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ABSTRACT
Commonsense knowledge about everyday concepts is an important
asset for AI applications, such as question answering and chatbots.
Recently, we have seen an increasing interest in the construction of
structured commonsense knowledge bases (CSKBs). An important
part of human commonsense is about properties that do not apply to
concepts, yet existing CSKBs only store positive statements. More-
over, since CSKBs operate under the open-world assumption, absent
statements are considered to have unknown truth rather than being
invalid. This paper presents the UNCOMMONSENSE framework
for materializing informative negative commonsense statements.
Given a target concept, comparable concepts are identified in the
CSKB, for which a local closed-world assumption is postulated.
This way, positive statements about comparable concepts that are
absent for the target concept become seeds for negative statement
candidates. The large set of candidates is then scrutinized, pruned
and ranked by informativeness. Intrinsic and extrinsic evaluations
show that our method significantly outperforms the state-of-the-art.
A large dataset of informative negations is released as a resource
for future research.
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1 INTRODUCTION
Motivation. Commonsense knowledge (CSK) is crucial for ro-
bust AI applications such as question answering and chatbots. The
purpose is to enrich machine knowledge with properties about
everyday concepts (e.g., gorilla, pancake, newspaper). Such state-
ments are acquired, organized and stored in structured knowledge
bases (KBs) [10, 27, 47]. Large commonsense KBs (CSKBs) include
ConceptNet [38], WebChild [43], ATOMIC [36], TransOMCS [50],
and Ascent [25]. These projects are almost exclusively focused on
positive statements such as gorillas are mammals, black, and live
in forests, expressed in the form of subject-relation-object triples,
e.g., (gorilla, AtLocation, forest). This allows QA systems,
for instance, to answer “Where do gorillas live?”. On the other hand,
CSKBs hardly capture any negative statements such as “gorillas are
not territorial” or “gorillas are not carnivorous”. By the Open-world
Assumption (OWA) underlying most KBs, one cannot assume that
an absent statement is invalid [12]; instead, its truth is simply un-
known. While KB completion [9, 21, 48] is an active research area,
creating an ideal KB that fully represents real-world knowledge
is elusive, especially for the case of commonsense assertions [47].
Therefore, QA over KBs cannot answer “Are gorillas territorial?”.
However, such uncommon knowledge has value for robust AI appli-
cations, asserting that gorillas are not territorial, unlike other apes
(and monkeys) like chimpanzees or gibbons.
State of the art and its limitations. The focus in constructing
CSKBs has been on positive statements; only very few projects
capture a small fraction of negative statements. In ConceptNet [38],
a crowdsourced KB, 6 negative relations are represented, namely
NotIsA, NotCapableOf, NotDesires, NotHasA, NotHasProperty, and
NotMadeOf. Nonetheless, in its latest version, the portion of nega-
tive statements is less than 2%. Moreover, many statements are all
but informative, such as (envelope, NotHasProperty, alive).
In the automatically constructed, Web-based CSKB Quasimodo [33],
350k negated statements represent about 10% of all statements, but
these are dominated by uninformative knowledge, e.g.,¬(elephant,
can, quit smoking). A recent method that targets the problem of
discovering relevant commonsense negations is NegatER [34, 35].
Given a CSKB and a pre-trained languagemodel (LM), e.g., BERT [8],
in order to strengthen the LM’s ability to classify true and false
statements, the LM is first fine-tuned using the CSKB statements.
In a second step, plausible negation candidates are generated us-
ing dense k-nearest-neighbors retrieval, by either replacing the
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subject or the object with a neighboring phrase. In a final step,
the set of plausible candidates are ranked, using the fine-tuned
LM, by descending order of negativeness (i.e., higher scores are
more likely to be negative). Even though NegatER compiles lists of
thematically-relevant negations, it suffers from several limitations:
(i) The taxonomic hierarchy between concept phrases is not con-
sidered. For instance, from the positive statement (horse, IsA,
expensive pet), a semantically sensible corruption of the subject
is hamster, but horse riding or horserider are not. Even though
they are closer in embedding space, they describe concepts of com-
pletely different types (activity, artifact) that cannot be pets. (ii)
The method relies on the input CSKB having well-defined relations
(e.g., CapableOf). This causes issues when triples are merely short
phrases with no canonicalized relations (e.g., as in the Quasimodo
CSKB); (iii) The ranking based on the LM’s negativeness prediction
is not interpretable, and follows no clear trend.
Approach and contributions. This paper presents the UNCOM-
MONSENSE method for identifying informative negations about
concepts in CSKBs. For a target concept like gorilla, we first com-
pute a set of comparable concepts (e.g., lion, zebra), by employing
both structured taxonomies and latent similarity. Among these
concepts, we postulate a Local Closed-world Assumption (LCWA)
[13], and consider their positive statements that do not hold for the
target concept as candidate negations (e.g, has tail, is territorial). To
eliminate false positives, candidates are scrutinized against related
statements in the input KB using sentence embeddings, and against
a pre-trained LM acting as an external source of latent knowledge.
In a final step, we quantify the informativeness of negative state-
ments by statistical scores, and generate top-ranked negations with
provenances showing why certain negations are interesting. For
instance, ¬(gorilla, has, tail), unlike other land mammals,
e.g., lion and zebra.

The salient contributions of this work are:
(1) We present a method for identifying informative negations

about everyday concepts in large-scale CSKBs grounded in
taxonomic hierarchies between concepts.

(2) We showcase the ability of our method to produce inter-
pretable negations via human-readable phrases.

