPS has been successfully measured in BALB/cJ, C3H/HeSnJ, C57BL/6J, CBA/J

and DBA/2J mouse strains employing light or sine wave tone stimuli (Falls, 2002).

However, visual inputs reach conditioning associated brain areas such as the amygdala

only through indirect pathways (Shi and Davis, 2001), while auditory input is channelled

to the amygdala directly (e.g. LeDoux, 2000). In fact mice are found to be less efficiently

conditioned to light stimuli, confirmed by the present results and also indicated by

almost solely application of acoustic stimuli in mouse fear conditioning (cf. fig. 2.1).

Interestingly, in mice the performance of visual fear conditioning can be accelerated to

auditory levels when visual input is rewired during neonatal development onto structures

processing the auditory input (Newton et al., 2004).

Parameters used in the present study are in line with procedures published (for review

see Falls, 2002), although the number of tone and shock pairings in the present work

(six) was lower than the number suggested by Falls (20 - 30). Thus, it remains to be

shown that FPS after a higher number of pairings is also masked by unconditioned tone

effects.

However, FPS levels of about 60 - 120 % (cf. fig. 6.2, fig. 6.3 and fig. 6.4) were compar-

able to the levels reported by Falls (ca. 130 %) and others (e.g. cf. Busse et al., 2004 (ca.
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130 %), Heldt et al., 2007 (ca. 60 %), Fadok et al., 2009 (ca. 60 %)) after six tone and

shock pairings, and the amount of freezing also indicated sufficient conditioning. Addi-

tionally, the unconditioned effects were much higher (ca. 60 - 110 %, cf. fig. 6.2, fig. 6.3

and fig. 6.4) than those reported by Heldt et al. (2000, ca. 15 %) or Falls (2002, ca.

50 %), and even a single footshock to mice of the line subjected in the present work was

sufficient to reveal comparable high levels of potentiation (ca. 150 %), even though again

not significantly higher than unconditioned potentiation (cf. fig. 6.16).

Closer to protocols found in the literature, conditioning and testing conducted in

the same context revealed strong FPS compared to potentiation of unconditioned mice.

However, the present data suggest that context conditioning contributed strongly to

conditioned potentiation; hence, potentiation to conditioned tone would have been not

distinguishable from uncondtioned potententiation equally to the other experiments, if

potentiation would have been not facilitated by conditioned context.

Over all the present data show strong unconditioned effects of acoustic stimuli in

C57BL/6N mice, potently masking FPS in these animals. Thus, even if FPS would

have been observed to a significant level, it is questionable whether these mice can be

successfully applied in experiments, where high FPS levels above baseline potentiation

(i.e. unconditioned effects) are needed to draw conclusions based on animal behavioural

performance.

In contrast, the phenomenon of strong unconditioned tone effects will be studied in

the following section to evaluate potential applications in behavioural experiments.

8.2. Tone enhanced startle as a measure of hearing

capability, stimulus adaptation and attention

Pre-stimulus facilitation of the startle response has been reported for rats and humans as

well as for mice (Falls et al., 1997; Hsieh et al., 2006; Reijmers and Peeters, 1994). In rats

as in mice the effect is described that the acoustic startle response (ASR) is increased by

steady background noise (Carlson and Willott, 2001; Hoffman and Fleshler, 1963), which

is effective even after hours of continuous stimulus presentation (Hoffman and Wible,

1969). In humans, stimuli (pulses) of up to 4 s duration are used to observe an increase

in startle. This prepulse facilitation (but cf. p. 27!) is mostly applied to measures of

attention (Filion et al., 1993).

In rats, the phenomenon of startle response changes by background sound has been

thoroughly studied by Hoffman, Ison and associates (Hoffman and Fleshler, 1963; Hoff-
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man and Wible, 1969; Hoffman and Ison, 1980; Ison et al., 1973; Ison and Russo, 1990).

While Carlson and Willott (2001) provided a more detailed characterisation of back-

ground sound effects in mice, examining interactions of startle eliciting pulse and back-

ground stimulus frequency, the present work confirms the work on rats by Hoffman and

Wible (1969) in mice, suggesting that pre-stimulus effects are equivalent with background

sound effects. The present experiments extend findings by Carlson and Willott (2001)

and additionally provide possible applications based on the paradigm of tone enhanced

startle (TES). Based on observations that enhancement of startle increases with increas-

ing stimulus intensity (Carlson and Willott, 2001), is reduced during distraction (Filion

et al., 1993, 1994), and is observed only during early trials of a test session (Filion et al.,

1993, 1994; Graham, 1975), TES is proposed as a paradigm to assess hearing capability,

attention, and stimulus adaptation in mice.

Section 6.1 has already demonstrated that the amount of unconditioned effects of pre-

stimulus presentation (i.e. TES) can be optimised by choosing suitable parameters of

pre-tone and startle eliciting pulse (cf. pp. 62). As a consequence, the paradigm of TES

may be applicable not only to the mouse strain tested in this study (C57BL/6NCrl),

but also to other strains (cf. p. 79), whereby the optimal parameters may vary between

mouse strains. While 9 kHz potently enhanced startle in the present study, Carlson and

Willott (2001) found startle inhibited when elicited with noise pulses in a 4 or 12 kHz

background in the C57BL/6J strain. Although Carlson and Willott (2001) provided

background stimuli as constant background throughout the testing session, the present

work suggests stimulus duration > 4 s to be irrelevant for startle potentiation in mice,

since there was no difference in tone enhanced startle with 4 s and 20 s in section 6.1.3, and

also no differences were found for TES with 20 s or 120 s sine wave tone in section 6.2.2.

These data are in line with findings in rats (Hoffman and Wible, 1969). Additionally,

while Hoffman and Wible (1969) reported that facilitation persists following termination

of the pre-stimulus up to 8 ms before startle pulse presentation, this interval is similarly

comparable in mice (< 3 ms, fig. 6.6). Enhancement and inhibition were reported to

depend on the startle eliciting pulse intensity (Ison, 2001). Although it only tested

for two different intensities (i.e. 105 and 115 dB(A)), the present work cannot confirm

this finding, demonstrating that startle with 105 and 115 dB pulses is almost equally

enhanced (cf. fig. 6.3 and section 6.1.3).

Measuring hearing capability of an animal usually requires the recording of acoustic

brainstem responses (ABR) or othoacoustic emission (OAE), requiring anaesthesia of
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the animal. Non invasive techniques are the startle response itself, as well as prepulse

inhibition of startle. However, startle is elicited only by intense acoustic pulses far above

the auditory threshold, although Willott et al. (1984) demonstrated that the acoustic

startle response (ASR) is capable of detecting differences in the neuronal response of

the auditory system. Prepulse inhibition on the other hand is capable of testing also

very low intensities, but is strongly affected by internal and external states and changes

(cf. e.g. Ison et al., 1997). TES offers a third method to assess hearing in a startle

based paradigm. Like PPI it is capable at a wide range of intensities, but offers higher

robustness, evidenced by only weak susceptibility to even strong sensitisation and its

immunity to diazepam or paroxetine treatment. Appositely, Carlson and Willott (2001)

found increasing enhancement/inhibition with increased background intensity from 60

to 80 dB, congruent to the present experiment. They also found differences in enhance-

ment/inhibition using the same parameter set when testing mice of different ages, which

have been shown to exhibit progressive hearing loss (Johnson et al., 1997). This addi-

tionally suggests the applicability of TES in hearing assessment.

The robustness of TES is limited when it comes to attention. In the present experi-

ment, TES was markedly decreased by an additionally introduced light stimulus. This

suggests TES to be a tool to measure attentional shifts in animals. TES might be an

attentional measure per se, but to control for already existing internal factors that might

decrease TES, it is appropriate to measure distraction by a second stimulus on the basis

of TES. Although the light stimulus in the present experiment itself inhibited startle, the

decrease of TES to almost zero (i.e. unaltered startle), easily exceeding startle inhibition

resulting from light presentation, strongly suggests that mainly attentional shift was re-

sponsible for the decrease in TES. The possibility of TES as a measure of attention could

also explain the finding of increased enhancement by a high dosage of 2 mg/kg diazepam.

Diazepam clearly had sedative effects at this dosage and by this could have weakened the

animals attention to cues associated with locomotion, thereby shifting attention more to

olfactory and acoustic stimuli. This in turn could have resulted in facilitated TES.

While measurement of habituation like processes to long stimuli usually requires fear

conditioning to have an appropriate behavioural readout of adaptation (i.e. freezing),

TES measures adaptation in naive animals. Adaptation to the pre-stimulus, and thus

decrease in startle enhancement, was not masked by habituation to the startle elicit-

ing pulse per se. This was indicated by significant effect of pulse presentation in the

pre-stimulus condition, but not in the pulse alone trials of %ASR. Interestingly, no - or

limited - adaptation was found to pre-stimulus white noise; the inhibitory effect of white
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noise was rather found to increase with ongoing presentation. This may be attributed

not to enhancing, but to inhibitory effects of white noise on startle in the subjected

mouse strain. However, stimulus quality (i.e. noise or sine wave) severely affects animal

behaviour (cf. section 6.3), and white noise seems to be less prone to extinction than

sine wave tones (cf. p. 75), suggesting that the lack of stimulus adaptation to white noise

pre-stimuli in TES did not result from its inhibitory effect, but was rather due to stim-

ulus quality.

