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Abstract

English

Heat transport is an important phenomenon in many branches of physics
and adjacent fields, be it astrophysics and earth sciences, where thermo-
dynamic properties of planets are studied, or materials science investi-
gating technologically relevant compounds. In dielectric solids, the most
important contribution to heat transport comes from the transfer of vi-
brational energy of atoms – heat – mediated by the interatomic bonding.
The simplest model to describe this bonding is the harmonic approxima-
tion, i. e., the description of atom bonds as perfect springs. However, the
harmonic approximation is incapable of describing thermal conductiv-
ity in periodic systems: A perfectly harmonic, defect-free crystal would
approach vanishing thermal resistance in the bulk limit. Finite thermal
conductivity in realistic systems is a consequence of deviations from the
harmonic description of atom bonds: Anharmonicity. Depending on the
strength of anharmonic contributions to the interatomic bonding, these
can be captured as a small correction to the harmonic approximation
in the framework of perturbation theory, or require a non-perturbative
description once they become too strong.
In this work, we describe how a non-perturbative heat transport for-
malism for solids emerges in the framework of ab initio simulations
coupled with linear response theory. The resulting ab initio Green
Kubo method allows for studying heat transport in solids of arbitrary
anharmonic strength, and is particularly suited to describe “strongly an-
harmonic” systems where perturbative approaches become unreliable.
In order to discern harmonic from anharmonic materials in a systematic
way, we introduce an “anharmonicity measure” which quantifies the an-
harmonic contribution to the interatomic forces under thermodynamic
conditions. Using this anharmonicity measure, we investigate typical
dynamical effects occurring in strongly anharmonic compounds and in-
vestigate the limits of perturbative approaches for the study of thermal
transport. We show that this measure negatively correlates with bulk
thermal conductivities in simple solids, supporting the intuitive notion
that more harmonic materials are better heat conductors and vice versa.
Based on these findings, we identify anharmonic compounds as candi-
dates for thermal transport simulations in the search for novel thermal
insulators. In this way, we identify several new thermal insulators of
potential technological relevance as thermal barriers or thermoelectric
materials which we suggest for experimental study.
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Deutsch

Wärmetransport ist ein wichtiges Phänomen in vielen Bereichen der
Physik und angrenzender Gebiete, sein es Astrophysik und Geowis-
senschaften, die thermodynamische Eigenschaften von Planeten unter-
suchen, oder Materialwissenschaften, die sich mit technologisch rele-
vanten Stoffen auseinandersetzen. In dielektrischen Festkörpern stammt
der wichtigste Beitrag zu Wärmetransport vom Transfer der Vibra-
tionsenergie der Atome – Wärme – vermittelt durch die interatomaren
Bindungen. Das einfachste Modell um diese Bindungen zu beschreiben
ist die harmonische Näherung, d. h., die Beschreibung von Atombindun-
gen als perfekte Federn. Die harmonische Näherung ist jedoch nicht
geeignet um Wärmeleitfähigkeit in periodischen Systemen zu beschreiben:
In perfekt harmonischen, defektfreien Kristallen würde der thermische
Widerstand im thermodynamischen Limes verschwinden. Eine endliche
thermische Leitfähigkeit in realistischen Systemen ist die Konsequenz
von Abweichungen von der harmonischen Beschreibung der Atom-
bindungen: Anharmonizität. Abhängig von der Stärke des anharmonis-
chen Beitrags zur Atombindung kann diese als kleine Korrektur zur
harmonischen Näherung im Rahmen von Störungstheorie beschrieben
werden, oder erfordert eine nicht-störungstheoretische Behandlung falls
sie zu stark wird.
In dieser Arbeit beschreiben wir wie nicht-störungstheoretischer Wärme-
transport im Rahmen von ab initio-Simulationen und linearer Antwort-
theorie formuliert werden kann. Die daraus resultierende ab initio-
Green-Kubo-Methode ermöglicht die Simulation von Wärmetransport
in Festkörpern beliebiger Anharmonizität und ist besonders geeignet
um “stark anharmonische” Systeme zu beschreiben in denen störungs-
theoretische Ansätze unzuverlässig werden. Um die systematische Un-
terscheidung von harmonischen und anharmonischen Materialien zu
ermöglichen führen wir ein “Anharmonizitätsmaß” ein, welches die an-
harmonischen Beiträge zu den interatomaren Kräften unter thermody-
namischen Bedingungen quantifiziert. Mit diesem Anharmonizitäts-
maß untersuchen wir typische dynamische Effekte die in stark anhar-
monischen Materialien auftreten, sowie die Grenzen störungstheoretis-
cher Methoden zur Berechnung von Wärmetransporteigenschaften. Wir
zeigen, dass eine negative Korrelation des Anharmonizitätsmaßes mit
der Wärmeleitfähigkeit einfacher Kristalle besteht, was die intuitive Auf-
fassung bestärkt, wonach harmonische Materialien bessere Wärmeleiter
sind und umgekehrt. Auf diesen Erkenntnissen aufbauend identifizieren
wird anharmonische Materialien als Kandidaten für Wärmetransport-
Simulationen auf der Suche nach neuen thermischen Isolatoren. Auf
diesem Wege identifizieren wir mehrere neue thermische Isolatoren
welche potentielle technologische Relevanz als thermische Barrieren
oder Thermoelektrika aufweisen könnten, und schlagen diese zur exper-
imentellen Untersuchung vor.
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Introduction

“Die Zeit des unbedenklichen Wirtschaftens mit den Energiequellen und
Stofflagern, die uns die Natur zur Verfügung gestellt hat, wird wahrscheinlich
schon für unsere Kinder nur noch die Bedeutung einer vergangenen
Wirtschaftsepoche haben.”

W. Schottky, 1929 [1]

One of the major challenges humankind faces in the 21st cen-
tury is the responsible and sustainable handling of the earth’s natural
resources. Yet, most energy today is lost as waste heat during the trans-
formation of raw energy sources to usable power. To date, there is no
fuel based heat engine that exceeds an efficiency of 50 % and often it is
even worse [2]. Since gas- and aircraft-turbines are essentially Carnot
engines, their efficiency and core power are directly related to combus-
tion temperature [3, 4]. This relationship has been exploited during the
past 30 years by developing ceramics with high thermal resistivity that
are nowadays applied as thermal barrier coatings on turbine airfoils in
heat engines: thin heat insulating layers that allow to operate a turbine
at higher temperatures, thereby increasing its efficiency [5].
A complementary strategy is to recycle waste heat where it occurs. One
way of achieving this is by using the thermoelectric effect to generate
electric power from temperature gradients [6]. The main obstacle pre-
venting mass operation is the limited conversion rate (figure of merit)
𝑧𝑇 of even the most advanced thermoelectric materials known to date.
To make matters worse, these materials often contain heavy metals or
other toxic elements, requiring sophisticated recycling loops to avoid en-
vironmental pollution, and their manufacturing process is difficult and
expensive [7]. Recent advancements in the field, such as the discovery
of a high thermoelectric figure of merit in the lead-free material tin se-
lenide [8], offer hope that novel materials with significant figure of merit
that are non-toxic, easy and cheap to produce, and consist of abundant
elements, can be found.

A key physical property of both thermal barrier coatings (TBCs)
and thermoelectrics is their thermal conductivity 𝜅. In the case of
thermoelectrics, the figure of merit is inversely proportional to 𝜅 [7]:

𝑧𝑇 =
𝑆2𝜎el
𝜅

𝑇 , (1)
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where𝑇 denotes the temperature, 𝑆 the Seebeck coefficient, and𝜎el is the
electrical conductivity. A prerequisite for finding better thermoelectrics
or TBCs is to find materials which are thermally insulating. These are
typically non-metals, since the free electrons in metals are good heat
carriers, and most of the known thermoelectrics are thermally insulating
inorganic semiconductors [7, p. 15].
Despite the technological need, systematic knowledge of thermal con-
ductivities in inorganic compounds is scarce. A database like Springer
Materials only lists thermal conductivities for about 200 of these com-
pounds [9], which is partially due to the fact that accurate measurements
of thermal conductivity are challenging to perform and reproducibility
between different experimental groups is often not guaranteed [10]. As
a consequence, thermal conductivity is not systematically understood
beyond semi-empirical and phenomenological trends in a very limited
number of simple material classes [11].

The aim of this work is therefore to open a new pathway for over-
coming the problem of limited data by devising a route to systematically
scan material space for thermal insulators and calculate their thermal
conductivities from first principles.
While the theoretical foundations of thermal transport in non-metals are
about one hundred years old,1 the simulation of thermal conductivities 1 The many pitfalls in early attempts to de-

scribe thermal transport in semiconductors
was summarized by Peierls in his memorial
text in honor of Wolfgang Pauli [12].

with predictive accuracy from first principles only emerged in the past
fifteen years in the framework of Boltzmann transport theory [13]. Yet,
as we will see later, thermal insulators are often strongly anharmonic
and require a non-perturbative treatment to describe their dynamical
properties accurately. Such a fully non-perturbative treatment in terms
of ab initio Green Kubo theory is available since five years [14, 15].
However, the number of solid materials computed by the latter approach
is still small: Solid silicon and zirconia [15], ice X [16], and amorphous
silica [17].

The approach adopted in this work is therefore twofold:
After reviewing the relevant theoretical tools necessary to simulate heat
transport in thermal insulators, we describe how to assess anharmonicity
in a quantitative and paremeter-free way. In a second step, we use this
“measure of anharmonicity” to identify candidate thermal insulators.
We subsequently compute thermal conductivities for 57 materials with
nearly experimental accuracy, thereby increasing the number of materi-
als studied with ab initio Green Kubo by an order of magnitude while
suggesting several new materials as effective thermal insulators.

Organization of the thesis

The thesis is split into two parts: The first part introduces the theoretical
concepts necessary to understand thermal transport in materials from an
ab initio perspective. In chapter one, we will introduce the quantum-
mechanical many-body problem and describe the necessary steps and
key approximations that lead to Kohn-Sham density functional theory
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as a way of solving the electronic problem in practice. Chapter two
will describe the key concepts of nuclear dynamics that are necessary
to study thermodynamical properties of materials, such as heat trans-
port: The chapter introduces the harmonic approximation as a powerful
starting point for studying dynamical propertis of matter, and the fully
non-perturbative treatment of nuclear dynamics and thermodynamic
properties in terms of molecular dynamics simulations. Chapter three
is dedicated to heat transport theory in the framework of linear response
as formulated in the Green-Kubo formalism. The purpose is to clarify
how heat transport emerges from the many-body Schrödinger equation,
and how, in principle, thermal conductivity can be computed from first
principles.
The second part can be understood as an application of this body of
theory and is devoted to the investigation of materials in the context
of heat transport. In chapter four, we introduce a novel concept to
quantify the anharmonicity of material as a means to detect materials
that should be treated non-perturbatively. As we will see, this quantitity
directly correlates with a material’s thermal conductivity and therefore
enables to predict candidate thermal insulators. Chapter five is devoted
to introducing the technical details necessary to run ab initio Green
Kubo (aiGK) simulations in practice. In chapter six, we present results
for 57 materials, first for 24 where experimental reference is available
to benchmark the aiGK method, then for the remaining materials where
thermal conductivity was previously unknown.
After discussing our results, we conclude with a summary and an outlook
on new questions that arose in the course of this work.





Part I

Theoretical Foundation





1
The Many Body Problem

“The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are [...] completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore becomes desirable
that approximate practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main features of complex
atomic systems without too much computation.”

P.A.M. Dirac, 1929 [18]

In this chapter, we summarize the theoretical background of ab
initio simulations starting from the non-relativistic, time-independent
Schrödinger equation for a general many-body system.

1.1 The many body Hamiltonian

The full (non-relativistic) many body Hamiltonian in the absence of
external electromagnetic fields for an otherwise arbitrary system reads

𝐻̂ = 𝑇e + 𝑉̂e−e + 𝑉̂e−Nuc + 𝑉̂Nuc−Nuc +𝑇Nuc , (1.1)

where

𝑇e =
∑︁
𝑖

p̂2
𝑖

2𝑚e
(1.2)

is the kinetic energy operator for electrons of mass 𝑚e with momentum
operators p̂𝑖 , and

𝑉̂e−e =
∑︁
𝑖< 𝑗

𝑒2��r̂𝑖 − r̂ 𝑗
�� , (1.3)

is the Coulombic electron-electron repulsion operator with the electronic
position operators r̂𝑖 and the elementary charge 𝑒. The Coulomb attrac-
tion between the negatively charged electrons and the positively charged
nuclei reads

𝑉̂e−Nuc = −
∑︁
𝑖,𝐽

𝑍𝐽𝑒
2��r̂𝑖 − R̂𝐽

�� , (1.4)
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where 𝑍𝐽 denotes the charge number of nucleus 𝐽, and R̂𝐽 is the nuclear
position operator. Accordingly, we define the nuclear-nuclear repulsion
as

𝑉̂Nuc−Nuc =
∑︁
𝐼<𝐽

𝑍𝐼𝑍𝐽𝑒
2��R̂𝐼 − R̂𝐽

�� , (1.5)

and the kinetic energy operator for nuclei with momentum operators P̂𝐼
and masses 𝑀𝐼 reads

𝑇Nuc =
∑︁
𝐼

P̂2
𝐼

2𝑀𝐼
. (1.6)

This Hamiltonian governs the dynamical evolution of a many-particle
system represented by a state |Ψ⟩ via the time dependent Schrödinger
equation,

𝐻̂ |Ψ⟩ = iℎ̄
𝜕

𝜕𝑡
|Ψ⟩ , (1.7)

from which all material properties (neglecting relativistic and effects
and electromagnetic fields) follow.

1.2 The Born-Oppenheimer approximation

We go over to a unitless Hamiltonian by scaling Eq. (1.1) with the Hartree
energy 𝐸h = 𝑚e𝑒

4/ℎ̄2 ≈ 27.2 eV, where ℎ̄ denotes the Planck constant.
Distances are expressed in terms of the Bohr radius 𝑎0 = ℎ̄2/𝑚𝑒2 such
that r̂ ≡ r = 𝑎0r̃, and the momentum operators are replaced by the
respective differential operators, p̂ = −iℎ̄𝜕/𝜕r [19]. We find

𝐻̃ ≡ 𝐻̂/𝐸h

= − 1
2

∑︁
𝑖

𝜕2

𝜕r̃2
𝑖

+
∑︁
𝑖< 𝑗

1��r̃𝑖 − r̃ 𝑗
�� −∑︁

𝑖,𝐽
− 𝑍𝐽��r̃𝑖 − R̃𝐽

�� +∑︁
𝐼<𝐽

𝑍𝐼𝑍𝐽��R̃𝐼 − R̃𝐽

��
− 1

2

∑︁
𝐼

𝑚e
𝑀𝐼

𝜕2

𝜕R̃2
𝐼︸            ︷︷            ︸

𝑇̃Nuc

,

(1.8)

which depends on the charge numbers {𝑍𝐼 } and the mass ratios {𝑚e/𝑀𝐼 }.
From this viewpoint, we see that the relative order of magnitude of the
nuclear kinetic energy 𝑇Nuc is 𝑚e/𝑀𝐼 ≈ 10−4 − 10−5. We therefore
expand the total energy in powers of the mass ratio 𝑚/𝑀 using the
electronic contributions as reference,

𝐻̂ = 𝐻̂0 +𝑇Nuc + 𝑉̂Nuc−Nuc , where (1.9)

𝐻̂0 = 𝑇e + 𝑉̂e−e + 𝑉̂e−Nuc . (1.10)

In this notation, the time-independent many-body Schrödinger equation
reads

𝐻̂𝜓(r, R) = 𝐸𝜓(r, R) , (1.11)
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with ground-state eigenvalues 𝐸 and many-body wave functions𝜓(r, R),
where r = (r . . . r𝑁e ) denotes all electronic coordinates, and R =

(R1 . . .R𝑁Nuc ) the nuclear coordinates, respectively. According to Eq. (1.9),
we expand the wave functions 𝜓(r, R) in a complete set of orthonormal
basis functions 𝜙𝑙 ,

𝜓(r, R) =
∑︁
𝑙

𝜒𝑙 (R)𝜙𝑙 (r; R) , (1.12)

where the 𝜙𝑙 are the solutions to the Hamiltonian 𝐻̂0,

𝐻̂0𝜙𝑙 (r; R) = 𝐸0
𝑙 (R)𝜙𝑙 (r; R) . (1.13)

The functions 𝜙𝑙 and the eigenvalue 𝐸0
𝑙 (R) depend parametrically on

R, which means that they are obtained for a nuclear configuration R
regarded as fixed. The nuclear functions 𝜒𝑙 are determined by using
the expanded wavefunction 𝜓 given by Eq. (1.12) in the full Schrödinger
equation (1.11),

(𝐻̂ − 𝐸)𝜓(r, R) =
∑︁
𝑙

(𝑇Nuc +𝑉Nuc−Nuc (R) + 𝐻̂0 − 𝐸)𝜒𝑙 (R)𝜙𝑙 (r, R)

=
∑︁
𝑙

(𝑇Nuc +𝑉Nuc−Nuc (R) + 𝐸0
𝑙 (R) − 𝐸)𝜒𝑙 (R)𝜙𝑙 (r, R) = 0 ,

(1.14)

where 𝑉Nuc−Nuc (R) is the potential energy contribution from the nu-
clear configuration R, and integrating with

∫
d3𝑟 𝜙∗𝑚 (r, R) using their

orthonormality, so that(
𝑇Nuc +𝑉Nuc−Nuc (R) + 𝐸0

𝑚 (R)
)
𝜒𝑚 (R) +

∑︁
𝑙

𝐶̂𝑚𝑙 (R)𝜒𝑙 (R) = 𝐸𝜒𝑚 (R) .

(1.15)

The operator 𝐶̂𝑚𝑙 , given by

𝐶̂𝑚𝑙 (R) = −
∑︁
𝐼

ℎ̄2

2𝑀𝐼

∫
d3𝑟

[
𝜙∗𝑚 (r, R) 𝜕2

𝜕R2
𝐼

𝜙𝑙 (r, R)

+2𝜙∗𝑚 (r, R)
(

𝜕

𝜕R𝐼
𝜙𝑙 (r, R)

)
𝜕

𝜕R𝐼

]
,

(1.16)

describes coupling between different electronic states (𝑙,𝑚). This term
is of the order (𝑚/𝑀)1/4 ≈ 10−1 − 10−2 smaller than the nuclear en-
ergy [20]. Neglecting the coupling terms 𝐶𝑚𝑙 is known as the Born-
Oppenheimer (BO) approximation.1 Within this approximation, the 1 Born and Oppenheimer neglected 𝐶𝑚𝑙 in

their original work [20] and later called this
the adiabatic approximation [21]. How-
ever, only the terms 𝐶𝑚≠𝑙 describe tran-
sitions between different electronic states
induced by nuclear coupling, and keeping
the terms 𝐶𝑚=𝑙 gives the exact potential
when the electronic states are sufficiently
separated, e. g., in presence of an electronic
gap [22]. Therefore the term “adiabatic ap-
proximation” is nowadays used when only
the terms 𝐶𝑚=𝑙 are kept [23]. The full
BO approximation is correct to fourth or-
der in the expansion of the full Hamiltonian
in the mass parameter 4√︁𝑚/𝑀 [21]. Cor-
rections to the forces arising from the 𝐶𝑚=𝑙

term can however be expected to be much
smaller [24].

dynamical evolution of electrons and nuclei is completely separated and
the electrons can be pictured as moving adiabatically with the nuclei.
The nuclear Schrödinger equation reduces to(

𝑇Nuc +𝑉Nuc−Nuc (R) + 𝐸0
𝑙 (R)

)
𝜒𝑙 (R) = 𝐸𝜒𝑙 (R) . (1.17)

Solving this equation is performed in two steps:

1. For a given configuration R, the electronic Schrödinger equation
(1.13) is solved, yielding the energies 𝐸0

𝑙 (R) which thereby paramet-
rically depend on R.
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2. For each electronic quantum number 𝑙, Eq. (1.17) is solved, where
the nuclear repulsion𝑉Nuc−Nuc (R) together with the electronic energy
𝐸0
𝑙 (R) define the effective potential-energy surface for the nuclei.

Since we will be dealing with insulators and semiconduc-
tors with bandgaps providing a sufficient energetic separation between
the electronic ground state 𝑙 = 0 and the first exited state 𝑙 = 1,2 we 2 Thermal energy at room temperature is

∼ 25 meV ≪ typical bandgap.will concentrate on the electronic ground state energy 𝐸0
0 for the given

configuration R in the following. We denote this energy as the Born-
Oppenheimer potential energy,

𝐸BO (R) ≡ 𝐸0
0 (R) +𝑉Nuc−Nuc (R) . (1.18)
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1.3 Density functional theory

“It is my sense that at the present time DFT is the method of choice for systems
consisting of many ( ≳ 5) atoms and for smaller systems, when moderate
accuracies are sufficient.”

W. Kohn, 1993

In the previous chapter, it was tacitly assumed that the electronic Schrödinger
equation (1.13) yielding the effective potential for the nuclei can be
solved. Finding an exact solution to this equation is, however, infeasible
for more than a few electrons. We will now introduce density functional
theory (DFT) as a framework for making approximations that enable
to find a first-principles potential-energy surface 𝐸BO (R) for atomic
systems with order of magnitudes more electrons.
To set the stage, we rewrite the electronic Hamiltonian given in Eq. (1.10)
as

𝐻̂ = 𝑇 + 𝑊̂ + 𝑉̂ext , (1.19)

where 𝑇 ≡ 𝑇e denotes the electronic kinetic energy operator, 𝑊̂ ≡ 𝑉̂e−e

is the electronic Coulomb repulsion, and 𝑉̂ext ≡ 𝑉̂e−Nuc is the external
potential determined by the nuclear configuration R.

We look for solutions to Eq. (1.19) of the form

𝐻̂ |Ψ⟩ = 𝐸Ψ |Ψ⟩ , (1.20)

where 𝐻̂ is the electronic Hamiltonian given by Eq. (1.19), |Ψ⟩ denotes
a many-body eigenstate in index-free bra–ket notation3, and 𝐸Ψ is the 3 Here and in the following we employ the

convention that many-body wavefunctions
are obtained from the state |Ψ⟩ via

⟨r |Ψ⟩ = Ψ(r)
⇔ ⟨r1, . . . , r𝑁 |Ψ⟩ = Ψ(r1, . . . , r𝑁 ) .

Likewise we define the scalar product as

⟨Ψ |Φ⟩ =
∫

d3𝑁𝑟 Ψ∗ (r) Φ(r) .

All functions are assumed to be sufficiently
well-behaved such that the usual manipula-
tions are mathematically well defined.

corresponding total energy of the electrons. The state |Ψ⟩ maps to an
electron density 𝑛Ψ (x) at a given point in space, x ∈ R3, via the density
operator

𝑛̂(x) ≡
∑︁
𝑖

𝑛̂𝑖 (x) =
∑︁
𝑖

𝛿(x − r̂𝑖) , (1.21)

such that

𝑛Ψ (x) ≡ ⟨Ψ | 𝑛̂(x) |Ψ⟩ = 𝑁

∫
d3𝑟2 · · · d3𝑟𝑁 |Ψ(x, r2, . . . , r𝑁 ) |2 ,

(1.22)

where it was used that the arguments of |Ψ(r1, . . . , r𝑁 ) |2 can be arbi-
trarily permuted. The density operator 𝑛̂(x) can be used to express the
one-particle operator 𝑉̂ext as an operator valued functional of a potential
function 𝑣ext (x) by writing

𝑉̂ext =
∑︁
𝑖

𝑣ext (r̂𝑖) =
∫

d3𝑥 𝑣ext (x) 𝑛̂(x) , (1.23)

where 𝑣ext (x) is the Coulomb potential stemming from the nuclear ar-
rangement R,

𝑣ext (x) = −
∑︁
𝐽

𝑍𝐽𝑒
2

|x −R𝐽 | . (1.24)
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It follows that the expectation value of 𝑉̂ext is a functional of the density,

⟨Ψ|𝑉̂ext |Ψ⟩ = 𝑉ext [𝑛Ψ] =
∫

d3𝑥 𝑣ext (x) 𝑛Ψ (x) . (1.25)

Since the density 𝑛Ψ is obtained from the solution |Ψ⟩ of Eq. (1.20) and
the term 𝑉̂ext in the Hamiltonian given by Eq. (1.19) is solely determined
by the external potential funktion 𝑣ext (x) via Eq. (1.23), it follows that
𝑛Ψ (r) is a functional of 𝑣ext (x). In other words, there is a map 𝑀 between
the set of external potentials V = { 𝑣ext } to the set of eigensolutions
P = {Ψ } and their corresponding densities N = { 𝑛Ψ }:

𝑀 : V → N . (1.26)

1.3.1 The Hohenberg-Kohn theorem

Hohenberg and Kohn were able to show that, for non-degenerate4 ground 4 The requirement of non-degenerate ground
states can be loosened by replacing the
Hohenberg-Kohn functional with the Lieb
functional [25–28], cf. [29, Chp. 4.2].

states Ψ ≡ Ψ0, there exists the inverse map from ground-state densities
N0 to potential functions V, and that this map is bĳective [30]:

𝑀−1 : N0 → V . (1.27)

The beauty of this theorem is that it establishes a one-to-one correspon-
dence between the ground-state density 𝑛0 (x) and the external potential
function 𝑣ext (x) which, in turn, describes the full many-body problem
via the Schrödinger equation. It follows that the ground-state wave-
functions Ψ0 are functionals of 𝑛0, as well as the expectation value of
any ground-state observable. Since we are only concerned with elec-
tronic ground-state densities in the following, we denote it simply by
𝑛(x) ≡ 𝑛0 (x).

Hohenberg and Kohn further define the universal functional

𝐹 [𝑛] ≡ 〈
Ψ[𝑛]

��𝑇 + 𝑊̂
��Ψ[𝑛]〉 , (1.28)

i. e., the contributions to the Hamiltonian which do not depend on the
external potential. The ground-state total energy for a given potential
function 𝑣ext is

𝐸 [𝑛] = 〈
Ψ[𝑛]

�� 𝐻̂ ��Ψ[𝑛]〉 ≡ 𝐹 [𝑛] +𝑉ext [𝑛] , (1.29)

where 𝑉ext [𝑛] is given by Eq. (1.25). By virtue of the Raleigh-Ritz
variational principle, this functional is minimized for the correct ground-
state density 𝑛 only, and any other density 𝜌 that differs from 𝑛 non-
trivially yields a larger energy:

𝐸 [𝑛] < 𝐸 [𝜌] for 𝑛 ≠ 𝜌 . (1.30)

This also means that the true ground-state density for a given potential
𝑣ext can be found by minimizing the total energy function, Eq. (1.29),

𝑛 = arg min
𝜌

𝐸 [𝜌] , (1.31)

under the constraint of fixed particle number imposed by the Lagrange
multiplier 𝜇,

𝛿

𝛿𝜌(x)

[
𝐸 [𝜌] + 𝜇

(∫
d3𝑥′ 𝜌(x′) − 𝑁

)] ����
𝜌=𝑛

= 0 . (1.32)
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1.4 The Born-Oppenheimer surface

The Born-Oppenheimer or potential-energy surface 𝐸BO (R) was de-
fined in Eq. (1.18), i. e., it is given as the ground-state energy of the
electron system and the electrostatic nuclear repulsion𝑉Nuc−Nuc defined
in Eq. (1.5) for each nuclear configuration R. In terms of the energy
functional 𝐸 [𝑛] and the ground-state density 𝑛 ≡ 𝑛(R) , this energy
reads

𝐸BO (R) = 𝐸 [𝑛] +
∑︁
𝐼<𝐽

𝑍𝐼𝑍𝐽𝑒
2

|R𝐼 −R𝐽 | . (1.33)

1.4.1 The Hellmann-Feynman theorem

The force F𝐼 on an individual atom at position R𝐼 is given as the deriva-
tive of the Born-Oppenheimer energy, 𝐸BO (R),

d
dR𝐼

𝐸BO (R) (1.33)
=

d
dR𝐼

[
𝐸 [𝑛] +

∑︁
𝐽<𝐾

𝑍𝐽𝑍𝐾𝑒
2

|R𝐽 −R𝐾 |

]
. (1.34)

The electronic part reads

d
dR𝐼

𝐸 [𝑛] = 𝜕

𝜕R𝐼
𝐸 [𝑛]︸      ︷︷      ︸
𝐼

+
∫

d3𝑥
𝛿𝐸 [𝑛]
𝛿𝑛(𝒙)

𝜕𝑛(𝒙)
𝜕R𝐼︸                     ︷︷                     ︸

𝐼 𝐼

, (1.35)

where term 𝐼 𝐼) can be evaluated under the assumption of stationarity
expressed by Eq. (1.32) which yields 𝛿𝐸 [𝑛]/𝛿𝑛(x) = −𝜇, and using the
Leibniz rule,5 so that 5 Leibniz rule for parameter integrals:∫

d𝑥
𝜕

𝜕𝑦
𝑓 (𝑥, 𝑦) = d

d𝑦

∫
d𝑥 𝑓 (𝑥, 𝑦) .