(3) In intrinsic evaluations, our method achieves up to 18% im-
provement in informativeness and 17% in recall, compared
to the prior state-of-the-art.

(4) In three extrinsic evaluations, (i) trivia summaries, (ii) KB
completion, and (iii) multiple-choice QA, our method shows
substantial improvements in informativeness.

(5) We release the first large dataset of informative common-
sense negations, containing over 6 Million negative state-
ments about 8,000 concepts.1

2 PROBLEM AND DESIGN SPACE
A commonsense KB consists of a finite set of statements in the
form (s, r, t), where s is a subject (or concept), r is a relation,
and t is a tail phrase. Following previous work [7], we do not
distinguish between r and t, because for textual CSK expressions,

1https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/commonsense/uncommonsense

these distinctions are often ad-hoc and a crisp definition of relations
is difficult. Hence, for the remainder of the paper, we generalize
the above form to (s, f), where s is the subject and f is a short
phrase combining r and t.

Definition 2.1. A commonsense negative statement ¬(s, f), is
a statement (s, f) that is not true.

For example, “elephants are not carnivorous” is expressed as
¬(elephant, is carnivore). One naive approach to produce
such negations is to assume the CWA (closed-world assumption)
over the KB and consider all non-existing statements as negatives.
On top of not being materializable, this approach faces the follow-
ing challenges. C1: Avoid false negatives. In order to assert a
negation, it is not sufficient to check if a candidate negation is not
positive. KBs in general operate under the OWA (open-world as-
sumption), whichmeans that absent information ismerely unknown,
and not necessarily false. For example, in Ascent, the absence of
statement (elephant, has eye) is clearly due to missing informa-
tion. C2: Generate judgeable negations.Whether constructed
using human crowdsourcing [38] or information extraction tech-
niques [24, 33], KBs mainly reflect the “wisdom” of the crowd about
everyday concepts. This causes the augmentation of many sub-
jective or otherwise uninformative statements, such as (cat, is
important) and (football, is boring). A generated negation
must be easily interpreted by a human annotator as true or false.
Therefore it is important to clean the candidate space prior to mate-
rializing negations. C3: Generate informative negations. Finally,
the explicit materialization of all possible negations is not neces-
sary for most standard AI applications (e.g., user might confuse
tabbouleh as something that requires an oven but not a printer).
In other words, it is better to avoid nonsensical negative statements
such as ¬(printer, is baked in oven).

Research problem. Given a target concept s in a CSKB, generate
a ranked list of truly negative and informative statements.

3 THE UNCOMMONSENSE FRAMEWORK
We present UNCOMMONSENSE, a method for automatically iden-
tifying informative negative knowledge about everyday concepts.
UNCOMMONSENSE first retrieves comparable concepts for a tar-
get concept s by exploiting embeddings and taxonomic relations
between these concepts. Over the positive knowledge about these
comparable concepts, a local closed-world assumption (LCWA) [13]
is made. These relevant positives are then considered as potential
informative negations for s. Consequently, these candidates might
contain many false negatives and nonfactual statements. This is fol-
lowed by an inspection step, where we use KB-based and LM-based
checks to measure the plausibility of candidates. Finally, to measure
informativeness, the remaining candidates are scored using relative
frequency. An overview is shown in Figure 1.

3.1 Identifying Comparable Concepts
To increase the thematic relevance of candidate negations, we de-
fine the parts of the KB where the CWA is helpful to assume [13],
i.e., the LCWA. For instance, if the target concept is an animal, nega-
tions should mostly reflect animal-related statements such as “not
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Figure 1: Architecture of UNCOMMONSENSE.

carnivorous” or “not nocturnal”, instead of “not beverage” or “cannot
store data”. Therefore, we need to collect comparable concepts [1].
One way for collecting related concepts is using pre-computed em-
beddings. For instance, elephant is related to both tiger and lion,
due to their proximity in the vector space [46]. The problem with
relying solely on this similarity function is that it does not take into
consideration the taxonomic hierarchy of the concepts. For exam-
ple, trunk, circus, and jungle are also highly related to elephant.
Instead, one can consider using large collections of taxonomic re-
lations and collect comparable concepts only if they are listed as
co-hyponyms (e.g., lion and elephant are, trunk and elephant
are not). Although this option ensures that related concepts are
taxonomic sibling, the group of siblings is unordered. For instance,
even though lion and spider are both acceptable taxonomic sib-
lings (under animal), one is clearly more related to elephant than
the other. Moreover, large-scale taxonomies are noisy. For instance,
using WebIsALOD [15], elephant and robot are co-hyponyms
under the class toy. We overcome these limitations by combining
both techniques and compute comparable concepts that are both
semantically and taxonomically highly related. Given concept s:

(1) Using latent representations [49], we compute the cosine
similarity score between embeddings of s and every other
concept in the KB, and rank them by descending order of
similarity.

(2) Using hypernymy relations [45], we retain siblings that are
co-hyponyms of s. In particular, for every concept, we collect
the top-5 hypernyms (ranked by confidence score2). For
instance, elephant has 843 hypernyms. Top ones include
larger animal, land animal, and mammal, and bottom ones
include work of art, african, and symbol of power. We retain
KB concepts as comparable to our target concept if they pass
the following taxonomic checks: (i) There exists a common
hypernym with the target concept (e.g., both elephant and
tiger share mammal), and (ii) There does not exist an IsA
relation with the target concept, e.g., african elephant,

2Using WebIsALOD’s SPARQL endpoint: https://webisadb.webdatacommons.org/

IsA, elephant, hence african elephant is not a valid
sibling.