TES is a phenomenon of ongoing stimulus presentation and not stimulus on- or offset

relative to startle eliciting pulse onset. This is indicated not only by the present work,

but also by the finding that hours of stimulus presentation do not impair the startle

enhancing effect (Hoffman and Wible, 1969). According to the present data, TES is

rather not a sign of anxiety or fear. Although it was slightly increased by prior strong

footshock sensitisation, the anxiolytic drug diazepam had no attenuating effect on TES

(i.e. sine wave tone); however, it remains to be shown that no diazepam effect can be

observed in sensitised animals (i.e. attenuation of increased startle response in sensitised

animals). Also Ison et al. (1997) did not find any effect of diazepam on noise facilitated

startle (but cf. Kellogg et al., 1991), and Schanbacher et al. (1996) reported independence

of background noise enhancement from amygdala, a brain structure closely related to

fear and anxiety behaviour. Stimulus perception is different for noise and sine wave.

While adaptation (and thus habituation-like decrease of startle enhancement) was found

to sine wave stimuli, white noise was less prone to adaptation. This is in line with the

afore mentioned study of Hoffman and Wible (1969) as well as with section 6.3 and

work by Mauch et al. (in prep), demonstrating that white noise seems to have a different

(higher?) perceptional value than sine wave tones.

Prolonged as well as acute noise has been shown to increase cortisol levels (or corticos-

terone, respectively) in humans and in rodents (cf. Henkin and Knigge, 1963; Jensen et

al., 2010; Spreng, 2004). This is also found for tones of different frequencies (e.g. Borrell

et al., 1980). Additionally, recent data indicate that hearing sensitivity is tuned and

by this protected against noise-induced hearing loss via corticotropine-releasing hormon

(CRH) release in the cochlea (Graham et al., 2010), showing that CRH release can follow

immediately after intense acoustic stimulus onset; could TES therefore be a function of

CRH release? However, startle is not only enhanced but also found inhibited during

presentation of background stimuli of different frequencies. Startle alteration by back-

ground was also discussed in terms of anxiety, although overall findings argue against
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this hypothesis (cf. above). Also the hypothesis of masking effects (Davis, 1974; Hoffman

and Searle, 1965; Ison and Hammond, 1971) is not tenable, considering experiments by

Carlson and Willott (2001). For instance startle of 100 dB broadband noise pulses was

inhibited by 80 dB 12 kHz background, while it is unlikely that broadband noise of this

intensity is masked by such a intense pure tone. Additionally, while a 4 kHz background

would rather be suggested to mask startle of 4 kHz pulses, facilitation of startle occurred

in this case. A modified masking hypotheses of high frequency cochlear distortions asso-

ciated with the intense startle stimulus put forward by Gerrard and Ison (1990) is also

not supported by the work of Carlson and Willott (2001). According to the hypothesis,

high frequency stimuli would be more effectively masked by high frequency background.

While this hypothesis could explain the inhibition of startle by 12 kHz background and

broadband noise background, the latter did effectively suppress startle of 4 kHz, but not

12 kHz pulses.

Carlson and Willott (2001) put forward a summation hypothesis, suggesting different

background sound effects converging at the level of the caudal pontine reticular nucleus

(PnC, cf. p. 6). The PnC receives input from divers brain structures, each in itself leading

to inhibition or enhancement of the startle response and sensitive to auditory stimuli.

Thus, the complex results of startle alteration by pre-stimulus (background stimulus)

presentation might be a summation of effects of these stimuli exciting different brain

areas that are involved in startle modification.

Taken together, tone enhanced startle (TES) is a phenomenon of long duration (back-

ground) acoustic stimuli, preceding startle eliciting pulses. Enhancement and inhibition

of stimulation depends strongly on the spectral preferences of the stimulus, while stim-

ulus duration (above a threshold) has no relevance for startle change magnitude. TES

shows within session habituation to sine wave tone (but not white noise) stimuli, which

makes it a paradigm to measure stimulus adaptation in mice. Additionally TES in-

creases with stimulus intensity, suggesting it to be a tool to assess hearing capability.

While TES has been shown to be unaffected by different pharmacological compounds,

it is susceptible to distracting stimuli, and maybe a function of attention itself.

8.3. Fear conditioning parameters - the matter of fact

The present work clearly demonstrates the strong impact of stimulus quality (i.e. sine

wave or white noise) on animal behaviour in measures of acoustic startle response (ASR),
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fear conditioning (FC) and extinction of conditioned fear (ExFC). Stimulus duration, on

the other hand, affected neither FC, nor ExFC.

To date, stimuli of different quality have been applied uncritically and parameters and

protocols vary considerable between laboratories (fig. 2.1). Showing that the behavioural

differences resulting from different stimulus quality may affect the conclusions drawn

from the respective experiments, the present findings suggest reinterpretation may be

necessary in cases where experiments yielded contradicting results after applying differing

stimulus quality.

As in the present experiments, data revealed less freezing behaviour of white noise (wn)

conditioned animals during CS memory test in a neutral context following extinction

training, indicating that they had deficits in acquisition of extinction memory compared

to sine wave (sw) conditioned mice. Contrary, low freezing levels of wn conditioned

animals during CS memory test in the conditioned context suggests better extinction

memory performance compared to high freezing sw conditioned mice. CS wn onset

was accompanied by accelerated movements of the respective animals, sometimes even

running and jumping, on day 1 post conditioning. Extinction memory retrieval in the

neutral context on day 9 revealed as high freezing levels as shown on day 1, while

running and jumping again led to decreased freezing levels in the conditioned context.

These observations allow another interpretation of the current data, viz. wn stimuli

were sensed more averse than sw, thereby leading to panic-like reactions during FC

memory retrieval. This behaviour was facilitated by the presentation of the conditioned

context, leading to even lower freezing scores. This example demonstrates how behaviour

differently affected by different stimulus quality could interfere with data interpretation,

thus demanding careful video analysis, especially when behaviour is scored by means of

automated computer algorithms.

While misinterpretations such as the one described above are easily prevented by care-

ful behavioural analysis, other effects of stimulus quality may be more problematic. The

present data revealed significant differences in the course of between- as well as within-

session extinction of the mice conditioned to different stimulus qualities, suggesting a

kind of extinction disability of wn conditioned animals. Hence, studies reporting ex-

tinction deficits of some animals while applying white noise stimuli might have rather

verified extinction disability to these stimuli than proving extinction deficits in the sub-

jected animals.

The panic-like behaviour triggered by white noise stimuli and the deficits in between-
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and within-session extinction and stimulus adaptation (cf. section 6.2.2) in white noise

conditioned animals may suggest a higher emotional relevance for wn stimuli. The

acoustic environment of mice usually consist of multi-frequent sounds and broadband

noises. Therefore it may be that animal behaviour has evolutionary adapted to these

kind of stimuli, and that these are rated differently in their ecological importance. Indeed,

acoustic noise pulses are found to be more effective in sensorimotor gating (i.e. PPI, cf.

section 3; Stoddart et al. (2008); Wynn et al. (2000)), and background noise enhances

ASR in rats (Hoffman and Fleshler, 1963). Additionally, differences between white noise

and sine wave stimuli are reported for prepulse facilitation (i.e. TES, cf. p. 27, section

6.2 and Hsieh et al. (2006)). However, the prepulse effects reported could result from

subjective loudness perception by the subjected animal. Although white noise and sine

wave were set to identical intensity, loudness of white noise could have been perceived

as higher. This results from summation of the loudness of each excited critical band

of the basilar membrane. While pure sine wave tones activate basilar membrane only

in one critical band, white noise (20 Hz - 20 kHz) activates all critical bands responding

to the respective bandwidth. Interestingly, despite this phenomenon, 20 ms sine wave

pulses above 90 dB(A) led to higher ASR than white noise pulses of the same intensity

(fig. 6.14). Additionally, white noise and sine wave tones did not simply differ in the

magnitude of startle enhancement, but differed categorical in their impact on startle

response, as was demonstrated in section 6.3.3 as well as in section 6.2.2. Moreover,

freezing levels to unconditioned stimuli of different quality were comparable, and hence

freezing behaviour was not affected by different subjective loudness perception. Together

these findings render it rather unlikely that differences in perceived loudness to white

noise and sine wave tone had any influence on animal behaviour in the present data.

Admittedly, stimuli can gain ecological relevance and rated as important outside evol-

utionary processes (e.g. reaction time to the sound of skidding tyres, cf. Graham, 1999)

and contrary, ecologically important stimuli may not be recognised as relevant innately

(cf. Kindermann et al., 2009). It has been shown on the other hand, that when presented

with a biological acoustic distractor (such as a frog croak), the processing of any (bio-

logical or non biological) visual or auditory cue is disturbed (Suied and Viaud-Delmon,

2009). Additionally, human reaction times to naturally occurring sounds such as roaring

of a cat of prey are significantly smaller than to artificial sine wave tones. Applying

the temporal envelope of roaring to white noise stimuli, reaction times to these stimuli

matched reaction times to natural roaring (Suied et al., 2010), although it remains un-

clear whether either temporal aspects of the stimulus, or white noise itself led to decrease
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of reaction time.