∫
d3𝑥

𝛿𝐸 [𝑛]
𝛿𝑛(𝒙)

𝜕𝑛(𝒙)
𝜕R𝐼

= −𝜇 d
dR𝐼

∫
d3𝑥 𝑛(x) = 0 . (1.36)

Term 𝐼) only depends explicitly on R𝐼 via the electron-nucleus contri-
bution to 𝑉ext, i. e., in terms of the Coulomb kernel 𝑣ext (x),

d
dR𝐼

𝐸 [𝑛] = d
dR𝐼

⟨Ψ0 |𝑉̂ext |Ψ0⟩ =
∫

d3𝑥 𝑛(x) 𝑍𝐼𝑒
2 (R𝐼 − x)

|R𝐼 − x|3
. (1.37)

In total, we have

d
dR𝐼

𝐸BO (R) =
∫

d3𝑥 𝑛(x) 𝑍𝐼𝑒
2 (R𝐼 − x)

|R𝐼 − x|3
−

∑︁
𝐼≠𝐽

𝑍𝐼𝑍𝐽𝑒
2 (R𝐼 −R𝐽 )

|R𝐼 −R𝐽 |3
,

(1.38)

which is solely determined by the ground-state electron density 𝑛(x)
and the nuclear configuration R. This result is known as the Hellmann-
Feynman theorem [31, 32], which can also be formulated in more general
terms for any parametric dependence of the Hamiltonian on some exter-
nal quantitiy 𝜆:

Theorem (Hellmann-Feynman).

d𝐸𝜆
d𝜆

=
d
d𝜆

〈
Ψ𝜆

��𝐻̂𝜆��Ψ𝜆〉 = 〈
Ψ𝜆

����d𝐻̂𝜆d𝜆

����Ψ𝜆〉 . (1.39)
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While the Hellmann-Feynman theorem is formally cor-
rect, in practice there often arise correction terms when non-complete
basis sets are used that also depend on the parameter 𝜆, or an approxima-
tion to the true ground-state density is used [33–36]. In atomic-cerntered
basissets, the most important correction terms are the so-called Pulay
forces [37].
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1.5 The Kohn-Sham scheme

By introducing density functional theory, we have not solved
the many-body problem. However, we have shifted the intricacies of this
problem to a universal functional 𝐹 [𝑛] which depends on the electron
density 𝑛(x). Since the density is a scalar function of three coordinates,
𝑛 : R3 → R, this entails a massive reduction of complexity compared
to working with wavefunctions, which are complex functions of 3𝑁
variables, Ψ : R3𝑁 → C.
In order to proceed, we follow the original argument by Kohn and
Sham [38] and investigate the universal functional 𝐹 [𝑛] in more detail.
Kohn and Sham write the universal function 𝐹 [𝑛] as

𝐹 [𝑛] ≡ 𝑇s [𝑛] +𝑊 [𝑛] , (1.40)

where𝑇s [𝑛] denotes the kinetic energy of non-interacting electrons with
density 𝑛. 𝑊 [𝑛] denotes the electron-electron interaction term as before,
with two contributions

𝑊 [𝑛] = 𝐸es [𝑛] + 𝐸xc [𝑛]

=
1
2

∫
d3𝑥 𝑣es [𝑛] (𝒙) 𝑛(𝒙) + 𝐸xc [𝑛] ,

(1.41)

where 𝐸es [𝑛] is the electrostatic (Hartree) energy stemming from the
charge distribution 𝑛(x) in the Coulomb potential

𝑣es [𝑛] (𝒙) =
∫

d3𝑥′
𝑛 (𝒙′)
|𝒙 − 𝒙′ | , (1.42)

which is a functional of the density itself. 𝐸xc [𝑛] denotes all exchange
and correlation effects not captured by 𝑇s [𝑛] or 𝐸es [𝑛], and is there-
fore termed the exchange-correlation energy. In this notation, the total
energy functional for the electron system in an external potential reads

𝐸 [𝑛] = 𝑇s [𝑛] + 𝐸es [𝑛] +𝑉ext [𝑛] + 𝐸xc [𝑛] . (1.43)

Again, the problem is only shifted, this time to the unknown functional
𝐸xc [𝑛] which we will discuss later.
Let us now define the density 𝑛(x) in terms of an auxiliary orthonormal
set of complex functions {𝜓𝑙 (x)}, such that

𝑛(x) =
∑︁
𝑙

𝑓𝑙 |𝜓𝑙 (x) |2 , (1.44)

where the 𝑓𝑙 denote the occupation of each orbital, i. e., a Fermi-like
function that represents a thermal ensemble or the 0 K ground state.6 6 The occupations are 𝑓𝑙 ∈ [0, 1] when the

spin is treated explicitly, otherwise the spin
degeneracy can be accounted for by allowing
𝑓𝑙 ∈ [0, 2].

We use Eq. (1.44) in Eq. (1.43) and vary with respect to 𝜓∗
𝑙 (x) under the

constraint of keeping the functions { 𝜓𝑙 } normalized via the Lagrange
multiplier 𝜆𝑙 ,

𝛿

𝛿𝜓∗
𝑙 (x)

[
𝑇s [𝑛] + 𝐸es [𝑛] +𝑉ext [𝑛] + 𝐸xc [𝑛] − 𝜆𝑙

(∫
d3𝑥 |𝜓𝑙 (x) |2 − 1

)]
= 0 .

(1.45)
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By Eq. (1.44) we have

𝛿𝑛(x)
𝛿𝜓∗

𝑙 (x′)
= 𝑓𝑙𝜓𝑙 (x)𝛿(x − x′) , (1.46)

and therefore by chain rule 𝛿/𝛿𝜓∗ = (𝛿𝑛/𝛿𝜓∗)𝛿/𝛿𝑛, so that(
−1

2
∇2 + 𝑣es [𝑛] (x) + 𝑣ext (x) + 𝑣xc [𝑛] (x)

)
𝜓𝑙 (x) = 𝜆𝑙

𝑓𝑙
𝜓𝑙 (x) . (1.47)

Here, − 1
2∇2 is the kinetic operator, 𝑣es and 𝑣ext are the electrostatic and

external potentials defined earlier, and

𝑣xc [𝑛] (x) = 𝛿𝐸xc [𝑛]
𝛿𝑛(x) (1.48)

is the exchange-correlation potential formally defined as the functional
derivative of 𝐸xc [𝑛] with respect to the density. By summarizing the
three potentials entering Eq. (1.47) as one effective potential,

𝑣eff [𝑛] (x) ≡ 𝑣es [𝑛] (x) + 𝑣ext (x) + 𝑣xc [𝑛] (x) , (1.49)

and denoting 𝜖𝑙 ≡ 𝜆𝑙/ 𝑓𝑙 , we can write(
−1

2
∇2 + 𝑣eff [𝑛] (x)

)
𝜓𝑙 (x) = 𝜖𝑙𝜓𝑙 (x) . (1.50)

This is a set of one-particle Schrödinger-like equations for the orbitals
𝜓𝑙 with eigenvalues 𝜖𝑙 in an effective potential 𝑣eff [𝑛] called Kohn-Sham
equations.

The effective potential itself is a functional of the den-
sity 𝑛 given in terms of the orbitals by Eq. (1.44), the Kohn-Sham
equations therefore need to be solved self-consistently: One starts from
an initial guess for the density 𝑛0 to set up the effective potential, and
solves for (𝜓𝑙 , 𝜖𝑙). From the solution, an updated density 𝑛1 is com-
puted via Eq. (1.44). The procedure is repeated until the density residual
𝛿𝑛𝑖 = ∥𝑛𝑖 − 𝑛𝑖−1∥ is smaller than the desired precision.

When the solution { 𝜓𝑙 , 𝜖𝑙 } is known, Eq. (1.50) can be used to
express the kinetic energy in terms of the density 𝑛 and eigenvalues
𝜖𝑙 by summing and integrating with

∑
𝑙

∫
d3𝑥 𝜓∗

𝑙 (x) and using the
orthonormality of the orbitals 𝜓𝑙 , so that

𝑇𝑠 [𝑛] ≡ − 1
2

∑︁
𝑙

∫
d3𝑥 𝜓∗

𝑙 (x)∇2𝜓 (x) (1.50)
=

∑︁
𝑙

𝜖𝑙 −
∫

d3𝑥 𝑣eff [𝑛] (x)𝑛 (x) ,

(1.51)

thereby eliminating the Kohn-Sham orbitals 𝜓𝑙 from the expression. The
total energy in terms of the Kohn-Sham eigenvalues { 𝜖𝑙 } and density
𝑛 (x) is then given as Remember that

𝐸 [𝑛] = 𝑇s [𝑛] +𝐸es [𝑛] +𝐸xc [𝑛] +𝑉ext [𝑛] ,

and

𝑣eff [𝑛] (x) = 𝑣es [𝑛] (x) + 𝑣xc [𝑛] (x) + 𝑣ext (x) .

𝐸 [𝑛] (1.51)
=

∑︁
𝑙

𝜖𝑙 − 1
2

∫
d3𝑥 𝑣es [𝑛] (x)𝑛(x) + 𝐸xc [𝑛] −

∫
d3𝑥 𝑣xc [𝑛] (x)𝑛(x) .

(1.52)
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The densities that can be obtained by solving the Kohn-
Sham equations as outlined above are restricted to those that can
be written as a sum of single-particle functions as defined in Eq. (1.44),
so-called non-interacting 𝑣-representable densities. In general, an arbi-
trary ground-state density 𝑛(r) of an interacting electron system cannot
be guaranteed to be non-interacting 𝑣-representable. This questions is
linked to the differentiability of the kinetic energy functional 𝑇s [𝑛] with
respect to variations in the density, 𝛿𝑛, which is generally not guaranteed
for arbitrary 𝛿𝑛. Possible extensions to solve this issue have been sug-
gested in literature, in particular by Levy and Lieb [25–28], as discussed
in [29, Chp. 4.2]. However, this problem is of minor importance in
numerical simulations, because on discrete spatial grids, any physically
admissible density 𝑛 can be shown to be representable by Eq. (1.44) [39].

1.6 Approximations to the exchange-correlation energy

We are finally in position to introduce approximations to the exchange-
correlation energy functional 𝐸xc [𝑛] from which the corresponding po-
tential can be obtained by the functional derivative with respect to the
density. Indeed, the very success of the Kohn-Sham DFT scheme can Remember

𝑣xc [𝑛] (x) = 𝛿𝐸xc [𝑛]
𝛿𝑛(x) .most likely be traced back to the fact that simple approximations to

𝐸xc [𝑛] lead to reasonable results for a large class of systems.

1.6.1 The local-density approximation (LDA)

Let us now define an exchange-correlation energy density 𝑒xc [𝑛] (x) via

𝐸xc [𝑛] =
∫

d3𝑥 𝑒xc [𝑛] (x) , (1.53)

where the density is a functional of the density by itself. The most
straighforward way to approximate 𝑒xc [𝑛] (x) is to replace the functional
𝑒xc [𝑛] (x) by a function of the local density,7 7 Some authors prefer to write

𝑒xc (𝑛) = 𝑛𝑒̃xc (𝑛) , such that

𝐸xc [𝑛] =
∫

d3𝑥 𝑛(x) 𝑒̃xc (𝑛(x) ) .

For example, Hohenberg and Kohn used
the energy density 𝑒xc (𝑛) [30], whereas
Kohn and Sham used “energy per electron”,
𝑒̃xc (𝑛) [38].

𝑒xc [𝑛] (x) ≈ 𝑒xc
LDA(𝑛(x)) . (1.54)

This approximation is called the local density approximation (LDA),
and the resulting exchange-correlation energy reads

𝐸xc
LDA [𝑛] =

∫
d3𝑥 𝑒xc

LDA (𝑛(x)) . (1.55)

The energy density 𝑒xc
LDA (𝑛(x)) is usually taken to be the exchange-

correlation energy density of a homogeneous electron gas obtained from
many-body theory [40].8 The LDA is (by construction) exact in the limit 8 Depending on the application, it can be

beneficial to parametrize LDA on other ref-
erence system [41].

of vanishing density gradient, |∇𝑛(x) |/𝑛(x) → 0, but yields surprisingly
good results under circumstances where the density is non-homogeneous
as well [29, p. 183].
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1.6.2 The generalized gradient approximation (GGA)

In the spirit of the original work by Hohenberg and Kohn, and
Kohn and Sham, improvements on the LDA can be constructed by going
beyond the local density and taking into account gradients of the density
as well,

𝑒xc [𝑛] (x) ≈ 𝑒xc
GGA(𝑛(x),∇𝑛(x)) . (1.56)

Again, the full functional 𝑒xc [𝑛] is replaced by a function of the density
and its gradient. This approximation is called generalized gradient
approximation (GGA), and the resulting energy is usually written in the
form

𝐸xc
GGA [𝑛] =

∫
d3𝑥 𝑒x

hom(𝑛(x)) 𝐹xc
(𝑛(x), |∇𝑛(x) |) , (1.57)

where 𝑒x
hom (𝑛) is the exchange energy density of a homogeneous electron

gas, and 𝐹xc (𝑛,∇𝑛) is an enhancement factor [42].

The generalized gradient approximation is often a good
compromise between accuracy and numerical cost when studying nu-
clear dynamics of solids, and we will use this approximation through-
out the work. However, when studying electronic properties including
excitations, one often needs to use more sophisticated approximation
schemes, or go beyond DFT altogether [43, 44].

1.7 Periodic systems

So far, we did not specify the external potential 𝑣ext (x) entering the Kohn-
Sham equation (1.47) beyond stating that it describes the arrangement
of nuclei. For (finite) molecules and clusters, this is already sufficient
and a self-consistent solution to Eq. (1.47) can be attempted from here.
For (practically infinite) bulk systems and crystals on the other hand,
further assumptions need to be made.
Let us assume that the configuration of the nuclei is in a perfect periodic
arrangement described by the Bravais vectors

Rn =
3∑︁
𝑖=1

𝑛𝑖a𝑖 , (1.58)

where { a𝑖 } are lattice vectors that span the unit cell,

Vuc = { x = 𝑓 𝑖a𝑖 : 𝑓 𝑖 ∈ R[−0.5,0.5) } , (1.59)

and the full crystal is spanned by the unit cell translated by all possi-
ble translations Rn given by Eq. (1.58) with integer numbers 𝑛𝑖 ∈ Z .
The periodicity of the crystal is characterized by the condition that any
translation by Rn maps the crystal back onto itself such that

𝑣ext (x +Rn) = 𝑣ext (x) . (1.60)

By definition of the effective potential entering the Kohn-Sham equations
(1.50), 𝑣eff [𝑛] (x) shares this periodicity. We can therefore formulate a
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Bloch theorem9 for the Kohn-Sham orbitals 𝜓𝑙 (x), i. e., solutions to 9 Cf. Sec. B.1 for an informal proof.

Eq. (1.50) can be separated into independent equations labelled by a
quantum number k with solutions

𝜓k𝑙 (x) = eik·x𝑢k𝑙 (x) (1.61)

where 𝑢k𝑙 are periodic functions satisfying

𝑢k𝑙 (x +Rn) = 𝑢k𝑙 (x) , (1.62)

and k is restricted to the first Brillouin zone of the reciprocal lattice.
To ensure normalizability of the functions 𝜓k𝑙 , one additionally imposes
the Born-von Karman boundary conditions

𝜓k𝑙 (x + 𝑁𝑖a𝑖) = 𝜓k𝑙 (x) (1.63)

where 𝑁𝑖 denotes the number of repetitions along direction a𝑖 . The
domain 𝑉 of all functions and functionals appearing the Kohn-Sham
equations thereby becomes a parallelepiped of size 𝑉 = 𝑁1𝑁2𝑁3 a1 ·
(a2 × a3) with periodically connected edges. The ideal, infinite crystal
is obtained in the limit 𝑁𝑖 → ∞. Using the periodic boundary condition
expressed by Eq. (1.63) in the Bloch functions given by Eq. (1.61), and
the periodicity of the functions 𝑢k𝑙 , one finds that

k · a𝑖 = 2𝜋
𝑁𝑖

𝑚𝑖 , with 𝑚𝑖 ∈ N[0,𝑁𝑖 ) . (1.64)

In total there are 𝑁 = 𝑁1𝑁2𝑁3 unique values of k labelled by m =

(𝑚1,𝑚2,𝑚3) that can be expressed in terms of the reciprocal lattice
vectors [45]

b𝑖 = 2𝜋𝜀𝑖 𝑗𝑘
a 𝑗 × a𝑘

a1 · (a2 × a3) , (1.65)

where 𝜀𝑖 𝑗𝑘 denotes the Levi-Civita symbol enforcing the correct order-
ing of 𝑖 𝑗 𝑘 . The complete set of k-values sampled in a simulation box of
the given size, i. e., the Born-von Karman cell, is

km =
3∑︁
𝑖=1

𝑚𝑖
𝑁𝑖

b𝑖 . (1.66)

The space spanned by the { b𝑖 }, i. e., the space containing all unique
values of k, is the unit cell of the reciprocal lattice. Alternatively, one
chooses those equivalent km which are closest to the 0, i. e., the Brillouin
zone.

1.8 Conclusion

The concept of density functional theory in the Kohn-Sham scheme
(KS-DFT) has been presented starting from the general, many-body
Hamiltonian given in Eq. (1.1). Besides the Born-Oppenheimer (BO)
approximation which decouples electron and nuclear dynamics, KS-
DFT offers a formally exact way of computing the non-relativistic total
energy of the electronic ground state from first principles by solving the
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Kohn-Sham equations, a set of Schrödinger-like single-particle equa-
tions, for an auxiliary set of functions, i. e., the Kohn-Sham orbitals. In
order to solve the Kohn-Sham equations one needs to approximate the
exchange-correlation energy, 𝐸xc [𝑛]. In Sec. 1.6 we have introduced the
most common approaches to approximate 𝐸xc [𝑛]: The local-density ap-
proximation (LDA), as well as the generalized-gradient approximation
(GGA). In this framework, the BO potential-energy surface defined in
Eq. (1.18) is given by the total energy obtained by (semi-)local KS-DFT.
In the next chapter, we discuss how the BO potential-energy surface
determines the dynamical properties of the nuclear system.



2
Nuclear and Lattice Dynamics

In the previous chapter, we have seen how the many-body problem
can be decoupled into an electronic problem which can be solved in
the framework of DFT, and a nuclear problem that describes the dy-
namical properties of the nuclei. This was achieved by means of the
Born-Oppenheimer approximation where electron-nucleus interactions
beyond a parametric dependence on each other are neglected [20].

We will now approach the description of the nuclear dynamics from
two sides: First, we introduce the harmonic approximation in which the
nuclear Schrödinger equation is solved for an approximated potential
in terms of vibrational eigenmodes. We will discuss extended systems
next, in particular crystalline systems with long-range order. Second,
we treat the nuclei as classical particles on the full, non-truncated Born-
Oppenheimer potential 𝐸BO (R). This will lead to the formulation of ab
initio molecular dynamics (aiMD). In a last step, we will connect the
two approaches to allow for extracting phonon properties from MD sim-
ulations. As no electron will appear anymore, 𝑁 ≡ 𝑁Nuc will henceforth
denote the number of nuclei in the system of interest, and we denote the
Born-Oppenheimer potential simply as the potential,

𝐸BO (R) ≡ V(R) .

To set the stage, we recall the Schrödinger equation for
the nuclear wavefunction 𝜒(R) corresponding to the electronic ground
state as initially defined in Eq. (1.17),

(T +V(R) − 𝐸) 𝜒(R) = 0 , (2.1)

where

T =
∑︁
𝐼

−ℎ̄2

2𝑀𝐼

𝜕2

𝜕R2
𝐼

, (2.2)

is the nuclear kinetic-energy operator as before.

2.1 The harmonic approximation

The Born-Oppenheimer potential V(R) in Eq. (2.1) is an ordinary func-
tion of the 3𝑁 coordinates R = (R1, . . . , R𝑁 ) and therefore can be Remember 𝑁 ≡ 𝑁Nuc.
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expanded as a Taylor series in displacements U ≡ ΔR about a given
configuration R0, i. e.,

V(R = R0 +U) = V(R0) +
∑︁
𝐼 ,𝛼

𝜕V(R)
𝜕𝑅𝛼𝐼

����
R0

𝑈𝛼
𝐼

+ 1
2

∑︁
𝐼 ,𝐽
𝛼,𝛽

𝜕2V(R)
𝜕𝑅𝛼𝐼 𝜕𝑅

𝛽
𝐽

�����
R0

𝑈𝛼
𝐼 𝑈

𝛽
𝐽

+ 1
3!

· · · ,

(2.3)

where the expansion coefficients are called force constants. In particular,
we have the harmonic force constants

Φ𝐼 𝛼,𝐽𝛽 ≡ 𝜕2V(R)
𝜕𝑅𝛼𝐼 𝜕𝑅

𝛽
𝐽

�����
R0

. (2.4)

The harmonic approximation is typically used to assess dynamical prop-
erties of a system in some confined phase-space region close to a (local)
minimum of the potential-energy surface.1 A local minimum configu- 1 See section D.1 in the appendix for details

on geometry optimization in the context of
crystal lattices.

ration R0 is characterized by

𝜕𝑉 (R)
𝜕𝑅𝛼𝐼

����
R0

= 0 for all (𝐼,𝛼), and (2.5)∑︁
𝐼 ,𝐽
𝛼,𝛽

Φ𝐼 𝛼,𝐽𝛽𝑈
𝛼
𝐼 𝑈

𝛽
𝐽 > 0 for all possible {U𝐼 } . (2.6)

The condition in Eq. (2.6) is satisfied when the harmonic force constants
Φ𝐼 𝛼,𝐽𝛽 are positive-definite. It needs to be fulfilled to make the Hamil-
tonian bounded. Details on how to obtain force constants numerically
are given in appendix C.

We define mass-reduced coordinates for the displacements,

u𝐼 ≡
√︁
𝑀𝐼U𝐼 , (2.7)

p𝐼 ≡ −iℎ̄
𝜕

𝜕u𝐼
, (2.8)

𝐷 𝐼 𝛼,𝐽𝛽 ≡ 1√
𝑀𝐼𝑀𝐽

Φ𝐼 𝛼,𝐽𝛽 , (2.9)

where Eq. (2.9) defines the dynamical matrix D.2 Expressed in the 2 There seems to be no general agreement
that the matrix D, i. e., the mass-weighted
force constants, are called “dynamical ma-
trix”, or if this term is reserved for the Fourier
transformed matrices studied in periodic sys-
tems. However, we follow Born and Huang
in using the term dynamical matrix irrespec-
tive of the question of lattice periodicity [21,
p. 173].

mass-reduced coordinates u = { u𝐼 } and p = { p𝐼 }, the harmonic
Hamiltonian reads

H (2) (p, u) = T (p) +V (2) (u)

=
1
2

∑︁
𝐼

p2
𝐼 +

1
2

∑︁
𝐼 ,𝐽
𝛼,𝛽

𝐷 𝐼 𝛼,𝐽𝛽 𝑢
𝛼
𝐼 𝑢

𝛽
𝐽 . (2.10)

As required in Eq. (2.6), the dynamical matrix D needs to be positive
definite to make H (2) bounded. Furthermore, we see from Eq. (2.4) that
D is symmetric in the 3𝑁 coordinates (𝐼,𝛼) by the differentiability of
the underlying potential V(R),

𝐷 𝐼 𝛼,𝐽𝛽 = 𝐷𝐽𝛽,𝐼 𝛼 . (2.11)
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The eigenvalues of D will therefore be real and positive, and the eigen-
vectors will be real and orthogonal. We denote the eigensolutions as
modes labeled by 𝑠, with eigenvalues 𝜔2

𝑠 , and the normalized eigenvec-
tors are e𝑠 = { e𝑠,𝐼 }. The dynamical matrix elements can be rewritten
in therms of the eigenvectors and eigenvalues as

𝐷 𝐼 𝛼,𝐽𝛽 =
∑︁
𝑠

𝜔2
𝑠 𝑒𝑠,𝐼 𝛼𝑒𝑠,𝐽𝛽 , (2.12)

and the eigenvectors fulfill∑︁
𝐼 𝛼

𝑒𝑠,𝐼 𝛼𝑒𝑠′,𝐼 𝛼 = 𝛿𝑠𝑠′ and
∑︁
𝑠

𝑒𝑠,𝐼 𝛼𝑒𝑠,𝐽𝛽 = 𝛿𝐼 𝐽𝛿𝛼𝛽 . (2.13)

Using the dynamical matrix elements expressed in terms of eigenvectors
and eigenvalues, Eq. (2.12), the harmonic Hamiltonian as defined in
Eq. (2.10) can be rewritten as

H (2) (p, u) = 1
2

∑︁
𝑠

𝑝2
𝑠 +

1
2

∑︁
𝑠

𝜔2
𝑠 𝑢

2
𝑠 . (2.14)

Here, we implicitly defined the 3𝑁 normal coordinates 𝑢𝑠 and their
conjugate momenta 𝑝𝑠 via the orthogonal transformation3 3 Using vector notation

e𝑠,𝐼 · u𝐼 =
∑︁
𝛼

𝑒𝑠,𝐼𝛼𝑢
𝛼
𝐼 .

𝑢𝑠 =
∑︁
𝐼

e𝑠,𝐼 · u𝐼 , and (2.15)

𝑝𝑠 =
∑︁
𝐼

e𝑠,𝐼 · p𝐼 . (2.16)

The Hamiltonian expressed in terms of the normal coordinates, Eq. (2.14),
contains no cross-terms between different modes 𝑠 and 𝑠′. Rewritten in
terms of this Hamiltonian, the wave equation (2.1) reads{

1
2

∑︁
𝑠

𝑝2
𝑠 +

1
2

∑︁
𝑠

𝜔2
𝑠 𝑢

2
𝑠 − 𝐸 .

}
𝜒(u) = 0 (2.17)

Since the Hamiltonian is a sum of terms, each depending on one coordi-
nate only, the total bosonic nuclear wavefuntion 𝜒 can be separated into
a product of wavefunctions for each mode [21, p. 175],

𝜒(u) =
∏
𝑠

𝜒𝑠 (𝑢𝑠) . (2.18)

We end up with a set of 3𝑁 uncoupled equations, one for each mode 𝑠:{
1
2

(
𝑝2
𝑠 +𝜔𝑠𝑢

2
𝑠

)
− 𝐸𝑠

}
𝜒𝑠 (𝑢𝑠) = 0 , (2.19)

where the total energy of the nuclei is the sum of each mode contribu-
tion 𝐸 =

∑
𝑠 𝐸𝑠 . Equation (2.19) is the familiar equation for a harmonic

oscillator of frequency 𝜔𝑠 [46], thereby establishing 𝜔𝑠 as the eigenfre-
quency of the mode 𝑠. Permissible solutions are labeled by the integer
𝑛𝑠 ∈ N0 and the eigenvalue 𝐸𝑠 depends on 𝑛𝑠 via

𝐸𝑠 (𝑛𝑠) = ℎ̄𝜔𝑠

(
𝑛𝑠 + 1

2

)
. (2.20)
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The state of the entire system is therefore specified by the 3𝑁 quantum
numbers n = (𝑛1, . . . , 𝑛3𝑁 ), and the total energy of the system is

𝐸 (n) =
∑︁
𝑠

ℎ̄𝜔𝑠

(
𝑛𝑠 + 1

2

)
. (2.21)

This derivation is generally valid for a system of 𝑁 particles described
by a potential-energy surface of which a (local) minimum R0, and the
matrix of second derivatives at this configuration, Φ𝐼 𝐽 , is known. The
thermodynamic properties of such a system of harmonic oscillators
follow from this spectrum in straighforward fashion [21].

2.2 Extended systems

The expressions presented in the previous section are generally valid for
a system of 𝑁 nuclei. Macroscopic materials, however, consist of∼ 1023

atoms. From a microscopic point of view, this number is virtually infi-
nite, and mathematically described by the bulk limit 𝑁 → ∞. The most
common way to deal with this bulk limit is to impose periodic boundary
conditions on a finite region of space, i. e., a generating volume, and
normalize the quantities of interest to this volume [21]. This procedure
can be adopted for extended system such as liquids, amorphous solids
such as glasses, and crystals. Since we are interested in the special case
of crystals with an inherent periodic long-range order throughout this
work, it is beneficial to first introduce the concept of a crystal lattice
that describes a bulk crystal in terms of a unit cell arranged periodically
in three dimensional space [47]. The periodic boundary conditions are
then imposed on a generating volume containing several unit cells, i. e., a
supercell.

2.2.1 Periodic systems: Crystals

The crystalline state is characterized by a periodic long-range order of
the potential energy V(R). We describe this order in terms of the
Bravais vectors

L = 𝐿𝜇a𝜇 with 𝐿𝜇 ∈ Z, (2.22)

where { a𝜇 } are lattice vectors spanning the unit cell of the crystal.4 The 4 Notation: We index components in the
crystal basis { a𝜇 } with 𝜇, 𝜈, as opposed
to Cartesian components indexed by 𝛼, 𝛽 .
Summing convention is implied as explained
in appendix A.

Bravais vectors L span a regular grid, i. e., a lattice, and are therefore
also called lattice points.

The invariance of the potential energy under translations
by arbitrary Bravais vectors L is defined as follows: Let R =

{R𝐼 } be a configuration of atoms, and let R′ = {R′
𝐼 } denote the

configuration obtained by moving all atoms by a Bravais vector L,

R′
𝐼 = R𝐼 +L , (2.23)

then for each configuration R, R′, the potential energy is unchanged,

V (R′ = {R𝐼 +L }) = V(R = {R𝐼 }) for all L = 𝐿𝜇a𝜇 . (2.24)
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As a consequence of this translational invariance, we observe that the
reference configurations R0 = {R0

𝐼 } of the potential both before and
after translating the system by L are unchanged,5 and there is a bĳective 5 Reference positions are typically thermo-

dynamic expectation values of the atomic
positions. In simple systems, these coincide
with local minima of the potential.

permutation map 𝑃L between the atomic positions R0′
𝐼 and R0

𝐼 ′ which
fulfills

𝑃L : 𝐼 → 𝐼 ′ such that R0′
𝐼 = R0

𝐼 ′ . (2.25)

This statement is equivalent to requiring that the configurations R0′
𝐼

and R0
𝐼 are indistinguishable.6 Writing the atomic configurations as 6 This requirement is obviously not fulfilled

for molecules, where rigidly shifting all
atoms can by no means induce a permuta-
tion map between atoms.

reference positions plus displacements, R = R0 +U, this corresponds to
a permutation of the displacements of the atoms,𝑈𝐼 → 𝑈𝐼 ′ according to
𝑃L defined in Eq. (2.25). Figure 2.1 shows a one-dimensional depiction
of the relation between discrete translation by Bravais vectors and the
permutation map.

Figure 2.1: A linear chain with three
atoms (bullets) displaced from their equi-
librium position (open circels). With peri-
odic boundary conditions, the consecutive
translation by a lattice vector 𝑎 induces a
permutation of the atoms, i. e., (1, 2, 3) →
(3, 1, 2) → (2, 3, 1) .

