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The physics of long-range-interacting quantum systems is currently living through a renaissance driven by the
fast progress in quantum simulators. In these systems many paradigms of statistical physics do not apply and also
the universal long-wavelength physics gets substantially modified by the presence of long-ranged forces. Here
we explore the low-energy excitations of several long-range-interacting quantum systems, including spin models
and interacting Bose gases, in the ordered phase associated with the spontaneous breaking of U(1) and SU(2)
symmetries. Instead of the expected Goldstone modes, we find three qualitatively different regimes, depending
on the range of the interaction. In one of these regimes the Goldstone modes are gapped, via a generalization
of the Higgs mechanism. Moreover, we show how this effect is realized in current experiments with ultracold
atomic gases in optical cavities.
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I. INTRODUCTION

Many-body systems with long-range interactions represent
one of the most intriguing challenges in modern condensed
matter, atomic, molecular, and optical (AMO) physics, and
statistical physics. The long-range nature of the interactions,
in fact, dispense these systems from some of the fundamental
paradigms of statistical physics.

For instance, classical long-range-interacting systems
(LRIS), such as gravitational systems and non-neutral plas-
mas, enjoy unusual properties, such as nonadditivity of the
energy and nonergodicity. The latter may, in turn, lead to a
very slow (if not completely absent) thermalization dynam-
ics [1–3]. Furthermore, the Mermin-Wagner theorem does not
apply to LRIS, enabling them to exhibit spontaneous symme-
try breaking even at low spatial dimensions [4].

Recently, the investigation of LRIS has gained new mo-
mentum from a flurry of experimental realizations of quantum
long-range-interacting systems (QLRIS), including Rydberg
atoms [5], dipolar quantum gases [6], polar molecules [7],
quantum gases coupled to optical cavities [8,9], trapped
ions [10], and dipolar magnets [11,12]. This increasing
amount of experimental evidence opens up new challenges
to theoretically understand the corresponding many-body
problem.

A great deal of information on a quantum system is
typically encoded in its low-energy properties. Remarkably,
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while most of the existing theoretical studies involve the
characterization of ground states and critical properties
of QLRIS [13], little is known about their low-energy
spectrum, with few remarkable exceptions, including their
point-spectrum nature [14], the existence of confinement [15],
and of fractional excitations [16,17]. Among these, it was
pointed out that long-range interactions may cause the Gold-
stone modes to acquire a mass, thus violating the Goldstone
theorem. Notable examples of this include a Bose gas with
Coulomb interaction in 3 + 1 dimensions [18], a supercon-
ductor with Coulomb interactions in 3 + 1 dimensions [19],
and the Schwinger model in 1 + 1 dimension (called in this
context seizing of the vacuum) [20]. Even the celebrated Higgs
mechanism appears to be a special case of this more general
mechanism, as the gauge fields effectively mediate a long-
range Coulomb interaction [21,22].

Our study targets the unexplored connection between the
expanding field of QLRIS and the Higgs mechanism, the
latter being at the center of increasing experimental attention,
e.g., in strongly interacting Fermi superfluids [23], includ-
ing pioneering studies of its few-body precursor [24,25].
The textbook Higgs mechanism can be understood from two
angles: on the one hand, in a gauge theory the Goldstone
mode can be absorbed by a gauge transformation into the
electromagnetic field, which then obtains a mass by cou-
pling to the condensate. On the other hand, the integration
of the gapless electromagnetic field gives rise to long-range
interactions, which also provide a mass for the Goldstone
mode. Here, we uncover another side of this second line
of thought, by showing the occurrence of a generalized
Higgs mechanism in QLRIS for different kinds of long-range
interactions.

We consider a number of experimentally relevant models,
including anti- and ferromagnetic spin models, and weakly
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FIG. 1. Two-dimensional (upper green row) and three-dimensional (lower red row) spin-wave spectrum Eq as a function of q = (qx, 0)
[q = (qx, 0, 0)] from Eq. (1) for an AFM (left) and aFM (right) interaction. The insets show the rescaled discrete spectrum En as a function of
the quantum number n = (nx, 0) [n = (nx, 0, 0)]. The unrescaled dispersions that diverge with the system size are shown in the Supplemental
Material [26], Fig. S1. All results are obtained for linear system sizes L = 800.

interacting Bose gases, which exhibit spontaneous breaking
of continuous symmetries, and analyze their low-energy ex-
citation spectrum for different spatial dimensions and very
general long-range interactions.