The present results demand a more careful handling of stimulus parameters when it

comes to behavioural paradigms. This not only to warrant comparable procedures and

handling of animals, but also because parameter-associated behaviour might interfere

with data interpretation. The present data indicate that white noise stimuli might

activate innate fear associated perception systems, which potentially could be found

across mammals (vertebrates). Such innate recognition might strongly interfere with

measures of fear and anxiety in animals and animal models of psychiatric disorders, but

could also be useful in terms of for instance acoustic warning signals (cf. Graham, 1999).

8.4. Extinction of conditioned fear to context by cue

extinction training

The present hypothesis predicted that conditioned stimulus (CS) presentation during

extinction training would result also in context extinction - presumably by means of

pattern completion in the hippocampus (HPC). Thus, animals that underwent extinction

training were expected to show lower freezing levels to the conditioned context than

animals which did not. The present data do not support this hypothesis. Extinction

trained animals and non-trained animals expressed comparable freezing to conditioned

context. This suggests that context extinction either did not occur, or, paradoxically,

context extinction did not lead to reduced freezing behaviour to the extinguished context.

In fact there are studies reporting - vice versa - CS extinction through presentation of

an associated cue (i.e. present during conditioning, Durlach and Rescorla (1980); Holland

and Forbes (1982); Kawai and Kitaguchi (1999); Nakajima and Kawai (1997); Rescorla

(1983)). In particular, two studies reported reduced fear to CS after extinction of the

context where conditioning to that CS was performed (Marlin, 1982; Stout and Miller,

2004). Already Hall (1996) and Holland (1983) as well as McLaren and Mackintosh

(2000) offered theoretical framework to a model predicting this finding. They proposed

that presentation of cues associated to the conditioned stimulus, such as the context,

could lead to “retrospective revaluation” (Stout and Miller, 2004) and, thus, extinction of

the actual CS. Perhaps somewhat closer to the mechanism of extinction via pattern com-

pletion proposed in the present experiment is the within-compound view by Durlach and

Rescorla (1980). According to these authors, associations exist between all components

(context, cues, US, i.e. compound) during conditioning, also to the CS. In consequence,
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weakening the association between one of these components and the US would lead to

weakened associations of all other components and the US.

Assuming that the association of context to US was indeed weakened by CS extinction

training in the present experiment, why would this weakened association not lead to

decreased freezing behaviour to the context? Bouton and Ricker (1994) demonstrated

that extinction considerably depends on the context where extinction training took place.

This is indicated also in the present experiment. Extinction trained animals showed

high initial freezing levels to the actual extinguished CS in a new context. These levels

were comparable to freezing levels of animals which did not undergo extinction training

(fig. 6.18D). Freezing to CS in the extinguished mice only decreased after additional

presentations of the CS. This decrease is attributed to context dependency of extinction

and not to incomplete extinction, proven by movement scores successfully obtained from

the startle apparatus which indicate successful training. Thus, context dependency of

extinction might have led to initial unaltered freezing to the extinguished (previously

conditioned) context. It remains to be shown that repeated context exposure after CS

extinction training leads eventually to alleviated freezing to this context in trained, but

not (or slower) in non extinction trained animals.

8.5. ASR measures in mouse-models of trait anxiety and

PTSD

8.5.1. ASR in mice of high and low anxiety related behaviour

According to the model of HAB/LAB mice, animals of high anxiety related behaviour

(HAB) indeed showed highest levels of fear response (i.e. freezing) to a fear conditioned

stimulus compared to animals of low (LAB) and normal (NAB) anxiety related beha-

viour. These differences cannot be attributed to differences in hearing capability or

electric footshock susceptibility, demonstrated by measures of tone enhanced startle,

baseline startle and movement scores.

Work by Willott et al. (1984) demonstrated that the acoustic startle response (ASR)

is capable of detecting differences in the neuronal response of the auditory system and

thereby may be applied in measures of hearing capability. The present data are for sure

no final proof of equal or unequal hearing capabilities of the mouse lines, but strong

differences in startle response with LAB�HAB at least render it very unlikely that

freezing differences were simply due to differences in hearing capability.

106



8.5. ASR measures in mouse-models of trait anxiety and PTSD

Baseline movement scores indicate strong locomotory drive in LAB mice, which might

partly account for exceedingly high startle amplitudes as well as for almost not existing

freezing during conditioned memory retrieval. That startle amplitudes are not repres-

enting hearing capabilities one-to-one is also indicated by tone enhanced startle (TES,

cf. section 6.2). Here, LAB animals showed less enhancement of ASR than HAB mice,

possibly resulting partly from ceiling effects of the strong startle response observed in

LAB. NAB were not found to be susceptible to enhancing tone effects at all. Contrary,

NAB animals displayed equally strong susceptibility to electric footshocks as HAB mice.

LAB mice reacted with even higher responses, but high movement scores also during

phases where no shock was presented relativise these high reactions.

Recently, LAB animals were proposed to be a model for the attention deficit/hyper-

activity disorder (ADHD) (Yen et al., 2010). Although attentional deficits might account

for low TES as well as poor conditioned memory retrieval, strong startle responses and

even lower TES in NAB mice, which do not display exaggerated locomotion, make the

explanation of low attention of LAB as implausible as hearing capability or footshock

susceptibility alone.

The present experiment demonstrates the usefulness of startle as a non invasive meas-

ure to assess differences of perception in animal behaviour. However, inconsistencies in

anxiety related behaviour such as high freezing levels but very low startle scores in HAB

mice, or in tone perception related behaviour such as good performance in conditioned

memory retrieval but absence of TES in NAB animals, hinder a coherent interpretation.

8.5.2. ASR as a measure of hyperarousal in a mouse model of PTSD

By demonstrating that i.c.v. CRH treatment as well as mice of a model of post-traumatic

stress disorder (PTSD) display increased acoustic startle response, the present work sug-

gests more profound studies to analyse the role of elevated CRH levels in the mouse model

of PTSD are needed. Showing that the PTSD model allows the study of HPC volume

loss found in PTSD patients, the present study broadens the spectrum of trauma con-

sequences that can be examined in this model.

Startle scores were much higher in animals of the CRH experiment than in the PTSD

experiement (cf. fig. 6.20 and fig. 6.21). Also animals subjected to PTSD protocol and

measures of HPC volume (fig. 6.24) displayed lower amplitudes than animals of the CRH

experiment, but comparable startle levels as mice of the PTSD experiment. This prob-

ably resulted from surgery of the CRH mice as well as injection procedure before startle
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measurement, which may lead to a hyper-aroused state of the animals.

Sure enough, increased acoustic startle response (ASR) by artificially elevated intra-

cerebral CRH levels in parallel with findings of elevated ASR in mice of the PTSD model

does not necessarily imply altered CRH levels in these mice. However, the tool of local

application of CRH or CRH receptor blocker in this mouse model may have implications

for understanding the mechanisms leading to PTSD in humans. For instance Keen-

Rhinehart et al. (2009) report that elevated CRH levels in the central amygdala lead

to increased startle response and a dysregualtion of the hypothalamic–pituitary–adrenal

(HPA) axis. Recent findings that neuronal activity in some brain areas is reliably in-

creased by means of elevated cytochrome c activity in animals of the PTSD mouse model

(Henes et al., 2009) provides putative target regions to interfere with possible molecular

substrates of PTSD, such as CRH.

Blocking the CRH receptor by i.c.v. injection of the specific antagonist αCRH has been

shown to affect light enhanced (LES), but not fear potentiated startle (FPS, de Jongh et

al., 2003). While FPS is thought to be a measure of fear, LES rather measures anxiety

of a subjected animal (cf. p. 13). According to light enhanced startle, background noise

is found to enhance startle reactivity in rats and background noise has been reported to

increase cortisol levels in humans (for review cf. Spreng, 2004). This raises the question

whether TES in mice (cf. section 6.2), as a putative analogue to LES in rats, could be

partly a function of increase in CRH (cf. p.101) and, thus, might be a potential measure

of (PTSD related) CRH increase. In fact TES was found to be limitedly susceptible to

sensitisation with different electric footshock intensities (cf. p. 66). However, the sharp

offset of enhancement by tone presentation argues against a neuropeptide effect in TES.

Moreover, section 6.2.4 indicates rather attention than arousal to be the cognitive sub-

strate of TES.

Hippocampal (HPC) volume loss has been reported previously in PTSD patients

(Bonne et al., 2008; Bremner et al., 2008; Wang et al., 2010). The present experi-

ment shows that decrease of HPC volume is also apparent in a mouse model of PTSD;

this can be readily measured by means of processing ultramicroscopic HPC images. As

discussed recently by several authors (Bremner et al., 1997; Gurvits et al., 1996; Stein

et al., 1997; Winter and Irle, 2004), the present data do not rule out whether HPC

volume loss is a function of trauma, or merely a secondary effect of PTSD and its con-

sequences in behaviour and social life, although future experiments based on the present
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work may help to resolve this issue. On the other hand, manganese enhanced magnetic

resonance imaging (MEMRI) has been described to reveal comparable results in terms

of HPC volume changes (Golub et al., 2010). The heavy metal manganese was found

to be an excellent contrast medium in MRI; protons that surround paramagnetic metal

ions such as manganese display shortened relaxation times of the protonic spin through

dipolar interactions of proton and electron spins of the paramagnetic ion (Bloembergen,

1957). In neuronal tissue, manganese ions enter neurons via activated calcium channels

(Cross et al., 2007; Drapeau and Nachshen, 1984; Itoh et al., 2008). This manganese can

then be measured as a decrease in T1 spin relaxation time even hours later (Alvestad

et al., 2007; Sun et al., 2006), since manganese efflux from cells is very low (Aoki et al.,

2004). Although MEMRI might be more elaborative and cost intensive than the present

method based on ultramicroscopy, studying an intact HPC and the entire brain, and the

possibility of longitudinal studies in animals is clearly advantageous. It might therefore

contribute to the hypothesis of predictability of individual vulnerability to PTSD by

HPC volume, as put forward by Gilbertson et al. (2002).

