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The Rényi (Shannon) entropy, i.e. Reα(Sh), of the ground state of quantum systems in local
bases normally show a volume-law behavior. For a subsystem of quantum chains at critical point
there is an extra logarithmic subleading term with a coefficient which is universal. In this paper we
study this coefficient for generic time-reversal translational invariant quadratic critical free fermions.
These models can be parameterized by a complex function which has zeros on the unit circle. When
the zeros on the unit circle do not have degeneracy and there is no zero outside of the unit circle we
are able to classify the coefficient of the logarithm. In particular, we numerically calculate the Rényi
(Shannon) entropy in configuration basis for wide variety of these models and show that there are
two distinct classes. For systems with U(1) symmetry the coefficient is proportional to the central
charge, i.e. one half of the number of points that one can linearize the dispersion relation of the
system; for all the values of α with transition point at α = 4. For systems without this symmetry,
when α > 1 this coefficient is again proportional to the central charge. However, the coefficient for
α ≤ 1 is a new universal number. Finally, by using the discrete version of Bisognano-Wichmann
modular Hamiltonian of the Ising chain we show that these coefficients are universal and dependent
on the underlying CFT.

I. INTRODUCTION

In quantum mechanics the outcome of a measurement
of an observable is one of the eigenvalues of the observ-
able. Each outcome happens with a particular probabil-
ity. These probabilities can be used to calculate Rényi
(Shannon) entropy which is a representative number for
the probability distribution. The number depends on the
chosen observable and gives an idea about the distribu-
tion of probabilities. For many-body systems there are
many possibilities to choose the observable and study
its distribution and extract interesting information. In
quantum chains one can look to a local observable defined
on each site and find the probability of having a particu-
lar configuration for the full system in, for example, the
ground state. This will lead to a set of probabilities that
its size grows linearly with the size of the Hilbert space.
In quantum spin chains, when one takes the ground state,
the Rényi (Shannon) entropy in σx,y,z basis present some
information about the phase transition and the universal-
ity class[1–6]. Instead of calculating the Rényi (Shannon)
entropy of the full system one can use marginal probabili-
ties and calculate the same quantities for the subsystem.
These quantities as their full system counterparts also
show a volume law behavior, however, at the phase tran-
sition point there is a logarithmic subleading term the
coefficient of which shows interesting universal behavior
[7–15]. Studies on many different quantum critical spin
chains reveal that the coefficient of the logarithm depends
on the chosen basis but shows some level of universality in
some particular bases dubbed as conformal basis [11]. In

these models there are infinite possibilities to choose the
local observable and it seems any kind of classification is
hopeless. In fermionic systems the situation seems more
tractable. The most obvious local observable to take is
the number operator. One can write the ground state in
configuration basis and look to the probabilities of dif-
ferent configurations. These probabilities are dubbed as
formation probabilities and have been studied for sub-
systems of certain free fermions in depth [13, 16–19]. For
results on the full system see [3, 20]. These probabilities
have been also investigated in experiments [21].

Time-reversal translational invariant quadratic critical
free fermions show interesting phase transitions. Depend-
ing on the couplings one can produce critical systems
with integer and half integer central charges [22, 24].
They also show interesting topologically protected phases
[23, 24]. In addition there are many efficient methods to
calculate the formation probabilities for extremely large
systems [13, 17]. These methods are also useful to work
directly with subsystems embedded in the systems with
infinite size. This is very useful to avoid the problem
of finite size effect regarding the full system. We no-
tice that since the number of probabilities grows expo-
nentially with the size of the subsystem there is an un-
avoidable limitation on the size of the subsystem that
one can take in numerical calculations. In this paper
we make a step in full classification of the the coefficient
of the logarithmic term in the Rényi (Shannon) entropy
of generic time-reversal translational invariant quadratic
critical free fermions. We calculate this quantity for var-
ious critical models and show that the coefficient is pro-
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portional to the number of points that one can linearlize
the dispersion relation but the proportionality constant
is very much dependent on the presence (absence) of the
U(1) symmetry. In systems with U(1) symmetry clear
picture emerges for the coefficient of the logarithm with
respect to α. However, for systems without this symme-
try the picture is clear just for α > 1.

The paper is organized as follows: In Sec. II we first
define the Rényi (Shannon) entropy for the subsystem.
To extract the coefficient of the logarithm we define the
quantity Iα for two subsystems of our original subsystem
which was embedded in an infinite system. The setup
used in this paper has not been considered previously.
Most of the previous studies worked with a system which
was periodic finite system and partitioned the system into
two parts[7, 10, 11]. In our setup we have a tri-partite
situation.

In Sec. III we introduce the kind of models that we
considered in this study, i.e. time-reversal translational
invariant quadratic critical free fermions. Apart from
their physical appeal these models provide series of differ-
ent universality classes. They can be solved exactly and
one can find the desired formation probabilities exactly
and efficiently in the thermodynamic limit. We catego-
rize these models to two types, those with and without
U(1) symmetry. We also show how one can find the for-
mation probabilities out of the correlation matrices for
these models. A couple of interesting dualities regarding
the correlation matrices of different models will be also
presented in this section.

In Sec. IV we summarize our main results. We make a
few conjectures regarding the coefficient of the logarithm
in the models that we considered. It seems there are
two classes. Those that have U(1) symmetry and models
without manifest U(1) symmetry. In the latter models
we just consider models where the corresponding f(z)
function does not have zero outside of the unit circle.

In Sec. V we briefly describe our numerical and fitting
procedure. Then in Sec. VI we present the details of
the models that we considered and provide support for
the results presented in Sec. IV. In Sec. VII we use the
discrete version of Bisognano-Wichmann modular Hamil-
tonian for the Ising chain and show that the results con-
verge rapidly to the exact results. Finally in Sec. VIII we
discuss the results further and then conclude the paper
in Sec. IX.

The paper is accompanied with two appendices. In
the first appendix A we provide the details of the fitting
methods that we have used to extract the coefficient of
the logarithm. In the appendix B we provided the exact
Shannon entropy of the models that we considered for
different sizes.