Our first main result is to show for a broad range of mod-
els that three qualitatively different regimes exist depending
on the interaction range. I: a regime where the Goldstone
modes behave as in short-range models; II: a regime where
the Goldstone dispersion is gapless but qualitatively different
at low momenta; and III: a regime where the Goldstone modes
are gapped. Our second main result is the characterization
of the visibility of the generalized Higgs mechanism in cur-
rent experiments with atomic gases in optical cavities: we
demonstrate that, with realistic experimental parameters, the
Bogoliubov dispersions are gapped and discrete, thus realiz-
ing the third regime.

II. ANTIFERROMAGNETIC HEISENBERG MODEL

The anisotropic antiferromagnetic Heisenberg model on a
square lattice with long-ranged interactions is given by

Ĥ =
∑
i �= j

Ji j
(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j + γ Ŝz

i Ŝz
j

)
, (1)

where Ŝx
i , Ŝy

i , Ŝz
i are spin operators of length S residing

at the ith lattice site, 0 � γ � 1 is the anisotropy coeffi-
cient, and Ji j > 0 is a long-range antiferromagnetic exchange,
which we will assume to be Ji j = |ri j |−α , with α > 0 and
ri j ≡ ri − r j the relative distance between the ith and jth
sites. Since Ji j couples all the spins antiferromagnetically, it
acts similarly to a frustrating interaction [16]. We will fo-
cus on the case of semiclassical spins (i.e., with spin length
S � 1), for which the spin-wave approximation and nonlinear
sigma model analyses provide accurate results. The case for
S = 1/2 was considered in Refs. [17] and [16] for the one-
and two-dimensional case, respectively, and it was shown

to lead to exotic phases including quantum spin liquids and
valence-bond solids.

The classical (i.e., for S → ∞) ground state of (1) is a
Néel state [16], which allows one to define two sublattices
on each of which the classical spin points along the same
(and opposite) direction. In order to account for quantum
fluctuations around this state, a Holstein-Primakoff transfor-
mation is used, and the Hamiltonian is truncated at order
O(S) [26,27]. By diagonalizing the resulting Hamiltonian
with a Bogoliubov transformation, one finds the spectrum of
the low-energy excitations (i.e., spin waves), given by E±

q =
S
√

(Jd
0 ∓ Jd

q −Js
0 + Js

q)[Jd
0 − Js

0 + γ (Js
q ± Jd

q )], with q a quasi-

momentum in the first Brillouin zone of the sublattice, and
Js

q ≡ ∑
�∈same e−iq·r�J� and Jd

q ≡ ∑
�∈diff e−iq·r�J�, where the

first (second) sum includes only vectors connecting sites on
the same (different) sublattice. The dispersion E+

q corresponds
to the Goldstone excitation branch, while E−

q corresponds to
generally gapped excitations. E+

q is shown in Fig. 1 in the
left panel for different values of γ and α, and for different
spatial dimensions. In the SU(2)-symmetric case (γ = 1),
the two dispersions become degenerate and both gapless,
as two Goldstone modes are expected for the spontaneous
breaking of a SU(2) symmetry. We numerically evaluated the
dispersions, and analyze the low-momenta behavior of the
Goldstone branch by parametrizing the dispersion as E+

q ≈
A|q|s, for q → 0, and use a fit to determine the value of s
as a function of the exponent α in the Hamiltonian (1) (see
Fig. 2). For nearest-neighbor interactions, one expects a linear
spectrum [27], i.e., s = 1. A gapped dispersion, instead, would
correspond to s = 0.