The ideal number of comparable concepts to consider for every tar-
get concept is a hyperparamater 𝛾 , which we tune in Section 5. For
the remainder of the paper, we use the terms comparable concepts
and siblings interchangeably.

Example 3.1. Given s = elephant from KB = Ascent, and 𝛾 = 3,
the concepts with the highest cosine similarity are computed using
Wikipedia2Vec [49]. The ranked candidate concepts include tiger,
lion, trunk, horse, . . . . Here, trunk is an obvious intruder
as it is not share a hypernym with s. This is determined using
WebIsALOD [15, 16], an Is-A database, containing 400m hypernymy
relations, mined, using over 50 Hearst-style patterns, from a huge
web crawl. We end up with the closest 3 siblings: tiger, lion, and
horse. This initial step is meant to address challenge C3, which we
further demonstrate in Section 5 (Table 8).

3.2 Candidate Negation Inference
To produce a set of candidate negations, we query from the KB the
set of positives about s as well as positives about its siblings. We
subtract both sets to produce an initial set of candidates 𝑁 :

𝑁 = 𝐵 \ 𝐴 (1)

where 𝐵 is the set of phrases describing sibling concepts (i.e., each
phrase holds for at least one sibling), and 𝐴 is the set of phrases
that hold for the target concept. So, 𝑁 contains phrases that are ∈
𝐵 but ∉ 𝐴.

Example 3.2. elephant’s statements (i.e., 𝐴) are: (is largest
land animal) and (has tongue). Positives of the siblings (i.e.,
𝐵) are (is amazing), (can jump), (has tongue), (has hoof),
(eat grass), (can leap), and (is big animal). The negation
set 𝑁 is then all the phrases in the siblings’ set except for has
tongue, which is a straightforward contradiction with positives
about elephant.
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3.3 Scrutinizing Candidates
Plausibility checks. To remove candidates that might be inaccu-
rate due the KB’s incompleteness, and address C1, we measure the
plausibility of our candidate negations in two steps:

(1) KB-based scoring: Unlike encyclopedic KB (e.g.,Wikidata [44]),
statements in CSKB are semi-structured. Therefore, it is pos-
sible that the same piece of information is expressed in var-
ious ways. For example, lay eggs, deposit eggs, and lie their
eggs are phrases that hold for different insects in Ascent.
Our simple set difference will miss such contradictions. To
overcome this issue, we exploit sentence-embeddings [31]
to capture semantically-close statements in the KB, namely
semantically-close information between the concept’s and
siblings’ positives. We filter out candidates that are highly
similar to information we already know about the target
concept.

(2) LM-based scoring: In open-world KBs, it is not sufficient to
perform a plausibility check against the knowledge in the KB,
as valuable statements might be simply missing. We propose
consulting an external source for further investigation of can-
didates. In particular, we probe LMs in a zero-shot manner
for factual knowledge [30], by masking the target concept
and concatenating the candidate phrase. We then look for a
match between predicted tokens and the unmasked concept.
We only mask the target concept since it is the most decisive
part of a statement.

Example 3.3. Using Sentence-BERT (or SBERT [31]), we measure
the similarity (sim) of the candidate and positive phrases:

sim(“can jump”, “is largest land animal”) = 0.05
sim(“can jump”, “has hoof”) = 0.20
...
sim(“is big animal”, “is largest land animal”) = 0.78

The candidates with similarity greater than or equal a certain thresh-
old _ (in this example 0.7) are considered false negatives. In this
case, we drop the candidate ¬(elephant, is big animal).

Next, using BERT [8], we construct a probe with masked target
concept concatenated with the candidate phrase and look for s in
the first 𝜏 predictions (in this example 100) as follows.

[MASK] has hoof. (no “elephant” in top-100)
[MASK] can jump. (no “elephant” in top-100)
...
[MASK] eat grass. (“elephants” at position 76)

In this case ¬(elephant, eat grass) is dropped from the candi-
date set.
Quality checks. To avoid vague or opinionated negations such as
¬(classroom, is bigger) or ¬(basketball, is important),
and address C2, we identify frequent statements that are highly un-
informative. Inspired by the notion of term-weighting in IR [22] (in
our case, phrase-weighting), we value phrases ofmedium-frequency,
namely ones that are neither too generic nor too rare. While we
ensure that rare statements are lower ranked via the pipeline’s
final step, we tackle too generic statements follows: A statement is
generic if it holds for ≥ 𝛽 of the concepts in the KB.

Example 3.4. With 𝛽 = 0.05, ¬(elephant, is amazing) is
dropped from the candidate set as it holds for 16% (≥ 5%) of all the
concepts in Ascent.

Hyperparameters _, 𝜏 , and 𝛽 are tuned in Section 5.