II. SETUP AND DEFINITIONS

In this section we present the basic definitions and the
setup of the problem. The quantities of interest, Rényi

and Shannon entropies are defined as follows: Consider
the normalized ground state of a quantum chain Hamilto-
nian, i.e. |g〉 =

∑
I aI |I〉, expressed in a particular local

bases |I〉 = |i1, i2, ..., iN 〉, where N is the system size and
i1, i2, ..., iN are the eigenvalues of some local operators
defined on the lattice sites. The Rényi and Shannon en-
tropies of the total system with size N are defined as

Reα(N) =
1

1− α
ln
∑
I

PαI , (1)

Sh(N) = −
∑
I

PI lnPI , (2)

where PI = |aI |2 is the probability of finding the system
in the particular configuration given by |I〉. These prob-
abilities are dubbed as formation probabilities in [13]. In
the above definition α can be any positive real number.
Note that α→ 1 gives us just the Shannon entropy.

By considering local bases it is always possible to
decompose the configurations as a combination of the
configurations inside and outside of a subregion A as
|I〉 = |IAIĀ〉, where IA and IĀ are the sub-configurations
corresponding to A and Ā. Then, one can define the
marginal probabilities as pIA =

∑
IĀ
PIAIĀ . Using these

probabilities one can now define the Rényi and Shannon
entropies of the subsystem with size L as follows:

Reα(L) =
1

1− α
ln
∑
IA

pαIA , (3)

Sh(L) = −
∑
IA

pIA ln pIA . (4)

The above two quantities at the critical point normally
behave as

Reα(L) = aαL+ xα lnL+O(1), (5)

Sh(L) = a1L+ x1 lnL+O(1). (6)

The quantities of interest in this paper are xα and x1. To
isolate these quantities one can divide the region A to two
subsystems B and B̄ with sizes ` and L− ` respectively,
see Fig 1. Then one can define

Iα(`) = Reα(`) +Reα(L− `)−Reα(L), (7)

I1(`) = Sh(`) + Sh(L− `)− Sh(L). (8)

In the rest of paper, we consider the case ` = L
2 . Then

we expect

Iα

(L
2

)
= xα lnL+O(1), (9)

I1

(L
2

)
= x1 lnL+O(1). (10)

We calculate the above two quantities for different infinite
size, i.e. N →∞, critical systems. The advantage of this
setup is that we are free from the finite size effects of
the total system and just bounded with the limitations
coming from the subsystem size itself.
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FIG. 1. The setup used to calculate Iα(`). Here B and B̄
have sizes ` and L− ` respectively.

III. MODELS AND METHODS OF
CALCULATION

In this section we first define our Hamiltonian of in-
terest and then present the formulas that one can use to
calculate the formation probabilities and ultimately the
Iα. Here we follow the notation in [24]

The Hamiltonian of the most general translational in-
variant (periodic) quadratic fermionic chain with time-
reversal symmetry takes the form

H =

R∑
r=−R

N∑
j∈Λ

[
Arc

†
jcj+r +

Br
2

(c†jc
†
j+r− cjcj+r)

]
+ const,

(11)

with the local fermionic modes cj , c
†
j and the parameters

Ar = AN−r, Br = −BN−r and Λ represents the sites of
the lattice. The above Hamiltonian can be exactly diag-
onalized after going to the Fourier space and Bogoliubov
transformation as follows:

H =
∑
k

|f(eik)|η†kηk + const, (12)

where we have defined

ηk =
1

2
(1 +

f(eik)

|f(eik)|
)c†k +

1

2
(1− f(eik)

|f(eik)|
)c−k, (13)

and the sum over k goes over momenta kn = 2πn/N . All
the information about the couplings are in the complex
function f(z) which we defined as

f(z) :=
∑
m

tmz
m, (14)

where we have

Ar = − tr + t−r
2

, (15)

Br = − tr − t−r
2

. (16)

In this system the vacuum is defined as ηk|0〉 = 0 for ∀k.
When Br 6= 0 the vacuum state is the ground state, while
when Br = 0 the Hamiltonian has U(1) symmetry which
means the particle number is conserved. In this case one
needs to fill the negative modes depending on the number
of particles in the system to reach to the ground state.

A. Formation probabilities

Before concentrating on critical models explicitly, since
all the forthcoming calculations are based on the correla-
tion matrix we briefly define it here. The correlation ma-
trix G for the eigenstates is defined using two Majorana

fermionic operators γj ≡ c†j + cj , and γ̄j ≡ i
(
c†j − cj

)
as

follows:

iGjk = 〈g|γ̄jγk|g〉. (17)

One can use the above matrix to calculate all the ob-
servables in this system. For example, in this system the
formation probabilities are defined as follows: consider
the ground state of the system written in configuration
basis. That means each configuration of fermions can
appear with particular probability in the ground state.
These probabilities can be calculated using the following
formula [13, 17]

p(C) = det(
I− Ic.G

2
), (18)

where I is an identity matrix and Ic is a diagonal ma-
trix made out of ±1. We set its diagonal element to −1
when we have a fermion and +1 when there is no fermion
at the corresponding site. When Ic = I the correspond-
ing probability is called emptiness formation probability.
The above formula works for the full(sub) system if one
takes the G matrix of full(sub) system. It also works for
disjoint intervals as far as one takes the G matrix of the
subsystem. Using the determinant properties it is easy to
show that the set of formation probabilities is the same
for the matrices G, −G, GT and −GT. In other words,
although the associated probabilities for different config-
urations might change, the whole set is the same. Even
more generally the matrices Ic.G, G.Ic and Ic.G.Ic have
the same set of formation probabilities and consequently
the same Shannon and Rényi entropies. To summarize,
different models with different correlation matrices might
have the same Rényi entropies.

B. Critical systems

It is known that when the complex function f(z) has
zeros on the unit circle the ground state is critical and
depending on the number of zeros one can have different
universality classes with different central charges, for a
review see [25]. The reason behind this fact is that when
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f(z) has zeros on the unit circle one can linearize the dis-
persion relation |f(eik)| around that momentum and get
one gappless Majorana fermion. This Majorana fermion
contributes c = 1

2 to the central charge of the system so

that we finally have c = Nl

2 , where Nl is the number of
zeros on the unit circle.