Before discussing the results, it is convenient to get a
fully analytical expression for s(α). To this end, we use
the nonlinear sigma model (NLSM), which is able to cap-
ture the low-energy behavior of an antiferromagnet in the
SU(2)-symmetric case [28] (i.e., γ = 1). We represent a clas-
sical spin of length S as S j/S = (−1) j (1 − m2

j )
1/2φ j + m j,
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FIG. 2. Low-momentum dispersion exponent s as a function of the interaction exponent α. Results for d = 2 are shown in the upper green
row, for d = 3 in the lower red row, for an antiferromagnetic interaction on the left side (green curves), and for a ferromagnetic interaction on
the right side (red curves). The dots are obtained by fitting the results of the spin-wave analysis via E (+)

q ∝ |q|s, while the solid lines show the
analytical results of the NLSM analysis/continuum-limit approximation. All results from the spin-wave analysis are obtained for linear system
sizes L = 800

where φ j describes the order parameter associated with the
Néel state, m j is the canting field, and they satisfy the
conditions m j · φ j = 0 and |φ j |2 = 1, as a consequence of the
spin-length conservation. Assuming the canting fluctuations
to be small, i.e., m2

j � 1, and by performing a spatial coarse-
graining, the effective action A of the Heisenberg model
reads [26,28]

A =
∫

t,r

[
mr · (φ̇r×φr )−(∇φr )2 −

∫
r′
Jr−r′ mr ·mr′

]
, (2)

with
∫

t,r ≡ ∫
dt dd r, and Jr the continuum version of Ji j . Note

that the long-ranged interaction is only activated by the cant-
ing field. To analyze the excitation spectrum of this effective
theory, we expand around a homogeneous order parameter
φ0 as φr = φ0 + δφr, and only retain terms quadratic in δφr
and mr. The resulting quadratic action can be diagonalized,
and leads to the quasiparticle dispersion Eq ∝ √|q|2Jq. For
α > d − 2, with d the spatial dimension, the low-momentum
behavior of Eq reads

Eq ≈

⎧⎪⎨
⎪⎩

|q| for α > d

|q|√log |q| for α = d

|q|(2+α−d )/2 for d − 2 < α < d.

(3)

For α � d − 2, Eq diverges with the system size, and there-
fore a regularization is needed. This is achieved by rescaling
the proper timescales for excitation propagation, in analogy
with the well-known case of diverging ferromagnetic interac-
tions [29,30]. This procedure is outlined in the Supplemental
Material [26], and reveals the discrete, gapped nature of the
spectrum (see insets in Fig. 1). Once properly regularized, it
becomes evident that the divergent dispersion relation charac-
teristic of the third regime reduces to a pure point spectrum,
similar to the one observed in strongly disordered systems,
which, as pointed out in Ref. [14], leads to the breakdown
of conventional equilibration and irreversibility concepts. This
phenomenon, already described in Ref. [14] for ferromagnetic

systems, is found here to also occur in antiferromagnetic sys-
tems with α � d − 2.

The case γ < 1 can be also treated within the
NLSM [26,31], and it renders the same result for s(α), except
for the case γ = 0, where it predicts a linear dispersion, re-
gardless of the interaction. The resulting values of s(α) are
in agreement with the values obtained from the spin-wave
approximation, as shown in Fig. 2, with minor discrepancies
due to finite-size effects. Note that for α � d − 2 we did not
fit the values of s(α), as the spectrum is discretized.

This is the first main result of this work: three qualitatively
different regimes exist for the Goldstone mode, depending on
the value of α. I: The Goldstone mode is as in the short-range
model. II: The Goldstone mode is anomalous. III: The Gold-
stone mode is gapped and discrete.

In particular, the last regime hosts the generalized Higgs
mechanism: for sufficiently long-ranged interactions, the
Goldstone spectrum is discrete and, in turn, it becomes
gapped. An instance of regime II was found for a dipolar
(α = 3) antiferromagnet on a square lattice [32].

From Fig. 2 we also observe that, for 0 < γ � 1, the same
function s(α) holds, while for γ = 0, i.e., for the quantum
XY model, s(α) is independent of α and equals 1, in agree-
ment with the NLSM. We also emphasize here that Goldstone
modes can acquire a mass when a symmetry-breaking pertur-
bation is added to the system. In general, the determination
of this mass is nontrivial and is currently a subject of active
research [33].