3.4 Quantifying Informativeness
The output of the previous step is a potentially large set of truly neg-
ative statements. In fact, beyond our toy example, starting with 30
siblings for elephant, UNCOMMONSENSE produces 1352 initial
candidates. Hence, ranking is crucial. We quantify the importance
of a certain candidate negation by how uncommon it is among its
siblings. The notion of informativeness is expressed through unique
behavior, characteristic, and so on, of a certain concept, given what
is known about its siblings. More formally, given a candidate phrase
f about target concept s and its siblings {𝑥1, 𝑥2, .., 𝑥𝛾 }, we measure
f’s informativeness using strict sibling frequency.

strict(s, f, {𝑥1, 𝑥2, .., 𝑥𝛾 }) =
|{𝑥𝑖 | (𝑥𝑖 , f) ∈ KB}|

𝛾
(2)

Example 3.5. To score candidates, we compute: strict(elephant,
has hoof, {tiger, lion, horse}) = |{horse}|/3 = 0.33, strict(ele-
phant, can jump, {tiger, lion, horse}) = |{tiger, horse}|/3
= 0.67, and strict(elephant, can leap, {tiger, lion, horse}) =
|{lion}|/3 = 0.33. Therefore it is more noteworthy that elephants
cannot jump, unlike all their siblings.
Relaxed scoring. The strict informativeness scoring only handles
the cases where candidate negations are expressed using the same
exact phrasing. It cannot, however, capture cases where highly
similar candidates are stated using different wording. For instance,
the candidate set might contain both ¬(elephant, can jump)
and ¬(elephant, can leap). To remedy this, we make use of
sentence embeddings [31] in order to capture this similarity and
boost the scores of candidates. We measure f’s informativeness
using relaxed sibling frequency as follows.

relaxed(s, f, {(𝑥1, [f′11 , . . . ]), . . . , (𝑥𝛾 , [f
′1
𝛾 , . . . ])}) =

|{𝑥𝑖 | (𝑥𝑖 , f′𝑗𝑖 ) ∈ KB ∧ (f = f
′𝑗
𝑖
∨ (𝑠𝑖𝑚(f, f′𝑗

𝑖
) ≥ _))}|

𝛾

(3)

where f′𝑗
𝑖

is a phrase that holds for sibling 𝑥𝑖 and 𝑠𝑖𝑚(f, f′𝑗
𝑖
) is

the semantic similarity between candidate f and candidate-rephrase
f
′𝑗
𝑖
.

Example 3.6. Candidates (can jump) and (can leap) are se-
mantically similar, hence they are combined under the relaxed
scoring. In particular, we compute: relaxed(elephant, can jump,
{(horse, [can jump]), (lion, [can leap]), (tiger, [can jump])}) =
|{tiger, lion, horse}|/3 = 1.0.
Provenance generation. Unlike in previous work [35], nega-
tions generated by UNCOMMONSENSE come naturally with an
explanation via the relationship between the siblings and the target
concept. We call these explanations negation provenances. We
generate these human-readable phrases by measuring the in-group
frequency of shared hypernyms. In particular, we compute a score
for each hypernym ℎ that holds for s within the set of siblings
sharing phrase f.
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𝑠𝑐𝑜𝑟𝑒 (ℎ, s, f, {𝑥1, 𝑥2, .., 𝑥𝑛}) =
|{𝑥𝑖 | (𝑥𝑖 , isA, ℎ) ∈ TX}|

𝑛
(4)

where TX is the taxonomic relations database, e.g.,WebIsALOD [15],
(𝑥𝑖 , isA, ℎ) ∈ TX indicates that hypernym ℎ holds for sibling 𝑥𝑖 in
TX, and 𝑛 is the total number of siblings candidate-phrase f holds
for.

Example 3.7. Assume elephant has the hypernyms wild mam-
mal and herbivorous animal. To build the provenance for top nega-
tion ¬(elephant, can jump) which holds for all siblings (by
relaxed scoring) we compute: score(wild mammal, elephant, can
jump, {tiger, horse, lion}) = |{tiger, lion}|/3 = 0.67, and
score(herbivorous animal, elephant, can jump, {tiger, horse,
lion}) = |{horse}|/3 = 0.33. The provenance-extended negation
then reads: ¬(elephant, can jump) unlike other wild mammals,
e.g., tiger, lion, and unlike other herbivorous animals, e.g., horse.

To avoid potential multiple appearances of siblings in one prove-
nance, i.e., one sibling belonging to several subgroups, we compute
ℎ with the highest score iteratively such that at every iteration we
drop already seen siblings.

4 EXPERIMENTS
The evaluation of UNCOMMONSENSE is centered around answer-
ing the 3 challenges introduced in Section 2. Hence, we conduct:

(1) An intrinsic evaluation to demonstrate the ability of our
method to produce plausible (C1, C2) and informative (C3)
commonsense negative knowledge against baseline and state-
of-the-artmethods.We demonstrate the ability of ourmethod
to extend negations with valuable information (C3) by an
evaluation of provenances.

(2) Three extrinsic evaluations:
(a) A negative-trivia use-case where we evaluate the quality

of summaries about concepts (C2, C3).
(b) A KB completion use-case where we provide challenging

negative examples for LM-based triple classifier (C1, C3).
(c) Amultiple-choice QA use-case, where we utilize our model

as an eliminator to exclude improbable options (C1).

4.1 Setup
Data Source: Ascent CSKB.We use Ascent++ [24] as our input
CSKB (in the following just called Ascent). This choice is motivated
by the fact that computing negations benefits from richer input
sets (i.e, high statement-recall per concept). In comparison, in Con-
ceptNet, the most prominent CSKB, has 23 statements per concept
on average. Ascent, on the other hand, has 256. Moreover, Ascent
contains 2m assertions for 23k subjects. We restrict our evaluation
to the 8k primary subjects and disregard aspects and subgroups.
Baselines and implementation. We compare our method to the
following baselines.

• CWA: In this baseline, the KB is simply assumed to be com-
plete. For a given concept, any phrase not asserted gives an
immediate negation.