In general one can think about two types of critical
systems, those with U(1) symmetry and those without
this symmetry. In this work, we show that the behavior
of the xα is very much dependent on the presence or
absence of U(1) symmetry. Because of that we will study
these two cases separately.

1. Models with U(1) symmetry

In these Hamiltonians we have Br = 0. A good exam-
ples of these types of Hamiltonians are the ones with the
following f(z) function:

fz(n) = −(zn + z−n), (19)

which corresponds to U(1)-symmetric n-step hopping
fermions. It has the central charge c = n. The n = 1 is
the celebrated simple hopping chain. For half filling case
the correlation matrix of the ground state is

G = 2C− I, (20)

Cjk =
1

π(j − k)

n∑
m=1

(−1)m+n sin[
π(2m− 1)(j − k)

2n
].(21)

The diagonal elements can be found by taking the limit.
In principle, it is possible to consider more complicated
models such as fz({an}) =

∑
n anfz(n). The central

charge is dependent again on the number of points where
one can linearize the dispersion relation and very much
dependent on the constants an. For example, consider
the case fz({a1, a2}) = a1fz(1) +a2fz(2). For |a1| ≥ |a2|
we have just two points to linearize the dispersion relation
and we expect c = 1, however, for |a2| > |a1| we have four
points to linearize so we expect c = 2. The C matrix in
this case can be written as

Cjk(a1, a2) =

1

π(j − k)
(sin[k∗1(j − k)]− sin[k∗2(j − k)]); (22)

where k∗1 ≥ k∗2 are the solutions of the equation a1 cos[k]+
a2 cos[2k] = 0 in the range (0, π). The diagonal elements
can again be found by taking the limit.

In this work we will study fz(1), fz(2) and fz({a1, a2})
with (a1, a2) = {(1, 1), (1, 2)}, and make a general state-
ment about the behavior of xα.

2. Models without U(1) symmetry

A fairly general form of f(z) with zeros on the unit
circle can be written as:

fz(N0,m+,m−, {mj}; {kj}) = zN0g(z)(z − 1)m+(z + 1)m−

Nc∏
j=1

(z − eikj )mj (z − e−ikj )mj , (23)

where g(z) is a polynomial without any zeros on the unit
circle or origin and k1 < k2 < ... < kNc

. Note that since
we have Hamiltonians with real couplings, all zeros are
either real or come in complex conjugate pairs and all
the powers are integers. For simplicity, we just consider
g(z) = 1. At this moment we assume that N0 can be pos-
itive or negative integer number. In addition m+,m−,mj

are non-negative integer numbers. The correlation ma-

trix of the ground state for this model is shown to be[24]:

Gnm =
1

2π

∫ 2π

0

f(eik)

|f(eik)|
e−i(m−n)kdk. (24)

Remarkably the above integral can be calculated explic-
itly. The result for g(z) = 1 can be written with respect
to elementary functions as follows:

Gnm =


4

π

1
2G

Re
nm +GImnm

N0 +M +Q+ n−m
N0 +M +Q 6= m− n,

(2{m+ + 1

2
}(−1)[

m+
2 ])((−1)M +

4

π

Nc∑
j=1

(−1)j−1{mj

2
}kj) N0 +M +Q = m− n,

(25)

where we have
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GRenm = (−1)[

m+
2 ]+1({m+

2
} − {m−

2
}(−1)[Q]+N0(−1)n+m)

GImnm =

Nc∑
j=1

(−1)j−1{mj

2
} sin(

πm+

2
+ (N0 +M +Q+ n−m)kj)

(26)

and M =
∑Nc

j=1mj , Q = m++m−
2 and {X} is defined as follows:

{X} :=| X | −[| X |]. (27)

Using the above equation we find the following duality

G[fz(N0,m+,m−, {mj}; {kj})] = (−1)[
m+

2 ]G[fz(N0 +M [m+,m−, {mj}], h[m+], h[m−], {h[mj ]}; {kj})], (28)

where

M [m+,m−, {mj}] = [
m+

2
] + [

m−
2

] + 2

Nc∑
j=1

[
mj

2
], (29)

and h[x] = x − 2[x2 ]. For later use it is also useful to
define

H[m+,m−, {mj}] = h[m+] + h[m−] + 2

Nc∑
j=1

h[mj ]. (30)

To the best of our knowledge the above duality has not
been discussed before in the literature. It means that
when m+,m−, {mj} are bigger than one it is possible to
absorbe them to N0 and remain with just one or zero

powers for m+,m−, {mj}. The immediate consequence
of the above argument is that the even powers are non-
critical and do not contribute to the central charge and
the contribution of odd numbers is all the same. In
other words we have the following theorem for the central
charge:

c[N0,m+,m−, {mj}; {kj}] =
1

2
H[m+,m−, {mj}]. (31)

Note that we assume that the models with c = 0
are non-critical. In other words, all the models with
m+,m−, {mj} even integer numbers are non-critical.
From now on without loosing any generality we consider
that m+,m−, {mj} are either zero or one and not all of
them are zero. One can also prove another useful duality

G[fz(N0,m+,m−, {mj}; {kj})] = −GT [fz(−N0 −m+ −m− − 2

Nc∑
j=1

mj ,m+,m−, {mj}; {kj})]. (32)

Combining the two Equations 28 and 32 one can conclude
that without loosing generality it is possible to assume
that m+,m−, {mj} are either zero or one and N0 is an
integer number. To make the classification manageable
and under control we will just consider the case N0 = 0.

IV. SUMMARY OF RESULTS

In this section we will summarize our main results. We
first discuss the case of the systems with U(1) symmetry
and then discuss the models without this symmetry.

A. Models with U(1) symmetry

Our extensive numerical results support the following
behavior for the coefficient of the logarithm

xα =


c

8
α ≤ 4

α

α− 1

c

8
α > 4.