However, the present method was also capable of detecting HPC volume increase in

animals kept under enriched housing conditions, pointing out general trophic effects of

enrichment also discussed by other authors (Van Praag et al., 2000; Goshen et al., 2009).

Contrary, when animals were subjected to a behavioural test battery, ultramicroscopic

imaging did not detect HPC volume increase in enriched housed mice, while increased

HPC volume after such treatment was detected by MEMRI (Golub et al., 2010).

While Golub et al. (2010) also report beneficial effects of enriched environment (and

increased HPC volume) to trauma associated contextual fear, the present data suggest

amelioration of HPC shrinkage by enriched housing, but hyper-arousal (i.e. startle mag-

nitude) remained unaffected. This demonstrates again the independence of PTSD-like

symptoms, shown also by work of Golub et al. (2009) and Pamplona et al. (2010).

The causes of hippocampal shrinkage remain unclear. Golub et al. (2010) suggest

a shrinkage of axonal protrusions, indicated by down regulation of the axonal marker

GAP43. Measuring the amount of neuronal tissue by means of GFP labelled structures

in Thy1-GFP-mice proved to be inadequate, considering the simplicity of the applied

image processing technique. More elaborated methods will possibly be more successful

in analysing dystrophy in neuronal tissue, also by means of ultramicroscopy studies. Er-

türk et al. (2011) already give prospects of what is possible if imaging techniques such

as ultramicroscopy and two-photon confocal imaging are combined with tissue clearing
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methods, genetic mutants expressing fluorescent dyes and computational techniques.

It is yet unclear whether CRH hypersecretion found in PTSD patients is merely a

predisposing factor or occurs only after trauma (Risbrough and Stein, 2006). The same

holds true for hippocampal volume which is thought to be a consequence of trauma

(or development of PTSD), while studies by Gilbertson et al. (2002) suggest low HPC

volume as a risk factor for developing PTSD after trauma.

Although the present work does not causally prove CRH deregulation in the subjected

PTSD mouse model, the present data provide the groundwork to study these aspects in

future experiments. Additionally, the present experiments confirmed the independency of

PTSD-like symptoms, demonstrating that hyper-arousal is not ameliorated by enriched

environment, but enriched housing prevents hippocampal volume loss in PTSD animals.

Despite the methodological power and flexibility of MEMRI, the present method of

ultramicrosopic analysis of HPC provides a fast and cheap tool measuring HPC volume

in rodents.
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9. Pharmacological and optogenetical

manipulation of prepulse inhibition

9.1. Prefrontal DR1 and DR2 mediate modulation of

prepulse inhibition

Through the treatment of mice of relative low and high cerebral dopamine (DA) con-

centrations with specific DA receptor (DR) 1- and DR2-antagonists, the present work

demonstrates that PPI enhancement is mediated to a large extent via prefrontal DR1.

Contrary, DR2 blockage with sulpiride was less effective in enhancing PPI than block-

ing DR1 with SCH23390. While systemic sulpirid had no effect, the DR2-antagonist

haloperidol potently facilitated PPI in both mouse strains.

The contribution of dopamine (DA) receptors (DR) to PPI mediation and modula-

tion of PPI is undoubted (for review see Swerdlow et al., 2001). On the other hand,

published data suggest that DR function in mice is different from rats (Geyer, 2006;

Ralph-Williams et al., 2003; Ralph and Caine, 2005), with DR1 being more important

than DR2 in mice. Additionally, contribution of either receptor and DR-antagonist ef-

fects were reported to depend on pretreatment and were mostly apparent by means of

amelioration of disruptive effects of DA agonist administration (direct or indirect, cf.

Geyer, 2006). Contrary, some authors reported PPI changes after unchallenged (i.e. no

treatment with DA agonist) DR blockage, which led to either a decrease (Ellenbroek et

al., 1996; Swerdlow et al., 2005) or increase (Schwarzkopf et al., 1993) of PPI.

The present data rather speak for an inhibitory function of DR1 in modulation of PPI

in mice. In all experiments, DR1 blockage led to increased (disinhibited) PPI; only B6J

mice did not response to systemic treatment with DR1-antagonist. Since B6J have been

shown to have lower concentrations of cerebral DA than BALB/c, it is possible that

DR1 exerts more reliably in a milieu of high DA levels, supported by the finding that

DR1 has less affinity to DA than DR2 (cf. Creese et al., 1983). Contrary, Ralph et al.
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(2001) reported disrupted PPI in DA transporter deficient mice (DAT-ko mice), which

are suggested to have higher extracellular cerebral DA levels. Here, PPI was not im-

proved by DR1 blockage with SCH23390, but with DR2-antagonist raclopride treatment.

However, SCH23390 treatment had positive effects on other impaired behaviour found

to be associated with DAT deficiency. DR1 blockage led to increased PPI in B6J, too,

when antagonists were infused into the PFC, additionally questioning the importance

of high DA levels for recruiting DR1 at least in this brain region. On the other hand,

Mauch et al. (in prep) found increased release of prefrontal DA by means of microdialysis

after acute forced swim stress in both BALB/c and B6J mice, while baseline measures

confirmed higher prefrontal DA release in BALB/c mice. Since startle measurement

itself may serve as an acute stress to the animal (cf. Davis and Sheard, 1974; Groves

and Thompson, 1970; Plappert et al., 1999), elevated DA levels in the PFC might favour

DR1 action also in B6J mice, while this effect could be masked by actions in other brain

areas after systemic DR1 blockage.

The present data draw an ambivalent picture for DR2 function. On the one hand,

DR2 blockage by haloperidol potently increased PPI in both B6J and BALB/c mice.

This is in line with findings by Ouagazzal et al. (2001), who reported PPI increase

after antipsychotic treatment in a variety of mouse strains. Confusingly, DR2-antagonist

sulpiride had no effect on PPI in none of the examined strains. Also prefrontal treatment

only had minor effects, found at short interpulse intervals and significant only at 75 dB(A)

prepulse intensity. Here, inhibition of startle cannot be exclusively attributed to prepulse

inhibition since prepulses themselves led to small startle responses, suggesting that also

paired pulse inhibition of startle was present (i.e. reaction to first startle pulse inhibits

reaction to second pulse by causing a partly refractory state of the startle mediating

circuit, but cf. Dahmen and Corr, 2004). In line with the theory of a synergistic function

of DR1 and DR2 (cf. Peng et al., 1990; Wan et al., 1996), co-treatment with SCH23390

and sulpiride facilitated the PPI enhancing effect of DR1 blockage with SCH23390 alone.

According to the finding of PPI enhancing effects of DR1, but not DR2, the latter rather

seems to have auxiliary function in the subjected mice. When Ki values, a measure for

receptor affinity, are compared for haloperidol and sulpiride, sulpiride shows an about

3000 times higher affinity to DR2 than DR1, while affinity of haloperidol is only 67

times higher for DR2, thus maybe blocking also DR1 to a higher extent than sulpiride

and, hence, mediating the synergistic functions of DR1 and DR2. The PPI enhancing

effect of DR1 blockage was indeed facilitated by parallel treatment with DR2-antagonist.

However, combined blockage of DR1 and DR2 by SCH23390 and sulpiride increased
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startle response itself, which according to calculation of %PPI is in favour of inhibitory

scores, thus questioning the finding of potentiated PPI enhancing effect. Additionally,

other side effects by either drug as well as concentration issues may account for the

contradicting findings by sulpiride and haloperidol treatment, too.

It has been proposed that PPI disruption results from reduced prefrontal DA trans-

mission by causing a disinhibition of descending glutamatergic fibres (cf. Swerdlow et al.,

2001). While the present work rather suggests a PPI inhibitory effect of DA transmission

(i.e. DR blockage facilitates PPI), it supports the idea of glutamatergic inhibitory effer-

ent pathways, since blockage of excitatory transmission by administration of GABA(A)

agonist muscimol as well as AMPA receptor blockage with NBQX led to enhancement

of PPI.

To further investigate the interplay of dopamine receptor subtypes by means of pre-

pulse inhibition, the use of short interpulse intervals (IPI) might be of value. The present

work indicates that behaviour is much more susceptible to drug treatment in the range of

IPI6 25 ms. Most studies try to maximise PPI and only use a small subset of paramet-

ers. While at these parameters PPI is thought to be present solely, PPF occurs at short

IPI. In fact, it has been proposed that PPI and PPF are two antagonising processes,

which are present in parallel during presentation of any prepulse, but parameter sets

favour the occurrence of either PPI or PPF (cf. Plappert et al., 2004). This hypothesis

is supported by a continuously transition of PPI to PPF by decrease of IPI. Addition-

ally, PPF shows an “inverted U-shaped” function of prepulse intensity and is strongest

at intermediate prepulse intensity and short IPI, while PPI is favoured by longer IPI

and higher prepulse intensity. Furthermore, PPI is disrupted when the startle eliciting

pulse is preceded by two prepulses, one leading to prepulse inhibition and the other

to prepulse facilitation when preceding the pulse alone (personal observation). Thus,

PPF (i.e. short IPI) is ideally suited to detect changes of underlying PPI, being much

more susceptible also to small drug effects which are missed at parameters of strong PPI.