• Quasimodoneg: We download the latest version of Quasi-
modo [33] and retrieve all the statements with negative po-
larity (a total of 350k negations, e.g., ¬(baby, has hair)).

• GPT-3neg: We prompt GPT-3 [29] daVinci model using pre-
defined prompts with negative keywords. Based on Ascent’s
relations, we define 10 most frequent relations and map to 8
manually-craftedmeta patterns “<s> <Negated_NL_relation>
...”. <Negated_NL_relation> stands for negated natural lan-
guage relations we created by rephrasing Ascent’s canon-
icalized relations, namely “MadeOf” to “is not made of”,
“CapableOf” to “cannot”, “IsA, HasProperty, ReceivesAction”
to “is not”, “HasA” to “does not have”, “AtLocation” to “is not
found in”, “Causes” to “does not cause”, “HasSubevent” to
“does not lead to”, and “HasPrerequisite” to “does not need”. A
sample prompt is “butterfly is not a bird”. We restrict predic-
tions to a maximum of 6 tokens. We produce 24.4k negations
about 200 concepts.

• NegatER-\\\𝑟 [35]: This work presents an unsupervised met-
hod that ranks out-of-KB potential negatives using a fine-
tuned LM. We use the released code3 to fine-tune BERT on
the full Ascent. Similar to the original implementation on
ConceptNet, we divide the Ascent dataset into 1.6m/41k/41k
rows for training/validation/test, with a total of 715k entity
phrases. The evaluation sets are constructed in the same
manner, i.e., in terms of balance and negative sampling. We
use the given best configuration file and run the fine-tuning
step for 3 epochs (6 hours each), using an NVIDIA Quadro
RTX 8000 GPU with 48GB of RAM. On the test set, we ob-
tain precision=0.96, and recall=accuracy=0.97. We run the
negation generator first in the ranking version NegatER-\𝑟 ,
which relies on decision thresholds.

• NegatER-∇ [35]: We also run the above negation genera-
tor in the ∇ setting, which relies on quantifying “surprisal”
using LM’s gradients. Using both variants of the method,
we produce more than 16m scored negations. Note that
while we use canonicalized Ascent to run NegatER, e.g.,
(elephant, CapableOf, jump), for consistency of exam-
ples across the methods, we show the open version of the
triple, e.g., (elephant, can jump).

All the extracted/generated negations of the three external methods
are released for future comparisons4.

UNCOMMONSENSE Variants. We consider three variants.

• UNCOMMONSENSEB: This baseline variant computes com-
parable concepts as described in Section 3.1, but suspends
the scrutinizing and ranking steps.

• UNCOMMONSENSES: The complete method, with infor-
mativeness computed using strict ranking (i.e., Equation 2).

• UNCOMMONSENSER: The complete method, with infor-
mativeness computed using relaxed ranking (i.e., Equation 3).

For all variants, 𝛾 is set to 30, 𝜏 to 50, _ to 0.7, and 𝛽 to 0.05. These
hyperparameters are chosen based on a tuning task in Section 5.
Moreover, we collect taxonomic siblings from WebIsALOD [15]
and order them using Wikipedia2Vec [49]. We use SBERT [31] for
sentence similarity checks and use BERT [8] for LM-based checks.

3https://github.com/tsafavi/NegatER
4https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/commonsense/uncommonsense
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4.2 Intrinsic Evaluation
Human plausibility and informativeness evaluation. We con-
duct a human evaluation5 to determine the quality of each method
in generating plausible and salient negations. We randomly sam-
ple 200 concepts and produce for each top-2 negations. We then
acquire 3 annotations for each negation via crowdsourcing. The
total number of annotated negations is 200 concepts × 2 negations
× 8 methods × 3 annotations = 9.6k rows. We ask every annota-
tor to answer two questions, given a statement about a concept:
1) Is this statement truly negative?, 2) Is this statement interest-
ing and/or useful in your opinion? Since question 1) is a factual
question, we only allow “yes” and “no”, which we map to 1 and 0 re-
spectively. The Fleiss’ kappa [11] inter-annotator agreement is 0.46,
i.e. moderate agreement. We interpret this slightly underwhelming
agreement on this relatively easy task by the large number of opin-
ionated statements produced especially using the baseline methods,
e.g., ¬(football, is boring), ¬(muffin, is delicious). For
question 2), an annotator chooses between “interesting”, “slightly
interesting”, and “not interesting”, which we map to 1, 0.5, and 0
respectively. The agreement on this arguably vague task is fair, with
Fleiss’ kappa inter-annotator agreement 0.30. Numerical results on
informativeness and plausibility are shown in Table 1 and quali-
tative examples in Table 2. The false negatives column reflects the
ratio of result-negations that are in fact positive (i.e., not plausible).
Obviously, the CWA baseline dominates with only 0.07% false in-
ferences, as the majority of the produced negations are accurate
but nonsensical (e.g., in Table 2, “rabbits are not related to bribery”).
On the notion of informativeness, the leading method is UNCOM-
MONSENSE in its both ranking variants, outperforming the second
best external method, Quasimodoneg, by 18%, with a slight advan-
tage of the strict ranking variant over the relaxed. We note that in
our computation of informativeness, we only consider the nega-
tions that have been marked by the majority as truly negative. In
this case, only 39% of the negations proposed by Quasimodoneg
are plausible, and even less for GPT-3neg with 37%, as opposed to
75% for UNCOMMONSENSE and 74% for NegatER. We observe
for the baseline variant UNCOMMONSENSEB that negations are
mostly thematic (due to inferences based on comparable concepts),
however not frequent enough (due to absence of ranking), e.g.,
¬(gorilla, caught in net) and in some cases false (due to ab-
sence of candidate-scrutiny), e.g., ¬(rabbit, can feed on seed).
In Table 2, UNCOMMONSENSE shows the most interesting results.
For example, it is worth noting that unlike many other small mam-
mals, “rabbits do not eat insects”. To give more insights into different
kinds of concepts, we show the informativeness of each method
per topic. The results are shown in Table 3. UNCOMMONSENSE
performs best on topics like animal and food with informativeness
scores of 67% and 55% respectively. This is expected as both themes
contain the most factual statements, and are fairly easy to judge
e.g., ¬(banana, is bitter) and ¬(horse, eat fruit). On the
other hand, it is more challenging to judge social negations, e.g.,
¬(niece, is pregnant) and ¬(alcoholic, has friend).
Automated recall evaluation. To measure recall, we collect
top-200 negations, per target concept, produced by each method.
Moreover, we need a ground-truth dataset with negative statements