III. FERROMAGNETIC HEISENBERG MODEL

We consider now an anisotropic ferromagnetic Heisenberg
model on a square lattice, which takes the same form as
Eq. (1), with long-ranged interactions Ji j = −|ri j |−α . The
ground state of this model is an ordinary ferromagnet, and
the low-energy excitations can again be derived using the
spin-wave analysis. The Holstein-Primakoff transformation
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FIG. 3. Regimes for the long-range-interacting FM and AFM
Heisenberg model (for γ > 0) and a Bose gas as a function of
the interaction exponent α. The double vertical line represents the
presence of logarithmic corrections [cf. Eqs. (3) and (4)].

leads to the spin-wave spectrum Eq = S
√

(J0 − Jq)(J0 − γ Jq)
where Jq ≡ ∑

� e−iq·r�J�. The low-momentum behavior of
Eq can be easily derived analytically by approximating the
long-range interaction as Jq ≈ ∫

|r|>a dd r|r|−αe−iq·r, with a the
lattice spacing, and for α > d is given by

Eq ≈

⎧⎪⎨
⎪⎩

|q|2xγ for α > d + 2

(|q|2 log |q|)xγ for α = d + 2

|q|(α−d )xγ for d < α < d + 2

(4)

with xγ = 1 for γ = 1 and xγ = 1/2 for γ < 1. For α � d ,
the dispersion diverges with the system size and a regular-
ization is therefore added as for the antiferromagnet [26].
The dispersions Eq for different values of α, γ , and spatial
dimensions are also shown in Fig. 1, right panel. The existence
of a gapped Goldstone mode in the ferromagnetic Heisenberg
model due to long-ranged interactions was first pointed out in
Refs. [34,35].

In Fig. 2 we show the curves s(α) in comparison with
the fit obtained by the lattice evaluation of the spin-wave
dispersion, showing good agreement. The results show again,
as in the antiferromagnetic (AFM) case, the existence of the
same three different regimes for s(α) (cf. Fig. 2). Differently
from the AFM case, the result is sensitive to the symmetry
of the model, namely, for the SU(2) (γ = 1) and the U(1)
(γ < 1) cases. While for both cases the regimes boundaries
are the same, the values of the exponents change. Instances of
regime II were found in several feromagnetic (FM) models:
a ferromagnetic XXZ chain [36] (d = 1, γ < 1, α > 1), a
ferromagnetic U(1)-symmetric spin system with dipolar in-
teractions on a square lattice [32,37] (d = 2, γ < 1, α = 3),
and a ferromagnetic SU(2)-symmetric spin system [38]
(d generic, γ = 1, α > d).

It is worth noting that both FM (with γ < 1) and AFM
interactions yield the same scaling s(α), but in a different
range of the interaction exponent α, such that sFM(α) =
sAFM(α − 2) (see Fig. 3). The same correspondence has been
observed between the critical exponents of ferromagnetic ro-
tor models and antiferromagnetic spin Hamiltonians [39] and
we conjecture it to constitute a generic feature of long-range
interactions.

IV. INTERACTING BOSE GAS

The results shown above apply in a similar fashion to the
case of a condensed Bose gas with long-range interactions.
This was first studied in the context of a charged Bose gas,
where the particles interact via a Coulomb potential. There, it
was shown that the Bogoliubov spectrum is gapped in three
dimensions [18]. We consider in the following a generaliza-
tion of this model, relevant for ongoing experiments with cold
atoms in a cavity [40]. We assume the Hamiltonian of the gas
to be given by

H =
∫

r

(
−ψ†

r
∇2

2m
ψr + 1

2

∫
r′

Vr′−rψ
†
r ψ

†
r′ψr′ψr

)
, (5)

with a long-ranged interaction Vr = V0|r|−α . According to
Bogoliubov’s theory, the bosonic field can be decomposed
in a homogeneous condensate and fluctuations around it, i.e.,
ψr = ψ0 + ψ̄r. By replacing it in the Hamiltonian, retaining
terms up to quadratic order in the fluctuations, and finally
diagonalizing via a Bogoliubov transformation, one obtains
Eq = √