Effects of dopaminergic manipulation in mice have been shown to be very complex

(for review see Geyer, 2006). The present work confirms the prominent role of DR1 in

prepulse inhibition in mice, where rather DR2 than DR1 seems to exert auxiliary function

in prepulse inhibition. However, some contradictions, such as DR type contribution

to enhancement of PPI demand further investigation of DR type involvement in the

modulation of PPI. The protocol presented here is well suited to study pronounced as
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well as small effects resulting from (pharmacological) treatment and suggests the use of a

broader spectrum of prepulse parameters in studies of prepulse inhibition and facilitation.

9.2. Mimicking pharmacological interference by

optogenetic stimulation

An emerging number of studies using the light driven manipulation of neurons via light

sensitive ion-channels has been published since Arenkiel et al. presented the technique

of in vivo neuronal light stimulation in 2007. To date, this technique has been used in a

variety of studies, including a diversity of fields such as sleep- and Parkinson research, or

the role of specific neuron population in brain oscillations or of astrocytes in breathing

(Adamantidis et al., 2010; Gourine et al., 2010; Kravitz et al., 2010; Sohal et al., 2009).

The present work demonstrates that optogenetic tools are also easily adapted to meas-

ures of the acoustic startle response (ASR). Prepulse inhibition (PPI) as well as prepulse

facilitation (PPF) of the ASR was decreased by light stimulation of channelrhodopsin-2

positive layer V pyramidal cells in the prefrontal cortex (mouse line Thy1-YFP-18, cf.

Wang et al., 2007). Low frequency 5 Hz stimulation favoured PPI depletion, while PPF

was in particular affected by high frequency 50 Hz stimulation, although (insignificant)

changes were also observed in PPI and PPF with 50 Hz and 5 Hz stimulation, respectively.

Prefrontal layer V pyramidal neurons have been shown to react to dopamine (DA)

or dopamine receptor 1 (DR1)-agonists by means of increased excitability (Wang and

O’Donnell, 2001; Chen et al., 2007; Pietro and Seamans, 2010, but see Gulledge and Jaffe,

1998). This effect is blocked by co-application of DR1-antagonists SCH23390 (Wang and

O’Donnell, 2001; Chen et al., 2007). In section 7.1.2, the present work demonstrated PPI

increase by prefrontal infusion of SCH23390, thereby potentially preventing pyramidal

neurons to enter a state of high excitability. Light stimulation on the other hand will

have led to a depolarised (i.e. excited) state of these cells (cf. Boyden et al., 2005),

proposing a possible mechanism of stimulation driving PPI disruption. Contrary, PPF

was always decreased when PPI was enhanced after DR blockage, while PPF like PPI was

decreased after light stimulation in the present experiment. Pharmacological treatment

was neither specific for a cell type, nor was the drug limited to a small area of action.

Thus, comparison between specific light stimulation and receptor, but not cell- and

area specificity of pharmacological treatment trivially, but clearly, demonstrates the

heterogeneity of involved prefrontal neuronal structures in modulation of PPI and PPF.
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Moreover, the effects of light driven excitation of prefrontal layer V pyramidal neurons

suggests a new sight on PPF. PPF has been proposed to be simply a summation phe-

nomenon, resulting from addition of the neuron depolarising effects of startle eliciting

pulse (P) and preceding prepulse (Hoffman and Ison, 1980). Thus, it was proposed that

if only intensity of prepulse (PP) is high enough to depolarise neurons of the startle

mediating circuit and interpulse interval is short enough for summation effects, PP + P

leads to facilitated startle response (PPF). While Ison et al. (1997) reconsidered their

summation hypothesis, showing that also a small (i.e. low intensity), sub threshold in-

crease in background noise leads to pronounced facilitatory effects, Stoddart et al. (2008)

are still emphatic for the theory of facilitatory summation. If this would be true, PPI

and PPF could not be decreased simultaneously by the same manipulation; a decrease

in PPI would have to lead to an increase in (facilitated) startle and vice versa. In the

present experiment, PPI and PPF were both decreased by stimulation, but baseline

startle was not. Thus, if PPF would simply be a summation of prepulse and pulse in the

startle mediating circuit, baseline startle had to be inhibited, too. This clearly proves

that PPF is not a function of startle mediating circuits and suggests the prefrontal cor-

tex, and layer V pyramidal neurons in particular, to be a structure involved in prepulse

facilitation of startle.

The present work shows that startle measures can be readily manipulated by light

driven stimulation of transgenic neurons (i.e. optogenetic stimulation). Prepulse in-

hibition and -facilitation were decreased by stimulation of layer V pyramidal neurons,

discussing a putative target of applied dopamine receptor antagonists (cf. section 7.1.2).

While the present results clearly demonstrate that PPF is not a prepulse/pulse sum-

mation phenomenon, this proof of concept study opens the door to further neuronal

optogenetic manipulation and studies of involvement of cell types in animal behaviour

and application in animal models at the Max-Planck-Institute of Psychiatry.
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The present work successfully established startle reflex measures in mice at the Max-

Planck-Institute of Psychiatry in Munich (MPI-P). Applying several paradigms of acous-

tic startle response (ASR) and contributing to topical issues in animal model research,

the present work additionally demonstrats the critical aspect of stimulus quality in be-

havioural studies. Not only implementing tone enhanced startle (TES) as supplemental

paradigm of behavioural characterisation, the present thesis introduces optogenetic tech-

niques to manipulations of startle response and its modification in mice.

Fear potentated startle (FPS) is a common paradigm to assess fear in animals and

humans (cf. Davis et al., 1993; Hamm and Weike, 2005). This paradigm was applied in a

multitude of studies, and parameters and procedures to elicit FPS are well characterised

(cf. e.g. Davis and Astrachan, 1978). Also various strains of mice have been shown to be

suitable for measures of FPS (cf. Falls, 2002). Yet, the present study did not succeed to

establish a protocol for measures of FPS in the C57BL/6NCrl mouse strain (cf. section

6.1), which is commonly used as animal model at the MPI-P. Although being overall in

line with procedures applied by others, resulting in adequate fear responses measured

by freezing, the present experiments suggest fear potentiation of startle in these mice is

masked by strong unconditioned pre-stimulus effects. To establish security learning on

the basis of FPS in mice (cf. Falls and Davis, 1997) as a model to evaluate treatment of

phobics as it was the aim of the present work, future attempts should therefore employ

mouse strains that have been frequently used in measure of FPS and display a strong

potentiation, such as DBA/2J mice.

Even though the application of FPS was not successful, the present work took ad-

vantage of FPS masking unconditioned pre-stimulus effects. The phenomenon of startle

alteration by background sound has been described for rats as well as mice (cf. Hoffman

and Searle, 1965; Carlson and Willott, 2001). Studies by Hoffman and Wible (1969)

suggest that this phenomenon is equivalent with startle alterations resulting from pre-
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stimulus presentation demonstrated for mice, rats, and humans (cf. Falls et al., 1997;

Reijmers and Peeters, 1994). This is confirmed by the present experiments (cf. section

6.2), showing that pre-stimulus presentation enhances ASR if presented before startle

pulse presentation less than 3 ms, and equally strong enhancement following prestim-

uli of 4 - 120 s. The present work additionally proposes the paradigm of tone enhanced

startle (TES) to be a useful tool to assess hearing capability, stimulus adaptation, and

attention, capitalising the finding that startle changes increase with increased stimulus

intensity (Carlson and Willott, 2001 and fig. 6.5), is stronger early during test session

(Filion et al., 1993, 1994; Graham, 1975 and section 6.2.2), and is disrupted by distract-

ing stimuli (Filion et al., 1993, 1994 and fig. 6.13). Future studies may benefit from TES,

applying the introduced tools in characterisation of their animal models.

The applicability of TES as a measure of stimulus adaptation was successfully demon-

strated, showing that not adaptation, but rather sensitisation, of startle changes occur

when presenting white noise pre-stimuli. This raises the question whether acoustic stim-

ulus quality (i.e. white noise or sine wave) affect behaviour not only on levels of reflex

modification (i.e. startle response), but maybe also higher brain functions.

The ASR and its modifications was repeatedly shown to depend on stimulus qual-

ity (cf. Carlson and Willott, 2001; Gerrard and Ison, 1990; Stoddart et al., 2008). The

present work demonstrates, that also learning in terms of fear conditioning and extinction

of conditioned fear strongly depend on stimulus quality (cf. section 6.3). The animal’s

fear response was much stronger to conditioned white noise than conditioned sine wave

stimuli, showing less freezing but rather panic like behaviour. Additionally, white noise

conditioned animals displayed disability of extinction learning. This may have consider-

able impact on interpretation of experimental data and, considering the high discrepancy

in applied protocols and stimulus parameters in fear conditioning literature (cf. fig. 2.1),

may lead to contradictory findings in different laboratories. The present work therefore

calls for a discussion about standardising procedures and strongly recommends a careful

handling of stimulus parameters applied in behavioural experiments.