We can draw important conclusions from Eq. (2.25) and (2.24). First,
the existence of the map 𝑃L enables us to write every atomic coordinate
R𝐼 as

R𝐼 ≡ R𝑖L = R0
𝑖L +U𝑖L = R0

𝑖 +L +U𝑖L , (2.26)

where R0
𝑖 labels the position of an equivalent reference atom in the unit

cell, U𝑖L is the displacement of the atom from its equilibrium position,
and L is a Bravais vector as before. We can therefore split the index 𝐼

into a tuple

𝐼 = (𝑖, L) , (2.27)

where 𝑖 labels the atom in the unit cell, and L is the corresponding lattice
point. Likewise, the forceconstants Φ𝐼 𝛼,𝐽𝛽 can be written as Φ𝑖L𝛼, 𝑗K𝛽 ,
where L and K are the Bravais vectors belonging to 𝐼 and 𝐽, respectively.
From the translational invariance of the potential, Eq. (2.24), we see that
the forceconstants have to fulfill

Φ𝑖L+M𝛼, 𝑗K+M𝛽 = Φ𝑖L𝛼, 𝑗K𝛽 , (2.28)

where M = 𝑀𝜇a𝜇 with integers 𝑀𝜇 denotes an arbitrary Bravais vector.
The translational invariance holds likewise for the dynamical matrix
D𝐼 𝐽 = 1√

𝑀𝐼𝑀𝐽
Φ𝐼 𝐽 . The translational invariance expressed, e. g., by

Eq. (2.28) can be regarded as the intrinsic periodicity of the sytem.

In addition to the discrete translational invariance, a crys-
tal is characterized by point group symmetries such as rotations and re-
flections about lattice points or planes [48]. The above consideration in
terms of permutation maps representing these additional symmetries of
the lattice can be extended to these operations, see comments in Sec. C.1
in the appendix.

2.2.2 Periodic boundary conditions

In the previous section, we did not specify the system beyond requiring
periodicity in space, and implicitly assumed an infinite crystal in the
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limit 𝑁 → ∞ without boundaries. In practice we introduce Born-von
Karman cyclic boundary conditions [49], as already done in Sec. 1.7
for the description of electronic states, but reintroduce them here in a
slightly more general fashion.

We define the boundary conditions for the nuclear problem such
that

R𝐼 + 𝑆𝜇A𝜇 = R𝐼 with 𝑆𝜇 ∈ Z , (2.29)

where each A𝜇 is a linear combination of the primitive basis vectors
{ a𝜈 },

A𝜇 = Msc,𝜈
𝜇 a𝜈 with Msc,𝜈

𝜇 ∈ Z , (2.30)

and Msc is a non-singular matrix with integer elements. The space
spanned by the {A𝑖 } is a parallelepiped of volume 𝑉sc = 𝑁q𝑉uc, where
𝑁q = det Msc is the number of lattice points that fit into the enlarged
cell,7 and 𝑉uc = a1 · (a2 × a3) is the unit cell volume. This cell is 7 The notation 𝑁q will become more clear

in the next section, where we deal with the
inverse lattice points denoted by q.

therefore called supercell and the matrix Msc is the supercell matrix.
We define the supercell such that its midpoint is located at the origin, i. e.,

Vsc = { x = 𝑥𝜇A𝜇 : 𝑥𝜇 ∈ [−0.5, 0.5)R } . (2.31)

The vectors S = 𝑆𝜇A𝜇 are the equivalent of the Bravais vectors L in
a superlattice described by {A𝜇 } instead of { a𝜇 }. The ideal, infinite
crystal is obtained in the limit 𝑁q → ∞. By imposing the periodic
boundary conditions specified in Eq. (2.29), the force constants become
periodic functions in the superlattice,

Φ𝑖L𝛼, 𝑗K+S𝛽 = Φ𝑖L𝛼, 𝑗K𝛽 for all S = 𝑆𝜇A𝜇 . (2.32)

Again this property carries over to the dynamical matrix. In contrast to
Eq. (2.28), the translational invariance expressed by Eq. (2.32) must be
regarded as an extrinsic periodicity of the sytem, as it imposes an effec-
tive cutoff on the range of interactions captured in the finite supercell [50,
p. 38 ff.].

2.2.3 The dynamical matrix for periodic systems

Using the periodic boundary conditions in the superlattice, the dynam-
ical matrix for the crystal can be written in terms of a Fourier series
as

𝐷𝑖L𝛼, 𝑗K𝛽 =
1
𝑁q

∑︁
q

e−iq· (R0
𝑖L−R0

𝑗K )𝐷𝑖𝛼, 𝑗𝛽 (q) , (2.33)

with the inverse relation

𝐷𝑖𝛼, 𝑗𝛽 (q) = 1
𝑁q

∑︁
L,K

eiq· (R0
𝑖L−R0

𝑗K )𝐷𝑖L𝛼, 𝑗K𝛽 (2.34)

≡
∑︁

L
e−iq·Leiq· (R0

𝑖
−R0

𝑗
)𝐷𝑖0𝛼, 𝑗L𝛽 , (2.35)
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where in the last step the intrinsic periodicity of the crystal was used
to write the dynamical matrix in Eq. (2.35) as a single sum over lattice
points that are contained in the supercell only, {L ∈ Vsc }. The q-points
are elements of the inverse superlattice given by the lattice vectors of the
reciprocal supercell,

B𝜇 = 2𝜋𝜀𝜇𝜈𝜌
A𝜈 ×A𝜌

A1 · (A2 ×A3) , (2.36)

where 𝜀𝜇𝜈𝜌 denotes the Levi-Civita symbol enforcing the correct order-
ing of 𝜇𝜈𝜌, so that

q = 𝑞𝜇B𝜇 with 𝑞𝜇 ∈ Z . (2.37)

These q-points are called commensurate, as they represent wave numbers
that fit into the supercell, and the 𝑞𝜇 can be chosen such that each q is
located in the first Brillouin zone of the inverse lattice. In total, there
are 𝑁q inequivalent values of q.
Equation (2.35) transforms the 3𝑁sc × 3𝑁sc matrix D𝐼 𝐽 to one 3𝑁uc ×
3𝑁uc matrix D𝑖 𝑗 (q) for each q, where 𝑁uc is the number of atoms in the
unit cell, and 𝑁sc = 𝑁q𝑁uc the number of atoms in the supercell. The
phase factor eiq· (R0

𝑖
−R0

𝑗
) does not change the eigenvalues of D(q) and is

sometimes omitted to simplify the formulas [21].

2.2.4 Interpolation to non-commensurate q-points

When restricting the lattice points to the supercell, the dynamical matrix
as defined in Eq. (2.35) is evaluated only for the truncated sum over
{L ∈ Vsc }. The wavenumbers q are then restricted to the commensu-
rate q-points, i. e., the points given in terms of Eq. (2.37). Evaluating
the truncated dynamical matrix at a non-commensurate value q̃ will, in
general, yield a non-hermitian matrix which cannot be used to extract
physically sound information about the system. To obtain an approxi-
mated dynamical matrix at any other, non-commensurate value q̃ within
the Brillouin zone, we define an extended supercell,

Vext
sc = { x = 𝑥𝜇A𝜇 : 𝑥𝜇 ∈ [−0.5, 0.5]R } , (2.38)

which also contains the lattice points at the positive boundary of the
supercell as depicted by open circles in Fig. 2.2.

Figure 2.2: Depiction of square super-
cells with lattice points in the range
[−0.5𝐴, 0.5𝐴) (bullets •), and extended lat-
tice points at the supercell boundary (empty
bullets ◦), where 𝐴 is the edge length of the
supercell. Blue arrows denote the unit cell
vectors, black arrows denote the supercell
vectors.

These lattice points are included in the Fourier series with an appropriate
weight 𝑤L that accounts for double counting of lattice points that are
separated by a linear combination of supercell lattice vectors S [51].
Furthermore, we use a minimal image convention (MIC) between the
atoms (𝑖, 0) and ( 𝑗 , L): For each pair, we use an equivalent lattice point
L′ within the extended supercell which depends on (𝑖, 𝑗 , L) such that

−R0
𝑖 +R0

𝑗 +L′ ∈ Vext
sc . (2.39)

In total we define

𝐷𝑖𝛼, 𝑗𝛽 (q̃) =
∑︁

L∈Vext
sc

𝑤Le−iq̃·L′
eiq̃· (R0

𝑖
−R0

𝑗
)𝐷𝑖0𝛼, 𝑗L𝛽 (2.40)
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where L′ is chosen such that it satisfies Eq. (2.39), and the weights 𝑤L
are chosen based on the multiplicity of the lattice point L in the extended
supercell. The dynamical matrices defined by Eq. (2.35) and (2.40) are
equal when evaluated at commensurate q-points. We will therefore use
the latter definition as the dynamical matrix in the following.

2.2.5 Properties of the dynamical matrix and its eigenvectors

As noted before, the dynamical matrix D(q) defined in Eq. (2.40) is a
hermitian 3𝑁uc × 3𝑁uc matrix in the indices (𝑖𝛼, 𝑗 𝛽) for each q within
the Brillouin zone.8 The 3𝑁uc eigenvalues will therefore be real, and 8 These can be either commensurate points

q, or interpolated points q̃.there will be 3𝑁uc complex, orthogonal eigenvectors. In accordance
with Eq. (2.12) we denote∑︁

𝑗𝛽

𝐷𝑖𝛼, 𝑗𝛽 (q)𝑒𝑏, 𝑗𝛽 (q) = 𝜔2
𝑏 (q) 𝑒𝑏,𝑖𝛼 (q) , (2.41a)

𝐷𝑖𝛼, 𝑗𝛽 (q) =
∑︁
𝑏

𝜔2
𝑏 (q) 𝑒𝑏,𝑖𝛼 (q)𝑒∗𝑏, 𝑗𝛽 (q) , (2.41b)

where the band index 𝑏 is used to discern the 3𝑁uc branches at each q.9 9 The notation highlights that the q become
quasi-continuous in the 𝑁q → ∞ limit. In

that case, 1
𝑁q

∑
q →

∫ d3𝑞
(2𝜋)3

Since D(q) is hermitian, it follows that [52]

𝐷𝑖𝛼, 𝑗𝛽 (−q) = 𝐷∗
𝑖𝛼, 𝑗𝛽 (q) , (2.42)

𝑒𝑏,𝑖𝛼 (−q) = 𝑒∗𝑏,𝑖𝛼 (q) , and (2.43)

𝜔𝑏 (−q) = 𝜔𝑏 (q) . (2.44)

With the help of Eq. (2.41), the real-space dynamical matrix D𝐼 𝐽 for the
supercell can be written as

𝐷𝑖L𝛼, 𝑗K𝛽 =
1
𝑁q

∑︁
q

e−iq· (R0
𝑖L−R0

𝑗K )𝐷𝑖𝛼, 𝑗𝛽 (q) (2.45)

≡
∑︁
𝑏,q

𝜔2
𝑏 (q) 𝑒𝑏,𝑖L𝛼 (q)𝑒∗𝑏, 𝑗K𝛽 (q) . (2.46)

The eigenvectors of the 3𝑁uc ×3𝑁uc matrices D(q) appearing in Eq. (2.41),
and the eigenvectors of the 3𝑁sc ×3𝑁sc matrix𝐷 𝐼 𝐽 appearing in Eq. (2.46)
are related by

𝑒𝑏,𝑖L𝛼 (q) ≡ 1√︁
𝑁q

e−iq·R0
𝑖L 𝑒𝑏,𝑖𝛼 (q) . (2.47)

The completeness relations accordingly read∑︁
𝑖L𝛼

𝑒𝑏,𝑖L𝛼 (q)𝑒∗𝑏′,𝑖L𝛼 (q′) = 𝛿𝑏𝑏′𝛿(q − q′) and (2.48)∑︁
𝑏,q

𝑒𝑏,𝑖L𝛼 (q)𝑒∗𝑏, 𝑗K𝛽 (q) = 𝛿𝑖𝑙𝛿LK𝛿𝛼𝛽 , (2.49)

We use the shorthand notation 𝑠 = (𝑏 , q) and −𝑠 = (𝑏 , −q)
in the following to simplify the notation, and explicitly refer to the band
index 𝑏 and the wavenumber q only when necessary. With these short-
hands, the formulas closely resemble the non-periodic case as introduced
in Sec. 2.1, with 3𝑁sc degrees of freedom, only that the eigenvectors
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e𝑠= (𝑏,q ) can be complex-valued instead of strictly real. In this notation,
the dynamical matrix reads

𝐷 𝐼 𝛼,𝐽 𝛽 =
∑︁
𝑠

𝜔2
𝑠 𝑒𝑠 ,𝐼 𝛼𝑒

∗
𝑠 ,𝐽 𝛽 . (2.50)

2.2.6 Phonon dispersions and density of states

With the dynamical matrix for arbitrary q-points in the Brillouin zone
at hand, we are in position to evaluate the spectrum of harmonic vibra-
tional excitations in a crystal, i. e., phonon dispersions or phonon band
structure, as well as the density of states (DOS).
The density of states 𝑔 (𝜔) can be used to evaluate Brillouin-zone in-
tegrals of functions that depend on the phonon energy ℎ̄𝜔 (q). It is
implicitly defined via

⟨ 𝑓 ⟩ = 1
𝑉BZ

∫
d3𝑞

(2𝜋)3 𝑓 (𝜔(q)) ≡
∫

d𝜔 𝑓 (𝜔)𝑔(𝜔) , (2.51)

where

𝑔(𝜔) = 1
𝑉BZ

∫
d3𝑞

(2𝜋)3 𝛿(𝜔(q) −𝜔) , (2.52)

The density of states can be computed by evaluating the phonon fre-
quencies 𝜔(q) on a grid in the Brillouin zone and use approximations
to the 𝛿-function in Eq. (2.52) of finite width, for example by using
Gaussian functions, or by using a tetrahedron method where the inte-
gration weights on the finite grid are computed analytically based on the
dispersion [53].

In experiment, dispersions can be probed by neutron scattering,
where the incoming neutron beam scatters inelastically with the phonons
in the crystal, and a momentum-dependent scattering amplitude can be
measured with peaks corresponding to the phonon frequencies [54].
The phonon spectrum of fcc-silicon compoared to inelastic neutron
scattering data is shonw in Fig. 2.3. An alternative approach is Raman
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Figure 2.3: Phonon bandstructure of fcc-
diamond silicon obtained for a supercell with
216 atoms. Open circles denote experimen-
tal reference data from inelastic neutron scat-
tering at room temperature [55].

scattering, where an incoming light beam scatters with a subset of
the modes depending on their symmetry properties. Since the light
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has typical frequencies similar of the vibrational spectrum, i. e., of the
order of 10 THz ∼ 40 meV, its wavenumber 𝑘 = 𝜔/𝑐 is approximately
3 · 10−7 Å−1, where 𝑐 is the speed of light. Taking a typical crystal lattice
constant of 𝑎 ≈ 5 Å, the maximum crystal wavenumber is 𝑞 = 2𝜋/𝑎 ≈
1 Å−1. Light of similar energy as phonons therefore typically probe
the dispersion very close to q = 0, i. e., the Γ point. A comparison of
calculated phonon dispersion and frequencies from Raman spectroscopy
is shown in Fig. 2.4 for the orthorombic perovskite KCaF3 [56–58].
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Figure 2.4: Phonon bandstructure of KCaF3
in the Pnma structure obtained from a super-
cell with 160 atoms. Open circles denote ex-
perimental reference data from Raman scat-
tering at 40 K [59].
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2.3 Statistical mechanics and molecular dynamics

After discussing nuclear dynamics in the harmonic approximation, and
specifying the crystalline state in terms of an intrinsic and extrinsic
periodicity in space, we proceed by discussing nuclear dynamics on the
full potential energy surface V(R) without approximations, but in the
classical limes.

2.3.1 The classical limit

The classical limit of the nuclear Schrödinger equation (2.1) is usually
performed by writing the nuclear wavefunction 𝜒(R, 𝑡) in terms of a real
amplitude 𝐴(R, 𝑡) and a classical action function 𝑆(R, 𝑡) [23, 46, 60]

𝜒(R, 𝑡) = 𝐴(R, 𝑡) e
i
ℎ̄
𝑆 (R,𝑡 ) . (2.53)

The Schrödinger equation then yields a set of differential equations for
𝐴 and 𝑆 that, in the limit ℎ̄ → 0, go over to a Hamilton-Jacobi equation
for the action 𝑆,

𝜕𝑆

𝜕𝑡
+H (R, P) = 0 , (2.54)

where P = (P1, . . .) ≡ (∇1𝑆, . . .) denotes the conjugate momenta and
H is the classical Hamilton function10 corresponding the to the operator 10 We use the terms Hamilton function and

Hamiltonian interchangeably in the follow-
ing.

in Eq. (2.1), from which the equations of motion for the nuclei can be
obtained:

¤P𝐼 = − 𝜕H
𝜕R𝐼

=⇒ 𝑀𝐼
¥R𝐼 = − 𝜕V

𝜕R𝐼
. (2.55)

The negative gradient of the Born-Oppenheimer potential, −𝜕V/𝜕R𝐼 is
the force F𝐼 acting on atom 𝐼 which can be obtained via the Hellmann-
Feynman theorem, cf. Sec. 1.4.1.

An alternative viewpoint that is more instructive can be taken by
invoking the Ehrenfest theorem [61, 62]. The statement is that that the
time derivative of the expectation value of an atom’s momentum P𝐼 is
given by the expectation value of the negative gradient of the potential,

d
d𝑡

⟨P𝐼⟩𝜒 =

〈
− 𝜕V
𝜕R𝐼

〉
𝜒

, (2.56)

where ⟨·⟩𝜒 denotes an expectation value taken with respect to the nuclear
wavefunction 𝜒. This expression differs only slightly from the classical
counterpart, which would read

d
d𝑡

⟨P𝐼⟩ = − 𝜕V
𝜕R𝐼

����
R=⟨R⟩

. (2.57)

The difference comes from the fact that, in quantum mechanics, the
expectation value of a function of an observable does not equal the
function of its expectation. In mathematical terms, we have

𝛿 𝑓 ≡ 𝑓 (⟨𝑥⟩) − ⟨ 𝑓 (𝑥)⟩ ≠ 0 , (2.58)
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where 𝑥 = R𝐼 denotes the space coordinate, 𝑓 is some function of
the observable 𝑥, and 𝛿 𝑓 measures the difference between the two val-
ues, i. e., the error introduced by using a classical description. Ehren-
fest’s argument is that this difference becomes negligible when the state
is sufficiently peaked around some value 𝑥0. Expanding 𝑓 around the
expectation value of 𝑥 denoted by 𝑥0 ≡ ⟨𝑥⟩, we have

𝑓 (𝑥) = 𝑓 (⟨𝑥⟩) + (𝑥 − ⟨𝑥⟩) 𝑓 ′(⟨𝑥⟩) + 1
2
(𝑥 − ⟨𝑥⟩)2 𝑓 ′′(⟨𝑥⟩) + · · · .

(2.59)

It follows that the 𝑓 ′ term vanishes when the expectation value is taken,
and

⟨ 𝑓 (𝑥)⟩ = 𝑓 (⟨𝑥⟩) + 1
2
Δ𝑥2 𝑓 ′′(⟨𝑥⟩) + · · · , (2.60)

where Δ𝑥2 = ⟨(𝑥 − ⟨𝑥⟩)2⟩ measures the variance of the underlying
distribution, i. e. the width of the wavepacket. The relative error between
the classical and quantum expectation value is therefore proportional to
the variance Δ𝑥2,���� 𝛿 𝑓

𝑓 (⟨𝑥⟩)

���� = 1
2
Δ𝑥2

���� 𝑓 ′′(⟨𝑥⟩)𝑓 (⟨𝑥⟩)

���� + O(Δ𝑥3) . (2.61)

This estimation is general and holds for any observable 𝑓 . By crudely
estimating the dimension of the wavepacket in terms of the thermal de
Broglie-wavelength, we find

Δ𝑥2 ∼
(
ℎ

𝑃

)2
∼ ℎ2

𝑀𝑇
, (2.62)

where ℎ is Planck’s constants, 𝑀 is the atomic mass, and 𝑇 is tempera-
ture. This estimate gives support to the intuitive assumption that we can
expect the classical limit to work better the heavier the atoms and the
higher the temperature. Let us now set 𝑓 (𝑥)=̂ − 𝜕V/𝜕R𝐼 , then another
important conclusion can be drawn from Eq. (2.61): For a harmonic
potential V(R) = V (2) (R), where derivatives higher than second order
vanish, the classical and quantum mechanical expectation values coin-
cide. The quantum mechanical expectation value of the position will
therefore evolve in the same time-periodic fashion as a classical particle
in a harmonic well.

These considerations naturally lead to the formulation
of ab initio molecular dynamics simulations, where the time
evolution of a system of particles is simulated by propagating the clas-
sical equations of motion for each particle on the Born-Oppenheimer
potential energy surface, V(R) [63, 64]. In conjunction with classical
statistical mechanics, a wealth of thermodynamic properties of materi-
als can be simulated. We note in passing that additional care must be
taken at low temperatures and for systems with light atoms, especially
hydrogen-bonded systems, because in these cases the quantum nature
of the nuclei can become non-negligible, as already mentioned in the
discussion following Eq. (2.62) [65–67].
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As there exist plenty of excellent books on statistical
mechanics, some of which are included in the references [68–70], this
chapter mainly serves to recall the most important notions necessary for
computing properties of materials under thermodynamic conditions, and
introduce the notation used in the remainder of the work. In particular,
the concepts of ensemble, state, and averages are briefly introduced.

2.3.2 Phase space and ergodic hypothesis

A thermodynamic ensemble can be viewed as a complete list of all
allowed states Γ of a system of particles, where the state is an instanta-
neous snapshot of all microscopic variables [68]. In classical statistical
mechanics, these variables are the 𝑁 positions R = (R1, . . . , R𝑁 ) and
momenta P = (P1, . . . , P𝑁 ).11 A particular configuration Γ = {R, P } 11 We denote by 𝑁 either the number of

atoms in a system of finite size, or, in pe-
riodic systems, the number of atoms in the
simulation cell, 𝑁sc.

is called phase-space point, and the phase space is the collection of
all points Γ compliant with external constraints.12 To each state Γ, a

12 The simplext example of an external con-
straint: If the particles are confined in a box
with impenetrable walls, the possible posi-
tion R are necessarily confined to that box.
Other constraints comprise total energy, par-
ticle number, and more.

statistical weight 𝑓 (Γ) is assigned, where 𝑓 is called the distribution
function. A thermodynamic ensemble is completely specified by the set
of external constraints under which the mechanical system evolves, and
the associated statistical weight function 𝑓 .

Statistical averages of phase-space functions can be obtained
by averaging over all permissible states Γwith the statistical weight given
by the distribution function, 𝑓 (Γ). The phase-space average of a generic
phase-space function 𝐴(Γ) is defined as

⟨𝐴⟩ 𝑓 =
∫

dΓ 𝐴(Γ) 𝑓 (Γ) . (2.63)

An alternative approach towards computing averages is the concept of
time averaging. The time average of a phase-space function is defined
as

⟨𝐴⟩𝑡 = lim
𝑡→∞

1
𝑡

∫ 𝑡

0
d𝑡′ 𝐴(Γ𝑡 ′) , (2.64)

where Γ𝑡 = {R(𝑡), P(𝑡) } denotes a phase-space point at time 𝑡 after
evolving from an initial point Γ0 as explained in the next section. A
system for which the phase-space and the time average are identical
is said to be ergodic. The ergodic hypothesis states that this is true
for most systems with non-pathological particle interaction V. Albeit
being virtually impossible to prove rigorously, this hypothesis is the
underlying idea of molecular dynamics (MD) simulations, where the
statistical behavior of a system is assessed by choosing a suitable initial
condition and propagating it in time by numerically solving the equations
of motion.

In this work, we use two thermodynamic ensembles: the microcanon-
ical, 𝑁𝑉𝐸 for short, where the total energy 𝐸 of the system is conserved,
and the canonical (𝑁𝑉𝑇), where the system can be viewed as coupled
to a bath of temperature 𝑇 . The latter is mimicking more realistic ex-
perimental conditions, where usually the temperature and not the total
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energy of the system can be controlled. Technically, experiments are per-
formed rather at constant pressure 𝑝 instead of constant volume, and the
correct ensemble to describe such a situation is the isothermal-isobaric
one commonly denoted as 𝑁𝑃𝑇 . In practice however, the canonical
ensemble is easier to simulate and is a good approximation to the 𝑁𝑃𝑇

ensemble when the system size is not too small [69, p. 134]

2.3.3 The microcanonical ensemble

The microcanonical ensemble is characterized by three conserved exten-
sive quantities: particle number 𝑁 , system volume𝑉 , and total energy 𝐸 .
The total energy of a given microstate, i. e., the configuration of particles
and their momenta represented by the phase-space point Γ = {R, P },
is given by the Hamiltonian of the system, H(Γ). The microcanonical
distribution function is defined as

𝑓𝐸 (Γ) = 1
Z𝐸

𝛿(H(Γ) − 𝐸) , (2.65)

where the microcanonical partition function Z𝐸 is a normalizing factor
for 𝑓𝐸 . The distribution function 𝑓𝐸 encapsulates the underlying postu-
late of the microcanonical ensemble, i. e., that any point in phase space
Γ yielding an energy H(Γ) in a thin interval around the target energy 𝐸

will be realized with the same likelihood.

The time evolution of a system is governed by the Hamiltonian
H which generates an energy conserving propagation of a phase space
point Γ𝑡 = {R(𝑡), P(𝑡) } in terms of Hamilton’s equations,

¤R𝐼 (𝑡) = 𝜕H(𝑡)
𝜕P𝐼

and ¤P𝐼 (𝑡) = −𝜕H(𝑡)
𝜕R𝐼

. (2.66)

The temporal evolution of a phase-space observable 𝐵(Γ𝑡 ) ≡ 𝐵(𝑡) is
then given by the Liouville equation [69]

¤𝐵(𝑡) = { 𝐵(𝑡),H(𝑡) } ≡ iL𝐵(𝑡) , (2.67)

where L is the Liouville operator defined by its action according to
Eq. (2.67), and { ·, · } denotes the Poisson bracket. The Liouville equa- The Poisson bracket is defined by

{ 𝐵, H } =
∑︁
𝐼,𝛼

𝜕𝐵

𝜕𝑅𝛼
𝐼

𝜕H
𝜕𝑃𝛼

𝐼

− 𝜕𝐵

𝜕𝑃𝛼
𝐼

𝜕H
𝜕𝑅𝛼

𝐼

(2.68)

tion is formally solved by

𝐵(𝑡) = eiL𝑡𝐵(0) , (2.69)

the operator eiL𝑡 is therefore called the time evolution operator or clas-
sical propagator. In practice, the equations of motion are solved numer-
ically, for example by the velocity Verlet algorithm [71],

R𝐼 (𝑡 + 𝛿𝑡) = R𝐼 (𝑡) + 𝛿𝑡 ¤R𝐼 (𝑡) + 𝛿𝑡2

2𝑀𝐼
F𝐼 (𝑡) + O(𝛿𝑡4) , (2.70a)

¤R𝐼 (𝑡 + 𝛿𝑡) = ¤R𝐼 (𝑡) + 𝛿𝑡

2𝑀𝐼
[F𝐼 (𝑡) + F𝐼 (𝑡 + 𝛿𝑡)] + O(𝛿𝑡4) . (2.70b)

The velocity Verlet algorithm introduces an error of order 𝛿𝑡4 in the
integration step, but has two important properties mitigating a negative
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impact on obervables: First, a velocity Verlet integration step is time-
reversible, an important prerequisite for long-term stability of the total
energy for symmetry reasons. Second, the velocity Verlet map from 𝑡

to 𝑡 + 𝛿𝑡 has the property of being symplectic [69, p. 101]. This means
that the discrete time propagation is not guaranteed to preserve the
energy along the trajectory Γ𝑡 , but there exists a Hamiltonian H̃ (Γ, 𝛿𝑡)
which is conserved exactly and fulfills ˜H(Γ, 𝛿𝑡) → H(Γ) for vanishing
timestep 𝛿𝑡 → 0 [69, p. 121]. The symplectic property is formalized
in the “shadowing theorem”, which states that existence of a “shadow
Hamiltonian” H̃ ensures that errors introduced by using a finite time
step are bounded [69, p. , 120].

2.3.4 The canonical ensemble

The canonical ensemble is characterized by the two extensive variables
particle number 𝑁 and volume𝑉 , and the intensive quantity temperature
𝑇 . It can be viewed as representing a system in contact with an infinite
thermal bath of temperature 𝑇 , where heat can be exchanged via a weak
coupling.
In analogy to the previous section, the canonical distribution function
at inverse temperature 𝛽 = 1/𝑘B𝑇 is defined as

𝑓𝛽 (Γ) = 1
Z𝛽

e−𝛽H(Γ) , (2.71)

where the canonical partition sum Z𝛽 normalizes 𝑓𝛽 .

a time-independent Hamiltonian generates energy-preserving
dynamics via the equations of motion given in Eq. (2.66), as we have
seen earlier. To perform a simulation at non-constant energy, the cou-
pling to a thermal bath therefore has to be incorporated explicitly into
the equations of motion. One of the many ways to achieve this is via the
Langevin equation [72] in which the change of momentum is modified,

¤P𝐼 (𝑡) = F𝐼 (𝑡) − 𝛾P𝐼 (𝑡) + Fstochastic
𝐼 (𝑡) . (2.72)

This equation describes a perturbation of the nuclei induced by a velocity-
dependent friction proportional to a constant 𝛾, and a stochastic force
proportional to a white-noise kernel 𝜂(𝑡).13 With the modified equations 13 The stochastic force is given by:

Fstochastic
𝐼 (𝑡 ) =

√︁
2𝑘B𝑇𝑀𝐼𝛾𝜂 (𝑡 ) ,

⟨𝜂 (𝑡 )𝜂 (0) ⟩ = 𝛿 (𝑡 ) .