(33)

The case of c = 1 in a different geometry has been al-
ready discussed in [10]. The presence of the discontinuity
at α = 4 is attributed to the least irrelevant operator in
the Luttinger liquid description of the model. As far as
α < 4 it was argued in [10] that this operator is irrelevant
and one can get xα = 1

8 by Luttinger model arguments.
However, when α > 4 this operator is relevant and con-
sequently the field gets locked into one of the minima of
the potential and just one of the configurations end up
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to have the largest contribution. Consequently, we have
xα = α

α−1
c
8 . It seems this picture is more general and

valid for generic fz(n) models. For n = 1 a simple numer-
ical investigation shows that the dominant configurations
at α→∞ are |0, 1, 0, 1, ..., 0, 1〉 and |1, 0, 1, 0, ..., 1, 0〉 con-
sistent with the half-filling ground state. It is possible to
calculate the logarithm of the probability of this config-
uration exactly and one finds [19] a linear term plus a
logarithmic subleading term with coefficient − 1

8 . This
result proves the Eq 33 at α → ∞ for n = 1. A sim-
ple numerical investigation shows that the largest prob-
ability for fz(n) models is attributed to the 2n con-

figurations |An〉 = |
n−r︷ ︸︸ ︷

0, 0, ...0

n︷ ︸︸ ︷
1, 1, ...1, ...,

n︷ ︸︸ ︷
0, 0, ...0

r︷ ︸︸ ︷
1, 1, ...1〉

and |An〉 = |
n−r︷ ︸︸ ︷

1, 1, ...1

n︷ ︸︸ ︷
0, 0, ...0, ...,

n︷ ︸︸ ︷
1, 1, ...1

r︷ ︸︸ ︷
0, 0, ...0〉, where

r = 0, 1, ..., n− 1. We conjecture that

− ln p(An) = a(n)L+
n

8
lnL+O(1). (34)

It should be possible to prove the above conjecture us-
ing the methods developed in [19], however, we do not
attempt to do that in this paper. We note that when
the system is not half filling similar picture is still valid
but the most relevant configuration can change. For ex-
ample, for r

s filling in n = 1 case the most important

configuration is |A1( rs )〉 = |
s−r︷ ︸︸ ︷

0, 0, ...0

r︷ ︸︸ ︷
1, 1, ...1, ...,

s−r︷ ︸︸ ︷
0, 0, ...0〉

in which the numerical results show that the logarithm
of the probability of this configuration has also a lin-
ear term plus logarithmic correction with coefficient − 1

8 ,
see[13].

Finally we also found that the Eq. 33 is most probably
also valid for the models fz({an}) =

∑
anfz(n). The

numerical results in these cases have strong oscillations
and consequently the estimation for xα is poor. However,
the overall behavior of the numerical results is consistent
with the Eq. 33.

The coefficient of the logarithm for all the considered
models is summarized in the Table I.

B. Models without U(1) symmetry

For models with N0 = 0 our numerical results done on
many examples reveal the following behavior

xα =


b(α)

8
α ≤ 1

α

α− 1

c

8
α > 1

(35)

where b(α) = b(α)H[m+,m−, {mj}] and c =
1
2H[m+,m−, {mj}]. The coefficient of the logarithm
seems to be again increasing based on the number of
gapless Majorana fermions that one can define for the
model. This is reminiscent of the behavior of entangle-
ment entropy in these systems [22]. However, for α ≤ 1

the coefficient is not exactly proportional to the central
charge. For α = 1 we have b(1) = 0.480016±0.00005 and
for 0 < α < 1 the numerical results indicate a compli-
cated but universal behavior, see [10] for the Ising chain.
There are also regions where this coefficient is negative.
For all these models the most relevant configuration is the
configuration without any fermion, i.e. |E〉 = |0, 0, ..., 0〉
or the one with full of fermions |E〉 = |1, 1, ..., 1〉. One
can understand this by calculating 〈I|H|I〉 for differ-
ent configurations I. An easy calculation shows that
〈I|H|I〉 = nA0, where n is the number of fermions in the
configuration. It is now easy to see that depending on the
sign of the A0 just the configuration without any fermion
or the one with full of fermions have the lowest energies.
For the subsystem configurations numerical calculations
support the above argument. Note that just changing the
sign of the G matrix interchanges the probability of the
two configurations, however the set of the configurations
is intact. We will be rarely concerned with this sign. The
corresponding probability is called emptiness formation
probability and one can calculate it explicitly using the
Fisher-Hartwig formula, see [16] for the c = 1

2 case. In
the most general case we find:

− ln p(E) = a(m+,m−, {mj}; {kj})L+
c

8
lnL+O(1),

(36)

where a(m+,m−, {mj}; {kj}) = 1
2π

∫ π
−π ln 1

2 (1 ∓ f(eik)
|f(eik)| )

and again we have c = 1
2H[m+,m−, {mj}]. This proves

the Eq. 35 for α→∞. However, as it is argued already
for Ising chain in [10] it is not clear why the discontinuity
in xα should start exactly at α = 1 in all of these models.

In the Table II we summarize the coefficient of the
logarithm for all the models where we did comprehensive
numerical checks.

V. NUMERICAL AND FITTING PROCEDURE

In this section we briefly discuss our numerical and
fitting procedures. The more comprehensive details are
relegated to the Appendix A.

In all of the considered models we first find the 2L

number of probabilities using the Eq. (18). The largest
size that we considered was Lmax = 42. After collecting
all the probabilities we calculate the Iα and find the best
estimate of xα using different fitting procedures. Most
importantly our fitting function is

I = A0 +A1 logL+A2L
−1 logL+

m∑
i=3

Ai/L
i−2. (37)

However, there are at least two important challenges to
overcome. First of all, due to the limitation in the maxi-
mum size of L we need to use some extrapolation meth-
ods to get a good estimate of xα. The second important
hurdle is that Iα for some of the models show strong os-
cillations. In these cases either one needs to stick to a
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Models with U(1) symmetry

f(z) fz(1) fz(2) fz({1, 1}) fz({1, 2})
8x1 0.9968± 0.0001 2.00± 0.01 1.003± 0.003 1.84±0.30

TABLE I. Coefficient of the logarithm in the Shannon entropy for different models with U(1) symmetry.