The test of the hypothesis that context extinction takes place during conditioned

stimulus (CS) extinction training necessitates animal testing in differently arranged en-

closures. However, different arrangements such as lighting, smell or shape may not

provide enough differentiation, since contextual features also involve properties of the

experimental room or procedures of placing an animal into the apparatus. Thus, the
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use of the fear conditioning apparatus (cf. p. 35) for conditioning and testing, and the

use of the startle apparatus (cf. p. 36) for extinction training was obligatory. On the

other hand, the startle response apparatus provides limited possibilities of animal ob-

servation and freezing analysis. Although Dr. Kerry J. Ressler provides a manual how

to extract freezing data from startle recordings (cf. http://userwww.service.emory.

edu/~kressle/protocols.htm, Analysis of SR-generated Freezing and FPS data), the

present work demonstrates that fear response to conditioned stimuli can be readily as-

sessed by directly analysing recorded voltage scores during animal movement.

The hypothesis of parallel context extinction during CS extinction training however

is not supported by the present data. Nevertheless, confirmed by the present study,

CS extinction learning is highly context specific, and future experiments may solve the

question whether context extinction as CS extinction learning is highly context specific,

too. This would imply the possibility that context extinction in fact was present in

the present experiment, but was not expressed by the animals, because the display of

extinguished cue/context necessitates repeated presentation when tested in a context

different from that where extinction training took place.

Some of the here and before established paradigms of startle measures were readily

applied in two mouse models of mood disorders at the MPI-P.

Mice bred for high, normal, or low anxiety related behaviour, a model of trait anxiety

(cf. Krömer et al., 2005), were characterised in their ability of fear memory acquisition.

The present data initially suggested that mice related to high anxiety (HAB) indeed

acquire fear memory much better than mice related to normal (NAB), or - even worse

- low anxiety behaviour (LAB). The present work in fact demonstrates that these dif-

ferences in fear behaviour do not result from differences in hearing capability or electric

footshock sensitivity by applying the paradigms of baseline startle response measures,

measures of tone enhanced startle, and measuring animal movement scores.

The mouse model of post-traumatic stress disorder (PTSD) (cf. Siegmund and Wotjak,

2007) has already been shown to resemble several symptoms found in patients, as well

as the independence of these symptoms (cf. Pamplona et al., 2010). The present work

extended the model, demonstrating that mice of this model also display the symptom of

hyper-arousal by means of exaggerated startle responses. Moreover, the present study

found altered hippocampal volume in these mice as it is found in PTSD patients, through

the method of ultramicroscopic imaging (cf. Dodt et al., 2007). Decreased hippocam-

pal volume was ameliorated by keeping the animals under enriched housing conditions,
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suggesting putative treatment strategies in patients. Furthermore, the present work

demonstrates that these two additional symptoms of the PTSD mouse model are again

independent. Future work on this model may further investigate, which possible treat-

ments could lead to amelioration of not only one, but a majority of symptoms associated

with PTSD. It may also address the question, whether hippocampal volume is predictive

or symptomatic for PTSD, contributing to an ongoing debate in the research community

(cf. e.g. Gilbertson et al., 2002; Winter and Irle, 2004).

Building up a startle lab and establishing startle measures, the paradigm of prepulse

inhibition is indispensable. Interfering with the dopaminergic system in animals of relat-

ively high and low cortical dopamine (DA), the present work is conducive to the ongoing

characterisation of dopamine receptor (DR) contribution in mediation of prepulse in-

hibition of startle (PPI). In line with the findings of complex and partially inconsistent

actions of DR, the present study found the DR2 differently affected by two different

DR2-antagonists, suggesting synergistic effects of DR1 and DR2 activation. The present

data clearly show that DR1 blockage leads to increase of PPI in both subjected mouse

strains, and that the prefrontal cortex is critically involved in mediation of this effect.

The present work successfully manipulated prepulse inhibition as well as prepulse fa-

cilitation of startle (PPI/PPF) by intracerebral light flashes in animals expressing the

light sensitive sodium channel channelrhodopsin-2. Through the use of low and high

frequency stimulation of prefrontal layer V pyramidal cells, PPI/F were potently dis-

rupted. The present experiment lays the foundation for future experiments applying in

vivo optogenetic manipulation at the MPI-P. Furthermore, the present data demonstrate

that PPF is in fact not simply a summation effect of prepulse and pulse in the startle

mediating pathway, as is proposed for example by Stoddart et al. (2008). Future studies

may therefore address the neuronal basis of PPF.

A large part of effort in neuroscience is focused on the question, how the human brain

generates and controls behaviour. To understand these processes, it will be eventually

necessary to extend the systems theoretical approach, where behaviour is studied by

action and reaction, by the reductionistic approach, examining the individual parts re-

sponsible for specific aspects and changes of behaviour. The first approach is feasible in

humans themselves, and imaging techniques such as proton emission tomography (PET)

or magnetic resonance imaging (MRI) nowadays allow partly to study individual aspects

of biological processes in humans. However, first and foremost ethical considerations, but
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also practical points, limit feasibility of human experiments. To approach this problem,

[. . . ] it would be useful to study a relatively simple behavior that can be

elicited in mammals and that is sensitive to a variety of experimental treat-

ments. (Davis, 1984)

Fulfilling many of these criteria, the startle response has been studied now for at least

100 years and has been applied in various animal models. Nevertheless, as has been

introduced (cf. chapter I) and is additionally demonstrated by the present work, startle

response measures today is still a contemporary field of research, which has become

indispensable in characterisation of animal models of mood disorders.
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Salomé N, Viltart O, Darnaudéry M, Salchner P, Singewald N, Landgraf R, Sequeira H,

Wigger A (2002) Reliability of high and low anxiety-related behaviour: influence of

laboratory environment and multifactorial analysis. Behav Brain Res 136:227–237.

Samuels ER, Hou RH, Langley RW, Szabadi E, Bradshaw CM (2007) Modulation of the

acoustic startle response by the level of arousal: comparison of clonidine and modafinil

in healthy volunteers. Neuropsychopharmacology 32:2405–2421.

Sasaki H, Iso H, Coffey P, Inoue T, Fukuda Y (1998) Prepulse facilitation of auditory

startle response in hamsters. Neurosci Lett 248:117–120.

Sauer B, Henderson N (1988) Site-specific dna recombination in mammalian cells by the

cre recombinase of bacteriophage p1. Proc Natl Acad Sci U S A 85:5166–5170.

Sautter FJ, Bissette G, Wiley J, Manguno-Mire G, Schoenbachler B, Myers L, Johnson

JE, Cerbone A, Malaspina D (2003) Corticotropin-releasing factor in posttraumatic

stress disorder (ptsd) with secondary psychotic symptoms, nonpsychotic ptsd, and

healthy control subjects. Biol Psychiatry 54:1382–1388.

Schall U, Keysers C, Kast B (1999) Pharmacology of sensory gating in the ascending aud-

itory system of the pigeon (columba livia). Psychopharmacology (Berl) 145:273–282.

148



Bibliography

Schanbacher A, Koch M, Pilz PK, Schnitzler HU (1996) Lesions of the amygdala do not

affect the enhancement of the acoustic startle response by background noise. Physiol

Behav 60:1341–1346.

Schauz C, Koch M (1998) Latent inhibition of fear potentiated startle in rats. Behav

Pharmacol 9:175–178.

Schauz C, Koch M (1999) Lesions of the nucleus basalis magnocellularis do not impair

prepulse inhibition and latent inhibition of fear-potentiated startle in the rat. Brain

Res 815:98–105.

Schauz C, Koch M (2000) Blockade of nmda receptors in the amygdala prevents latent

inhibition of fear-conditioning. Learn Mem 7:393–399.

Schell AM, Wynn JK, Dawson ME, Sinaii N, Niebala CB (2000) Automatic and con-

trolled attentional processes in startle eyeblink modification: effects of habituation of

the prepulse. Psychophysiology 37:409–417.

Schwabe K, Koch M (2004) Role of the medial prefrontal cortex in n-methyl-d-aspartate

receptor antagonist induced sensorimotor gating deficit in rats. Neurosci Lett 355:5–8.

Schwarzkopf SB, Bruno JP, Mitra T (1993) Effects of haloperidol and sch 23390 on

acoustic startle and prepulse inhibition under basal and stimulated conditions. Prog

Neuropsychopharmacol Biol Psychiatry 17:1023–1036.

Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the ped-

unculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and

immunohistochemical study. J Comp Neurol 323:387–410.

Servatius RJ, Ottenweller JE, Natelson BH (1995) Delayed startle sensitization distin-

guishes rats exposed to one or three stress sessions: further evidence toward an animal

model of ptsd. Biol Psychiatry 38:539–546.

Shi C, Davis M (1999) Pain pathways involved in fear conditioning measured with

fear-potentiated startle: lesion studies. J Neurosci 19:420–430.

Shi C, Davis M (2001) Visual pathways involved in fear conditioning measured with

fear-potentiated startle: behavioral and anatomic studies. J Neurosci 21:9844–9855.