It replenishes the kinetic energy dissipated
by the friction proportinoal to 𝛾, see discus-
sion in Ref. [68, p. 328].

of motion in terms of the stochastic force, an ergodic time evolution that
generates the canonical distribution can be obtained, so that

⟨𝐴⟩𝑡 = ⟨𝐴⟩𝑇 . (2.73)

In practice, the Langevin equation can be used to thermalize a system and
generate a canonical ensemble starting from some initial configuration
R0 [69, p. 590].
Other ways of generating an 𝑁𝑉𝑇 ensemble are deterministic Nosé-
Hoover simulations, or the stochastic velocity rescaling approach that
can preserve spectral properties [73–75].
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2.4 Classical harmonic dynamics and harmonic mapping

Also the harmonic Hamiltonian defined in Eq. (2.14) generates classical
dynamics by means of the canonical equations of motion for the normal
coordinates { 𝑢𝑠 , 𝑝𝑠 },14 14 We deal with the finite simulation cell,

where the dynamical matrix is a symmet-
ric matrix with real eigenvalues 𝜔2

𝑠 and real
eigenvectors e𝑠𝐼 .¤𝑢𝑠 = 𝜕H (2)

𝜕𝑝𝑠
= 𝑝𝑠 , and ¤𝑝𝑠 = −𝜕H (2)

𝜕𝑢𝑠
= −𝜔2

𝑠𝑢𝑠 . (2.74)

These equations of motion can be solved in straightforward fashion in
terms of plane waves for the normal mode coordinates { 𝑢𝑠 , 𝑝𝑠 }. We find
it, however, more instructive to find a solution in formal similarity with
quantum mechanics,15 by first expressing the real normal coordinates 15 The relation to quantum mechanics is

achieved by replacing the complex numbers
𝑎𝑠 with the operators 𝑎̂𝑠 fulfilling the canon-
ical commutation relations[

𝑎̂
𝑠

, 𝑎̂†
𝑠′

]
= 𝛿𝑠𝑠′ .

{ 𝑢𝑠 , 𝑝𝑠 } terms of complex, unitless amplitudes { 𝑎𝑠 } as

𝑢𝑠 (𝑡) ≡
√︄

ℎ̄

2𝜔𝑠
[
𝑎†𝑠 (𝑡) + 𝑎𝑠 (𝑡)

]
, (2.75a)

𝑝𝑠 (𝑡) ≡ i
√︂

ℎ̄𝜔𝑠
2

[
𝑎†𝑠 (𝑡) − 𝑎𝑠 (𝑡)

]
, (2.75b)

with the inverse relation

𝑎𝑠 =

√︂
𝜔𝑠
2ℎ̄

𝑢𝑠 + i√
2ℎ̄𝜔𝑠

𝑝𝑠 , (2.76)

where 𝑎†𝑠 denotes the complex conjugate of 𝑎𝑠 . In terms of these ampli-
tudes, the harmonic Hamiltonian reads

H (2) (a, 𝑡) =
∑︁
𝑠

ℎ̄𝜔𝑠𝑎
†
𝑠 (𝑡)𝑎𝑠 (𝑡) ≡

∑︁
𝑠

ℎ̄𝜔𝑠𝑛𝑠 (𝑡) , (2.77)

where we identify the squared modulus of the amplitudes with the mode
occupation 𝑛𝑠 ,

𝑎†𝑠 (𝑡)𝑎𝑠 (𝑡) ≡ 𝑛𝑠 (𝑡) . (2.78)

The time derivative of the amplitude 𝑎𝑠 is found by using the classical
equations of motions given in Eq. (2.74),

¤𝑎𝑠 = −i𝜔𝑠𝑎𝑠 , (2.79)

so that 𝑎𝑠 (𝑡) is given in terms of a complex plane wave,

𝑎𝑠 (𝑡) = e−i𝜔𝑠 𝑡𝑎𝑠 (0) . (2.80)

It is evident that in the purely harmonic dynamics, the mode occupation
defined in Eq. (2.78) is constant in time, 𝑛𝑠 (𝑡) ≡ 𝑛𝑠 = const. We
therefore express the amplitudes at intial time 𝑡 = 0 as

𝑎𝑠 (0) =
√
𝑛𝑠e−i𝜑𝑠 , (2.81)

where 𝑛𝑠 and 𝜑𝑠 are chosen based on the initial configuration of atoms.
By using this solution for the normal coordinates { 𝑢𝑠 , 𝑝𝑠 } in Eq. (2.75),
we find

𝑢𝑠 (𝑡) = 𝐴𝑠 sin(𝜔𝑠𝑡 + 𝜑𝑠) , (2.82a)

𝑝𝑠 (𝑡) = 𝜔𝑠𝐴𝑠 cos(𝜔𝑠𝑡 + 𝜑𝑠) , (2.82b)
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where

𝐴𝑠 =

√︄
2ℎ̄𝑛𝑠
𝜔𝑠

(2.83)

is the amplitude of the mode displacement 𝑢𝑠 .

For a system in thermal equilibrium at a finite tempera-
ture 𝑇 , the mode occupation 𝑛𝑠 can be estimated by analogy with
quantum mechanics, where the harmonic energy is given by [76]

⟨H (2 ) ⟩𝑇 =
∑︁
𝑠

ℎ̄𝜔𝑠

(
𝑛B (𝜔𝑠 , 𝑇 ) + 1

2

)
, (2.84)

with the Bose function 𝑛B (𝜔, 𝑇 ) giving the occupation of state of energy
ℎ̄𝜔 at temperature 𝑇 .16 The expectation of the mode amplitude is 16 Bose function (𝛽 = 1/𝑘B𝑇):

𝑛B (𝜔,𝑇 ) = 1
e 𝛽ℎ̄𝜔 − 1

.
therefore given by

⟨𝑛𝑠⟩𝑇 =

(
𝑛B (𝜔𝑠 ,𝑇) + 1

2

)
−→

𝑘B𝑇≫ℎ̄𝜔𝑠

𝑘B𝑇

ℎ̄𝜔𝑠
, (2.85)

i. e., in the high temperature limit, the energy of the mode 𝑠 given by
𝐸𝑠 = ℎ̄𝜔𝑠 ⟨𝑛𝑠⟩𝑇 approaches the equipartition value

𝐸𝑠 = 𝑘B𝑇 . (2.86)

2.4.1 Harmonic sampling

The solution to the equations of motion for the normal coordinates given
in Eq. (2.82) can be used to describe the time evolution of the real-space
displacements U𝐼 (𝑡),

U𝐼 (𝑡) = 1√
𝑀𝐼

u𝐼 (𝑡) = 1√
𝑀𝐼

∑︁
𝑠

e𝑠𝐼𝑢𝑠 (𝑡) (2.87)

=
1√
𝑀𝐼

∑︁
𝑠

𝐴𝑠e𝑠𝐼 sin(𝜔𝑠𝑡 + 𝜑𝑠) , (2.88)

where e𝑠𝐼 denotes the eigenvector elements corresponding to mode 𝑠

and atom 𝐼. This equation can be used to generate atomic configurations
representative for a given temperature via

U𝐼 =
1√
𝑀𝐼

∑︁
𝑠

𝜁𝑠 ⟨𝐴𝑠⟩𝑇 e𝑠𝐼 , (2.89)

where ⟨𝐴𝑠⟩𝑇 =
√︃

2ℎ̄⟨𝑛𝑠 ⟩𝑇
𝜔𝑠

is the mean mode amplitude in terms of
the mean mode occupation ⟨𝑛𝑠⟩𝑇 given by Eq. (2.85), and 𝜁𝑠 is a nor-
mally distributed random number mimicking thermal fluctuations [77].
The practical use of Eq. (2.89) is twofold: First, it can be used to pre-
thermalize molecular dynamics simulations by providing a approxi-
mately correct distribution of displacements. Second, it can be used to
estimate thermodynamic expectation values of configuration-dependent
observables by approximating the ensemble average with respect to the
full potential V(R),

⟨𝐵(R)⟩𝑇 =
1

ZV

∫
dR e−𝛽V(R)𝐵(R) , (2.90)
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with an average with respect to the harmonic potential,

⟨𝐵(R)⟩ (2)𝑇 =
1

ZV (2)

∫
dR e−𝛽V

(2) (R)𝐵(R) ≈ 1
𝑀

𝑀∑︁
𝑚=1

𝐵(R𝑚) , (2.91)

where R𝑚 denotes a sample generated by Eq. (2.89), and 𝑀 ist the
total number of samples [78, p. 15]. This sampling approach can be
understood as a harmonic Monte Carlo approach [77, 79].

2.4.2 Harmonic mapping

In the previous section, we have investigated the time evolution of (mode)
displacements generated by the harmonic model in analytical fashion.
We found that the mode occupations 𝑛𝑠 , and therefore the energy of each
mode, 𝐸𝑠 , were constant in time. Pictorially, this can be explained by
the absence of interactions between the normal modes – once a mode
is excited, it cannot lose or gain energy. The interaction of vibrational
modes can be computed by means of perturbation theory, i. e., by com-
puting the transition amplitudes between modes when taking higher
than second-order force constants into account, or by using molecular
dynamics simulations, where the interactions are naturally described
non-perturbatively. All effects not described by the harmonic model are
therefore called anharmonic, and we will investigate this topic in more
detail in chapter 4. Since the normal mode displacements and momenta
{ 𝑢𝑠 , 𝑝𝑠 } are obtained by means of a unitary transformation from the
atom positions and momenta, {R𝐼 , P𝐼 }, they provide a complete basis
in which the nuclear dynamics can be described, even when anharmonic
effects are considered. When anharmonic effects are not too strong, the
main effect of interactions are a shift in frequencies, and finite lifetimes.

In order to map the dynamical evolution of the system onto
the normal modes, we recall that normal mode coordinates an real-
space coordinates are related by the eigenvectors e𝑠𝐼 of the dynamical
matrix, i. e.,

𝑢𝑠 (𝑡) =
∑︁
𝐼

e𝑠,𝐼 · u𝐼 (𝑡) , and (2.92a)

𝑝𝑠 (𝑡) =
∑︁
𝐼

e𝑠,𝐼 · p𝐼 (𝑡) , (2.92b)

from which the time-dependent complex amplitude 𝑎𝑠 (𝑡) can be found
by means of Eq. (2.76), i. e.,

𝑎𝑠 (𝑡) =
√︂

𝜔𝑠
2ℎ̄

𝑢𝑠 (𝑡) + i√
2ℎ̄𝜔𝑠

𝑝𝑠 (𝑡) , (2.93)

with { 𝑢𝑠 (𝑡), 𝑝𝑠 (𝑡) } given in terms of the real-space dynamics by Eq. (2.92).
In terms of this complex amplitude, the mode occupation 𝑛𝑠 becomes
time-dependent,

𝑛𝑠 (𝑡) = 𝑎†𝑠 (𝑡)𝑎𝑠 (𝑡) , (2.94)

as well as the mode energy,

𝐸𝑠 (𝑡) = ℎ̄𝜔𝑠𝑛𝑠 (𝑡) . (2.95)
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We will later see how the time-dependent, mode-resolved energy can be
used to extract phonon lifetimes from molecular dynamics simulations.

As a final remark, we like to point out that for periodic systems,
where 𝑠 = (𝑏, q), the eigenvectors used in the transformation defined in
Eq. (2.92) are not strictly real, and therefore the normal mode coordiantes
{ 𝑢𝑠 , 𝑝𝑠 } can be complex numbers already. In this situation, one needs
to define two independent complex amplitudes, 𝑎𝑠 and 𝑎−𝑠 , where 𝑠 =

(𝑏,−q) denotes a mode with opposite wave vector [21, p. 300]. In this
case, we define17 17 The explicit formulas in terms of (𝑏, q)

are given in appendix F.1.

𝑢𝑠 (𝑡) =
∑︁
𝐼

e𝑠,𝐼 · u𝐼 (𝑡) , (2.96a)

𝑝𝑠 (𝑡) =
∑︁
𝐼

e𝑠,𝐼 · p𝐼 (𝑡) . (2.96b)

with

𝑢𝑠 (𝑡) ≡ 1√
2𝜔𝑠

[
𝑎†−𝑠 (𝑡) + 𝑎𝑠 (𝑡)

]
, (2.97a)

𝑝𝑠 (𝑡) ≡ i
√︂

𝜔𝑠
2

[
𝑎†−𝑠 (𝑡) − 𝑎𝑠 (𝑡)

]
, (2.97b)

and the corresponding inverse relations

𝑎𝑠 =

√︂
𝜔𝑠
2
𝑢𝑠 + i√

2𝜔𝑠
𝑝𝑠 (2.98a)

𝑎†−𝑠 =
√︂

𝜔𝑠
2
𝑢𝑠 − i√

2𝜔𝑠
𝑝𝑠 , (2.98b)

in units where ℎ̄ = 1. Using these amplitudes, the harmonic Hamiltonian
reads

H (2) =
1
2

∑︁
𝑠

𝜔𝑠

(
𝑎†𝑠𝑎𝑠 + 𝑎†−𝑠𝑎−𝑠

)
(2.99)

=
∑︁
𝑠

𝜔𝑠𝑎
†
𝑠𝑎𝑠 (2.100)

where the last line holds when the summation contains both q and −q,
because 𝜔𝑠 = 𝜔−𝑠 .





3
Heat Transport

“It seems there is no problem in modern physics for which there are on record
as many false starts, and as many theories which overlook some essential
feature, as in the problem of the thermal conductivity of [electrically]
non-conducting crystals.”

R. Peierls, 1960 [12]

As this quote by Rudolf Peierls exemplifies, developing a microscopic
theory for heat transport in dielectric crystals was a long-standing prob-
lem for solid-state physics in the 20th century. Early attempts to explain
this phenomenon sparked by experiments conducted by Eucken com-
prise those by Einstein, Debye, and Born and von Karman in the early
1910s [80–83]. However, they failed to explain the experimental find-
ings (Einstein), or could only provide qualitative understanding (Debye).
One key insight by Debye missing in the earlier attempt by Einstein is the
notion of a phonon gas, i. e., that the collective excitations of the nuclear
degrees of freedom show qualitatively similar behavior as molecules in
a gas. It was in 1929 that Peierls himself contributed a model for heat
transport in solids that was able to explain key experimental findings
such as the 1/𝑇 dependence of a material’s thermal conductivity at ele-
vated temperatures, which he could achieve by computing three-phonon
scattering due to anharmonic terms in the potential-energy surface [84].
It took another 80 years until this approach led to the development of
a fully ab initio computational approach by Broido and coworkers in
2007 [13], using the method of Boltzmann transport equation pioneered
by Peierls and further developed in the meantime [85–87]. By the time
of writing this work, Boltzmann transport theory is the established way
to compute thermal transport properties of dielectric crystals from first
principles, and many new, more refined approaches have been developed
in recent years [88–91].

However, Boltzmann transport theory always relies on
the phonon gas model and treats phonon-phonon interactions as
perturbative effects due to low-order anharmonic corrections to the
potential-energy surface. When dealing with strongly anharmonic mate-
rials, this perturbative treatment becomes more and more cumbersome,
and sometimes even unjustified, as we will discuss in more detail later.
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In this chapter, we therefore review heat transport in solids in the frame-
work of Green-Kubo theory without treating the nuclear dynamics as a
phonon gas [92–96].

3.1 Introduction

Conductive heat transport is the phenomenon of vibrational energy
traversing a material when a temperature gradient is applied. As first
described by Joseph Fourier in the early 19th century, the heat flux J
resulting from a stationary temperature gradient ∇𝑇 is directly propor-
tional to this gradient [97]. The proportionality constant is second-rank
tensor denoted by 𝜅 and called the thermal conductivity. The defining
equation,

J = −𝜅∇𝑇 , (3.1)

is called Fourier’s law. The sign convention is such that the heat flows
from “hot to cold” in accordance with the second law of thermodynam-
ics. The regime where Eq. (3.1) is valid is called the diffusive regime, as
it holds when the temperature gradient is small on microscopic scale, and
the sample size is big enough so that boundary effects are negligible [98,
99].
It is evident from Eq. (3.1) that the thermal conductivity 𝜅 is an explicitly
non-equilibrium quantity. As such, it can be related to equilibrium
fluctuations by means of the fluctuation-dissipation theorem [93, 100–
102], resulting in the famous Green-Kubo formula [92, 94],

𝜅𝛼𝛽 =
𝑉

𝑘B𝑇2

∫ ∞

0
d𝑡 ⟨𝐽𝛼 (𝑡)𝐽𝛽 (0)⟩eq . (3.2)

This formula relates the temporal fluctuations of the macroscopic heat
flux J(𝑡) as given by an equilibrium ensemble average of the autocorre-
lation function, ⟨𝐽𝛼 (𝑡)𝐽𝛽 (0)⟩eq, to the associated transport coefficient
𝜅𝛼𝛽 , where 𝛼 and 𝛽 denote the respective Cartesian components. It is
however a priori unclear how a microscopic description of the appearing
quantities can be obtained. To tackle this question in full, we first show
how the Kubo formula emerges in the framework of linear response
theory, closely following Baroni and coworkers in Ref. [103]. We then
present how a microscopic description of heat in terms of a thermal en-
ergy density and an associated, locally conserved current follows, before
reviewing the necessary steps to define an ab initio heat flux [15].

3.2 Linear response theory

The aim of linear response theory is to compute the expectation value
of a phase-space observable 𝐵(Γ) in a system characterized by the
many-body Hamiltonian H0 (Γ) in presence of an external perturbation
H ′ (Γ, 𝑡) driving the system out of equilibrium, where Γ = {R, P } is a
shorthand for a point in phase space.1 The full Hamiltonian is written 1 The notation used in this chapter was intro-

duced in Sec. 2.3.as

H(Γ, 𝑡) = H0 (Γ) +H ′ (Γ, 𝑡) , (3.3)



heat transport 51

where the perturbation H ′ (Γ, 𝑡) is usually given as

H ′ (Γ, 𝑡) = 𝐴(Γ)𝐹 (𝑡) , (3.4)

with 𝐴(Γ) representing an operator coupling to the system, and 𝐹 (𝑡) is
an explicitly time-dependent force function.
The task is to compute the expectation value of 𝐵 as defined in Eq. (2.63),

⟨𝐵(𝑡)⟩ =
∫

dΓ 𝐵(Γ) 𝑓 (Γ, 𝑡) , (3.5)

in the presence of the perturbation H ′, where 𝑓 (Γ) is the canonical
distribution function characterizing the statistical ensemble at inverse
temperature 𝛽.

In the limit of linear response, i. e., in the limit of a small external
perturbation H ′,2 the expected response of the phase space observable 2 This is not to be confused with a pertur-

bation expansion of H0, which is treated
exactly here.

𝐵 to the system Hamiltonian defined in Eq. (3.3) is given as

⟨𝐵(𝑡)⟩ = −𝛽
∫ 𝑡

−∞
⟨𝐵(Γ𝑡 ) ¤𝐴(Γ𝑡 ′ )⟩0 𝐹 (𝑡′) d𝑡′ , (3.6)

where ⟨·⟩0 denotes a phase-space average with respect to the unperturbed
canonical distribution function

𝑓 0 (Γ) = 1
Z0 e−𝛽H

0 (Γ) , (3.7)

where the partition sumZ0 normalizes the phase-space integral
∫

dΓ 𝑓 0 (Γ).
The notation implies that for each phase-space point Γ in the ensem-
ble, 𝐵(Γ) and ¤𝐴(Γ), the total time derivative of 𝐴(Γ), are evaluated at
phase-space points separated in time by 𝑡 − 𝑡′ [69, p. 498]. The time prop-
agation of phase-space points is generated by H0 and therefore given
by Hamilton’s equations of motion with conserved energy as defined in
Eq. (2.66). The phase-space average ⟨·⟩0 on the other hand corresponds
to a canonical ensemble average with respect to the distribution function
𝑓 0 defined in Eq. (3.7). A derivation of Eq. (3.6) is given in Chp. E in
the appendix.

3.2.1 Locally conserved densities and currents

Macroscopic properties of matter are often extensive, i. e., they scale
with the system size, and can be described by a locally conserved den-
sity [103]. Taking the general property 𝐴 represented by the phase-space
observable 𝐴(Γ𝑡 ) evaluated at a time 𝑡 as an example, we define

𝐴(Γ𝑡 ) =
∫
𝑉
𝑎(r, Γ𝑡 ) d3𝑟 , (3.8)

where 𝑎(r, Γ𝑡 ) is a suitably chosen local density associated with the
observable 𝐴. The notation Γ𝑡 was introduced in Sec. 2.3.2 to highlight
that 𝐴 is implicitly time-dependent because the phase-space configura-
tion Γ evolves in time. The locally conserved density fulfills a continuity
equation

𝜕𝑡 𝑎(r, Γ𝑡 ) = −∇ · j(r, Γ𝑡 ) , (3.9)
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where j(r, Γ𝑡 ) is the associated local current. From the local current,
the macroscopic flux is obtained by spatially averaging over the system
volume,

J(Γ𝑡 ) = 1
𝑉

∫
𝑉

d3𝑟 j(r, Γ𝑡 ) . (3.10)

Likewise we formulate a local version of the perturbing Hamiltonian
initially defined in Eq. (3.4),

H ′ (Γ𝑡 , 𝑡) =
∫

d3𝑟 𝑎(r, Γ𝑡 )𝑣(r, 𝑡) , (3.11)

where 𝑎(r, Γ𝑡 ) represents the density of interest as introduced above, and
𝑣(r, 𝑡) is the local driving force coupling to the system via the density
𝑎(r, Γ𝑡 ).
The local version of the linear-response formula given in Eq. (3.6) for
the expectation value of a given local flux j at time 𝑡 reads:3 3 Take 𝐵 ≡ J with ⟨𝐵⟩ ≡ ⟨J⟩ = 0 .

⟨ 𝑗 𝛼 (r, 𝑡)⟩ = −𝛽
∫ 𝑡

−∞
d𝑡′

∫
𝑉

d3𝑟 ′ ⟨ 𝑗 𝛼 (r, Γ𝑡 ) ¤𝑎(r′, Γ𝑡 ′ )⟩0 𝑣(r′, 𝑡′) .

(3.12)

The time derivative of the density can be eliminated by using the conti-
nuity equation (3.9), ¤𝑎 = −𝜕′𝛽 𝑗𝛽 where 𝜕′𝛽 = 𝜕/𝜕𝑟 ′𝛽 , and integrating by
parts, so that

⟨ 𝑗 𝛼 (r, 𝑡)⟩ = −𝛽
∫ 𝑡

−∞
d𝑡′

∫
𝑉

d3𝑟 ′ ⟨ 𝑗 𝛼 (r, Γ𝑡 ) 𝑗𝛽 (r′, Γ𝑡 ′ )⟩0 𝜕
′
𝛽𝑣(r′, 𝑡′) ,

(3.13)

where a boundary term was neglected.4 If we now assume the external 4 Boundary terms scale proportional to the
surface of the integration volume and there-
fore become negligible in the thermody-
namic limit 𝑉 → ∞.

driving force 𝑣(r, 𝑡) to be constant in time and linearly varying in space
such that

𝜕𝛽𝑣(r, 𝑡) ≡ 𝑣𝛽 , (3.14)

and spatially average over Eq. (3.13) with 1
𝑉

∫
𝑉

d3𝑟 , we arrive at

𝐽𝛼 ≡ ⟨𝐽𝛼⟩ = −𝛽𝑉
∫ ∞

0
d𝑡 ⟨𝐽𝛼 (Γ𝑡 )𝐽𝛽 (Γ0)⟩0 𝑣𝛽 , (3.15)

where the stationarity in time was used to shift the lower bound of the
integral to 𝑡 = 0. This resembles the well-known macroscopic transport
equation [104]

𝐽𝛼 = 𝐿𝛼𝛽𝐹𝛽 , (3.16)

where we identify

𝐿𝛼𝛽 =
𝑉

𝑘B

∫ ∞

0
d𝑡 ⟨𝐽𝛼 (Γ𝑡 )𝐽𝛽 (Γ0)⟩0 , (3.17)

and

𝐹𝛽 = −𝑣𝛽

𝑇
. (3.18)

Here, 𝐽𝛼 is the macroscopic generalized current associated with the
extensive property 𝐴, 𝐹𝛽 is the thermodynamic force, and 𝐿𝛼𝛽 is the
associated conductance tensor [103, 104].
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3.3 Thermal conductivity

After this general exposition, let us now look at the example of the total
energy of the system and its associated energy density,

𝐸 =
∫
𝑉

d3𝑟 𝑒(r) . (3.19)

We are interested in the occuring flux in the presence of an inhomo-
geneous temperature, 𝑇 (r) = 𝑇 + Δ𝑇 (r), which couples linearly to the
energy density 𝑒(r), so that5,

6 5 𝐸 and H(Γ) are related by 𝐸 = ⟨H⟩. The
same holds for the occurring densities 𝑒 (r)
and 𝑒 (r, Γ) .
6 The situation can viewed as a stationary
nonequilibrium state. The general theory
has been worked out by McLennan [105,
106]. See also the discussion by Zwanzig
in Ref. [107].

H(Γ) = 1
𝑇

∫
d3𝑟 𝑇 (r)𝑒(r, Γ) ≡ H0 (Γ) +H ′ (Γ) , (3.20)

with

H ′ (Γ) = 1
𝑇

∫
d3𝑟 Δ𝑇 (r)𝑒(r, Γ) . (3.21)

As earlier in Eq. (3.14), we assume Δ𝑇 (r) to vary linearly in space, so
that the thermodynamic force is given by

𝑣𝛽 =
1
𝑇
𝜕𝛽𝑇 (r)

(3.18)
=⇒ 𝐹𝛽 = − 1

𝑇2 (∇𝑇)𝛽 . (3.22)

Using the general transport equation defined in Eq. 3.16 with the con-
ductance given by Eq. (3.17) and 𝐹 as defined above, we obtain

𝐽𝛼 = −𝜅𝛼𝛽 (∇𝑇)𝛽 , (3.23)

where 𝜅𝛼𝛽 denotes the thermal conductivity tensor defined as

𝜅𝛼𝛽 =
𝑉

𝑘B𝑇2

∫ ∞

0
d𝑡 ⟨𝐽𝛼 (Γ𝑡 )𝐽𝛽 (Γ0)⟩0 , (3.24)

that is, the Green-Kubo formula for the thermal conductivity 𝜅.

3.4 Heat flux definition

In order to evaluate the thermal conductivity by means of the Green-
Kubo formula, Eq. (3.24), the heat flux observable J(𝑡) needs to be
defined.7 We do so by starting from the continuity equation again, 7 From now on, all time dependence is to be

understood as the implicit time dependence
of phase-space observables on the time evo-
lution of a phase-space point, 𝑓 (𝑡 ) = 𝑓 (Γ𝑡 ) .¤𝑒(r) = −∇ · j(r) (3.25)

and perform a Fourier transform in space defined by the pair of equations

𝑒(r) =
∫

d3𝑞 𝑒(q) eiq·r , (3.26)

⇔ 𝑒(q) = 1
𝑉

∫
d3𝑟 𝑒(r) e−iq·r , (3.27)

so that the continuity equation can be rewritten for the Fourier compo-
nents as

¤𝑒(q) = −iq · j(q) . (3.28)
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We split the total current into a longitudinal, heat-carrying component
j∥ and a transverse current j⊥,

j = q
𝑞
𝑗 ∥ + j⊥ where q · j⊥ = 0 , (3.29)

so that

j∥ (q) = i
q
𝑞2 ¤𝑒(q) . (3.30)

As before, the macroscopic heat flux is given by a spatial average of the
(longitudinal) current,

J =
1
𝑉

∫
d3𝑟 j∥ (r) = j∥ (q → 0) , (3.31)

where it was used that, by definition of the Fourier transform, the integral
over the system volume equals the long wavelength limit of the current
in reciprocal space. The long wavelength limit for the time derivative of
the local energy density can be obtained by Taylor expanding in q

¤𝑒(q) = lim
q→0

∫
d3𝑟

(
✁1 − iq · r + (q · r)2 + · · ·

)
¤𝑒(r) , (3.32)

where the first term in the expansion is excluded since the total energy
𝐸 is conserved in time.8 After multiplying ¤𝑒 with iq/𝑞2 according to 8 Using the Leibniz rule,∫

d3𝑟 ¤𝑒 (r) = d
d𝑡

∫
d3𝑟 𝑒 (r) = d

d𝑡
𝐸 = 0 .

Eq. (3.30) and taking the q → 0 limit, we obtain

J(𝑡) = 1
𝑉

∫
d3𝑟 r ¤𝑒(r, 𝑡) = 1

𝑉

d
d𝑡

∫
d3𝑟 r 𝑒(r, 𝑡) , (3.33)

i. e., the heat flux is given as the first moment of the time derivative of
the local energy density. Alternatively, one can view the heat flux as the
time derivative of the energy barycenter by moving the time derivative
outside the integral.
In force-field approaches, it is common to adopt the latter approach and
split the energy density into atomic contributions 𝐸 =

∑
𝐼 𝐸𝐼 as

𝑒(r, 𝑡) =
∑︁
𝐼

𝐸𝐼 (𝑡)𝛿(r −R𝐼 (𝑡)) . (3.34)

The heat flux is then given by [95]

J(𝑡) = 1
𝑉

d
d𝑡

∑︁
𝐼

𝐸𝐼 (𝑡)R𝐼 (𝑡) = Jpot (𝑡) + Jkin (𝑡) , (3.35)

with a potential or virial current

Jpot (𝑡) = 1
𝑉

∑︁
𝐼

¤𝐸𝐼 (𝑡)R𝐼 (𝑡) , (3.36)

and a kinetic or convective current

Jkin (𝑡) = 1
𝑉

∑︁
𝐼

𝐸𝐼 (𝑡) ¤R𝐼 (𝑡) . (3.37)

While the kinetic flux becomes increasingly important and even domi-
nant in liquids and gases with substantial convection [108], it is typically
neglected in non-convective solids, as it was shown several times in the
literature that its contribution to thermal conductivity is orders of mag-
nitude lower compared to the virial flux [109, 110]. However, also in
solids it is not strictly vanishing, and discarding the kinetic flux as de-
fined in Eq. (3.37) therefore is an approximation which we discuss in the
following.
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3.4.1 Gauge invariance of heat flux definitions

As seen above, the local current is only defined up to a non-heat carrying
contribution j⊥. Likewise, the energy density is only defined up to
terms that keep the total energy integral unchanged. The choice of a
local energy partitioning as, e. g., given by Eq. (3.34) is therefore not
unique, and different partitioning schemes will lead to differing heat
fluxes. However, the thermal conductivity obtained after integrating
the respective autocorrelation functions will be the same. In particular,
Ercole et al. have shown in Ref. [111] that two heat fluxes differing by
the time derivative of a bounded vector field,

J̃(𝑡) = J(𝑡) + d
d𝑡

P(𝑡) , (3.38)

can differ in time, and in general also their autocorrelation functions will
differ. The thermal conductivity obtained from both fluxes will however
be the same, which can be viewed as a gauge invariance principle for
the heat flux. This property can be used to discard terms from the flux
that do not contribute to the thermal conductivity and thereby reduce
noise [17].