Models without U(1) symmetry

f(z) z − 1 (z − 1)BW z2 − 1 z3 − 1

8x1 0.48008± 0.00002 0.48009± 0.00003 0.9616± 0.0001 1.4465± 0.0008

TABLE II. Coefficient of the logarithm in the Shannon entropy for different models without U(1) symmetry.

particular branch or average the estimated xα over all the
branches. The more sophisticated approach is to use the
regularization method. We have tried all of these possi-
bilities and in each case we report the one with the best
fit possible. In the Appendix A we also explain in detail
our methods to estimate the error bars in each case.

Because of the exponential nature of the calculations
and the number of considered models computing all the
probabilities required a quite long time, which is partic-
ularly notable for larger system sizes. As an example in
the case of L = 42, it took about 3 days to generate 242

formation probabilities using a cluster with 356 comput-
ing nodes, where each node had 16 cores. To prevent
further damage to the environment in Appendix B we
collected the Shannon entropy for the models that we
considered so that the motivated reader can reproduce
the coefficient of the logarithm by her(him)self.

VI. DETAILS OF THE ANALYSIS

In this section we will provide the details of the mod-
els that we considered. We first discuss systems with
U(1) symmetry and later we discuss the ones without
this symmetry.

A. Models with U(1) symmetry

We first considered the model fz(1) which is the sim-
ple hopping model with half filling. The results for Iα
with α = 1, 6 are shown in Fig 2. The results for α > 1
have oscillations which gets stronger by increasing α. To
calculate the coefficient of the logarithm in these cases
we first calculated the coefficient for each branch using
extrapolation method and later we averaged over the two
results. The results are shown in the Fig 3 which is com-
patible with the Eq. 33. We then considered the model
fz(2). The results for Iα with α = 1, 6 are shown in Fig 4.
There are stronger oscillations in this case. There are four
visible branches for α > 1. In these cases again we calcu-
lated the coefficient for each branch and if needed we also
used the regularization method as it is explained in the
Appendix A. Finally we averaged over all the branches.

The coefficient xα with respect to α is shown again in
the Fig 3.

We also considered the models fz({a1, a2}) with
(a1, a2) ∈ {(1, 1), (1, 2)}. The numerical results have
strong oscillations especially for the case (a1, a2) =
{(1, 2)}. In this case for large α’s it seems impossible
to get a good estimate for the xα with the sizes up to
L = 42. However, the general picture is consistent with
the Eq. 33. In the Appendix B we just report the results
for the Shannon entropy and do not show the details for
the other α’s.

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
ln(L)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

I

fz(1)
= 1.0
= 6.0

FIG. 2. Iα with respect to lnL for fz(1) for two indices α = 1
and α = 6.

B. Models without U(1) symmetry

In this section we will provide some details regarding
the models without U(1) symmetry.

The first example is the famous Ising chain with f(z) =
z − 1. The results for Iα with α = 1, 2 are shown in Fig
5. We do not see any oscillations for any α. To calculate
the coefficient of the logarithm we used the extrapolation
method explained in the Appendix A. The maximum size
of the subsystem that we considered was Lmax = 42.
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FIG. 3. The coefficient of the logarithm with respect to α
for the two models fz(1) and fz(2). In all the calculations
Lmax = 42.

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
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I

fz(2)
= 1.0
= 6.0

FIG. 4. Iα with respect to lnL for fz(2) for two indices α = 1
and α = 6.

The results for α ≥ 1 are shown in the Fig 6 which is
consistent with the Eq. 35.

It is worth mentioning that we also analyzed the f(z) =
z + 1 which although has different G matrix the set of
formation probabilities are exactly the same as the Ising
chain.

The second example is f(z) = z2 − 1 which is a model
with central charge c = 1. The results for Iα with α = 1, 2
are shown in Fig 7. There are small oscillations for α > 1
which are just detectable after careful numerical manip-
ulations, see Fig 7 inset. To calculate the coefficient of
the logarithm we again separated different branches and
used the extrapolation method for each branch and then
finally averaged over the two branches. The results for
α ≥ 1 are shown in the Fig 6 which is consistent with the
Eq. 35. Note that although the central charge here is an
integer number because of lack of U(1) symmetry we end
up to a result which resembles the one we obtained for

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75

ln(L)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I

f(z) = z 1

= 1.0
= 2.0

FIG. 5. Iα with respect to lnL for f(z) = z−1 for two indices
α = 1 and α = 2.

1 2 3 4 5 6 7 8 9 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

/

1
z 1
z2 1
z3 1

FIG. 6. The coefficient of the logarithm with respect to α for
the three models f(z) = z−1, f(z) = z2−1 and f(z) = z3−1.
In all the calculations Lmax = 42.

the Ising chain.
We also analyzed other models such as f(z) = (z −

eiθ)(z− e−iθ) with different θ’s. They all have c = 1 and
show similar structure. We realized that when θ is small
or close to π the oscillations for α > 1 are stronger. The
fewest oscillations appear for θ = π

2 which have the same

set of probabilities as f(z) = z2 − 1.
The third example is f(z) = z3 − 1 which is a model

with central charge c = 3
2 . The results for Iα with α =

1, 2 are shown in Fig 8. Similar to the previous case we
have small oscillations. There are three branches and we
followed the same procedure as before to estimate the
coefficient of the logarithm. The results for α ≥ 1 are
shown in the Fig 6 which is again consistent with the Eq.
35.

We also considered other models with similar central
charge such as f(z) = (z − 1)(z − eiθ)(z − e−iθ) with
different θ’s. The result are the same as before. How-
ever, we realized that the case θ = 2π

3 i has the fewest
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FIG. 7. Iα with respect to lnL for f(z) = z2−1 for two indices
α = 1 and α = 2. The inset shows there are oscillations with
period two.
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FIG. 8. Iα with respect to lnL for f(z) = z3−1 for two indices
α = 1 and α = 2. The inset shows there are oscillations with
period three.

oscillations. When we decrease or increase θ the oscilla-
tions get stronger. Similar phenomena happens also for
f(z) = (z + 1)(z − eiθ)(z − e−iθ). When the zeros has
the largest distance from each other the oscillations are
smallest and when two or three of them get closer to each
other we have stronger oscillations. This is a numerical
observation which we do not have a good explanation.