5https://www.mturk.com/

Table 1: Plausibility and informativeness evaluation.

Method False Negatives Informativeness
CWA 0.07 0.07
Quasimodoneg 0.61 0.32
GPT-3neg 0.63 0.30
NegatER-\𝑟 0.27 0.28
NegatER-∇ 0.26 0.29
UNCOMMONSENSEB 0.29 0.30
UNCOMMONSENSES 0.25 0.50
UNCOMMONSENSER 0.27 0.47
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Figure 2: Recall evaluation.

about KB concepts. We create ConceptNet-neg by retrieving all
the statements from ConceptNet [39] v5.5 that have a negative
relation. This KB allows 6 negative relations such as NotCapableOf
and NotDesires. The dataset contains 14.1k negations. Samples
include (butterfly, NotDesires, to sting like a bee) and
(tortoise, NotIsA, a turtle). We remove the negative key-
words from relations (i.e., the prefix NOT). We then compute two
modes of recall: In the strict mode, we consider a generated nega-
tion by a given method to be valid if it matches the exact phrasing
of a negation in the ground-truth. In the relaxed mode, we use
embedding similarity [31] to assess whether a generated-negation
and a ground-truth-negation are of similar meaning. The recall
results are shown in Figure 2. UNCOMMONSENSE outperforms
all methods. The strict mode is tougher since the slightest difference
between the ground-truth and method-generated negations is con-
sidered a mismatch, e.g., ¬(air conditioner, quiet) and ¬(air
conditioner, quieter). Relaxing the matching rule to sentence
similarity [31] allows for more forgiving comparisons. Our method
reaches 26.1% in relaxed@10 (relaxed recall at top-10 negations),
followed by NegatER-∇ with 9.6%, Quasimodoneg with 6.3%, and
finally GPT-3neg with 4.4%. An example of a relaxed match is the
pair of statements ¬(bicycle, has motor) (in ground-truth) and
¬(bicycle, has engine) (generated by UNCOMMONSENSE).
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Table 2: Intrinsic evaluation, sample results.

Method Top negations Truly Negative?

CWA

¬(acne, can give an understanding of truth) ✓

¬(elephant, can provide clinician) ✓

¬(yawning, has fluid) ✓

¬(vinegar, can comprise about 55% nickel) ✓

¬(rabbit, related to bribery) ✓

Quasimodoneg
¬(acne, is natural) ✗

¬(elephant, quit smoking) ✓

¬(yawning, can end) ✗

¬(vinegar, is vegan) ✗

¬(rabbit, is rodent) ✓

GPT-3neg
¬(acne, can be cured) ✓

¬(elephant, found in the dictionary) ✗

¬(yawning, can be controlled) ✗

¬(vinegar, need to be refrigerated) ✓

¬(rabbit, found in the wild) ✗

NegatER

¬(acne, become unresponsive) ?
¬(elephant, interested) ?
¬(yawning, attenuated by atropine) ✓

¬(vinegar, stocked with herb) ✓

¬(rabbit, is the most important animal) ?

UNCOMMONSENSE

¬(acne, is fatal) ✓

¬(elephant, is carnivore) ✓

¬(yawning, can relax muscles) ✓

¬(vinegar, has iron) ✓

¬(rabbit, eat insect) ✓

Table 3: Informativeness per domain.

Method Animal Food Activity Human Object Other
CWA 0.06 0.09 0.21 0.18 0.10 0.15
Quasimodoneg 0.41 0.44 0.24 0.39 0.20 0.24
GPT-3neg 0.14 0.46 0.44 0.17 0.22 0.23
NegatER-\𝑟 0.10 0.11 0.16 0.26 0.15 0.17
NegatER-∇ 0.13 0.14 0.17 0.23 0.12 0.18
UNCOMMONSENSEB 0.29 0.37 0.32 0.24 0.24 0.27
UNCOMMONSENSES 0.67 0.52 0.49 0.39 0.42 0.45
UNCOMMONSENSER 0.61 0.55 0.42 0.35 0.41 0.42
Sample concept lynx waffle basketball niece tripod propaganda

Table 4: Examples of provenance-extended negations (UNCOMMONSENSEV).

.

Target Concept Negation
muffin ¬(is runny) unlike other breakfast item, e.g., syrup, yogurt
gorilla ¬(is territorial) unlike other wild animal, e.g., tiger, lion, monkey, chimpanzee
vinegar ¬(has iron) unlike other ingredient, e.g., fennel, celery, fenugreek and acidic food, e.g., tomato
ear ¬(is muscular) unlike other body part, e.g., shoulder, loin, neck

Table 5: Example of MCQA through elimination process ( eliminated choice and correct choice).