As an example of immediate practical importance, we rewrite
the heat flux expression presented in Eq. (3.35) as

J(𝑡) = 1
𝑉

∑︁
𝐼

R0
𝐼
¤𝐸𝐼 +

1
𝑉

d
d𝑡

∑︁
𝐼

U𝐼𝐸𝐼 , (3.39)

where the instantaneous positions R(𝑡) are split into a fixed reference R0

and a displacement field U(𝑡) [112]. When all the atomic displacements
{U𝐼 } are bounded, i. e., in the absence of convective terms, the second
term in Eq. (3.39) fulfills the condition of being the time derivative of
a bounded vector field and therefore does not contribute to the thermal
conductivity by the gauge invariance principle. Using the definition of
the kinetic flux in Eq. (3.37), the second, non-contributing term can be
written as

1
𝑉

d
d𝑡

∑︁
𝐼

U𝐼𝐸𝐼 = Jkin + Jres (3.40)

with a residual flux

Jres (𝑡) = 1
𝑉

∑︁
𝐼

U𝐼 ¤𝐸𝐼 . (3.41)

This makes clear that, in the absence of convection, the contribution
of Jkin to thermal conductivity does not vanish alone, as argued in the
previous section, but the joint contribution of Jkin and Jres vanishes. By
the reverse argument, one can argue that whenever the contribution of
Jkin to thermal conductivity can be neglected in a solid, the contribution
of Jres must vanish as well. In consequence, the heat flux in non-diffusing
solids is given by

Jnon−convective (𝑡) = 1
𝑉

∑︁
𝐼

R0
𝐼
¤𝐸𝐼 ≈ Jpot (𝑡) , (3.42)
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where the difference between left- and right-hand side is given by Jres

which can be neglected whenever the kinetic flux can be neglected, as
discussed above. The exact definition for the non-diffusive current in
terms of fixed reference positions {R0

𝐼 } was already used by Ladd and
coworkers in Ref. [113] to simplify the occuring expressions. An in-
depth discussion of the subtleties arising in the definition of an exact
expression for the non-convective heat flux in solids can be found in
Sec. 2.3.1 and appendix A of Ref. [114].

A final remark concerning the heat flux definition is in
order: One might argue that the expression in Eq. (3.42) is a total time
derivative of P = 1

𝑉

∑
𝐼 R0

𝐼𝐸𝐼 , and therefore vanishes by the aforemen-
tioned gauge invariance principle as well. However, this is not the case
in an infinite solid, since the atomic configuration {R𝐼 } is not bounded.
The sum over atomic positions is therefore not well defined in the first
place and remains to be understood as a symbolic representation of an
actual energy partitioning scheme that needs to be cast in a boundary-
insensitive form for any practical application of Eq. (3.42).9 9 The author thanks Stefano Baroni for an

insightful discussion clarifying this point.

3.5 Ab initio heat flux

The above formulas are readily applied when empirical force fields are
used to describe the atomic interactions, as an atomic partitioning of the
total energy is trivial in that case, although care must be taken in deriving
the correct formulae nevertheless [115, 116]. An ab initio derivation
of heat flux on the other hand was a long-standing problem because it
was not clear how an expression like Eq. (3.42) can be obtained when
no atomic partitioning is available [117]. This problem was solved
when Marcologno et al. and Carbogno et al. independently arrived at
well-defined heat flux expressions in ab initio frameworks [14, 15]. We
adopt the latter approach in the following, but present a derivation that
slightly differs from Ref. [15], i. e., by starting from Eq. (3.33) instead
of Eq. (3.35), and using the phase-space formalism developed in this
chapter.
To evaluate Eq. (3.33),10 we need a definition of the time derivative of 10 Recall Eq. (3.33):

J(𝑡 ) = 1
𝑉

∫
d3𝑟 r ¤𝑒 (r, 𝑡 ) .

the energy density. We do so by first going back to the many-body
Hamiltonian for a configuration Γ = (R, P) given by

H(Γ) =
∑︁
𝐼

P2
𝐼

2𝑀𝐼
+V(R) ≡

∫
d3𝑟 𝑒(r, Γ) , (3.43)

where 𝑒(r, Γ) is an appropriately chosen energy density yielding the
total energy of the given system. Accordingly, the time derivative of the
entire expression reads

¤H (Γ) =
∑︁
𝐼

F𝐼 · ¤R𝐼 +
∑︁
𝐼

𝜕V(R)
𝜕R𝐼

· ¤R𝐼 ≡
∫

d3𝑟 ¤𝑒(r, Γ) . (3.44)

Since the energy is conserved, the time derivate of the Hamiltonian
vanishes, and therefore ¤𝑒(r, Γ) needs to integrate to zero. As explained in
Sec. 1.4.1, the force derived from the BO potential-energy surfaceV(R)
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appearing in Eq. (3.44) has a nuclear and an electronic contribution given
by the two terms in Eq. (1.38), so that

F𝐼 =
∫

d3𝑟 fel
𝐼 (r) +

∑︁
𝐽≠𝐼

FNuc
𝐼 𝐽 , with (3.45)

fel
𝐼 (r) = −𝑛(r)𝑍𝐼 R𝐼 − r

|R𝐼 − r|3 , and (3.46)

FNuc
𝐼 𝐽 = 𝑍𝐼𝑍𝐽

R𝐼 −R𝐽

|R𝐼 −R𝐽 |3
. (3.47)

Therefore, Eq. (3.44) can be written as the sum of three terms that sum
to zero as required,

¤H (Γ) =
∑︁
𝐼

F𝐼 · ¤R𝐼︸       ︷︷       ︸
𝐼 )

−
∑︁
𝐼

∫
d3𝑟 fel

𝐼 (r) · ¤R𝐼︸                        ︷︷                        ︸
𝐼 𝐼 )

−
∑︁
𝐼 ,𝐽
𝐽≠𝐼

FNuc
𝐼 𝐽 · ¤R𝐼

︸            ︷︷            ︸
𝐼 𝐼 𝐼 )

. (3.48)

We use these terms to define three contributions to the local density ¤𝑒(r)
as

I): ¤𝑒kin (r) =
∑︁
𝐼

F𝐼 · ¤R𝐼 𝛿(R𝐼 − r) , (3.49a)

II): ¤𝑒el (r) = −
∑︁
𝐼

fel
𝐼 (r) · ¤R𝐼 , (3.49b)

III): ¤𝑒Nuc (r) = −
∑︁
𝐼 ,𝐽
𝐽≠𝐼

FNuc
𝐼 𝐽 · ¤R𝐼 𝛿(R𝐽 − r) . (3.49c)

Pictorially, the kinetic contribution ¤𝑒kin (r) is assigned to atom 𝐼 in the
sum, the electronic contribution ¤𝑒el (r) is assigned to the local electron
density at r and is therefore a local quantity per definition, and the
nuclear contribution ¤𝑒Nuc (r) is assigned to atom 𝐽 in analogy to the
electronic case. It is easily verified that the sum of these contributions
integrate to zero. Their first moment however gives a non-vanishing
heat flux by Eq. (3.33), i. e.,

J(Γ) = 1
𝑉

∫
d3𝑟 r ( ¤𝑒kin (r) + ¤𝑒el (r) + ¤𝑒Nuc (r)) (3.50)

=
1
𝑉

∑︁
𝐼

(
R𝐼F𝐼 · ¤R𝐼 −

∫
d3𝑟 r fel

𝐼 (r) · ¤R𝐼 −
∑︁
𝐽≠𝐼

R𝐽FNuc
𝐼 𝐽 · ¤R𝐼

)
.

(3.51)

By using Eq. (3.45) in the first summand of the above equation, Eq. (3.46)
for the second, and Eq. (3.47) for the third, we arrive at

𝐽𝛼 (Γ) =
∑︁
𝐼 ,𝛼

𝑍𝐼
𝑉

{∑︁
𝐽≠𝐼

𝑍𝐽
(𝑅𝛼𝐼 − 𝑅𝛼𝐽 ) (𝑅

𝛽
𝐼 − 𝑅

𝛽
𝐽 )

|R𝐼 −R𝐽 |3

−
∫

d3𝑟 𝑛(r) (𝑅
𝛼
𝐼 − 𝑟𝛼) (𝑅𝛽𝐼 − 𝑟𝛽)

|R𝐼 − r|3

}
¤𝑅𝛽𝐼 , (3.52)

where the Cartesian indices of the expressions have been written out
explicitly. As shown in Ref. [15], this expression can be written in terms
of atomic contributions to the stress tensor 𝜎 defined by

𝜎𝛼𝛽 = −𝜕𝑉 (R)
𝜕𝜀𝛼𝛽

=
∑︁
𝐼

𝜎
𝛼𝛽
𝐼 , (3.53)
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with

𝜎
𝛼𝛽
𝐼 =

𝑍𝐼
𝑉

{∑︁
𝐽≠𝐼

𝑍𝐽
(𝑅𝛼𝐼 − 𝑅𝛼𝐽 ) (𝑅

𝛽
𝐼 − 𝑅

𝛽
𝐽 )

|R𝐼 −R𝐽 |3
−

∫
d3𝑟 𝑛(r) (𝑅

𝛼
𝐼 − 𝑟𝛼) (𝑅𝛽𝐼 − 𝑟𝛽)

|R𝐼 − r|3

}
.

(3.54)

This can be rationalized by using the same steps that led to the Hellmann-
Feynman expression for the position derivative in Eq. (1.38), and noting
that

𝜕 𝑓 (r1 − r2)
𝜕𝜀𝛼𝛽

=
𝜕 𝑓 (r1 − r2)

𝜕𝑟𝛼1
(𝑟𝛽1 − 𝑟

𝛽
2 ) , (3.55)

as discussed in detail in Ref. [118].
The atomic stress contributions𝜎𝐼 are functionals of the electron density
and atomic configuration and therefore can be computed in ab initio
frameworks, for example in the all-electron, numeric atomic orbital
electronic structure code FHI-aims [118, 119].11 The final result for the 11 We mention in passing that in practical

implementations, additional contributions to
𝜎𝐼 need to be computed to account for ba-
sis set dependent Pulay terms just like in the
computation of other gradients of the total
energy. See again Ref. [118] for a compre-
hensive list of the arising terms.

ab initio heat flux used in this work is therefore

Jai (𝑡) =
∑︁
𝐼

𝜎𝐼 (𝑡) ¤R𝐼 , (3.56)

where 𝜎𝐼 (𝑡) is Eq. (3.54) evaluated for the configuration R(𝑡).

To conclude, we like to point out that by using the time derivative
of the energy density, we neglect convective contributions to the flux
from the very beginning. The present ab initio heat flux is therefore
valid for solids with vanishing or negligible mass diffusion, as discussed
earlier.

3.6 Heat flux in the harmonic approximation

We now discuss heat flux in the harmonic approximation. This work
was pioneered by Debye and Peierls [84, 120], with a formal derivation
first presented by Hardy [96]. It allows to deduct several important
conclusions about thermal transport in solids, and the insights will later
be used to boost convergence of non-perturbative ab initio Green Kubo
simulations.

We start from the gauge-invariant heat flux expression for
solids as defined in Eq. (3.42), i. e.,

J(𝑡) = 1
𝑉

∑︁
𝐼

R0
𝐼
¤𝐸𝐼 . (3.57)

The atomic energy contribution 𝐸𝐼 expressed in mass-scaled displace-
ments { u𝐼 } and momenta { p𝐼 } reads

𝐸𝐼 =
1
2
𝑝2
𝐼 +

1
2

∑︁
𝐽

𝐷 𝐼 𝛼,𝐽𝛽 𝑢
𝛼
𝐼 𝑢

𝛽
𝐽 , (3.58)

with the dynamical matrix 𝐷 𝐼 𝐽 , so that The harmonic forces are

¤𝑝𝐼𝛼 = − 𝜕𝐸

𝜕𝑢𝛼
𝐼

= −
∑︁
𝐽

𝐷𝐼𝛼,𝐽𝛽 𝑢
𝛽

𝐽
,

and in mass-weighted coordinates

¤𝑢𝛼𝐼 = 𝑝𝛼
𝐼 .
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¤𝐸𝐼 =
∑︁
𝐽

¤𝑝𝐼 𝛼𝑝𝛼𝐼 + 1
2

∑︁
𝐽

𝐷 𝐼 𝛼,𝐽𝛽

(
𝑝𝛼𝐼 𝑢

𝛽
𝐽 + 𝑢𝛼𝐼 𝑝

𝛽
𝐽

)
= −1

2

∑︁
𝐽

𝐷 𝐼 𝛼,𝐽𝛽

(
𝑝𝛼𝐼 𝑢

𝛽
𝐽 − 𝑢𝛼𝐼 𝑝

𝛽
𝐽

)
. (3.59)

Using this expression for the time derivative of the atom-resolved har-
monic energy in Eq. (3.57) leads to a heat flux of the form

Jha (𝑡) = − 1
2𝑉

∑︁
𝐼 𝐽

(R0
𝐼 −R0

𝐽 )𝐷 𝐼 𝛼,𝐽𝛽 𝑝
𝛼
𝐼 (𝑡)𝑢𝛽𝐽 (𝑡) , (3.60)

which is boundary-insensitive as required since only differences of po-
sitions enter. We express the displacements { u𝐼 } and velocities { p𝐼 }
in terms of the complex mode amplitudes 𝑎𝑠 (𝑡) introduced in Eq. (2.97)
in Sec. 2.2.5,

u𝐼 (𝑡) =
∑︁
𝑠

1√
2𝜔𝑠

e∗𝑠𝐼
[
𝑎†−𝑠 (𝑡) + 𝑎𝑠 (𝑡)

]
, and (3.61)

p𝐼 (𝑡) =
∑︁
𝑠

i
√︂

𝜔𝑠
2

e𝑠𝐼
[
𝑎†−𝑠 (𝑡) − 𝑎𝑠 (𝑡)

]
, (3.62)

where we remind of the shorthand notation 𝑠 = (𝑏, q) with band index
𝑏 and wave vector q summarized in the joint mode label 𝑠. Using the
mode amplitudes, the harmonic heat flux reads

Jha (𝑡) = 1
2𝑉

∑︁
𝑠𝑠′

v𝑠𝑠′𝜔𝑠
(
𝑎†−𝑠 + 𝑎𝑠

) (
𝑎†𝑠′ − 𝑎−𝑠′

)
, (3.63)

with the generalized group velocity With the shorthand notation 𝑠 = (𝑏, q) and
𝐼 = (𝑖, L) , we find that the diagonal term
v𝑠 = v𝑠𝑠′ is indeed the group velocity:

v𝑠 =
𝜕𝜔𝑠

𝜕q =
1

2𝜔𝑠

𝜕𝜔2
𝑠

𝜕q

=
1

2𝜔𝑠

∑︁
𝑖 𝑗

𝑒∗𝑠,𝑖𝛼
𝜕𝐷𝑖𝛼, 𝑗𝛽 (q)

𝜕q 𝑒𝑠, 𝑗𝛽

=
1

2𝜔𝑠

∑︁
𝐼,𝐽

i
(
R0
𝐼 − R0

𝐽

)
𝐷𝐼𝛼,𝐽𝛽𝑒

∗
𝑠,𝐼𝛼𝑒𝑠,𝐽𝛽 .

v𝑠𝑠′ =
1

2√𝜔𝑠𝜔𝑠′
∑︁
𝐼 𝐽

i(R0
𝐼 −R0

𝐽 )𝐷 𝐼 𝛼,𝐽𝛽𝑒
∗
𝑠,𝐼 𝛼𝑒𝑠′,𝐽𝛽 . (3.64)

Using that v(−q) = −v(q), the diagonal contribution (𝑠 = 𝑠′) to the flux
reads

Jha−diag (𝑡) = 1
𝑉

∑︁
𝑠

v𝑠𝜔𝑠 𝑎†𝑠 (𝑡)𝑎𝑠 (𝑡) ≡
1
𝑉

∑︁
𝑠

𝐸𝑠 (𝑡)v𝑠 , (3.65)

where the mode energy 𝐸𝑠 = 𝜔𝑠𝑎
†
𝑠𝑎𝑠 was used. This result is the familiar

phonon heat flux operator (when setting ℎ̄ = 1), where 𝑎†𝑠 (𝑡)𝑎𝑠 (𝑡) ≡
𝑛𝑠 (𝑡) is the instantaneous mode occupation as defined in Eq. (2.94) [84,
96, 112].

3.6.1 Thermal conductivity derived from the harmonic flux

With the harmonic heat flux at hand, we are now in position to discuss
certain limits of the resulting thermal conductivity. For example, it
is straightforward to show that the thermal conductivity of a purely
harmonic system is infinite. We demonstrate the reasoning for the
case of the diagonal contribution to the heat flux Jha−diag given by
Eq. (3.65), which we simply denote by 𝐽 in the following, omitting
Cartesian components for clarity when no confusion can arise.
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As discussed in detail in Sec. 3.3, the thermal conductivity is
given by the Kubo formula

𝜅 =
𝑉

𝑘B𝑇2

∫ ∞

0
d𝑡 ⟨𝐽 (𝑡)𝐽⟩ , (3.66)

where the last quantity in ⟨·⟩ will be evaluated at 𝑡 = 0. The autocorre-
lation function for the diagonal harmonic heat flux defined in Eq. (3.65)
reads

⟨𝐽 (𝑡)𝐽⟩ = 1
𝑉2

∑︁
𝑠𝑠′

𝑣𝑠 𝑣𝑠′ ⟨𝐸𝑠 (𝑡)𝐸𝑠′⟩ , (3.67)

where the 𝐸𝑠 (𝑡) are chosen such that ⟨𝐸𝑠⟩ = 0. The thermal conductivity
is obtained by integrating the autocorrelation function. We get

𝜅𝛼𝛽 = 𝑉
∑︁
𝑠𝑠′

𝑐𝑠𝑠′𝑣
𝛼
𝑠 𝑣

𝛽
𝑠′𝜏𝑠𝑠′ , (3.68)

where we define the generalized lifetime

𝜏𝑠𝑠′ =
∫ ∞

0
d𝑡 𝐺𝑠𝑠′ (𝑡) (3.69)

with the normalized mode-energy autocorrelation function12 12 The −1 comes from choosing ⟨𝐸𝑠 ⟩ = 0 .

𝐺𝑠𝑠′ (𝑡) = ⟨𝐸𝑠 (𝑡)𝐸𝑠′⟩
⟨𝐸𝑠𝐸𝑠′⟩ =

⟨𝑎†𝑠 (𝑡)𝑎𝑠 (𝑡)𝑎†𝑠′𝑎𝑠′⟩
⟨𝑛𝑠⟩ ⟨𝑛𝑠′⟩ − 1 , (3.70)

and the generalized heat capacity

𝑐𝑠𝑠′ =
1

𝑘B𝑇2 ⟨𝐸𝑠𝐸𝑠′⟩ . (3.71)

In the perfectly harmonic case, the mode-energy autocorrelation
function𝐺𝑠𝑠′ can be evaluated analytically by noting that the expectation
value ⟨·⟩ can be viewed as a functional integral with the distribution
function 𝑓 = e−𝛽

∑
𝑠 𝜔𝑠𝑎

†
𝑠𝑎𝑠 and can therefore be evaluated by means of

a Wick theorem [112]. Keeping only the non-vanishing pairings, we
have13 13 In the context of complex field integration,

the Wick theorem reads [121]

⟨𝐴𝐵𝐶𝐷⟩ = ⟨𝐴𝐵⟩ ⟨𝐶𝐷⟩
+ ⟨𝐴𝐶 ⟩ ⟨𝐵𝐷⟩
+ ⟨𝐴𝐷⟩ ⟨𝐵𝐶 ⟩ .

Pairings with a non-equal number of “cre-
ators” 𝑎† and “annihilators” 𝑎 vanish identi-
cally because of the symmetry of the distri-
bution function 𝑓 .

⟨𝑎†𝑠 (𝑡)𝑎𝑠 (𝑡)𝑎†𝑠′𝑎𝑠′⟩ = ⟨𝑛𝑠⟩ ⟨𝑛𝑠′⟩ + 𝑔𝑠 (𝑡)𝑔∗𝑠 (𝑡)𝛿𝑠𝑠′ , (3.72)

where ⟨𝑛𝑠⟩ = 𝑘B𝑇
𝜔𝑠

is the equipartition mode occupation, and the one-
particle Green’s function 𝑔𝑠 (𝑡) is defined by

𝑔𝑠 (𝑡)𝛿𝑠𝑠′ ≡ ⟨𝑎†𝑠 (𝑡)𝑎𝑠′⟩ = ei𝜔𝑠 𝑡 ⟨𝑛𝑠⟩ 𝛿𝑠𝑠′ , (3.73)

where the time evolution of the complex amplitudes 𝑎†𝑠 (𝑡) = ei𝜔𝑠 𝑡𝑎†𝑠 was
used. It is apparent that the product 𝑔𝑠 (𝑡)𝑔∗𝑠 (𝑡) is not time-dependent, and
the heatflux autocorrelation function defined in Eq. (3.67) is therefore
given by

⟨𝐽 (𝑡)𝐽⟩ =
∑︁
𝑠

⟨𝐽2
𝑠 ⟩ . (3.74)

Consequently, the harmonic heatflux autocorrelation function integrates
to infinity and the thermal conductivity 𝜅 diverges.
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A finite thermal conductivity is obtained when the phonons are
allowed to interact, for example by introducing impurities, electron-
phonon interactions, or self interactions via anharmonic contributions
to the potential-energy surface. If the perturbation is weak, it can be
expressed by modified Green’s functions [121]

𝑔𝑠 (𝑡) = ei(𝜔𝑠+Σ𝑠 )𝑡 ⟨𝑛𝑠⟩ , (3.75)

where Σ𝑠 is the phonon self energy. Assuming the self energy to be
purely imaginary, Σ𝑠 = iΓ𝑠 , we have

𝐺𝑠 (𝑡) =
𝑔𝑠 (𝑡)𝑔∗𝑠 (𝑡)

⟨𝑛𝑠⟩2 = e−2Γ𝑠 𝑡 ≡ e−𝑡/𝜏𝑠 , (3.76)

where he have defined the lifetime 𝜏𝑠 = 1/2Γ𝑠 . The heatflux autocorre-
lation function now reads

⟨𝐽 (𝑡)𝐽⟩ =
∑︁
𝑠

⟨𝐽2
𝑠 ⟩ e−𝑡/𝜏𝑠 , (3.77)

and the thermal conductivity integrates to a finite value given by14 14 Using

𝐽𝑠 = 𝜔𝑠𝑣𝑠𝑛𝑠 ,

⟨𝑛𝑠 ⟩ = 𝑘B𝑇

𝜔𝑠
.

𝜅
𝛼𝛽
ha = 𝑉𝑘B

∑︁
𝑠

𝑣𝛼𝑠 𝑣
𝛽
𝑠 𝜏𝑠 , (3.78)

which is the single-mode (𝑠 = 𝑠′) approximation to the general 𝜅 defined
in Eq. (3.68) with the classical value for the mode heat capacity 𝑐𝑠 = 𝑘B.
The same expression can be found from a Boltzmann transport approach
using the single-mode relaxation-time approximation, and extension to
quantum-mechanical distributions is straighforward [122].

3.6.2 Mode lifetimes from perturbation theory

In low-order perturbation theory, the phonon self energy can be obtained
by approximating the potential-energy surface as

V(R) ≈ 𝑉 (2) (R) +𝑉 (3) (R) , (3.79)

where 𝑉 (2) (R) denotes the harmonic potential, and 𝑉 (3) (R) is obtained
by expanding the potential V(R) to third order. Further assuming the
cubic contribution 𝑉 (3) (R) to be small compared to the harmonic part,
the inverse mode lifetime 𝜏−1

𝑠 = 2Γ𝑠 is given by the Fermi Golden Rule
expression [123, 124]

2Γ𝑠 =
𝜋ℎ̄2

4𝜔𝑠

∑︁
𝑝𝑞

���V (3)
𝑠𝑝𝑞

���2
𝜔𝑝𝜔𝑝

[
1
2

(
1 + 𝑛𝑝 + 𝑛𝑙

)
𝛿
(
𝜔𝑠 −𝜔𝑝 −𝜔𝑞

)
+ (

𝑛𝑝 − 𝑛𝑞
)
𝛿
(
𝜔𝑠 +𝜔𝑝 −𝜔𝑞

) ]
,

(3.80)

where V (3)
𝑠𝑝𝑞 is the cubic potential transformed to phonon eigenstates.

This equation and the single-mode expression for 𝜅, Eq. (3.78), serve
as the basis for most ab initio studies of thermal conductivity in insu-
lating solids in recent years [13, 91, 112].15 More recently, extensions

15 The lifetime expression in Eq. (3.80) is
modified when the full linearized Boltzmann
transport equation is solved without per-
forming the single-mode relaxation time ap-
proximation, where momentum-preserving
phonon collisions (normal processes) are ne-
glected [85–87, 125]. These are typically
small for thermal insulators, however they
can be of particular importance in highly
conducting solids and two-dimensional sys-
tems [126–128].

of the perturbation-expansion approach up to fourth order have been
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presented [88–90, 129]. While higher-order perturbation theory can
improve the description of heat transport in anharmonic solids [130,
131], it’s applicability is currently limited to simple, highly-symmetric
materials because of the scaling of quartic force constants with system
size, see the discussion in appendix D of Ref. [90]. The matter of third-
and fourth-order scattering is further discussed in Sec. 4.6 below.

3.6.3 Mode lifetimes from molecular dynamics simulations

In ab intio molecular dynamics, we have direct access to the non-
perturbative dynamics of the nuclear system. Lifetimes can therefore be
extracted by straightforward application of Eq. (3.69) and (3.70) [113].
To circumvent the problem of brute-force integrating the time integral
in the evaluation of the lifetime expression in Eq. (3.69), we use the an-
alytic Green’s function expression defined in Eq. (3.76) to approximate
the normalized mode-energy autocorrelation function 𝐺𝑠𝑠′ (𝑡) as

𝐺𝑠𝑠′ (𝑡) ≈ 𝐺𝑠 (𝑡)𝛿𝑠𝑠′ = ⟨𝐸𝑠 (𝑡)𝐸𝑠⟩
⟨𝐸2
𝑠 ⟩

≈ e−𝑡/𝜏𝑠 , (3.81)

from which the lifetime 𝜏𝑠 can be obtained by fitting 𝐺𝑠 (𝑡) to an expo-
nential function.

3.7 Ab initio Green Kubo

Building on the previous sections, we are now in position to shortly
sketch the ab initio Green Kubo approach adopted in this work [15],
before introducing the methodological details in more depth later in
Chp. 5. The approach comprises four steps:

1. The thermal conductivity 𝜅ai is obtained by numerically evaluating
the Green-Kubo integral using the ab initio heat flux Jai (𝑡) defined
in Eq. (3.56) evaluated during microcanonical ab initio molecular
dynamics simulations.

2. The harmonic contribution 𝜅ha to the thermal conductivity is com-
puted from the simulation data by using lifetimes extracted via
Eq. (3.81) in the BTE-type formula for 𝜅ha given in Eq. (3.78).

3. The quantities used to compute 𝜅ha, i. e., the group velocities and
lifetimes, are interpolated to dense q-point grids in reciprocal space to
achieve an extrapolation of the harmonic thermal conductivity to bulk
limit, 𝜅ha−bulk [15]. The interpolation works by assuming that 𝜏𝑏 (q) = We temporarily restore the full notation

𝑠 = (𝑏, q) to make the q-dependence of the
appearing quantities explicit.

𝜆𝑏 (q)𝜔−2
𝑏 (q) with a weakly q-dependent function 𝜆𝑏 (q) obtained

by linearly interpolating the lifetimes obtained at commensurate q-
points. The scaling of lifetimes with 𝜔−2

𝑠 is rooted in basic phonon
theory as developed by Herring [132] and holds especially for long-
ranged acoustic modes which are difficult to describe in finite-sized
ab initio molecular dynamics simulations. A more detailed account
of the interpolation scheme is given in Sec. 5.2.
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4. The interpolation scheme yields a finite-size corrected thermal con-
ductivity via

𝜅bulk = 𝜅ai − 𝜅ha + 𝜅ha−bulk . (3.82)

3.8 Conclusion

It is apparent from the presentation above that a low-order expansion
of the potential-energy surface combined with low-order perturbation
expressions represents a wealth of approximations that certainly hold
for some materials [13, 113, 133], but are questionable or even out-
right unjustified for others. In particular, dynamical effects such as
phase transitions to dynamically stabilized crystal structures (ZrO2 [15,
134], SrTiO3 [135]), spontaneous defect formation (e. g., in noble metal
halides [136, 137]), or simply a soft bonding and therefore strong an-
harmonicity (NaCl [90], NaBr [138]) are inherently absent in such a
description. These are cases where a non-perturbative description of
thermal transport is necessary. By the same argument, largely harmonic
materials like silicon or diamond fulfill the requirements for a perturba-
tive treatment, and brute-force simulating the nuclear dynamics via MD
techniques is therefore not necessary.

For these reasons, it is desirable to pre-categorize mate-
rials in terms of their “anharmonic strength”, especially when one at-
tempts to screen materials space for a significant amount of materials, as
this allows to choose appropriate simulation techniques for each system.
We present a systematic approach towars “measuring anharmonicity” in
the next chapter.