Apart from the above case we also considered f(z) =
(z−1)(z+ 1)(z− eiθ)(z− e−iθ) with central charge c = 2
with again similar conclusions. f(z) = z4−1 has the least
oscillations. The last model we considered was f(z) =
z5 − 1 with the central charge c = 5

2 . The results are
consistent with the Eq. 35. In most of the cases where we
do not report the results here we considered Lmax = 36.
In some cases such as f(z) = z5−1 we pushed the results
up to Lmax = 42.

In all of the above cases we also studied with the same
procedure Iα with α < 1. For some α’s the coefficient of

the logarithm is negative but the numerical results con-
firm that the behavior of the coefficient is universal and
proportional to the number of points where one can lin-
earize the dispersion relation. The results were depicted
in Fig 9. Here we considered Lmax = 36. We think the
visible discrepancy in the region α ∈ (0.6, 1) is due to
the finite size effect which for unknown reason to us is
stronger in this interval.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.2

0.0

0.2

0.4

(
)

BW
z 1
z2 1
z3 1

FIG. 9. The coefficient of the logarithm with respect to α for
the three models f(z) = z−1, f(z) = z2−1 and f(z) = z3−1.
In all the calculations Lmax = 36.

VII. ANALYSIS BASED ON
BISOGNANO-WICHMANN REDUCED DENSITY

MATRIX

The reduced density matrix (RDM) of a quantum sys-
tem, ρA, is fully encoded in the modular (or entangle-
ment) Hamiltonian HA defined as

ρA =
e−HA

ZA
, ZA = trAe−HA . (38)

By construction, the RDM and the modular Hamiltonian
have the same eigenvectors, and their eigenvalues are sim-
ply related. The modular Hamiltonian plays a key role
in quantum field theory [26]. In this context, the mod-
ular Hamiltonian of half-space partition is known to be
related to the boost operator [27, 28]. Its form in confor-
mal field theory (CFT) is also known explicitly [29, 30].
However, its explicit functional form in lattice models is
known only in a few simple cases, see for example [31–36].
It was proposed in Refs. [37, 38] to use the Bisognano-
Wichmann (BW) theorem in quantum field theory and
its extension in conformal field theory (CFT) to write
approximate modular Hamiltonians for lattice models.
From the BW modular Hamiltonian one can construct a
RDM, which has been dubbed BW RDM. The proposal
has been checked extensively [36–41], showing that in
many cases the BW modular Hamiltonian can reproduce
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to a good precision the entanglement spectrum, correla-
tion functions and entanglement entropy. In [41] it was
shown that this approximation also produces very good
approximations of the formation probabilities. For a re-
cent comprehensive review see [42]

Since the BW modular Hamiltonian is a discretization
of the quantum field theory itself one might hope that the
convergence of many quantities to the actual field theory
result might be faster and better. Having this in mind
we used the BW of the Ising model [36] to find first the
GBW matrix as follows: we first make the following T
matrix:

e

 M N

−N −M


=

(
T11 T12

T21 T22

)
, (39)

where the M and N are L× L matrices (L is the size of
subsystem) with the following elements:

1

π
Nlm = λ(l)δl+1,m − λ(m)δl,m+1, (40)

1

π
Ml,m = λ(l)δl+1,m + λ(m)δl,m+1 + 2λ(l − 1

2
)δl,m,(41)

where λ(n) = n(L−n)
L and L is the size of the subsystem,

i.e. L = 1, 2, 3, .... Then for G matrix we have

GBW =
F− I

F + I
, (42)

where F = T−122 + T12.T
−1
22 . One can use the above cor-

relation matrix to produce formation probabilities and
consequently the Rényi (Shannon) entropy. To calcu-
late Iα(l) one needs to take care of a subtlety. The BW
reduced density matrix is not an exact reduced density
matrix. That means trB̄ρ

BW
A 6= ρBWB . In other words,

probabilities coming from trB̄ρ
BW
A and ρBWB are differ-

ent. We realized that the best results for Iα(l) can be
derived by using marginal probabilities of ρBWL . The re-
sults for the Rényi entropy is indistinguishable from the
exact results when depicted in the Figure so we just re-
port the Shannon entropy in this case in the Appendix B.
This is an interesting demonstration of the universality
of the coefficient of the logarithm and also the power of
the approximate BW modular Hamiltonian.

VIII. DISCUSSION

In this paper we considered an infinite system and cal-
culated the coefficient of the logarithm appearing in the
scaling of Rényi (Shannon) entropy of the ground state of
critical chains. Instead of working directly in the thermo-
dynamic limit one could take a finite periodic system with
size N and calculate Iα = Reα(`)+Reα(N−`)−Reα(N)
which ends up to be proportional to x′α ln N

π sin π`
N , see

[7, 10, 11]. We expect that in all of our models x′α = xα.
The same is not true if one takes an open boundary con-
dition as it was already noticed in [10]. This is because

the boundary conditions can change the logarithmic sub-
leading term drastically. Clear understanding of the co-
efficient in open quantum spin chains is still lacking. All
of the models that we considered in this paper can be
mapped to quantum spin chains using Jordan-Wigner
transformation. Based on the previous numerical cal-
culations [7, 11] it seems plausible to assume that if one
calculates the Rényi (Shannon) entropy in σx basis the
result for the coefficient of the logarithm be the same
as what we found in this paper. However, as it was al-
ready noticed in [11] this might not be correct for other
bases. Finally we should mention that understanding the
coefficient of the logarithm for α ≤ 1 in critical systems
without U(1) symmetry appears to be a challenge. For
α = 1 this coefficient seems almost [7] but not exactly
[10] proportional to the central charge. It is an open
problem to understand why this is the case.