Concept = hand, Query = What is a hand?
Eliminator = NegatER

A. foot (-) B. feet (-) C. digestive organ (-) D. body part (-) E. help (-)
Eliminator = UNCOMMONSENSE

A. foot (¬ foot) B. feet (¬ foot) C. digestive organ (¬ digestive system) D. body part (-) E. help (-)
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Evaluation of provenance generation. To show the effect of
extending negation with provenances, we conduct a crowdsourcing
experiment to compare UNCOMMONSENSE against provenance-
extended UNCOMMONSENSE. We call the latter UNCOMMON-
SENSEV, as in verbose. For 200 concepts, for each variant we pro-
duce top-5 negations. The results are then judged by 3 annota-
tors. We ask about the general informativeness of the negations
and allow “interesting”, “slightly interesting”, and “not interesting”.
UNCOMMONSENSEV outperforms UNCOMMONSENSE by 32%
in informativeness, with 81% and 49% respectively. Examples are
shown in Table 4. The Fleiss’ kappa inter-annotator agreement of
this task is 0.44, i.e., moderate.

4.3 Extrinsic Evaluation I: Negative Trivia
Trivia is an umbrella term for interesting knowledge without a spe-
cific purpose. We compare methods for negation generation in their
ability to generate sets of negative trivia about a concept. We re-use
the 200 concepts from before, but now produce top-5 negations for
each, and show them to annotators at once. We compare the best
version of our model (UNCOMMONSENSES) as the default, and
the best of NegatER (NegatER-∇), as well as Quasimodoneg and
GPT-3neg. This results in a total of 2.4k annotations (200 concepts
× 4 methods × 3 annotations). For every list of negations for a
given concept, we ask the annotators whether the list is interesting,
and allow again the same 3 options “interesting”, “slightly inter-
esting”, and “not interesting”. The Fleiss’ kappa inter-annotator
agreement is 0.24, i.e., fair. UNCOMMONSENSE leads with 49%
informativeness, followed by GPT-3neg (40%), NegatER (30%), and
finally Quasimodoneg (23%). An example is top negations about the
concept pancake: While Quasimodoneg and GPT-3neg are low on
plausibility, ¬(pancake, is vegan) and ¬(pancake, is eaten),
respectively, UNCOMMONSENSE offers the most plausible and
informative negations e.g., ¬(pancake, is crumbly).

4.4 Extrinsic Evaluation II: KB Completion
KB completion refers to the task of identifying novel positive state-
ments not yet in a KB. Recent works approach this as an LM-based
true/false classification task on candidate statements [35]. A crucial
ingredient for this approach are negative examples for training the
classifier, and this is where negation generation comes into play.
Strong negative examples, i.e., nontrivial ones, can significantly ben-
efit the classifier learning, and in turn, the KB completion accuracy.
Following the setup of [35], we compare the impact of negations
generated by UNCOMMONSENSE with that of COMET [6] and
NegatER6. We use the code by [35] to train a BERT-based KB com-
pletion based on each of the three training datasets (100 randomized
runs), and report the mean accuracy on the unseen test-set. The
results are shown in Table 6. UNCOMMONSENSE shows a statis-
tically significant improvement over all methods with 𝛼 < 0.01.

4.5 Extrinsic Evaluation III: Multiple-choice
Question Answering

Multiple-choice question answering (MCQA) is a common edu-
cational and entertainment evaluation setup. Humans approach
6Based on data released at https://github.com/tsafavi/NegatER/tree/master/configs/
conceptnet/true-neg/.

Table 6: KB completion evaluation.

Negation Generator Accuracy (%)
CWA 75.89
COMET 79.06
NegatER 78.61
UNCOMMONSENSE 79.56

MCQA often in two ways: (1) Via positive cues on what is the
right answer, and (2) Via negative cues that eliminate incorrect
answer options, thus narrowing down the set of possible answers.
We next investigate to which degree negation generators can help
in the second approach. We use the data from the CommonsenseQA
task [42]. Examples are shown in Table 5. Every question comes
with a question-concept (i.e., target concept) specifying the topic
of the question. For example, the target concept of “Where can you
store a pie?” is pie. The dataset contains 12k questions, each with
only one correct answer.Wemanually sample 100 questions that: (1)
Match concepts in the input KB (i.e., Ascent) and (2) Do not require
any additional condition or information (e.g., “Where do people read
newspapers while riding to work?”). We translate the questions to a
KB-like triple-pattern. For instance, “Where can you store a pie?” is
mapped to (pie, AtLocation, ?). For each question, the elimina-
tor (e.g., UNCOMMONSENSE) crosses out the answers that match
a similar negation produced for the target concept (similarity is
again measured using SBERT with threshold=0.7). The numerical
results are shown in Table 7 and examples in Table 5. A helpful
elimination is an deletion of a wrong answer and an unhelpful one
is a deletion of a correct answer. The CWA baseline eliminates most
of the options since the absence of the statement is enough to merit
a deletion. Besides CWA, the model with the highest number of
helpful eliminations is UNCOMMONSENSE with 108, followed by
NegatER with 35.

Table 7: Eliminations for MCQA task.