Part II

Applications





4
Anharmonicity

We have seen in the previous chapter that thermal conductivity is an
anharmonic effect — in a purely harmonic system, thermal conductivity
is ill-defined. We have also discussed methods to assess vibrational
thermal transport in materials from first principles: Either via the ab
initio Green-Kubo approach [14, 15], or via perturbation theory, where
the potential energy is expanded to third or fourth order in the atomic
displacements, and these terms are used to compute the change of phonon
properties such as their lifetimes [13, 88–91, 112, 129].
As we will see, the discussion of the differences between these ap-
proaches will be greatly facilitated once we can formally define and
assess “anharmonicity” in a quantitative way. To this end, we have de-
veloped a scheme to measure the strength of anharmonicity in a material
by means of a single number, 𝜎A, irrespective of physical observables.

4.1 Definition of anharmonicity
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Figure 4.1: Upper: Sketch of a one-
dimensional potential-energy surface V
(solid black), its harmonic approximation
V (2) (R) (dashed blue), and the anharmonic
contribution VA (R) (solid red). Lower:
The force 𝐹 (R) given by the derivative of
V (black), the force 𝐹 (2) stemming from
V (2) (R) (blue), and the anharmonic con-
tribution 𝐹A = 𝐹 − 𝐹 (2) (red), cf. Eq. (4.4).

In accordance with the previous chapters, classical nuclear dynamics
within the Born-Oppenheimer approximation is governed by the Hamil-
tonian

H(P, R) =
∑︁
𝐼

P2
𝐼

2𝑀𝐼
+V(R) , (4.1)

where P and R denote the atomic momenta and coordinates. Using an
expansion of the the full potential V(R) in the displacements U around
a reference configuration R0 as discussed in Chp. 2, the potential can be
split into a harmonic contribution, V (2) , and a second term capturing
all anharmonic effects, VA,

V(R) = V (2) (R) +VA (R) . (4.2)

In the classical limit, the dynamical evolution of the nuclei is determined
by the potential through the interatomic forces as defined Eq. (2.55),

𝑀𝐼
¥R𝐼 = − 𝜕V

𝜕R𝐼
≡ F𝐼 , (4.3)

i. e., Newton’s equations of motion. By linearity of the differential, the
forces can therefore be split into harmonic and anharmonic contributions
as well,

F𝐼 = F(2)
𝐼 + FA

𝐼 . (4.4)
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The division of potential and forces into harmonic and anharmonic
contributions is depicted for a one-dimensional potential in Fig. 4.1.

4.2 Anharmonicity measure

Figure 4.2: Force component distribution
before and after normalization with the width
of the distribution 𝜎 [𝐹 ]. 𝑝 (𝐹 ) denotes the
probability to find a force component 𝐹𝐼,𝛼
of strength 𝐹 in the material. Panel a) and b)
show the distribution before normalization,
c) and d) after normalization. Dashed ver-
tical lines denotes the standard deviation of
the displayed distribution.

We base the definition of a measure for anharmonicity on the forces,
for two reasons: First, because the forces give microscopic insight, as
they can be resolved per atom. Second, the forces are statistically easier
to describe, since per configuration R, there are 3𝑁 force components
F = (F1, . . . , F𝑁 ).
In terms of the force contributions defined in Eq. (4.4), we define a
measure of anharmonicity, 𝜎A, in the following way:

𝜎A (𝑇) =
√√∑

𝐼 ,𝛼 ⟨(𝐹A
𝐼 ,𝛼)2⟩

𝑇∑
𝐼 ,𝛼 ⟨(𝐹𝐼 ,𝛼)2⟩𝑇

, (4.5)

where 𝐹 (𝐴)
𝐼 ,𝛼 is the 𝛼 component of the (anharmonic) force on atom

𝐼 and ⟨·⟩𝑇 denotes a thermodynamic average at temperature 𝑇 . The
measure 𝜎A quantifies the anharmonic strength in terms of the standard
deviation of the distribution of anharmonic force components at a given
temperature, 𝜎[𝐹A]𝑇 , normalized by the standard deviation of the actual
force distribution, 𝜎[𝐹]𝑇 , The standard deviation of a force distribution
is defined as

𝜎[𝐹]𝑇 =

√︄
1

3𝑁

∑︁
𝐼 ,𝛼

⟨𝐹2
𝐼 ,𝛼⟩𝑇 . (4.6)

The effect of normalizing the distribution of forces is shown in Fig. 4.2
for the two exemplary materials already discussed in the context of
phonon dispersions in Sec. 2.2.6, silicon, and the orthorombic perovskite
KCaF3. Only after normalizing the forces, a meaningful comparison
between materials or across temperatures can be achieved.

For the two exemplary materials, we show the joint nor-
malized distributions of force and anharmonic force con-
tributions in Fig. 4.3, where the thermodynamic sampling is per-
formed by ab initio molecular dynamics simulations at 300 K. In this

Figure 4.3: Normalized anharmonic force
components versus normalized force compo-
nents. Dashed horizontal lines: Width of the
distribution estimated from standard devia-
tion. Individual dots are force components
sampled during an ab initio MD simulations.
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representation, 𝜎A is given by the standard deviation of the distribu-
tion in y-direction, as indicated by the dashed horizontal lines in the
plot. The distribution of anharmonic force components is more than
twice as broad for the perovskite KCaF3 compared to silicon, with a
𝜎A

KCaF3
= 0.36 compared to 𝜎A

Si = 0.15. This can be interpreted in the
sense that 36 % of the forces stem from anharmonic contributions in
KCaF3, and 15 % in silicon. Furthermore, strongly anharmonic force
contributions with a strength of 0.5𝜎[𝐹] or more are nearly absent in
silicon with a probability of < 0.01 %, whereas anharmonic forces of
this strength in KCaF3 occur with a much higher probability of∼ 16.5 %.

The anharmonicity measure defined in Eq. (4.5) can also be
evaluated for subsets of the dynamical degrees of freedom, e. g., per
chemical species, as shown in Fig. 4.4. In the example of KCaF3, this
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FF/σ [FF]

F σA = 0.38
Figure 4.4: Normalized anharmonic force
components versus normalized force com-
ponents. Dashed horizontal lines: Width
of the distribution estimated from standard
deviation.

analysis shows that the calcium (Ca) atoms occupying the vertices of
the unit cell are comparatively well described by the harmonic model,
whereas the description of potassium (K) is particularly bad. This can be
explained by the phase-transition mechanism observed in KCaF3: Above
560 K, the material becomes cubic, and the octahedral displacement of
fluorine (F) is removed, as shown in Fig. 4.5. This tilt also affects
the potassium atoms, which are displaced from their high-temperature
reference position in the orthorombic phase, and are therefore located in
a shallow potential already at room temperature, well below the phase
transition [56, 139].

T < 550 K: Pnma

T > 560 K: Cubic

F

K

Ca

Figure 4.5: KCaF3 in the low-temperature
Pnma (top) and high-temperature cubic
phase (bottom). Both structures are viewed
along the long 𝑏-axis.

It is instructive to evaluate the anharmonicity for single
configurations, be it snapshots in time during molecular dynamics
simulations, or when using other sampling approaches, e. g, harmonic
Monte Carlo samples as defined in Eq. (2.89). The sample-resolved
anharmonicity is given in analogy to Eq. (4.5) as

𝜎A [R] =
√√ ∑

𝐼 ,𝛼 (𝐹A
𝐼 ,𝛼)2∑

𝐼 ,𝛼 (𝐹𝐼 ,𝛼)2 . (4.7)

While we will discuss “time-resolved anharmonicity” in detail at a later
point, we show the evaluation of 𝜎A for samples generated by Eq. (2.89)
in Fig. 4.6. The analysis shows that a decent estimate of 𝜎A can be
obtained from the harmonic sampling analysis with few samples. Es-
pecially in silicon, each individual harmonic sample yields a 𝜎A within
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Figure 4.6: Anharmonicity measure 𝜎A

evaluated for individual atomic configu-
rations obtained from Eq. (2.89). Dots:
𝜎A [R𝑛 ] for individual samples; Red line:
Cumulative average. Black dashed line: 𝜎A

from aiMD. Shadowed region: Convergence
estimated by standard error.

99 % of the reference value obtained by MD simulations for several hun-
dred simulation time steps, which is indicated by the dashed horizontal
line. For the more anharmonic KCaF3, the harmonic sampling with
30 samples yields an estimated value of 𝜎A

est. = 0.38, which differs from
the MD value (𝜎A = 0.36) by about 5 %. A distinction between largely
harmonic materials like silicon, and anharmonic materials like KCaF3,
is therefore possible with very few samples.
Motivated by this fact, we investigated the possiblity to estimate 𝜎A

based on a single sample, as suggested by Zacharias and Giustino in
Ref. [140]: They use a single, deterministic sample to probe the most
probable part of the harmonic distribution by choosing 𝜁𝑠 = (−1)𝑠 in-
stead of a random distribution in Eq. (2.89). We denote anharmonicity
measures obtained by such a “one-shot” approach by 𝜎A

OS in the fol-
lowing. As shown in Fig. 4.7, the one-shot samples provide very good
estimates for silicon in the the entire temperature range from 200 K to
800 K, which can be expected due to the largely harmonic nature of
silicon. For KCaF3, the agreement is decent in the temperature range
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Figure 4.7: 𝜎A as a function of temperature
obtained from MD simulations (black cir-
cles) and one-shot sampling (triangles con-
nected by dashed curves)

from 200 to 400 K, at least within the limits of the harmonic sampling
approach as discussed in the previous paragraph. Above 500 K, the dif-
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ference to the reference value from MD simulations increases, which is
due to the phase transition mechanism in KCaF3 discussed earlier: A
prediction of anharmonicity across phase transitions cannot be expected
from simple harmonic sampling approaches, because the entire refer-
ence frame for the harmonic model changes when a phase transition
occurs. The phase transition mechanism of KCaF3 and implications for
the anharmonicity measure are further discussed in Ref. [141].

Ultimately, the applicability of the one-shot sampling ap-
proach needs to be assessed for a diverse set of materials, especially
if one aims to use this scheme to screen for anharmonicity in material
space. As shown in Fig. 4.8 for a set of 63 materials, the one-shot
sampling is reliable within ±10 % for all materials in the set, up to
a value of about 𝜎A ≃ 0.2. For larger values of 𝜎A, the deviation

0.1 0.2 0.3 0.5 1 2 3
σ A

MD

0.1

0.2

0.3

0.5

σ A
OS

AgBr

CuBrCuCl
ZB
RS
WZ
Perov.

ideal
±10%

Figure 4.8: Comparison of the anharmonic-
ity measure obtained from MD simulations
and one-shot sampling (OS) for 63 materi-
als at 300 K. The set comprises 25 rock salt
(RS), 21 zincblende (ZS), 7 wurtzite (WZ),
and 10 orthorombic perovskite (Perov.) ma-
terials. The diagonal line denotes perfect
agreement between MD and OS, and the
green area denotes a 10 % error margin
to guide the eye. Data was taken from
Ref. [141].

can become larger, especially for the group of rock salt materials with
𝜎A ≃ 0.35 (red squares) where the one-shot sampling overestimates
𝜎A by about 20 %. Nevertheless, the agreement is qualitatively correct
up to values of about 𝜎A ≃ 0.4, after which materials begin to show
effects not captured by the harmonic sampling, e. g., phase transitions as
discussed earlier for KCaF3. In particular, the three highlighted noble
metal halides AgBr, CuCl, and CuBr deviate strongly. These materials
tend towards non-perturbative effects during the MD simulation such
as spontaneous defect formation [141], which is a dynamical effect im-
possible to describe by any fixed-reference harmonic model. We will
discuss the nature of these effects in more detail later in Sec. 4.5.
To conclude, we point out that also in the case of non-trivial dynamical
effects such as defect formation, the estimated anharmonicity scores
𝜎A

OS are larger than ⪆ 0.5, and therefore indicate strong anharmonicity.
A qualitative classification of strong anharmonicity in terms of one-
shot sampling is therefore possible for all materials in the set, while
quantitative agreement is only achieved for clearly harmonic materials
with 𝜎A ≲ 0.2.
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4.3 Anharmonicity and thermal conductivity

Based on the qualitative discussion of thermal transport in Sec. 3.6.1, one
may expect that stronger anharmonicity leads to shorter phonon lifetimes
and therefore lower thermal conductivity. We tested this hypothesis for
47 materials where experimental data was available [11, 142]. The
results are shown in Fig. 4.9.
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Figure 4.9: Experimental thermal conduc-
tivity at room temperature, 𝜅exp

300 K, versus
one-shot measure of anharmonicity, 𝜎A

OS,
and fully anharmonic 𝜎A

MD for materials
with 𝜎A

OS > 0.2. The dashed diagonal line
indicates a power law fit for the data. The
grey area denotes values of 𝜅 which agree
with the fit within 50 % to guide the eye.
The dataset contains 47 materials, 22 rock
salt (RS), 19 zincblende (ZB), and 6 wurtzite
(WZ) structures. Experimental data from
Ref. [11, 142].

The analysis reveals an inverse power law relationship between thermal
conductivity and anharmonicity for the materials in the dataset, i. e., a
linear relationship between the logarithms of 𝜅 and 𝜎A, with a Pearson
correlation coefficient of 0.97 [143]:

𝜅(𝜎A) ≈ 0.02 · (𝜎A)−4.8 (4.8)

Given that just a single descriptor is used, i. e., the estimated anhar-
monicity score, and no further vibrational properties as commonly em-
ployed in semi-empirical models for thermal condcutivity [142, 144],
this correlation is surprisingly good and indicates that 𝜎A captures some
essential physics relevant to heat transport: It is known that diamond (C)
is extremely harmonic, so that its thermal conductivity is exceptionally
high [125, 145]. This is confirmed here with diamond being the most
harmonic material studied, with 𝜎A

C = 0.09 and 𝜅C = 3000 W/mK [11].
On average, the zinc blende (ZB) compounds are more harmonic then
the rocksalt (RS) compounds in this dataset, and likewise show higher
thermal conductivities. This relation can be explained by the stronger
covalent bonding character and higher coordination number in the tetra-
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hedrally coordinated zinc blende compounds, compared to the more
ionic, octahedrally coordinated rocksalt materials [146], which explains
the clustering of rocksalt materials in the lower right part of Fig. 4.9.
A notable exception in the class of rocksalt materials is the largely
harmonic magnesium oxide (MgO), with 𝜎A

MgO = 0.18 and 𝜅MgO =

60 W/mK [11].

The most important messages from Fig. 4.9 can be summa-
rized as follows, adopting the definition suggested by Morelli and
Slack to define “high thermal conductivity” as 𝜅 ≳ 50 W/mK [11]:

1. Very harmonic materials with 𝜎A ≃ 0.1, like diamond (𝜎A
C = 0.09),

boron phosphide (𝜎A
BP = 0.11), or boron nitride (𝜎A

BN = 0.12) can be
expected to be very good thermal conductors with 𝜅 ≳ 100 W/mK.

2. Strongly anharmonic materials with 𝜎A ≳ 0.3 can be expected to be
poor thermal conductors with 𝜅 ≲ 10 W/mK.

3. 𝜎A has a strong correlation with thermal conductivity across the
entire dataset, but nevertheless only a rough estimate can be made
solely based on 𝜎A, especially in the middle region with 𝜎A ≃ 0.2.
This can be seen by comparing strontium oxide (SrO) with 𝜅 =

10 W/mK and 𝜎A = 0.22, and zinc oxide (ZnO) with 𝜅 = 60 W/mK
and 𝜎A = 0.24, or beryllium oxide (BeO) with 𝜅 = 370 W/mK
and 𝜎A = 0.16 to magnesium oxide (MgO) with 𝜅 = 60 W/mK
and 𝜎A = 0.18. These pairs of materials differ only slightly in
their estimated anharmonicity, but still quite strongly in the thermal
conductivity, clear evidence for the fact that other material properties
determine thermal transport.

These findings suggest the following approach towards screening mate-
rial space in search for thermal insulators with 𝜅 < 10 W/mK: Estimate
the anharmonicity for materials of interest and focus on the anharmonic
ones with 𝜎A > 0.2, as more harmonic materials will very likely have
higher thermal conductivies.
Of course, the reverse approach could be pursued when searching for
materials with potentially high thermal conductivity.

4.4 Candidate materials

cubic
75
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11
orthorombic7

Lattice types

225

221

216

186 166
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62
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Figure 4.10: Lattice types and space groups
represented in the dataset. Space groups not
shown in the pie chart: 56, 61, 160, 164,
206, with one representative each.

Using the measure 𝜎A, we have identified a set of 118 binary and ternary
materials for further investigation. The materials comprise five lattice
types and 12 space groups as summarized in Fig. 4.10. Since we are
mainly interested in thermal insulators as candidate thermoelectric and
thermal barrier coating materials, we focus on anharmonic strengths
𝜎A > 0.2 as explained above, with a mean of 𝜎A = 0.31 and a median
of 𝜎A = 0.29. Some more harmonic materials like MgO (𝜎A = 0.18)
have been included for benchmark purposes. A histogram displaying
the distribution of 𝜎A values is shown in Fig. 4.11. All values are given
with respect to room temperature, as this is the regime where the most
experimental reference is available to benchmark the aiGK method later
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Figure 4.11: Histogram of 𝜎A
OS values sam-

ples for the 118 chosen materials

on. In total, there are experimental reference values for 45 materials
available. These references are given in Tab. H.1 in appendix H.
The materials have been chosen based on the following criteria:

1. Material has to have an experimentally known stable phase at room
temperature,

2. material has to be semiconductor or insulator with a bandgap large
enough to prevent accidental gap closing during molecular dynamics
simulations,

3. the most heavy element considered is Barium (𝑍 = 56), after which
relativistic effects beyond the “zeroth order regular approximation”
cannot be neglected [147–149].
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4.5 Dynamical effects

As briefly discussed in Sec. 4.2, strongly anharmonic materials with
𝜎A > 0.3 are prone to exhibiting non-trivial dynamical effects such as
metastable defect formation and precursors of structural phase transi-
tions.

We carried out ab initio molecular dynamics simulations 1 1 Computational settings: PBEsol function
and light default basissets. Time step 4-5 fs
such that the fastest motion corresponding to
the highest harmonic vibrational frequency
is sufficiently sampled, total simulation time
at least 30 ps. Lattice expansion accounted
for by minimizing the pressure in the simu-
lation cell according to the scheme outlined
in Sec. D.2. Full details given in appendix I.

for each of the candidate materials introduced in the previous chap-
ter to see whether the materials exhibit such non-trivial dynamical
effects. These dynamical effects can be detected by using a time-
resolved anharmonicity measure as defined in Eq. (4.7), i. e., by eval-
uating the anharmonicity measure for each sample during the MD with
𝜎A (𝑡) = 𝜎A [R(𝑡)], and evaluating fluctuations of 𝜎A (𝑡) in terms of
its standard deviation std[𝜎A] evaluated along a given trajectory. A
comparison of 𝜎A values obtained by one-shot sampling, 𝜎A

OS, and
molecular dynamics, 𝜎A

MD, is shown in Fig. 4.12. Materials with a stan-
dard deviation larger than std[𝜎A

MD] > 0.01 are highlighted and labeled.
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Figure 4.12: 𝜎A values obtained by one-
shot sampling (OS) and molecular dynamics
simulations (MD) in comparison. Materi-
als with significant fluctuations of the time-
resolved anharmonicity measure 𝜎A (𝑡 ) are
highlighted and labeled.

We discuss the nature of these effects for KCaF3, CuI, AgI, and AgCl
in the following. AgBr and KCdF3 are omitted because they behave
qualitatively similar to AgCl and KCaF3, respectively.
The discussion is meant to highlight the prevalence of non-trivial dynam-
ical effects that violate one basic assumption of phonon theory, i. e., the
assumption of well-defined and stationary reference positions for all
atoms in a given phase. Another key insight is that the observed effects
are precursors of phase transitions known to occur in these materials at
higher temperatures, which means that their onset is observed on the
microscopic scale during the dynamic evolution already several 100 K
below the phase transition temperature. From a methodological point
of view, we show how the time-resolved anharmonicity can be used to
uncover and explain the nature of the underlying dynamical effect.
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4.5.1 KCaF3

KCaF3 is the perovskite material already discussed in some detail in
Sec. 4.2, where the octahedral tilting mechanism typical for this class of
materials, and the phase transition phenomenology were presented [56,
58, 139]. In total, we performed five 𝑁𝑉𝐸 simulations for KCaF3, with a
simulation time of 30 ps each. The time resolved anharmonicity measure
is displayed for each of those trajectories in Fig. 4.13. We find that in
three of the five trajectories, 𝜎A (𝑡) jumps between the reference value
of 𝜎A ≈ 0.4,2 and increased values between 𝜎A ≈ 0.8 and 𝜎A ≈ 1.2. 2 We round to 1 decimal point in the follow-

ing, which is completely sufficient for the
discussion of intermittent jumps.
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Figure 4.13: Time-resolved anharmonic-
ity measure 𝜎A (𝑡 ) for orthorombic KCaF3
in five molecular dynamics runs of 30 ps
length. Increased values of 𝜎A (𝑡 ) are found
in three trajectories (b, d, e).

The nature of the underlying dynamical effects can be re-
solved by time-averaging the positions R(𝑡),

Ravg = ⟨R(𝑡)⟩𝑡 , (4.9)

3.0 3.5 4.0
F-F distance r (Å)

g(
r)

reference
deformed

Figure 4.14: Precursor of phase transition
in KCaF3. Upper panel: The reference or-
thorombic structure viewed in (010) direc-
tion. The orthorombic displacement of the
potassium sub-lattice (violet balls connected
by sticks) is clearly visible. Middle panel:
When 𝜎A (𝑡 ) ≈ 1.1, the potassium sub-
lattice temporarily adopts a tetragonal shape.
Also the fluorite atoms (small blue balls) re-
duce their tilt consequently. Lower panel:
Radial distribution function 𝑔 (𝑟 ) for the flu-
orine atoms in the orthorombic reference and
deformed structure: The number of distinct
peaks reduces, reflecting an increase in sym-
metry when the orthorombic tilt reduces.

for the time spans in which 𝜎A (𝑡) is increased. Performing this time
average for time spans where 𝜎A (𝑡) < 0.5, i. e., in situations in which no
increase is seen, one recovers the initial orthorombic structure shown in
Fig. 4.14 (top figure). When averaging trajectory b) for the time where
𝜎A (𝑡) ≈ 1.1, the resulting structure is more symmetric, with an approxi-
mately tetragonal arrangement of atoms. This can be seen by focusing on
the potassium sub lattice (purple atoms connected by sticks) in Fig. 4.14
(middle). The increased symmetry is further revealed by noting that
the fluorine cage becomes more ordered, as shown in terms of the F-F
pair distribution function in Fig. 4.14 (bottom). This phenomenon can
be viewed as a precursor of the phase transitions towards tetragonal and
cubic phases known to occur in this material at temperatures higher than
560 K [56, 139, 141]. However, at 300 K, well below the transition tem-
perature, this configuration only occurs sporadically on the time scale
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of several picoseconds during the simulation, and is therefore not fully
stabilized.

4.5.2 CuI
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Figure 4.15: Time-resolved anharmonicity
measure 𝜎A (𝑡 ) for zincblende CuI in three
molecular dynamics runs of 60 ps length. In-
creased values of 𝜎A (𝑡 ) are found in all
three trajectories.

Copper iodide (CuI), also known as marshite, is a simple material with
fcc lattice of the zincblende type. This phase is also known as the 𝛾

phase (𝛾-CuI). The time-resolved anharmonicity measures are shown
in Fig. 4.15 for three trajectories of 60 ps simulation time. The charac-
teristic features are the jumps in 𝜎A (𝑡) from values of 𝜎A (𝑡) ≈ 0.5 to
𝜎A (𝑡) ≈ 1.2 or 1.6. In the simulated time period, these values are taken
for 3 to 12 ps, before the initial value of 𝜎A (𝑡) ≈ 0.5 is restored.

Figure 4.16: CuI viewed in (110) direction.
Top: High-symmetry zincblende structure.
Middle: Copper ion in lower-right quadrant
moves into interstitial site along (111) direc-
tion when 𝜎A (𝑡 ) ≈ 1.2. Bottom: Several
defects form when 𝜎A (𝑡 ) ≈ 1.6

As in the case of KCaF3, we compare two time-averaged structures in
Fig. 4.16: A time average with respect to the entire simulation time
reveals the perfect zincblende structure of CuI which corresponds to
the minimum of the potential-energy surface. When averaging over the
time span where 𝜎A (𝑡) ≈ 1.2, however, the average structure has one
Cu atom diplaced along the (111) direction. Viewing the supercell in
(110) direction, the diplacement is clearly visible (Fig. 4.16, middle).
This means that the Cu occupies a metastable interstitial site at the
given position for the respective time period. When 𝜎A (𝑡) is restored
to the base value of 𝜎A (𝑡) ≈ 0.5, the Cu atom moves back to the
high-symmetry reference position within the zincblende structure. The
third trajectory shown in Fig. 4.15 c) evolves to a situation where 𝜎A ≈
1.6. This corresponds to a situation, where more than one defects
forms (Fig. 4.16, bottom).

𝛾-CuI is known to undergo a phase transition to a superi-
onic conducting 𝛽 phase above 643 K [150–153]. It is very likely
that the defect formation observed in the aiMD simulations at 300 K are



78 heat transport in strongly anharmonic solids from first principles

precursors of this phase transition, but too infrequent at this temperature
to destabilize the fcc lattice of the 𝛾 phase.

4.5.3 AgI

Wurtzite silver iodide (𝛽-AgI), or iodargyrite, is another transition metal
halide that shares some similarities with 𝛽-CuI discussed in the previous
section [152]. It is known to transition into the superionic conducting 𝛼

phase above ∼ 420 K [137, 152, 154], and was in fact one of the earliest
studied materials exhibiting this phenomenon [155–157].
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Figure 4.17: Time-resolved anharmonicity
measure 𝜎A (𝑡 ) for wurtzite AgI in five
molecular dynamics runs of 30 ps length. In-
creased values of 𝜎A (𝑡 ) are found in all five
trajectories.

Figure 4.18: AgI viewed in (100) direc-
tion. Top: High-symmetry wurtzite struc-
ture. Middle: Silver ions (red) move into
interstitial sites along (001) direction when
𝜎A (𝑡 ) ≈ 1.3. Bottom: The same configu-
ration viewed along (001) direction.

The time-resolved anharmonicity measure for AgI at 300 K is shown
in Fig. 4.17. As in 𝛾-CuI, the value jumps back and forth between the
already quite large reference value of𝜎A ≈ 0.7, short spikes at𝜎A ≈ 0.5,
and longer periods where 𝜎A ≈ 1.3 − 1.6 for several picoseconds. For
example, the first trajectory displayed in Fig. 4.17 a) jumps between
𝜎A ≈ 0.7 and 𝜎A ≈ 1.3 several times, where the longest time span
around this value is about 5 ps. Averaging the positions over this time
span as before, we obtain a supercell containing three Ag defects moving
along (001) direction in the supercell, as shown in Fig. 4.18 (middle
and bottom), as opposed to the reference wurtzite structure (top). It
is again very likely that the instability of the wurtzite lattice towards
defect formation at room temperature is a precursor of the actual phase
transition taking place at temperatures approximately 120 K higher.
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4.5.4 AgCl

Silver chloride (AgCl) is yet another material of the class of transition
metal halides, and the room-temperature stable phase is rock salt [158–
160].
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Figure 4.19: Time-resolved anharmonicity
measure 𝜎A (𝑡 ) for rock salt AgCl in five
molecular dynamics runs of 30 ps length. No
temporarily increased value of 𝜎A (𝑡 ) is ob-
served.
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Figure 4.20: Species-resolved anharmonic-
ity score in AgCl.

As opposed to the previously discussed transition metal halides CuI
and AgI, the time-resolved anharmonicity 𝜎A (𝑡) exhibits no “jumps”
in AgCl, but rather stays close to 𝜎A ≈ 1, which can be interpreted
as a situation where the harmonic model loses predictive power for the
observed forces.3 By resolving the anharmonicity measure per atom 3 𝜎A ≈ 1 signals a situation where the an-

harmonic contribution to the forces becomes
as strong as the forces themselves.

species in Fig. 4.20 similar to the discussion for KCaF3 in Sec. 4.2, we
see that the forces on chlorine atoms are better described by the harmonic
model with 𝜎A

Cl = 0.86 than those on silver with 𝜎A
Ag = 1.25. This is in

line with the previous observations in metal halides where small cations
proved to be more mobile and susceptible to dislocations [137, 150].
However, no clear-cut dislocation pattern can be identified for AgCl as
opposed to CuI and AgI.

The nature of the dynamical effects manifesting in AgCl
can nevertheless be elucidated. We do this by computing the pair
distribution functions for the first four coordinates shells in AgCl [161],
as shown in Fig. 4.21, and contrasting them with the prototypical, largely
harmonic rock salt material magnesium oxide (MgO, 𝜎A = 0.17) in
Fig. 4.22.
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Figure 4.21: Pair discribution function for
first four coordination shells of rock salt
(SG 225) AgCl.

0 2 4 6
Distance (A)

0

2

4

6

8

10

g(
r)

Mg-Mg
Mg-O
O-O

Figure 4.22: Radial distribution function re-
solved by pair contributions.

In MgO, the distribution of atoms are narrowly distinguishable, which
means that the atoms vibrate closely around their reference position, a
typical feature of harmonic dynamics. In AgCl on the other hand, only
the first coordination shell of silver-chlorine atoms is distinct at 300 K.
The chlorine (Cl-Cl) and silver (Ag-Ag) sublattices (purple/green area
in Fig. 4.21) show discernible peaks, although the broadening is signifi-
cant compared to MgO. The silver-chlorine (Cl-Ag) distribution (yellow
area) is even more broadened and is still non-zero at distances normally
characteristic of like atoms (Cl-Cl or Ag-Ag) , see e. g., the non-zero
width of the yellow curve at 3.9 and 5.5 Å(second and fourth coordina-
tion shell). In total, this leads to a very strong broadening in the third
and fourth coordination shell, with a barely discernible local maximum
in the third coordination shell (4.8 Å). This is in line with experimen-
tal Extended X-ray Absorption Fine Structure (EXAFS) measurements
detecting an “anomalously large motion” in the third neighbor shell
already at a temperature of 120 K [160]. This hints at severe dynami-
cal distortions throughout the simulation which are typically discussed
in terms of dynamical Frenkel pair formation, where the mobile Ag+

cations dynamically populate interstitial sites [159, 162–164]. While
we can confirm an increased mobility of Ag+ ions as discussed above,
we do not observe a local accumulation of Ag+ ions at interstitial sites,
which should correspond to additional local maxima in the respective
pair distribution functions compared to the reference structure. How-
ever, such an effect might very well occur at higher temperatures, and the
observed effects are fingerprints of the instability of the lattice towards
this kind of dynamical defect formation. Irrespective of the exact type
of defect formation, the observed dynamical effect hints at a strong form
of premelting phenomenon in AgCl, which has an experimental melting
temperature of 728 K.