IX. CONCLUSIONS

Rényi (Shannon) entropy of the ground state of quan-
tum chains shows a volume-law behavior. When the sys-
tem is critical these quantities for the subsystem show
a subleading logarithmic term with a coefficient which
is universal up to some extent. In this paper we stud-
ied these quantities at the critical point of generic time-
reversal translational invariant quadratic critical free
fermions. We found that there are two different classes
of models. Models with U(1) symmetry show a unified
behavior. The coefficient is dependent on the number
of points one can linearize the dispersion relation. The
coefficient is constant up to α = 4 and then there is a
discontinuity and a nice decay in the form α

α−1 . In the

case of systems without U(1) symmetry we have stud-
ied models where the corresponding f(z) function has no
zero outside of the unit circle. In these models the co-
efficient of the logarithm is always proportional to the
number of points where one can linearize the dispersion
relation. There is a discontinuity at α = 1 and for α > 1
we again have the α

α−1 kind of decay. For α ≤ 1 although
the coefficient is still universal the exact α functionality
is not known. There are also regions where this coeffi-
cient is negative. It would be interesting to generalize
the above analysis to models in which g(z) 6= 1 and/or
N0 6= 0. Due to numerous possibilities and the existence
of strong oscillations in the calculation of the Rényi en-
tropy the complete classification in these cases might not
be strightforward. Finally we also studied the same quan-
tities using the approximate BW modular Hamiltonian
and confirmed that the produced set of formation prob-
abilities are very close to the exact ones. The derived
coefficient of the logarithm was almost indistinguishable
from the exact results. The biggest challenge for the fu-
ture is probably to calculate analytically the b(α) for the
second class of models to understand the nature of these
numbers.
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Appendix A: Details of the fitting procedure

In this section we provide more details regarding fit-
ting procedures that we followed in the main text. Let
{(Lj , Ij)}nj=1 be the set of data points, in which we in-

tend to extract the relevant physical quantities, such as
the coefficient of the logarithm, as the fitting parame-
ters. The fitting functions of interest in this paper are
of a factorized form meaning that it is a direct sum of
some fitting (known) functions where the fitting param-
eters are the corresponding pre-factors. In other words,
we have

h(L, {θ}) =

m∑
i=0

θifi(L), (A1)

where m is the number of the fitting terms. In the
above fi(L), i = 0, ...,m are the fitting functions as-
sumed to be a priori known (f0(L) ≡ 1) and {θ} shows
the set of the fitting parameters, i.e. {θ0, θ1, ..., θm}.
In particular, θ0 is called the bias. To make connec-
tion with the paper, where the fitting formula is I =
A0 + A1 logL + A2L

−1 logL +
∑m
i=3Ai/L

i−2, we have
θ0 ≡ A0, (θ1, f1(L)) = (A1 ≡ xα, logL), (θ2, f2(L)) =
(A2, L

−1 logL), and (θi, fi(L)) = (Ai, L
−(i−2)), i =

3, ...,m. The χ2 method is an efficient approach for es-
timating the best fitting for a given data set, see for ex-
ample [43]. One defines the χ2 as follows

χ2({θ}) =
1

n

n∑
j=1

[Ij − h(Lj , {θ})]2 , (A2)

which should be minimized with respect to all the fit-
ting parameters {θ} in order to get the best fitting.
In our work we mostly worked with another quantity

called R value. It is defined as R2 ≡ 1 − χ2

σ2 , where

σ2 ≡ 1
n

∑n
j=1

(
Ij − Ī

)2
and Ī ≡ 1

n

∑
j Ij . The closer this

quantity is to one the better the fit is. When the number
of fitting parameters are high, one can use the gradient
descent method in which one updates the parameters us-
ing the equation

~θnew
i = ~θold

i − η
∇θχ(Lj , {θ})
|∇θχ(Lj , {θ})|

δθ. (A3)

where δθ is a discretization parameter, η is the step size

and ~θ ≡ (θ0, θ1, ..., θm), and ∇θ ≡
(

∂
∂θ0

, ∂
∂θ1

, ..., ∂
∂θm

)
to

get the best fit after reaching to the fixed point of the
parameter. It is worth metioning that one should be
careful in taking appropriate number of fitting parame-
ters to avoid the problem of over-fitting. Normally the

sign of overfitting in numerical calculations is the huge
and strongly fluctuating numbers for the fitting param-
eters. To avoid this problem, one adds λ

∑m
i=2 θ

2
i to the

χ2, where λ is a very small coefficient which prevents the
coefficients to take extremely large values. This method
is called the regularization method and was used in this
paper when necessary. Note that in this work we did not
regularize the θ0 and θ1.

A more compact representation of Eq. A2 can be ob-
tained by casting the equation in a matrix form. Let
Xji ≡ fi(Lj) be a (n) × (m + 1) matrix, and Θ ≡
(θ0, θ1, ..., θm)T be a vector with length m + 1, and
Y ≡ (I1, I2, ..., In)T where i = 0, 1, ...,m enumerates
the fitting terms, and j = 1, 2, ..., n enumerates the data
points. Then the regularized χ2 reads

χ2({θ}) =
1

n
(XΘ− Y )

T
(XΘ− Y ) + λΘT I′Θ, (A4)

where I′ is a diagonal matrix with zero or one as its diag-
onal elements. For a fitting parameter that is not going
to be regularized, the corresponding diagonal element is
zero, and for the other elements, it is one. By minimizing
χ2 with respect to all θ parameters, we obtain

Θ =
(
XTX + λI′

)−1

XTY. (A5)

In some cases the matrix XTX has small eigenvalues
which leads to very large θ values when λ is zero. This is
the reason for introducing the regularization parameter
λ.

In our analyses in this paper, we set the diagonal
elements of I′ corresponding to the bias and the xα to
zero. In addition, when overfit takes place, we consider
a minimal λ value that removes the over-fit. To obtain
an optimal values for m, we first start with m = 1, and
find the fittings. Then we increase m by one and repeat
the fittings, and check the convergence of the fitting
parameters. We continue this procedure, comparing the
quality of the fittings with the previous stage, up to a
stage where the fittings are optimal.