Eliminator Helpful Unhelpful
CWA 290 (72.5%) 72 (72.0%)
Quasimodoneg 17 (4.3%) 1 (1.0%)
NegatER 35 (8.8%) 11 (11.0%)
UNCOMMONSENSE 108 (27%) 22 (22.0%)

5 ANALYSIS
Ablation study. In this study, our goal is to show the impact of ev-
ery component in UNCOMMONSENSE. For instance, do the plau-
sibility checks improve the correctness of the inferred negations? and
does the ranking improve the informativeness? We run our method
on the 200 concepts from Section 4.2 and follow the same crowd-
sourcing setup for 4 different configurations of our method (4 con-
figurations × 200 concepts × 2 negations × 3 annotators). The Fleiss’
kappa inter-annotator agreement of this task is fair on both tasks,
namely 0.33 on plausibility and 0.26 on informativeness. The results
are shown in Table 8. One can see that without comparable con-
cepts (instead random) to derive good thematic candidates from, the
informativeness drops to almost half of the complete-configuration
(i.e., UNCOMMONSENSES). This is different from the CWA base-
line in Section 4 in that we still scrutinize and rank the candidate
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Table 8: Ablation study results.

Configuration False Negatives Informativeness
w/o comparable concepts 0.19 0.26
w/o quality checks 0.28 0.22
w/o plausibility checks 0.49 0.38
w/o ranking 0.39 0.29
complete configuration 0.25 0.50

set. The informativeness is also highly affected by the suspension
of the ranking step (a decrease of 21%). Moreover, holding off the
plausibility checks shows an increase of 24% in false negatives.
Hyperparameters Tuning. Our methodology includes four main
hyperparameters, namely 𝛾 (number of comparable concepts), _
(textual similarity threshold used in scrutinizing candidates and
relaxed ranking), 𝜏 (rank threshold for LM), and 𝛽 (KB threshold for
too-generic statements) . We experimented with different values
for these parameters, and set them to their ideal values in Section 4
as shown in Figure 3, namely 𝛾 to 30, _ to 0.7, 𝜏 to 50, and 𝛽 to 0.05.

6 RELATEDWORK
Commonsense knowledge bases. Commonsense knowledge
acquisition includes several large-scale projects. ConceptNet [38,
39], the most prominent of these projects, was mainly constructed
using human crowdsourcing. Similarly, ATOMIC [36] was also
constructed using crowdsourcing, with its main focus on collecting
social commonsense statements. WebChild [43] uses handcrafted
extraction patterns. TupleKB [23] and Quasimodo [32, 33] rely on
open information extraction [26] followed by cleanup. Ascent [24,
25] builds on these approaches by extending them to large-scale
web text extraction, for better corroboration and higher recall.
Negation in knowledge bases. ConceptNet [38] allows the ex-
pression of negative statements using 6 pre-defined negative rela-
tions. We use these statements in our recall evaluation. The text-
extracted Quasimodo [33] contains 350k negated statements (i.e.,
with negative polarity), yet many have quality issues due to prob-
lems with the data source or extraction pipeline. We filter these
negated statements from the full KB and use them as a baseline
in our experiments (i.e., Quasimodoneg). On actively collecting
interesting negations, recently, an inference model has been pro-
posed to build a knowledge graph [27] with if-then commonsense
contradictions [17]. Unlike our work, [17] focus on action-based
statements and contradictions. For example, “Wearing a mask is
seen as responsible” and “Not wearing a mask is seen as carefree”.
In terms of research problem and goal, the closest work to ours is
NegatER [34, 35]. It proposes using LMs to discover meaningful
negations. It fine-tunes the LM for statement truth classification and
then uses similarity-based statement corruption to generate candi-
date negations. In the last step, these are ranked based on proximity
to the LM’s decision threshold, or a measure of model surprise. As
our experiments show, although the methodology is interesting,
the taxonomy-unaware corruptions of positive statements is not
enough to obtain informative negations. Other approaches that
target salient negations in encyclopedic knowledge bases, such as
Wikidata [44] and Yago [40], include statistical inferences [2–5] and
text extractions [2, 18]. Yet text extraction is an inherently noisy
process, and statistical inference over well-structured encyclopedic
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Figure 3: Hyperparameters Tuning.

data does not carry over to verbose and non-canonicalized textual
statements like in commonsense.
LanguageModels. In recent years, LanguageModels (LMs) showed
their ability to store factual knowledge, learned from pre-training
data [28, 37]. Via LM-probing, one can predict missing tokens in
a given claim, e.g. dogs can [MASK] → walk, run, eat. In addition,
LMs can be trained to derive semantically meaningful sentence
embeddings [14, 31], which helps with the problem of detecting se-
mantic similarity. However, LMs have also been repeatedly shown
to struggle with explicit negation [19, 41]. We make use of these
models in order to scrutinize our candidate negations and make
our rankings stronger via the relaxed sibling frequency.

7 RESOURCES
We release a large dataset as a resource for further research: Up
to7 top-1k negations for all primary concepts from Ascent [24],
containing 6.2m negations8.

8 CONCLUSION
In this work, we presented the UNCOMMONSENSE framework
for compiling informative negative statements about everyday con-
cepts, by exploiting comparable concepts in commonsense knowl-
edge bases. Our method outperforms baselines and state-of-the-art
methods, on both informativeness and recall. Potential future di-
rections include considering further types of negation [20], e.g.,
conditioned and enriched with semantic facets [25], like “female
lions do not have manes”, and exploring better sources for negative
social knowledge [36], which comes with novel challenges due to a
lack of previous work on taxonomic organization of activities.
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