Similar effects can be observed in silver bromide (AgBr).
As discussed in Ref. [159], the dynamical properties of AgCl and AgBr
share many similarities with the chemically related material AgI pre-
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sented in the previous section. In contrast to AgI however, they do not
become superionic conductors before melting, despite the increased ion
mobility presented here.

4.6 Anharmonicity and Boltzmann transport

As previously mentioned, there are two established approaches to com-
pute thermal conductivities in solids from first principles: Fully anhar-
monic Green Kubo simulations, and Boltzmann transport theory with
perturbative treatment of phonon-phonon interactions.
In order to assess the need for non-perturbative simulations, we have
reproduced thermal conductivities calculated by a state-of-the-art Boltz-
mann transport approach published by Xia and coworkers in Ref. [130]
in the light of the previously introduced anharmonicity measure 𝜎A in
Fig. 4.23.
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Figure 4.23: Boltzmann transport calcula-
tion of thermal conductivity at room tem-
perature including third- and fourth-order
contributions to the potential-energy sur-
face for 34 zinc blende and rocksalt com-
pounds from Ref. [130]. 𝜅3

HA: Boltz-
mann transport with three-phonon scattering
rates computed from third-order terms, cf.
Eq. (3.80). 𝜅3: Boltzmann transport with
three-phonon scattering and additionally ac-
counting for phonon-frequency renormaliza-
tion via self-consistent phonon theory [89].
These approximations are compared with
𝜅3+4, i. e., the highest available level of the-
ory where both frequency renormalization
and four-phonon scattering are additionally
included in the computation of thermal con-
ductivity. The data points give the relative
change with respect to 𝜅3+4, i. e., 1 means
perfect agreement between different levels
of theory.

The figure shows a comparison of three different levels of perturbation
theory employed in that work: i) 𝜅3

HA with three-phonon scattering com-
puted from third-order force constants with harmonic dispersions, ii)
𝜅3, which includes the effect of phonon frequency renormalization at
finite temperature, and iii) 𝜅3+4, where additionally four-phonon scat-
tering from a fourth-order expansion of the potential-energy surface is
accounted for [88, 89, 165].4 We show the results from lower-level

4 The original nomenclature in Ref. [130] is
𝜅Ha

3ph for 𝜅3
HA, 𝜅SCPH

3ph for 𝜅3, and 𝜅SCPH
3,4ph for

𝜅4.

theory, 𝜅3
HA and 𝜅3, in comparison with the highest-available level, 𝜅3+4,

by computing their ratio, and discuss the relative changes as function of
one-shot 𝜎A values from our anharmonicity screening [141].5,

6

5 Xia and coworkers investigated 19 rock salt
and 17 zincblende compounds [130], from
which 18 (16) were included in our screen-
ing [141].
6 The computational details vary between
the study conducted by Xia and cowork-
ers in Ref. [130], and our anharmonicity
screening [141]. Most importantly, Xia and
coworkers used the PBE xc-functional ex-
cept for PbTe, AgCl, and HgTe, for which
PBEsol was used [166, 167], whereas we
used PBEsol for all materials. The data
shown in Fig. 4.23 is therefore not fully con-
sistent. Nevertheless, we expect no quali-
tative changes due to the xc-functional mis-
match, since both functionals are of the GGA
type with closely related parametrizations.

The most harmonic rock salt material studied in Ref. [130], MgO with
𝜎A

OS = 0.17, shows good agreement between 𝜅3
HA and 𝜅3+4, with a

3.9 % increased value of 𝜅3
HA compared to 𝜅3+4. However, the agree-

ment relies on the cancellation of opposite changes arising from the
inclusion of frequency renormalization (𝜅3

HA → 𝜅3), which increases
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the calculated thermal conductivity by 13 %, and fourth-order scattering
(𝜅3 → 𝜅3+4), which subsequently reduces 𝜅 by 15 %. This cancellation
between frequency renormalization and fourth-order scattering is gener-
ally observed across the rock salt materials studied, and the differences
tend to grow with increasing anharmonicity: In PbSe (𝜎A

OS = 0.26), tem-
perature renormalization increases 𝜅3

HA by 82 %, whereas fourth-order
scattering subsequently reduces 𝜅 by 25 %, leading to a total increase
of 𝜅 by 36 % (𝜅3 → 𝜅3+4), or a 27 % underestimation of 𝜅3+4 by 𝜅3

HA,
respectively. The strongest deviation between 𝜅3

HA and 𝜅3+4 is seen for
KCl (𝜎A

OS = 0.43), where 𝜅3
HA overestimates 𝜅3+4 by 47 %.

The general trend of error cancellation when going from 𝜅3
HA through 𝜅3

to 𝜅3+4 in rock salt materials is in line with the findings by Ravichandran
and Broido in their study of NaCl with a closely related approach [90].

For the zincblende materials studied in Ref. [130], we ob-
serve a different trend: For all materials besides the strongly anharmonic
HgTe (𝜎A

OS = 0.35) and HgSe (𝜎A
OS = 0.59), the frequency renormal-

ization has a negligible to small effect on the thermal conductivity, with
a relative change of 0.3 % in the very harmonic BN (𝜎A

OS = 0.13), to
6.5 % in the mildly anharmonic InSb (𝜎A

OS = 0.23). Besides its mild ef-
fect on the dispersion, anharmonicity leads to four-phonon scattering of
growing strength, so that the difference between 𝜅3

HA and 𝜅3+4 becomes
significant, e. g., for InP (𝜎A

OS = 0.18), where 𝜅3
HA overestimates 𝜅3+4 by

78 %. Already in AlSb with 𝜎A
OS = 0.20, 𝜅3

HA is 115 % larger than 𝜅3+4,
and in the most extreme case, HgTe, 𝜅3

HA is 4.5 times larger than the
reference value 𝜅3+4, as discussed in detail in Ref. [130]. These findings
and trends are in line with a similar study conducted by Ravichandran
and Broido on 17 zincblende compounds by a related Boltzmann trans-
port approach [131], although their findings do not agree quantitatively,
partially due to different different xc-functionals.7,

8 7 Ravichandran and Broido use the local-
density approximation for all materials.
8 Xia and coworkers find consistently lower
thermal conductivities, which can be ex-
plained by the different treatment of elec-
tronic structure as noted above, and other
methodological differences. However, the
ratio of computed thermal conductivities
when using third vs. third and fourth or-
der scattering is in good agreement for all
materials [130, 131].

These findings show that higher-order anharmonicity can
have significant impact on room-temperature thermal con-
ductivities, already in simple, mildly anharmonic materials (InP,
AlSb), and change results drastically in strongly anharmonic materials
(HgTe, HgSe). In cases where lowest-order perturbation theory pre-
dicts thermal conductivities in agreement with higher-order approaches,
this is often due to error cancellation, as discussed for the rock salt
materials [90].

4.7 Conclusion

Using the anharmonicity measure 𝜎A introduced in Sec. 4.1, we have
shown that anharmonicity defined in this way strongly correlates with
bulk thermal conductivity in simple semiconductors and insulators.
Based on this finding, we have suggested candidate thermal insulator
materials for further study. In these materials, we have observed a va-
riety of non-perturbative dynamical effects, and discussed them for the
prototypical systems KCaF3, 𝛾-CuI, 𝛽-AgI, and AgCl. The common
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feature of these effects is that they reflect thermodynamic phenomena
which are known to occur in the respective materials, but at significantly
higher temperatures. This comprised the onset of structural phase tran-
sitions in KCaF3, fingerprints of a superionic phase in CuI and AgI, and
pre-melting phenomena in AgCl and AgBr. Although these phenomena
are known, we have presented a new way of finding and discussing these
effects in terms of the time-resolved anharmonicity measure 𝜎A (𝑡).
In the same light, we have scrutinized Boltzmann transport approaches
for computing thermal conductivity. We found that higher-order an-
harmonicity can play an important role and lower thermal conductivity
considerably, even in simple compounds at room temperature. This calls
for the necessity of non-perturbative approaches, for two reason: First,
the inclusion of fourth-order scattering cannot necessarily be consid-
ered sufficient when significant differences compared with third-order
scattering are observed. Second, treating fourth-order terms is computa-
tionally very demanding and has hitherto only been performed for simple
systems with high symmetry. When aiming for a consistent and accurate
simulation of thermal conductivities across materials spaces containing
more complex systems, non-perturbative calculations in terms of ab
initio Green Kubo simulations therefore seem necessary. In the next
chapter, we introduce and benchmark this method, before applying it to
materials from the list of candidates identified earlier.





5
Ab Initio Green Kubo: Implementation

The theoretical background for the ab initio simulation of thermal con-
ductivity has been established in the previous chapters, in particular,
Chp. 3. The purpose of this chapter is to discuss the practical imple-
mentation of the respective formulas for two benchmark materials. The
scheme is implemented in FHI-vibes [168].

We restate the Green-Kubo formula for the thermal conductiv-
ity initially introduced in Sec. 3.5 as

𝜅𝛼𝛽 (𝑇) =
∫

dΓ0 𝜅𝛼𝛽 (Γ0) 𝑓𝑇 (Γ0) , (5.1)

where 𝜅𝛼𝛽 (𝑇) are the Cartesian components of the thermal conductivity
tensor at temperature 𝑇 ,1 and Γ0 are phase-space configurations with a 1 𝑇 represents all thermodynamic conditions

in the simulation, including pressure 𝑝.respective ensemble weight 𝑓𝑇 (Γ0) at the given temperature. For each
phase-space configuration Γ0, the thermal conductivity is computed as

𝜅𝛼𝛽 (Γ0) = 𝑉

𝑘B𝑇2 lim
𝑡c→∞

∫ 𝑡c

0
d𝑡 𝐶𝛼𝛽𝐽𝐽 (Γ0, 𝑡) . (5.2)

Here,𝐶𝛼𝛽𝐽𝐽 (Γ0, 𝑡) denotes the heat flux autocorrelation function (HFACF),

𝐶
𝛼𝛽
𝐽𝐽 (Γ0, 𝑡) = lim

𝑡0→∞
1

𝑡0 − 𝑡

∫ 𝑡0−𝑡

0
d𝑠 𝐽𝛼 (Γ𝑡+𝑠)𝐽𝛽 (Γ𝑠) , (5.3)

which can be viewed as an average over all available starting conditions
Γ𝑠 during a simulation of length 𝑡0. Each phase-space point Γ𝑡 is re-
lated to the initial configuration Γ0 through the canonical time evolution
determined by the many-body Hamiltonian of the system, H(Γ). Equa-
tion (5.1) through (5.3) represent an exact reformulation of the Green
Kubo formula.

In order to evaluate these equations in finite simulations,
the integrals need to be discretized and truncated to finite domains.
First, we approximate Eq. (5.1) by choosing a finite set of 𝑀 starting
configurations Γ𝑖0, so that

𝜅𝛼𝛽 (𝑇) ≈ 1
𝑀

𝑀∑︁
𝑖=1

𝜅𝛼𝛽 (Γ𝑖0) , (5.4)

where the starting conditions Γ𝑖0 are chosen from NVT molecular dy-
namics simulations for the thermodynamic conditions of interest. For
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each starting condition Γ𝑖0, we perform NVE molecular dynamics simu-
lations to generate the time evolution of the system, Γ𝑖𝑡 , and evaluate the
heat flux, 𝐽𝛼 (Γ𝑖𝑡 ) along this trajectory. The simulation is performed for a
total simulation time 𝑡0, thereby truncating the time integral in Eq. (5.3).
From the resulting autocorrelation function of finite length, the thermal
conductivity is computed via Eq. (5.2), where a cutoff time 𝑡c < 𝑡0 is
chosen to avoid integrating parts of the autocorrelation function after
it has effectively decayed, as non-zero values are only due to statistical
fluctuations stemming from finite size and time effects [169]. After
computing the thermal conductivity for each trajectory, the final value is
given by Eq. (5.4), i. e., by the mean of the individual trajectories. The
statistical error due to the finite ensemble average is estimated by the
standard error, i. e., the standard deviation of the mean,

Δ𝜅𝛼𝛽 (𝑇) = 1√
𝑁

√︄
1
𝑁

∑︁
𝑖

(
𝜅𝛼𝛽 (𝑇) − 𝜅𝛼𝛽 (Γ𝑖0)

)2
. (5.5)

From the Cartesian components of the thermal conductivity 𝜅𝛼𝛽 (𝑡), the
scalar thermal conductivity 𝜅(𝑇) is obtained via

𝜅(𝑇) = 1
3

∑︁
𝛼

𝜅𝛼𝛼 (𝑇) . (5.6)

In empirical force field approaches, the appearing equations can
be evaluated as is, and convergence in size and time can be checked in
a brute-force way by increasing the respective scales well beyond the
necessary limits. From an ab initio perspective, the accessible size
and time scales are each at least two orders of magnitude lower,2 and 2 Force fields: 1 ns for 10000 atoms within

1 day on one supercomputer node, ab initio:
50 ps for 200 atoms within 1 months on five
supercomputer nodes.

additional steps are necessary to increase the amount of information that
can be extracted from the comparatively short simulations. The purpose
of this chapter is to discuss these additional steps in detail: First, we
present steps to remove noise from the heat flux autocorrelation functions
𝐶𝐽𝐽 (𝑡), which enables to choose cutoff times 𝑡c in a numerically robust
way. Next, we discuss the size extrapolation scheme in terms of the
harmonic mapping presented in Sec. 3.7 which allows to correct for the
finite size of simulations cells used in ab initio molecular dynamics
simulations. Finally, we discuss the necessary simulation times 𝑡0 and
how those can be estimated for novel materials.

We present the implementation in detail for the case of per-
iclase magnesium oxide (MgO) which is well-known in the literature,
and, as a rather harmonic material, a typical benchmark system for per-
turbative heat transport techniques. We then apply the same approach to
the strongly anharmonic marshite copper iodide (CuI), for which basic
assumptions of perturbation theory are violated, as we will explain in de-
tail. Both structures are studied at GGA level of theory using the PBEsol
functional and light-default basissets in FHI-aims [119, 167]. Supercell
sizes are 216 atoms each, and the MD simulations are performed via
FHI-vibes [168, 170]. The aiGK methods as described is implemented
in FHI-vibes as well. Force constants for the size extrapolation via har-
monic mapping are obtained via regression from the MD runs via the
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temperature dependent effective potentials code (TDEP) [171].3 The 3 See also appendix C.

MD runs are thermalized using the pre-thermalization technique out-
lined in Sec. 2.4.1 using finite-differences force constants obtained via
phonopy [172]. Afterwards, a Langevin thermostat at the target tem-
perature (300 K) is used to perform NVT sampling. After and initial
sampling period of 2.5 ps, the thermal pressure is relaxed according to
the scheme outlined in Sec. D.2 in the appendix to account for ther-
mal expansion. Starting points Γ𝑖0 for the NVE simulations are chosen
from an NVT run for the relaxed supercell at least 2 ps apart. The time
step for the MD simulation was chosen as 5 fs, which corresponds to a
tenth of the shortest period duration of the harmonic spectrum of MgO
(𝜔max ≈ 20 THz).

5.1 Noise reduction scheme and cutoff estimation

5.1.1 Discard non-contributing terms

The raw ab initio heat flux used in this work was defined in Eq. (3.56)
and is given for a phase-space point Γ𝑡 = {R(𝑡), ¤R(𝑡) } by

Jraw (𝑡) = 1
𝑉

∑︁
𝐼

𝜎𝐼 (𝑡) ¤R𝐼 (𝑡) , (5.7)

where 𝜎𝐼 (𝑡) ≡ 𝜎𝐼 [R(𝑡)] are atomic virial tensors for the configuration
at the given time 𝑡 as defined in Eq. (3.54), and ¤R𝐼 (𝑡) is the velocity of
atom 𝐼 as usual. We split the raw flux in two parts,

Jraw (𝑡) = 1
𝑉

∑︁
𝐼

𝛿𝜎𝐼 (𝑡) ¤R𝐼 (𝑡) + 1
𝑉

∑︁
𝐼

⟨𝜎𝐼⟩ ¤R𝐼 (𝑡) , (5.8)

where ⟨𝜎𝐼⟩ is the average atomic virial, and 𝛿𝜎𝐼 (𝑡) is the time-dependent
part. In the absence of diffusion, the second term is the total time
derivative of a bounded vector field,

∑
𝐼 ⟨𝜎𝐼⟩ ¤R𝐼 (𝑡) = d

d𝑡
∑
𝐼 ⟨𝜎𝐼⟩ R𝐼 (𝑡).

By means of the gauge invariance principle introduced in Sec. 3.4.1, it
therefore does not contribute to the time integral in Eq. (5.2), and can be
discarded before evaluating the heat flux autocorrelation function [111].
We therefore always use the following heat flux expression:

J(𝑡) = 1
𝑉

∑︁
𝐼

𝛿𝜎𝐼 (𝑡) ¤R𝐼 (𝑡) . (5.9)

Depending on the material, discarding the non-contributing part from the
raw heat flux reduces the noise in the simulation massively, as shown for
the case of MgO in the upper panel of Fig. 5.1 (orange curves compared
to light blue curves).
Due to the finite time of the simulation, we furthermore enforce a van-
ishing expectation of the flux to remove bias from the resulting quantities
by removing the finite-time average, J(𝑡) → 𝛿J(𝑡) = J(𝑡) − ⟨J⟩𝑡 .

5.1.2 Noise filtering

After discarding the gauge-invariant contributions from the heat flux,
there is still a considerable level of noise in the HFACF, which hinders
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Figure 5.1: Heat flux autocorrelation func-
tion𝐶𝐽𝐽 (𝑡 ) (HFACF) as defined in Eq. (5.3)
and its cumulative integral, i. e., the thermal
conductivity 𝜅 (𝑡 ) as function of lag time
𝑡 . Light blue: 𝐶𝐽𝐽 (𝑡 ) and 𝜅 (𝑡 ) obtained by
using the raw flux as defined in Eq. (5.7). Or-
ange: After discarding the gauge-invariant
term in Eq. (5.8). Black curves: After ap-
plying additional, integral-preserving noise
filtering as explained in the main text. The
cutoff time 𝑡c is chosen based on the “first
dip” of the noise-filtered HFCAF. Compu-
tational details: The shown data is for the
𝜅𝑦𝑦-component of MgO in an aiMD simula-
tion of 60 ps total length using a time step of
5 fs. The heat flux was evaluated every four
steps. The system was thermalized to 300 K
using a Langevin thermostat. The system
size is 216 atoms in a cubic supercell.

a robust identification of the time at which it is fully decayed, i. e., the
cutoff time 𝑡c. Available techniques to identify cutoff times, such as the
first avalanche method introduced in Ref. [173], are not fully parameter-
free, and need hand tuning, even if very little.4 We therefore suggest 4 The first avalanche technique determines

cutoff times by means of a signal-over-noise
ratio and relies on two parameters, a window
size for computing moving averages, and a
threshold value for the resulting avalanche
function.

an approach that does rely only on a single parameter which is chosen
based on the vibrational spectrum of the material: Motivated by the fact
that the integrated HFACF, i. e., the cumulative thermal conductivity

𝜅(𝑡) = 𝑉

𝑘B𝑇2

∫ 𝑡

0
d𝑡′ 𝐶𝐽𝐽 (𝑡′) , (5.10)

is already a much smoother function than the HFACF itself, we ap-
ply a shape-preserving Savitzky-Golay filter to 𝜅(𝑡) as implemented in
Scipy [174, 175]. The remaining parameter is the window size for the
filter. It is chosen based on the vibrational spectrum of the material
by taking the period length corresponding to the slowest significant fre-
quency𝜔min. Thereby, all noise of higher frequency is effectively filtered
from 𝜅(𝑡), while all relevant time integrals are preserved by construction:
The cumulative kappa before (orange curve) and after (black curve) lie
right on top of each other in the lower panel of Fig. 5.1. The filter is
constructed such that the antisymmetry of 𝜅(𝑡) in time, 𝜅(−𝑡) = −𝜅(𝑡)
is respected.5 This also ensures that 𝜅(𝑡) vanishes identically at 𝑡 = 0. 5 The antisymmetry of 𝜅 (𝑡 ) is a consequence

of the time symmetry of 𝐶𝐽𝐽 (𝑡 ) .Based on the filtered cumulative thermal conductivity, the HFCAF can
be obtained by differentiating, which carries over the filtering to 𝐶𝐽𝐽 (𝑡).
The filtered HFACF can be obtained analytically by fitting spline func-
tions to 𝜅(𝑡), or numerically by applying the same filter on the numerical
gradient of 𝜅(𝑡). The resulting cumulative thermal conductivity 𝜅(𝑡)
and HFACF 𝐶𝐽𝐽 (𝑡) are shown as black curves in Fig. 5.1. From the
noise-filtered HFACF, the cutoff time 𝑡c is chosen by a “first dip” cri-
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terion, i. e., when 𝐶𝐽𝐽 (𝑡) drops to zero [173]. This corresponds to the
first significant plateau in 𝜅(𝑡) after removing the noise. With the cutoff
time 𝑡c, the resulting thermal conductivity for a given component of the
thermal conductivity tensor is given by the value 𝜅 = 𝜅(𝑡c) as indicated
by the dashed horizontal line in Fig. 5.1. The presented scheme will be
used for all reported values of thermal conductivity in the following.

5.2 Size extrapolation

After we have seen how the Green-Kubo formula is used to compute
thermal conductivities from the ab initio heat flux evaluated along aiMD
trajectories, we shortly review the size extrapolation scheme first intro-
duced in Ref. [15] and discussed in more detail in Sec. 3.7. The aim
of the size extrapolation is to correct for finite size effects occuring in
aiMD simulations, because the supercells used in ab initio simulations
are limited in size, and phonon modes of longer wavelength than the
supercell are therefore not included.

As discussed in Sec. 3.7, the correction works by computing the har-
monic contribution to the thermal conductivity 𝜅ha within the supercell
via Eq. (3.78)

𝜅
𝛼𝛽
ha = 𝑉𝑘B

∑︁
𝑏,q

𝑣𝛼𝑏 (q)𝑣𝛽𝑏 (q)𝜏𝑏 (q) , (5.11)

where 𝑣𝛼𝑏 (q) is the group velocity of a phonon mode with band index 𝑏

and commensurate wave vector q, and 𝜏𝑏 (q) is the lifetime obtained from
the autocorrelation function of the mode-resolved energy 𝐸𝑏 (q, 𝑡) as de-
fined and discussed in Eq. (3.81) [15], and shown in Fig. 5.2. For a given
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Analytic Figure 5.2: Fit of mode lifetimes for MgO at
300 K. Simulation performed with a timestep
of 5 fs for a simulation time of 60 ps. The
size of the simulatin cell was 216 atoms.
Left: normalized mode-energy autocorrela-
tion function 𝐺𝑠 (𝑡 ) as obtained from the
simulation by Eq. (3.70). Right: Analytic
expression of the form 𝐺𝑠 (𝑡 ) = e−𝑡/𝜏𝑠 af-
ter fitting mode lifetimes 𝜏𝑠 . The y-axis is
logarithmic such that exponential functions
appear as straight lines.

simulation { Γ𝑖𝑡 }, Eq. (5.11) is evaluated for all commensurate q-points,
and projected to the symmetry-inequivalent points in the Brillouin zone
determinded by the space group operations of the system to improve
the statistics [52]. The irreducible q-points in the Brillouin zone are ob-
tained by iteratively reducing the given grid with the available symmetry
operations for the system obtained by the spglib package [176].
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In the next step, the lifetimes 𝜏𝑏 (q) are interpolated to denser q-
point meshes by 𝜏𝑏 (q̃) = 𝜆𝑏 (q̃)𝜔−2

𝑏 (q̃) with a weakly q-dependent
function 𝜆𝑏 (q̃) obtained by linearly interpolating the lifetimes obtained
at commensurate q-points.6 The scaling of lifetimes with 𝜔−2

𝑏 (q) is 6 We use linear interpolation at variance with
Ref. [15], as we found it to be numerically
more robust. However, results should not
significantly depend on the interpolation al-
gorithm used to obtain 𝜆𝑏 (q̃) , as the physi-
cally relevant contribution is captured by the
𝜔−2

𝑏
(q) scaling.

rooted in basic phonon theory as discussed in detail by Herring [132].
For the acoustic modes at q = Γ = 0, where 𝜔(q → 0) → 0, the
value for 𝜆𝑏 (Γ) is obtained by averaging over values at the surrounding
q-points. For the new, denser grid, an interpolated value,

𝜅
𝛼𝛽
ha−int (𝑁q̃) = 𝑉𝑘B

𝑁q
𝑁q̃

∑︁
𝑏,q̃

𝑣𝛼𝑏 (q̃)𝑣𝛽𝑏 (q̃)𝜏𝑏 (q̃) , (5.12)

can be obtained, where 𝑁q̃ is the number of points in the new grid,
and the factor 𝑁q/𝑁q̃ accounts for the increased number points. The
bulk limit of Eq. (5.12) is obtained by computing interpolated values
for an increasing density of q-points. Since Eq. (5.12) is a Riemann
sum approximating the Brillouin zone integral

∫
d3𝑞, its convergence

can be expected to be linear in 𝑁−1/3
q̃ ≡ 1/𝑛𝑞 , where 𝑛𝑞 is number of

q-points per Cartesian direction. The slope of this curve can be used to
extrapolate the value of 𝜅ha to bulk limit, as shown in Fig. 5.3. With the
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Figure 5.3: Size extrapolatino correction to
bulk limit computed from Eq. (5.12) assum-
ing linear convergence in 1/𝑛𝑞 , where 𝑛𝑞 is
the number of q-points per Cartesian direc-
tion.

extrapolated value 𝜅ha−bulk, a correction can be obtained via

𝛿𝜅ha−correction = 𝜅ha−bulk − 𝜅ha , (5.13)

from which the final result for the thermal conductivity is obtained via

𝜅
𝛼𝛽
corrected = 𝜅𝛼𝛽 + 𝛿𝜅

𝛼𝛽
ha−correction , (5.14)

where 𝜅𝛼𝛽 is the value from the ab initio Green Kubo simulation. The
interpolation scheme effectively subtracts harmonic contributions to the
thermal conductivity from vibrations commensurate with the supercell,
and extrapolates them to the bulk limit, thereby including long-range
contributions otherwise not present in the simulation cell.

5.3 Simulation time convergence

After we have seen how the cutoff time 𝑡c in Eq. (5.2) can be obtained,
and finite-size errors can be corrected, we discuss the convergence of
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presented scheme as a function of the simulation time 𝑡0 in Eq. (5.3). We
do this for the case of MgO for three independent trajectories of 60 ps
length each. We truncate every trajectory in 10 % steps down to a length
of 6 ps, and apply the workflow presented in the previous sections to
each of the truncated trajectories. The convergence of the scalar thermal
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Figure 5.4: Thermal conductivity 𝜅 as func-
tion of the effective simulation time 𝑡eff

0 =
7.5 THz · 𝑡0 as defined in Eq. 5.15. Values
are given as the ensemble average over three
independent trajectories. The error bars are
computed according to Eq. (5.5) as the stan-
dard error of the ensemble average. The blue
curve is a logistic curve defined in Eq. (5.16)
fitted to the 𝜅 values, the dashed blue curve
is the infinite time limit of the fitted function.
Gray dots represent the thermal conductiv-
ity as given by the simulation without the
size-correction scheme.

Please note that the values for 𝜅 shown
here cannot be directly compared to the value
displayed in Fig. 5.1 or 5.3, because the latter
only show single components of single runs,
which can vary substantially from the total
average.

conductivity is shown in Fig. 5.4 as function of a dimensionless effective
simulation time 𝑡eff

0 , which we define via

𝑡eff
0 = 𝑡0 · 𝜔̄min , (5.15)

where 𝑡0 is the (truncated) simulation time, and 𝜔̄min is a characteristic
frequency for the slow degrees of freedom of the system, chosen as
the mean frequency of the lowest 20 % of the vibrational spectrum as
explained in Fig. 5.5. In MgO, this frequency is 7.5 THz. 0 10 20
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Figure 5.5: Vibrational density of states
(VDOS) for MgO. Light blue is the entire
VDOS, solid blue is the lowest 20 % of the
spectrum. 𝜔̄min is calculated as the average
frequency in the low part of the spectrum.