To calculate the fitting parameters in the scaling limit
we used two kinds of extrapolation: the uppermost and
the lowermost fixed extrapolation (UFE and LFE respec-
tively). Suppose that the range of fitting is [Lmin, Lmax].
Then in the UFE (LFE) method we fix Lmax (Lmin) to
its maximum (minimum) value and calculate the fitting
parameters (especially xα) in terms of Lmin (Lmax) using
the R2 method. Our observations show that for all cases
the resulting xα(L) follow

xα(L) = x∞α +
a

Lb
, (A6)

where x∞α , a and b are some constants obtained by fitting.
x∞α is the extrapolated parameter that we report in this
paper. We note that the UFE is not really the usual
extrapolation method because the largest size is actually
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fixed. However, in most of the cases since the values for
the Rényi entropy for small sizes are not very useful we
found that the UFE normally gives more stable results
than the LFE.

Throughout the paper we face models where the
Rényi entropy shows some oscillations. In this cases
we subdivide the data points to k classes where in each
class the points are in the same phase of oscillations:{{

(L
(q)
i , I

(q)
i )
}n
i=1

}k
q=1

. Then, using the procedure ex-

plained above we find the best fits for each class, with

the resulting fitting parameters

{{
θ

(q)
p

}m
p=0

}k
q=1

, where

q numerates the classes (totally k classes). Then, the
average parameters are simply defined as

θ̄p ≡
1

k

k∑
q=1

θ(q)
p , (A7)

for which the corresponding fitting functions are free of
oscillations. The mentioned oscillations are stronger in
U(1) symmetric models.

Furthermore, one can define error of estimating coef-
ficients of fitting, using standard deviation method (SD)
[44]. We know that for any set of data with linear be-
havior we have a finite deviations (errors) from Eq. A1.
For n data pairs {(Li, Ii), i = 1, ..., n}, the underlying re-
lationship between Ii and Li including this error term εi
can be described as

I(Lj) = A−1 + xα lnLj + ...+ εj . (A8)

After applying proper fitting method and extracting fit-
ting coefficients we can replace them in Eq. A8 and esti-
mate error εj = Ii −A−1 − xα lnLj − ... . Consequently,
the error of estimating coefficient xα can be written as

ε(xα) =

√ ∑
j ε

2
j

(n− 2)(< z2 > − < z >2)
, (A9)

where z = lnL and < a >= 1
n

∑
j aj .

There are two sources of error in estimating the ther-
modynamic limit of fitting parameters, like xα. The first
one is the systematic error corresponding to Eq. A6. The
second one is the error arising from the numerical errors
in estimating the function for each system size. See for
example Fig.10, where apart from the systematic error in
estimating the final value of I for large Lmax values, there
is an additional error due to the errors for each Lmax. In
other words, we use the Eq. A6 for three sets of points,
the fitting values of xα coming from Eq. A1 for different
sizes and the same numbers plus/minus their error bars
for each sizes. More precisely, in Fig.10 although the blue
bold circles converge to 0.06001052 with error 1.2×10−6,
the upward (downward) triangles converge to 0.06001193

(0.06000933) as a limit of maximum (minimum) estima-
tions. The total error is then the summation of these two
error bars. In the example of Fig.10, the total error is
±
[
0.06001193− 0.06001052 + 1.2× 10−6

]
. To summa-

rize here we first calculate the extrapolation value of the
green, blue and red points. Then we calculate the dif-
ference between the values associated to red and green
points with the blue one. Then we pick the maximum
value and add it to the error bar of the fitting of the blue
points.

20 25 30 35 40
upper bond

0.05996

0.05997

0.05998

0.05999

0.06000

x 1

I fitting
numerica data plus errors
numerica data minus errors

FIG. 10. Blue points are xα estimations for each size derived
using Eq. A1. Green/Red points are xα plus/minus the error
bar of the blue points. To estimate the error bar for xα, the
difference between x∞α associated to the blue, red and green
points are used.

Appendix B: List of Shannon entropies

In this appendix we summarize the Shannon entropy
for different sizes for all the models that we considered
in this paper.

1. Shannon entropy of models with U(1) symmetry

In this section we provide the exact values of Shannon
entropy in the models with U(1) symmetry. In table III
we provided the Shannon entropy for different sizes for
the models we considered in the main part of the paper.

2. Shannon entropy of models without U(1)
symmetry

In this section we provide the exact values of Shannon
entropy in the models without U(1) symmetry. In table
IV we provided the Shannon entropy for different sizes
for the models with f(z) = {z − 1, z2 − 1, z3 − 1, z5 −
1, z(z − 1)}. Then in the table V first column we pro-
vided the Shannon entropy coming from the BW reduced
density matrix. In the second column we explicitly write
the Shannon entropy for the subsystem derived using the
mariginal probabilities.
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Models with U(1) symmetry

L fz(1) fz(2) fz(1, 1) fz(1, 2)

1 0.69314718055994 0.69314718055994 0.63651416829481 0.69221884672917

2 1.30175595835581 1.38629436111989 1.20713991833245 1.38401888518543

3 1.88952473643207 1.99490313891575 1.75382909171979 2.01139838075075

4 2.46572926830832 2.60351191671162 2.29024160464855 2.63699346158892

5 3.03554130502831 3.19128069478788 2.82016064054523 3.25084607202052

6 3.60094114646480 3.77904947286415 3.34574544378459 3.86112826700399

7 4.16329822887889 4.35525400474039 3.86834033023438 4.46758265294401

8 4.72333514587764 4.93145853661664 4.38865348976192 5.07065792051820

9 5.28160174014818 5.50127057333664 4.90719393994777 5.67191793745351

10 5.83843850171108 6.07108261005664 5.42433643749537 6.27020185844070

11 6.39411934070096 6.63648245149308 5.94032544493927 6.86734966048696

12 6.94883095743287 7.20188229292957 6.45535416818048 7.46264647774241

13 7.50272914860883 7.76423937534372 6.96957656772588 8.05706979765335

14 8.05592711783444 8.32659645775783 7.48310440162153 8.65038954334950

15 8.60852182009970 8.88663337475661 7.99603073579124 9.24285216104092
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