εq(εq + 2n0Vq) with εq = h̄2|q|2/2m the free parti-
cle dispersion, n0 = |ψ0|2 the condensate density, and Vq the
Fourier transform of the interaction potential. The chemical
potential is set to μ = n0Vq=0 for thermodynamical stability.
By expanding Eq at low momenta, we find the function s(α),
given in Fig. 3, which is the same as for the case of the
AFM Heisenberg model with γ > 0. Correspondingly, the
same three regimes, depending on the value of α, can be
recognized.

V. VISIBILITY IN ULTRACOLD QUANTUM GASES

We consider the following simplified model, inspired by
the experimental setup of Ref. [40], consisting of a quasi-
two-dimensional gas of bosonic 87Rb atoms enclosed in a
multimode cavity. The atomic interaction mediated by the
cavity modes has the form (far from the trap boundaries) Vr =
V0K0(Q|r|) where V0 can be varied upon tuning the pump
Rabi frequency and Q � 0.29 μm−1 depends on the number
of modes coupled to the atoms via the cavity, and on the
cavity mode waist. The modified Bessel function K0(x) falls
off exponentially for x � 1, while K0(x) ≈ − log x for x � 1.
Accordingly, we expect the deviation from linearity and the
consequent gapping of the Bogoliubov dispersion to be visible
for momenta |q| > Q. In fact, the corresponding Bogoliubov
dispersion reads Eq = √

εq[εq + 2n0V0/(|q|2 + Q2)], which
shows a plateau for |q| > Q, corresponding to the gap one
would have in the pure long-range case with Q = 0. To better
grasp the visibility of this effect in said experimental platform,
we report in Fig. 4 the dispersions Eq for experimental val-
ues of n0 = 5.5 × 103 (µm)−2 and m = 87mp (with mp the
proton mass), for different values of V0 (solid red lines), and
compare them with the corresponding dispersions with Q = 0
(dashed red lines). The dispersions with finite Q substantially
overlap with the gapped ones with Q = 0. To emphasize the
difference with the dispersion for usual contact interactions,
we additionally plot the Bogoliubov dispersion for V (r) =
g̃(h̄2/2m)δ(2)(r), with different values of the dimensionless
parameter g̃ (solid green lines). The difference with the dis-
persions for the long-range interacting model is evident, for

033038-4



GENERALIZED HIGGS MECHANISM IN … PHYSICAL REVIEW RESEARCH 5, 033038 (2023)

0 5 10 15
0

5

10

15

20

25

Momentum, q [1/μm]

E
ne

rg
y,

E
[M

H
z]

V0 =12.6 MHz g̃=1
V0 =7.5 MHz g̃=10
V0 =3.8 MHz g̃=50

FIG. 4. Bogoliubov dispersions for a quasi-two-dimensional ru-
bidium gas, for different interaction potentials Vr = V0K0(Q|r|)
(solid red curves), logarithmic (dashed red curves), and contact in-
teraction (solid green curves).

the range of parameters used. This shows that the generalized
Higgs mechanism can be observed in current experimental
setups. For a quantum gas in a cavity, the excitations can be
probed, e.g., using Bragg spectroscopy [41].

VI. CONCLUSIONS

We showed that, for a number of experimentally relevant
quantum systems, Goldstone modes can be strongly affected
by the presence of long-range interactions. In comparison to

short-range interacting systems, the Goldstone dispersion can
be distorted or, even more remarkably, be gapped, in what can
be regarded as a generalized Higgs mechanism. We showed
that this mechanism can be detected in current experiments
with ultracold atomic gases in an optical cavity. Our results
open intriguing perspectives for the engineering of quantum
materials. For example, an experimentally tunable interac-
tion range would enable the switching between gapped and
gapless spectra, resulting in very different thermodynamical
properties.
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