149



Bibliography

Shoemaker JM, Marie RLS, Bongiovanni MJ, Neary AC, Tochen LS, Swerdlow NR

(2005) Prefrontal d1 and ventral hippocampal n-methyl-d-aspartate regulation of

startle gating in rats. Neuroscience 135:385–394.

Siegmund A, Dahlhoff M, Habersetzer U, Mederer A, Wolf E, Holsboer F, Wotjak CT

(2009a) Maternal inexperience as a risk factor of innate fear and ptsd-like symptoms

in mice. J Psychiatr Res 43:1156–1165.

Siegmund A, Kaltwasser SF, Holsboer F, Czisch M, Wotjak CT (2009b) Hippocam-

pal n-acetylaspartate levels before trauma predict the development of long-lasting

posttraumatic stress disorder-like symptoms in mice. Biol Psychiatry 65:258–262.

Siegmund A, Wotjak CT (2006) Toward an animal model of posttraumatic stress dis-

order. Ann N Y Acad Sci 1071:324–334.

Siegmund A, Wotjak CT (2007) Hyperarousal does not depend on trauma-related con-

textual memory in an animal model of posttraumatic stress disorder. Physiol Be-

hav 90:103–107.

Siegmund GP, Inglis JT, Sanderson DJ (2001) Startle response of human neck muscles

sculpted by readiness to perform ballistic head movements. J Physiol 535:289–300.

Smith KS, Meloni EG, Myers KM, Veer AV, Carlezon WA, Rudolph U (2010) Reduction

of fear-potentiated startle by benzodiazepines in c57bl/6j mice. Psychopharmacology

(Berl) .

Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma

rhythms enhance cortical circuit performance. Nature 459:698–702.

Spitzer RL (1980) Diagnostic and Statistical Manual of Mental Disorders - Third Edition

(DSM-III) American Psychiatric Association.

Spreng M (2004) Noise induced nocturnal cortisol secretion and tolerable overhead

flights. Noise Health 6:35–47.

Stehouwer DJ (1992) Development of anuran locomotion: ethological and neurophysiolo-

gical considerations. J Neurobiol 23:1467–1485.

Stein MB, Koverola C, Hanna C, Torchia MG, McClarty B (1997) Hippocampal volume

in women victimized by childhood sexual abuse. Psychol Med 27:951–959.

150



Bibliography

Stiedl O, Spiess J (1997) Effect of tone-dependent fear conditioning on heart rate and

behavior of c57bl/6n mice. Behav Neurosci 111:703–711.

Stitt CL, Hoffman HS, Marsh RR, Schwartz GM (1976) Modification of the pi-

geon’s visual startle reaction by the sensory environment. J Comp Physiol Psy-

chol 90:601–619.

Stoddart CW, Noonan J, Martin-Iverson MT (2008) Stimulus quality affects expres-

sion of the acoustic startle response and prepulse inhibition in mice. Behav Neur-

osci 122:516–526.

Stout SC, Miller R (2004) Effect of amount of context extinction on revaluation of a

target cs. Behav Processes 66:7–16.

Suied C, Susini P, McAdams S, Patterson RD (2010) Why are natural sounds detected

faster than pips? J Acoust Soc Am 127:EL105–EL110.

Suied C, Viaud-Delmon I (2009) Auditory-visual object recognition time suggests specific

processing for animal sounds. PLoS One 4:e5256.

Sullivan GM, Apergis J, Bush DEA, Johnson LR, Hou M, Ledoux JE (2004) Lesions in

the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses

elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuros-

cience 128:7–14.

Sun N, Li Y, Tian S, Lei Y, Zheng J, Yang J, Sui N, Xu L, Pei G, Wilson FAW, Ma Y,

Lei H, Hu X (2006) Dynamic changes in orbitofrontal neuronal activity in rats during

opiate administration and withdrawal. Neuroscience 138:77–82.

Swanson LW (1981) A direct projection from ammon’s horn to prefrontal cortex in the

rat. Brain Res 217:150–154.

Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL (1993) A preliminary as-

sessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol

Psychiatry 33:298–301.

Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity

in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychi-

atry 21:23–33.

151



Bibliography

Swerdlow NR, Britton KT, Koob GF (1989) Potentiation of acoustic startle by

corticotropin-releasing factor (crf) and by fear are both reversed by alpha-helical crf

(9-41). Neuropsychopharmacology 2:285–292.

Swerdlow NR, Geyer MA (1993) Prepulse inhibition of acoustic startle in rats after

lesions of the pedunculopontine tegmental nucleus. Behav Neurosci 107:104–117.

Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gat-

ing to study the pathophysiology and new treatments of schizophrenia. Schizophr

Bull 24:285–301.

Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition

of startle in the rat: current knowledge and future challenges. Psychopharmacology

(Berl) 156:194–215.

Swerdlow NR, Geyer MA, Vale WW, Koob GF (1986) Corticotropin-releasing factor

potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology

(Berl) 88:147–152.

Swerdlow NR, Keith VA, Braff DL, Geyer MA (1991) Effects of spiperone, raclopride, sch

23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle

response in the rat. J Pharmacol Exp Ther 256:530–536.

Swerdlow NR, Mansbach RS, Geyer MA, Pulvirenti L, Koob GF, Braff DL (1990)

Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by de-

pletion of mesolimbic dopamine. Psychopharmacology (Berl) 100:413–416.

Swerdlow NR, Shoemaker JM, Bongiovanni MJ, Neary AC, Tochen LS, Marie RLS

(2005) Reduced startle gating after d1 blockade: effects of concurrent d2 blockade.

Pharmacol Biochem Behav 82:293–299.

Swerdlow NR, Shoemaker JM, Bongiovanni MJ, Neary AC, Tochen LS, Marie RLS

(2007) Strain differences in the disruption of prepulse inhibition of startle after sys-

temic and intra-accumbens amphetamine administration. Pharmacol Biochem Be-

hav 87:1–10.

Swerdlow NR, Shoemaker JM, Kuczenski R, Bongiovanni MJ, Neary AC, Tochen LS,

Marie RLS (2006) Forebrain d1 function and sensorimotor gating in rats: effects of

d1 blockade, frontal lesions and dopamine denervation. Neurosci Lett 402:40–45.

152



Bibliography

Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K

(2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.

Science 324:1080–1084.

Tønnesen J, Sørensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic

control of epileptiform activity. Proc Natl Acad Sci U S A 106:12162–12167.

van den Buuse M (2010) Modeling the positive symptoms of schizophrenia in genetically

modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270.

van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental

enrichment. Nat Rev Neurosci 1:191–198.

Varty GB, Walters N, Cohen-Williams M, Carey GJ (2001) Comparison of apomorphine,

amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred

mice strains. Eur J Pharmacol 424:27–36.

Walker DL, Davis M (1997a) Anxiogenic effects of high illumination levels assessed with

the acoustic startle response in rats. Biol Psychiatry 42:461–471.

Walker DL, Davis M (1997b) Double dissociation between the involvement of the bed

nucleus of the stria terminalis and the central nucleus of the amygdala in startle

increases produced by conditioned versus unconditioned fear. J Neurosci 17:9375–9383.

Walker DL, Miles LA, Davis M (2009) Selective participation of the bed nucleus of the

stria terminalis and crf in sustained anxiety-like versus phasic fear-like responses. Prog

Neuropsychopharmacol Biol Psychiatry 33:1291–1308.

Walker D, Yang Y, Ratti E, Corsi M, Trist D, Davis M (2009) Differential effects of

the crf-r1 antagonist gsk876008 on fear-potentiated, light- and crf-enhanced startle

suggest preferential involvement in sustained vs phasic threat responses. Neuropsy-

chopharmacology 34:1533–1542.

Walker DL, Davis M (2002a) Light-enhanced startle: further pharmacological and be-

havioral characterization. Psychopharmacology (Berl) 159:304–310.

Walker DL, Davis M (2002b) Quantifying fear potentiated startle using absolute versus

proportional increase scoring methods: implications for the neurocircuitry of fear and

anxiety. Psychopharmacology (Berl) 164:318–328.

153



Bibliography

Wan FJ, Caine SB, Swerdlow NR (1996) The ventral subiculum modulation of prepulse

inhibition is not mediated via dopamine d2 or nucleus accumbens non-nmda glutamate

receptor activity. Eur J Pharmacol 314:9–18.

Wan FJ, Geyer MA, Swerdlow NR (1994) Accumbens d2 modulation of sensorimotor gat-

ing in rats: assessing anatomical localization. Pharmacol Biochem Behav 49:155–163.

Wan FJ, Swerdlow NR (1996) Sensorimotor gating in rats is regulated by different

dopamine-glutamate interactions in the nucleus accumbens core and shell subregions.

Brain Res 722:168–176.

Wan FJ, Swerdlow NR (1997) The basolateral amygdala regulates sensorimotor gating

of acoustic startle in the rat. Neuroscience 76:715–724.

Wan FJ, Taaid N, Swerdlow NR (1996) Do d1/d2 interactions regulate prepulse inhibi-

tion in rats? Neuropsychopharmacology 14:265–274.

Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F,

Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ (2007) High-

speed mapping of synaptic connectivity using photostimulation in channelrhodopsin-2

transgenic mice. Proc Natl Acad Sci U S A 104:8143–8148.

Wang J, O’Donnell P (2001) D(1) dopamine receptors potentiate nmda-mediated

excitability increase in layer v prefrontal cortical pyramidal neurons. Cereb Cor-

tex 11:452–462.

Wang Z, Neylan TC, Mueller SG, Lenoci M, Truran D, Marmar CR, Weiner MW, Schuff

N (2010) Magnetic resonance imaging of hippocampal subfields in posttraumatic stress

disorder. Arch Gen Psychiatry 67:296–303.

Wanisch K, Tang J, Mederer A, Wotjak CT (2005) Trace fear conditioning depends

on nmda receptor activation and protein synthesis within the dorsal hippocampus of

mice. Behav Brain Res 157:63–69.

White EH, Horlington M (1969) An apparatus for measuring startle response and motor

activity in rats. Med Biol Eng 7:325–327.

Wickelgren WA (1979) Chunking and consolidation: a theoretical synthesis of se-

mantic networks, configuring in conditioning, s–r versus congenitive learning, nor-

mal forgetting, the amnesic syndrome, and the hippocampal arousal system. Psychol

Rev 86:44–60.

154



Bibliography

Willott JF, Carlson S (1995) Modification of the acoustic startle response in hearing-

impaired c57bl/6j mice: prepulse augmentation and prolongation of prepulse inhibi-

tion. Behav Neurosci 109:396–403.

Willott JF, Kulig J, Satterfield T (1984) The acoustic startle response in dba/2 and

c57bl/6 mice: relationship to auditory neuronal response properties and hearing

impairment. Hear Res 16:161–167.

Wilson C, Groves PM (1972) Measurement of acoustic startle response in mice. Behav

Res Meth Instrum 4:13–14.

Winter H, Irle E (2004) Hippocampal volume in adult burn patients with and without

posttraumatic stress disorder. Am J Psychiatry 161:2194–2200.

Wynn JK, Dawson ME, Schell AM (2000) Discrete and continuous prepulses have

differential effects on startle prepulse inhibition and skin conductance orienting. Psy-

chophysiology 37:224–230.

Wynn JK, Dawson ME, Schell AM, McGee M, Salveson D, Green MF (2004) Prepulse

facilitation and prepulse inhibition in schizophrenia patients and their unaffected sib-

lings. Biol Psychiatry 55:518–523.

Yasui Y, Nakano K, Nakagawa Y, Kayahara T, Shiroyama T, Mizuno N (1992) Non-

dopaminergic neurons in the substantia nigra project to the reticular formation around

the trigeminal motor nucleus in the rat. Brain Res 585:361–366.

Yehuda R, Giller EL, Southwick SM, Lowy MT, Mason JW (1991) Hypothalamic-

pituitary-adrenal dysfunction in posttraumatic stress disorder. Biol Psychi-

atry 30:1031–1048.

Yen Y, Kleinknecht K, Bunck M, Anderzhanova E, Wotjak C (2010) Lab mice – a mouse

model of attention-deficit/hyperactivity disorder (adhd)? In Institute Symposium

Max-Planck-Institute of Psychiatry.

Yeomans JS, Lee J, Yeomans MH, Steidl S, Li L (2006) Midbrain pathways for prepulse

inhibition and startle activation in rat. Neuroscience 142:921–929.

Yeomans JS, Pollard BA (1993) Amygdala efferents mediating electrically evoked startle-

like responses and fear potentiation of acoustic startle. Behav Neurosci 107:596–610.

155



Bibliography

Zavitsanou K, Cranney J, Richardson R (1999) Dopamine antagonists in the orbital

prefrontal cortex reduce prepulse inhibition of the acoustic startle reflex in the rat.

Pharmacol Biochem Behav 63:55–61.

Zhang J, Forkstam C, Engel JA, Svensson L (2000) Role of dopamine in prepulse

inhibition of acoustic startle. Psychopharmacology (Berl) 149:181–188.

156



Acknowledgement

After walking a long way, one looks back and is astonished how pretended lightly and

jaunty it was to accomplish it. One easily loses the sight of all the pitfalls and cavities

attended. However, one never forgets the people who went along awhile, caution one

about cavities and rescue one from pitfalls, giving advice and support.

I would like to thank the people, who participated in the described experiments. Thanks

a lot, you have been a great help:

- Dr. Klaus Becker for help with IGOR graphic tool

- Dr. Thomas Fenzl for help with setting up the optogenetic apparatus

- Dr. Yulia Golub for partly conducting animal testing

- Ursula Habersetzer for help with histological preparations

- Dr. Rudolph Marsch for help with setting up the startle response system

- Anna Mederer for help with drug treatment and ordering issues

- Stephanie A. Polta for partly conducting animal testing
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To assess the frequency of application of different acoustic conditioned stimuli within
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scanned using PubMed (http://pubmed.org) for items fear [and] conditioning [and]

mouse. MEDLINE is a bibliographic database of life sciences and biomedical informa-

tion, compiled by The United States National Library of Medicine (NLM). PubMed is

an internet based open access database, accessing MEDLINE, maintained by the NLM

and The National Institute of Health (NIH) (cf. http://www.nlm.nih.gov).
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for fear conditioning in mice, leading back to January 2000. A total of 458 studies were

found to match the search criteria. The matching articles are listed below and the results

of analysis are displayed in fig. 3.14.
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H, Gass P (2004) Mice with reduced brain-derived neurotrophic factor expression

show decreased choline acetyltransferase activity, but regular brain monoamine levels

and unaltered emotional behavior. Brain Res Mol Brain Res 121:28–36.

Chwang WB, Arthur JS, Schumacher A, Sweatt JD (2007) The nuclear kinase mitogen-

and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in

memory formation. J Neurosci 27:12732–12742.

Clapcote SJ, Lazar NL, Bechard AR, Roder JC (2005) Effects of the rd1 mutation and

host strain on hippocampal learning in mice. Behav Genet 35:591–601.

Contarino A, Baca L, Kennelly A, Gold LH (2002) Automated assessment of conditioning

parameters for context and cued fear in mice. Learn Mem 9:89–96.

167



Addendum

Cook MN, Bolivar VJ, McFadyen MP, Flaherty L (2002) Behavioral differences

among 129 substrains: implications for knockout and transgenic mice. Behav Neur-

osci 116:600–611.

Cook MN, Dunning JP, Wiley RG, Chesler EJ, Johnson DK, Miller DR, Goldowitz D

(2007) Neurobehavioral mutants identified in an enu-mutagenesis project. Mamm

Genome 18:559–572.

Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M, Bidinosti

M, Mamou CB, Marcinkiewicz E, Yoshida M, Imataka H, Cuello AC, Seidah N,

Sossin W, Lacaille JC, Ron D, Nader K, Sonenberg N (2005) Translational con-

trol of hippocampal synaptic plasticity and memory by the eif2alpha kinase gcn2.

Nature 436:1166–1173.

Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, Sossin W, Kauf-

man R, Pelletier J, Rosenblum K, Krnjević K, Lacaille JC, Nader K, Sonenberg N
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Tuoc TC, Radyushkin K, Tonchev AB, Piñon MC, Ashery-Padan R, Molnár Z, Davidoff

MS, Stoykova A (2009) Selective cortical layering abnormalities and behavioral deficits

in cortex-specific pax6 knock-out mice. J Neurosci 29:8335–8349.

Udo H, Yoshida Y, Kino T, Ohnuki K, Mizunoya W, Mukuda T, Sugiyama H (2008)

Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice

overexpressing vascular endothelial growth factor 120. J Neurosci 28:14522–14536.

Velez L, Sokoloff G, Miczek KA, Palmer AA, Dulawa SC (2010) Differences in aggressive

behavior and dna copy number variants between balb/cj and balb/cbyj substrains.

Behav Genet 40:201–210.

Vick KA, Guidi M, Stackman RW (2010) In vivo pharmacological manipulation of

small conductance ca(2+)-activated k(+) channels influences motor behavior, object

memory and fear conditioning. Neuropharmacology 58:650–659.

Vogt MA, Chourbaji S, Brandwein C, Dormann C, Sprengel R, Gass P (2008) Suitability

of tamoxifen-induced mutagenesis for behavioral phenotyping. Exp Neurol 211:25–33.

von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006) Age-related altera-

tions in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci

Res 83:525–531.

Vouimba RM, Garcia R, Baudry M, Thompson RF (2000) Potentiation of conditioned

freezing following dorsomedial prefrontal cortex lesions does not interfere with fear

reduction in mice. Behav Neurosci 114:720–724.
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The width of the light sheet (cf. p. 49) w(z) at a point z along the lateral extension of

the light sheet was calculated as

w(z) = w0 ·

√
1 +

λ · z
π · w2

0

with

w0 =
λ · f
π · w

where w0 denotes the half of the minimal width of the light sheet and w half of the

laser beam width before focusing (slit aperture width). z denotes the lateral light sheet

extension, λ the light wavelength, and f the focal point (cf. Dodt et al., 2007). Graphs

illustrating w(z) (i.e. half width of light sheet) are exemplary calculated for 2, 4 and

6 mm slit aperture width.

Calculated course of the laser beam (light sheet) passing slit aperture and focus lens. Graphs were calculated

for 2 mm (broken line), 4 mm (solid line) and 6 mm (dotted line) slit aperture width. Note that the experimental

effective laser beam was less in width, since the equations described above take into account also areas of low

light intensity of the Gaussian laser beam profile.
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