Figure 5.4 shows that the thermal conductivity converges after an effec-
tive simulation time of 𝑡eff

0 ≈ 300, which corresponds to a time of 40 ps,
where the value of 𝜅 reaches a plateau within the error bars. The overall
shape of the curve can be described as follows: Simulations shorter
than 20 ps (𝑡eff

0 ≲ 150) sample the early decay of the HFACF which
contribute about 30 W/mK to the total thermal condcutivity. After a
simulation time of 25 ps (𝑡eff

0 ≳ 190), the late decay of the HFACF is
sampled, contributing more than double the amount to the total thermal
conductivity of 68.8 ± 6.1 W/mK after the total simulation time. In the
plot, this two-step behavior is approximated by a logistic function

𝑓 (𝑡) = 𝐿

1 + exp
(
− (𝑡−𝑡inflection )

𝜏

) + 𝑓0 , (5.16)

which allows to accurately quantify the simulation times where the
second super-linear increase in 𝜅 occurs, i. e., the region in the vicinity
of the inflection point located at 𝑡inflection = 218, which corresponds to a
simulation time of 29 ps.
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5.4 Comparison to literature values

Periclase MgO is an important constituent of the earth mantle and
its thermal properties have been studied in detail both experimentally
and theoretically [117, 177–183]. We list the common experimen-
tal reference values for the thermal conductivity of periclase MgO in
Tab. 5.1. The aiGK value presented in this work agrees within the

Reference Thermal conductivity
at 300 K (W/mK)

Slack 1962 [178] 59.7
Touloukian et al. 1970 [179] 59.8
MacPherson and Schloessin 1983 [180] 61.7 ± 10.5
Andersson and Bäckström 1986 [184] 55.2 ± 0.4
Katsura 1997 [185] 65 ± 15 †

Dalton et al. 2013 [186] 53 ± 2
Hofmeister 2014 [187] 50.1
This work (theory) 68.8 ± 6.1

Table 5.1: Experimental values for the ther-
mal conductivity of periclase MgO at ambi-
ent conditions. The value marked by † was
computed from thermal diffusivity measure-
ments by Katsura according to Ref. [187]
with parameters from Ref. [188, 189].

statistical precision with the experimental value presented by MacPher-
son and Schloessin [180]. It slightly overestimates the values reported
by Slack [178], Touloukian et al. [179], and Katsura [185]. More re-
cent experiments by Dalton et al. and Hofmeister using laser-flash
experiments report lower values of thermal conductivity in the range of
50-55 W/mK [186, 187].
Overall, we overestimate the experimentally observed thermal conduc-
tivity by about 10-30 %, depending on the reference. This can be ex-
plained by two factors: First, the simulation deals with isotopically pure
MgO. Isotope scattering is known to decrease the thermal conductiv-
ity in MgO by up to 46 % when the natural abundance of magnesium
isotopes is considered [178, 182]. As MgO is a major constituent of
the earth mantle, available experiments investigate MgO in this form.7 7 Natural abundance of Mg in the earth

mantle is 80% 24Mg, 10% 25Mg, 10%
26Mg [190].

Second, the aiGK theory uses classical statistical mechanics, and nu-
clear quantum effects lowering the heat capacity of MgO and therefore
its thermal conductivity are neglected. These effects have been shown
to lower the thermal conductivity in MgO by about 5 % at 500 K [133],
a stronger effect can therefore be expected at 300 K. In total, an overesti-
mation of thermal conductivity in non-isotopically-pure MgO at ambient
conditions is therefore expected.8 8 Unfortunately, experimental measurements

for isotopically pure MgO are not available.We also compare to theoretical values listed in Tab. 5.2. Our study
agrees well with the values reported by de Koker, and Stackhouse and
coworkers [117, 181]. Both use non-perturbative ab initio molecular
dynamics-based methods and simulate isotopically pure MgO, they are
therefore closely related from a methodological point of view. All
other approaches are based on Boltzmann transport theory and ac-
count for isotope scattering. They are therefore smaller, overall by
about 10-15 W/mK, and mutually agree quite well irrespective of the
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Reference Thermal conductivity
at at 300 K (W/mK)

de Koker 2010 (LDA) [191] ≈ 75 †

Stackhouse et al. 2010 (LDA) [117] 58 ± 6 †

Tang and Dong 2010 (LDA) [182] ≈ 66
Dekura and Tsuchiya 2017 (LDA) [183] ≈ 54
Plata et al. 2017 (PBE) [192] 54.06
Xia et al. 2020 (PBE) [130] 50.1 − 58.7
This work 68.8 ± 6.1

Table 5.2: Theoretical values for the thermal
conductivity of periclase MgO at ambient
conditions. All cited approaches use a per-
turbative Boltzmann transport approach with
three phonon scattering. Xia and cowork-
ers use three different flavors of Boltzmann
transport theory and therefore give three val-
ues for thermal conductivity in the indicated
range. Values marked with † are extrapo-
lated values using data from higher tempera-
tures using Eq. (17) in Ref. [191] and Eq. (5)
in Ref. [117], respectively. See also discus-
sion in Ref. [193].

xc-functional. The only exception is the value reported by Tang and
Dong, which is about 20 % larger, which they partially attribute to un-
derestimated lattice constants due to their LDA functional [182].9 9 Indeed, Tang and Dong find a density of

MgO at ambient conditions of 3.70 g/cm3,
compared with an experimantal value of
3.58 g/cm3 [194].

In summary, the agreement with literature values can be
considered satisfactory, in particular with the related computa-
tional approaches by de Koker, and Stackhouse and coworkers. In
comparison to the experimental literature, we observe a systematic over-
estimation of available values, which is to be expected due to the lack
of isotope effects in our simulations, as discussed.

5.5 Case study copper iodide

After discussing our implementation of the aiGK method for periclase
MgO, we apply the presented methodology to zincblende copper iodide
(𝛾-CuI), also know as marshite. CuI is a transparent semiconductor
which shows several interesting electronic and thermal transport proper-
ties: In particular, its room temperature thermal conductivity is very low
with only 1.68 W/mK [195], which is typical for copper halide materi-
als [196]. In polycrystalline thin films, even lower thermal conductivities
of 0.48–0.55 W/mK have been reported [197, 198].
In our initial screening for anharmonic materials, CuI was detected
as particularly anharmonic, with a one-shot 𝜎A

OS = 0.37, and a value
of 𝜎A = 0.4 − 0.5 in molecular dynamics simulations. The peculiar
dynamical effects occuring in CuI, .i. e., formation of metastable Cu
defects below the superionic phase transition, have been discussed in
Sec. 4.5.2 in the previous chapter. CuI can therefore be considered a
bigger challenge for ab initio dynamical simulations compared to MgO.
Furthermore, as we have seen in Sec. 4.6, thermal transport in strongly
anharmonic zincblende compounds is often dominated by higher-order
phonon scattering, a strong deviation to Boltzmann transport simulations
based on third-order scattering can therefore be expected.
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5.5.1 Thermal conductivity

Following the same recipe presented earlier in this chapter, the con-
vergence of the aiGK thermal conductivity with effective simulation
time is shown in Fig. 5.6 for CuI at room temperature. The final value
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Figure 5.6: Thermal conductivity 𝜅 as func-
tion of the effective simulation time 𝑡eff

0 =
1.1 THz · 𝑡0 as defined in Eq. 5.15. Values
are given as the ensemble average over three
independent trajectories. The error bars are
computed according to Eq. (5.5) as the stan-
dard error of the ensemble average. The blue
curve is a logistic curve defined in Eq. (5.16)
fitted to the 𝜅 values, the dashed blue curve
is the infinite time limit of the fitted function.
Gray dots represent the thermal conductiv-
ity as given by the simulation without the
size-correction scheme.

of 1.38 ± 0.14 W/mK is approached within error bars after an effective
simulation time of 𝑡eff

0 = 40, which corresponds to 𝑡0 = 36 ps. The finite
size correction contributes about 0.26 W/mK to the thermal conductiv-
ity, i. e., 19 % of the total value.
Comparing this to the available literature in Tab. 5.3, we find good
agreement with the experimental reference value of 1.68 W/mK, while
the value is clearly above the thin-film limit of 0.55 W/mK [197]. The

Reference Thermal conductivity
at 300 K (W/mK)

CRC Handbook [195] (experiment) 1.68
Yang et al. [197] (experiment) 0.55 †

Togo et al. [199] (theory) 6.55–7.22
This work 1.38 ± 0.14

Table 5.3: Experimental values and one the-
oretical reference for the thermal conductiv-
ity of marshite CuI at ambient conditions.
The value from Yang et al. marked by † is
from a thin film experiment, and therefore
can be regarded as a lower bound of the bulk
thermal conducitivity [197].

theoretical reference on the other hand drastically overestimates the ther-
mal conductivity by a factor of ≈ 4 [199]. As discussed in Sec. 4.6, this
is expected since the theoretical reference uses a perturbative approach
in terms of third-order force constants obtained at the local minimum of
the potential-energy surface, which is problematic for CuI: As discussed
in Sec. 4.5.2, CuI inhibits effects like metastable defects, which are qual-
itatively different from the phonon picture of atoms moving about a well
defined reference position in a nearly harmonic potential. This supports
the assumption that higher than third-order terms of the potential-energy
surface are important when modeling the actual, strongly anharmonic
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dynamics of CuI with sufficient accuracy. These effects are, however,
naturally included in the non-perturbative aiGK formalism.

5.6 Conclusion

We have introduced the technical details of our aiGK implementation,
and discussed two benchmark systems at ambient conditions: Periclase
MgO, and marshite CuI. Although both structures are very simple cubic
structures with two atoms in the unit cell, they behave quite differently
from a dynamical point of view: MgO is a largely harmonic system
which can be regarded as a textbook example for phonon theory, where
all basic assumptions hold. In particular there are well defined reference
positions, and the deviation from perfectly harmonic interactions is quite
weak, with a 𝜎A = 0.17 signaling an anharmonic contribution to the
forces of about 17 %. CuI on the other hand is strongly anharmonic, with
𝜎A ≈ 0.4−0.5, and displays spontaneous formation of metastable inster-
stial defects as discussed in Sec. 4.5.2. While perturbative approaches
proved to be very accurate for MgO, and even had some advantages
compared to aiGK in situations where the material of interest is not fully
classical, or isotope scattering lowers the thermal conductivity substan-
tially, the differences were much bigger for the strongly anharmonic CuI,
where the perturbative approach overestimated the thermal conductivity
drastically, whereas the aiGK is in good agreement.

The aiGK method is therefore our method of choice for the
investigation of the strongly anharmonic candidate thermal insulators
suggested in Chp. 4.





6
Thermal Conductivities for Strongly Anharmonic Com-
pounds

After introducing the implementation of the ab initio Green Kubo (aiGK)
method in the previous chapter, we are now in position to present results
for the set of potential thermal insulators identified in chapter 4.
We first discuss the question of simulation time convergence for an initial
set of materials in order to predict systems which can be computed with
a simulation time of 30-60 ps. This time was chosen as a compromise
between the finite amount of available computational ressources and
the desire to compute as many materials from the list of candidates as
possible. In a second step, we compare the computed thermal conduc-
tivities at room temperature to experimental references for the subset of
materials for which experiments are available to further verify the aiGK
method beyond the two materials presented in the previous chapter. In
the last step, we present the computed thermal conductivities for the
remaining materials, i. e., those for which no experimental thermal con-
ductivity was reported before, and discuss how they fit into the schema
of predicting thermal insulators from anharmonicity estimates as dis-
cussed in Sec. 4.3. We eventually highlight the particularly interesting
class of chalcopyrite compounds and try to answer some open questions
from experimental and semi-empirical theoretical literature.

6.1 Convergence estimation

We discuss simulation time convergence in the light of the effective
simulation time introduced in Sec. 5.3. The key idea is to identify lower
boundaries for the necessary effective simulation time in a material in
order to asses whether a time-converged thermal conductivity is possible
to obtain within a simulation time of 30-60 ps. For choosing these
boundaries, we leverage the observed convergence behavior of seven
materials, i. e., MgO, NaF, KMgF3, NaCl, NaBr, CuI, and NaI, each
of them computed with 60 ps simulation time. We thereby define four
thresholds of minimal effective simulation time based on a material’s
anharmonicity 𝜎A, reflecting that phonons in harmonic materials like
MgO have longer lifetimes than those in anharmonic materials. The
criteria are displayed in Fig. 6.1. In particular, we define the thresholds
𝑡eff
0 > 240 for harmonic materials with𝜎A ≤ 0.2, 𝑡eff

0 > 120 for materials
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with 0.2 < 𝜎A ≤ 0.3, 𝑡eff
0 > 60 for materials with 0.3 < 𝜎A ≤ 0.4, and

𝑡eff
0 > 45 for materials with 𝜎A > 0.4.
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Figure 6.1: Illustration of minimal necessary
effective simulation times. Upper left: 𝑡eff

0 =

240 for harmonic materials with 𝜎A ≤ 0.2.
Upper right: 𝑡eff

0 = 120 for materials with
0.2 < 𝜎A ≤ 0.3. Lower left: 𝑡eff

0 = 60
for materials with 0.3 < 𝜎A ≤ 0.4. Lower
right: 𝑡eff

0 = 45 for materials with 𝜎A > 0.4.

We point out that at this stage, the given thresholds are meant as a
necessary condition for convergence, which ensures that a significant
contribution to the cumulative thermal conductivity is included in the
simulation. A statement about the sufficient simulation time, however,
can only made on the level of individual trajectories by means of longer
simulation times. This verification should therefore be reserved for
materials that show interesting properties after the necessary simulation
time.
Based on this estimation, we identify 57 materials out of the list of
112 candidates to compute thermal conductivity on, and discuss those
in the following: First we compare thermal conductivities for 24 of
these 57 materials to the experimental literature in order to benchmark
the aiGK method, afterwards we present and discuss our findings for the
remaining 33 materials without experimental reference.

6.2 Comparison to experiment

In order to asses the validity of the aiGK method for the computation of
thermal conductivity in anharmonic compounds, we compare results for
21 materials to the experimental literature. A detailed list including all
considered experimental references is given in Tab. H.1 in appendix H.
The difficulties when comparing to experimental references have been
discussed in detail for periclase MgO in Sec. 5.4. In principle, these
carry over to all other compounds, however, for most materials, the
body of literature is much smaller compared to MgO. The list of exper-
iments also includes measurements on polycrystalline samples. While
thermal conductivity should be reduced in polycrystalline samples com-
pared to single crystals because of boundary scattering, experimental
studies have shown that the effect is minor in sufficiently dense poly-
crystalline samples, especially in low thermal conductivity materials
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which are less sensitive to boundary scattering due to their intrinsi-
cally low phonon mean free paths [177]. In the course of our literature
review we have generally found differences of 0-20 % between mea-
surements on single- and polycrystalline samples, which supports this
finding. Nevertheless, additional care must be taken when evaluating
literature on polycrystalline samples: Experiments aiming at measuring
other properties besides thermal conductivity, in particular the thermo-
electric figure of merit 𝑧𝑇 , typically do not attempt to reproduce the bulk
thermal conductivity, and use less dense samples, which is beneficial for
reducing thermal conductivity and thereby increasing the figure of merit.
The resulting thermal conductivity will then be determined mostly by
the details of the sample processing, and a comparison to bulk thermal
conductivity is not meaningful. However, some experiments specifically
aim at reproducing polycrystalline samples of near-bulk density in order
to assess the bulk thermal conductivity of a material. Only experiments
on polycrystalline samples of this type are considered in this work.
A comparison of thermal conductivities computed via the aiGK method
as introduced in the previous chapter and the experimental literature
is shown in Fig. 6.2. Overall, we find very good agreement in the
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Figure 6.2: Comparison to experiment.
Bullets(•): Single crystal. Stars (★): Con-
tains data from polycrystalline experiment.
Error bar in y-direction: Statistical uncer-
tainty for 𝜅aiGK from standard error over in-
dividual trajectories. Diagonal line: Agree-
ment with experiment or mean of experi-
ments if multiple available. Dark grey re-
gion: Agreement between mean experiment
and mean computation with ±15 % devia-
tion. Light grey region: Agreement be-
tween mean experiment and mean compu-
tation with ±50 % deviation.

24 considered materials, with 10 out of 24 being within experimental
accuracy of ±15 %, and all other within an extended accuracy which we
choose as ±50 % within the average experimental reference, reflecting
the high degree of variation in experimental values for materials where a
significant amount of references is available, see our discussion for MgO
in Sec. 5.4 and the discussion in Ref. [10]. A list of the computed values
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including simulation times and corresponding effective simulation time
is given in Tab. 6.4 below.
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for LiH compared to the clas-

sical Dulong-Petit value.

The strongest deviation from experiment is seen for LiH, which is com-
puted as 𝜅aiGK = 23.6 ± 4.0 W/mK, where the available experimental
value is 𝜅exp = 14.7 W/mK [200]. However, both lithium and especially
hydrogen are light elements, so that LiH is not fully classical at room
temperature, as can be estimated by comparing the harmonic heat capac-
ity of LiH at 300 K to the classical Dulong-Petit value in Fig. 6.3 [76].
The harmonic heat capacity for LiH is only at about 50 % of the clas-
sically expected value of 6𝑅 = 49.9 J/mol/K for solids with two atoms
in the unitcell. This value can only be taken as an upper boundary to
the deviation in thermal tranpsort properties expected from the lack of
nuclear quantum effects, since low-frequency phonon modes already
behave more classical at the given temperature [201, 202]. A significant
overestimation by the classical Green Kubo method can nevertheless be
expected in this material.1 Interestingly, the aiGK value agrees very 1 We evaluated several schemes to quan-

titatively correct for nuclear quantum ef-
fects [203, 204], however, the literature
seems to agree that this is an open problem
for thermal conductivity in bulk solids, see
in particular discussions in Ref. [133, 205].

well with another computational study by Lindsay, who found a value of
𝜅 = 23.00 W/mK using third-order Boltzmann transport [206].2 In that

2 Lindsay used an LDA exchange-correlation
functional, which thermal conductivity can
deviate ±20 % from the PBEsol functional
used in this work [15]. However, the dis-
agreement with experiment is still signifi-
cantly larger then the potential inaccuracy
stemming from the xc functional.

approach, the quantum nature of nuclei should be better captured than in
the aiGK method, and Lindsay ascribes the deviation from experiment
to higher-order phonon-phonon interactions neglected in their approach.
This discussion is in line with the more phenomenological discussion
proposed by Slack in Ref. [200], where he points out the strong anhar-
monicity in LiH that manifests in the change of phonon frequencies as
measured by the Grüneisen parameter. Indeed, in our study we find a
value of 𝜎A = 0.30 for the strength of anharmonicity in LiH, which can
be expected to be even larger when nuclear quantum effects are consid-
ered.3 We therefore suggest LiH as an interesting yet simple candidate 3 Nuclear quantum effects increase the anhar-

monic strength of LiH at room temperature
by about 20 % [207].

for studying the interplay of strong anharmoncity and nuclear quantum
effects in bulk solids in future work.

power law fit

0.1 0.2 0.3 0.4 0.50.6
fA

100

101

102

103

^ 3
00

K
(W
/m

K
)

ZB
RS
WZ
new materials

Figure 6.4: Thermal conductivity at room
temperature vs. anharmonicity measure.
ZB: zincblende, RS: rock salt, WZ: wurtzite,
cf. Fig. 4.9.

0 10 20
κaiGK

300K

0

5

C
ou

nt

Figure 6.5: Summary of the range of thermal
conductivities for materials without experi-
mental reference found in this study.

Another noteworthy material in the list is SnSe: We predict the ther-
mal conductivity of SnSe to be 1.40 ± 0.38 W/mK, which is on the
upper limit of the experimental references and agrees reasonably with
the measurements by Wei and coworkers on near-bulk-density polycrys-
talline samples yielding a value of 𝜅 = 1.3 W/mK [10]. However, this
value is twice as big as the ultralow thermal conductivity of 0.6 W/mK
reported in the seminal work on record-high thermoelectric figure of
merit in Snse by Zhao and coworkers [8]. Our findings support the cri-
tique of Wei and coworkers that the SnSe crystals studied by Zhao and
coworkers contained a non-negligible amount of defects and were heav-
ily modified structurally, as reflected by an approximately 10 % lower
density of the studied samples compared to theoretical bulk limit and
measurements reported by other groups [10].

6.3 New materials and relation to anharmonicity

After validating the aiGK method against experimental literature, we
present results for 33 materials without experimental reference. We
display these values in the context of the 𝜅 vs. 𝜎A plot introduced
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in Fig. 4.9, where we identified a power-law relation of experimental
thermal conductivities with the anharmonicity measure 𝜎A for simple
elementary and binary materials. We show the data again in Fig. 6.4, but
this time including the additional, non-experimentally measured mate-
rials computed in this work. It is apparent that the correlation between
thermal conductivity 𝜅 and 𝜎A carries over from the simple materials to
the more complex binary and ternary compound classes studied in this
work, since the power-law fit in Fig. 6.4 is still performed with respect to
the experimental values initially presented in Fig. 4.9. While the overall
trend of decreasing thermal conductivity with increasing anharmonicity
is clearly preserved, the spread of 𝜅 values for materials with similar 𝜎A

or vice versa increases, which is expected due to the increased structural
and chemical complexity of the studied materials.
Focusing on the new materials, we show a zoomed-in part of the 𝜅 −𝜎A

plane in Fig. 6.6, with only computational data, highlighting the ma-
terials where no experimental reference is available. In particular,
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Figure 6.6: Thermal conductivity at room
temperature computed via ab initio Green
Kubo (aiGK) vs. anharmonicity measure.
Filled symbols denote materials without ex-
perimental reference. Left: Overview of
studied materials without experimental ref-
erence. Materials with experimental refer-
ence are included as small dots for reference.
Right: Zoom into the region 𝜅 ≤ 5 W/mK.
Open symbols represent materials where
experimental reference is available. The
dashed line and shaded area are the same as
in Fig. 6.4, i. e., they represent a power-law fit
to experimental thermal conductivities and a
±50 % margin.

we find 28 new materials with a computed bulk thermal conductiv-
ity of 𝜅aiGK < 10 W/mK, 24 of which show 𝜅aiGK < 5 W/mK, and
8 with 𝜅aiGK ≤ 2 W/mK, i. e., comparable to the bulk thermal con-
ductivity of existing and candidate thermoelectric materials such as
Bi2Te3 and Bi2Se3 (1.3 W/mK [208, 209]), PbTe (2.0 W/mK [210]),
SnSe (1 W/mK [8, 10, 211]), M2Sb3 (2.3 W/mK [212, 213]), or GeTe
(2.5 W/mK [214]). A full list of all values is given in Tab. 6.3, and a
histogram of the values is shown in Fig. 6.5. The materials of very low
thermal conductivity comprise simple binary, cubic materials such as
the rock salt structures CsF (𝜅aiGK = 0.84) and LiI (𝜅aiGK = 1.07), or the
fluorite structure Na2Te (𝜅aiGK = 1.64), but also more complex struc-
tures such as the strongly anharmonic perovskites KCdF3 (𝜅aiGK = 1.67)
and KCaF3 (𝜅aiGK = 2.00).
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6.3.1 Chalcopyrite systems

Particularly noteworthy is a class of ternary materials, so-called chal-
copyrites, a tetragonal crystal class closely related to the zincblende
structure [215]. These crystals have been studied in the past primarily
because of their non-linear optical properties [216], but also thermal
transport properties have been studied [215, 217, 218], mainly because
thermal transport can limit the optical efficiency in these devices [219].
However, experimental references for this class of materials are scarce,
and do not agree well [219]. Picking AgGaSe2 as an example, there are

Reference Thermal conductivity at 300 K
(W/mK)

Berger 1966
(experiment) [220]

2.7

Beasley 1995
(experiment) [219]

1.1

This work (theory) 0.6 ± 0.2

Table 6.1: Overview of experimental refer-
ences for AgGaSe2.

two distinct measurements available as summarized in Tab. 6.1, rang-
ing from 1.1 − 2.7 W/mK [219, 220]. These values are complemented
by calculated values based on semi-empirical models, ranging from
4.8 − 9.0 W/mK [215, 221]. Our computed thermal conductivities are
collected in Tab. 6.2.

Material 𝜅aiGK (W/mK) 𝜎A

AgAlS2 1.01 ± 0.20 0.33
AgAlSe2 0.62 ± 0.16 0.37
AgGaSe2 0.61 ± 0.18 0.35
GaLiTe2 0.81 ± 0.15 0.31
InLiTe2 1.01 ± 0.26 0.33

Table 6.2: Overview of computed thermal
conductivities for chalcopyrite materials.

Besides AgGaSe2, there is experimental reference for the chemically
closely related material, AgGaS2, with a measured thermal conductivity
of 1.4 W/mK [219]. While our computational data might underestimate
the thermal conductivity in these compounds slightly4, we nevertheless 4 Please keep in mind, that the absolute errors

are only of the order of 0.5-1 W/mK.see a clear indiciation of very low intrinsic thermal conductivity in
AgGaSe2, and the chemically closely related compounds AgAlS2 and
AgAlSe2. At least regarding their thermal transport properties, they
are therefore comparable or even superior to the existing thermoelectric
materials listed in the previous section, while being free of heavy metals
such as Pb or Bi. The class of chalcopyrite materials has recently
been investigated in a high-throughput study conducted by Plata and
coworkers [222]. Their findings are overall in line with ours, supporting
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the finding that the class of chalcopyrite materials may comprise several
promising thermal insulators.
To qualitatively elucidate the nuclear dynamics of the chalcopyrite sys-
tems, we present phonon spectral functions obtained from a temperature
dependent model Hamiltonian for the nuclear system up to third-order
displacements to estimate phonon-phonon interactions in Fig. 6.7 [54,
171, 223]. The common feature of these dispersions are the very flat

AgGaSe22 AgAlSe2

GaLiTe2 InLiTe2

Figure 6.7: Spectral functions for the
chalcopyrite materials, AgGaSe2, AgAlSe2,
GaLiTe2, and InLiTe2.

acoustic branches which vary less than 1 THz across the entire Brillouin
zone, and a multitude of flat, nearly degenerate optical branches showing
very litte to no dispersion. From a phonon-theory point of view, non-
dispersive branches correspond to localized atomic motion in the system
and therefore carry little heat beyond the Einstein-like diffusion of ther-
mal energy from atom to atom, which is the dominant heat transport
mechanism in structurally disordered systems like glasses [91]. Fur-
thermore, in particular the optical branches are substantially broadened,
which corresponds to strong anharmonic coupling in these systems,
reducing their thermal conductivity.

6.4 Conclusion

We have estimated the convergence of aiGK simulations in terms of an
effective simulation time focusing on the slow degrees of freedom of the
system, and validated the approach against experimental values from the
literature. In total, we computed thermal conductivities for 57 materi-
als and verified our screening approach in terms of the anharmonicity
measure 𝜎A. We found that the overall trend of decreasing thermal con-
ductivity when anharmonicity increases initially inferred from the set of
simple compounds carried over qualitatively to the more complex bulk
materials considered in this work. We presented thermal conductivities
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for 33 materials where experiemental reference is not yet available, and
identified the family of chalcopyrite crystals as a potentially interest-
ing class of low thermal conductivity compounds, with several systems
showing very low thermal conductivity of 𝜅 ≈ 1 W/mK at room tem-
perature, which is comparable to or even below currently investigated
thermoelectric candidates such as SnSe or Mg2Sb3 [8, 10, 211, 213,
226–230]
The raw data for all simulations is made available via the NOMAD
repository [231], see Sec I in the appendix for more information.
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Space group material 𝜅aiGK

(W/mK)
𝜎A 𝑡sim (ps) 𝑡eff (1)

122 AgAlSe2 0.62 0.37 60 90.50
122 GaLiTe2 0.81 0.32 60 195.78
225 CsF 0.84 0.48 30 51.68
122 InLiTe2 1.01 0.34 60 192.73
122 AgAlS2 1.01 0.33 60 125.88
225 LiI 1.07 0.49 30 92.67
225 Na2Te 1.64 0.38 30 62.88

62 KCdF3 1.67 0.53† 30 57.29
62 KCaF3 2.00 0.52 30 65.03

225 Rb2O 2.08 0.47 30 51.66
216 ZnPLi 2.09 0.27 30 148.55
166 InNaSe2 2.22 0.34 30 61.30
221 CsCdF3 2.30 0.35 30 76.13
166 InLiSe2 2.34 0.40 30 88.77
225 Na2Se 2.63 0.35 30 70.78
225 Li2Te 3.24 0.36 30 163.92
221 BaLiF3 3.27 0.29 60 238.35
225 KH 3.39 0.37 30 324.72
221 RbZnF3 3.47 0.32 60 201.23
225 K2O 3.67 0.38 30 65.37
225 LiCl 4.14 0.40 30 111.75
166 Sr2HN 4.17 0.26 30 315.26
225 Na2S 4.40 0.33 30 83.19
225 Li2Se 4.55 0.33 30 165.51
216 LiAsMg 4.67 0.26 30 137.35
166 LiScS2 6.42 0.27 30 136.40
221 RbMgF3 6.94 0.24 60 239.85
216 LiNZn 8.42 0.27 30 224.97
166 InNaO2 9.71 0.23 30 135.24
166 CuGaO2 12.82 0.22 30 133.25
166 LiRhO2 13.37 0.21 30 167.81
225 Li2S 13.85 0.31 30 166.44
225 Li2O 21.39 0.29 30 209.74

Table 6.3: Bulk thermal conductivities and
simulation times for materials without ex-
perimental reference. †: The anharmonicity
measure for KCaF3 is increased when the
entire simulation is taken into account with
𝜎A ≈ 1.32, since the simulation is close
to a structural phase transition. We observe
jumps in 𝜎A (𝑡 ) similar to those discussed
for KCaF3 in Sec. 4, but more pronounced.
When KCdF3 is close to the orthorombic ref-
erence, 𝜎A ≈ 0.53. Structural phase transi-
tion are known to occur in KCdF3 at around
470 K [224, 225].
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Space group material 𝜅aiGK

(W/mK)
𝜎A 𝑡sim (ps) 𝑡eff (1)

216 CuCl 0.49 2.21 60 73.85
225 AgCl 0.50 1.04 60 53.32
122 AgGaSe2 0.61 0.36 60 67.86
225 NaI 0.96 0.43 60 86.78
164 Mg3Sb2 1.10 0.33 30 62.29
216 CuI 1.38 0.67 60 68.73

62 SnSe 1.40 0.34 60 80.19
225 LiBr 1.60 0.47 30 98.96
225 CdF2 2.24 0.42 30 97.99
225 RbF 2.26 0.40 30 61.49
225 NaBr 2.35 0.40 60 106.21
225 BaO 3.09 0.35 30 89.43
225 KF 4.38 0.37 30 77.83
225 SrF2 4.70 0.30 30 118.65
221 KZnF3 5.65 0.32 60 174.92
225 SrO 5.98 0.22 30 132.22
225 NaCl 6.66 0.37 60 148.13
225 CaF2 7.61 0.31 30 119.75
221 KMgF3 10.08 0.24 60 216.50
225 LiF 13.78 0.33 30 179.59
225 NaF 14.03 0.32 60 237.57
225 LiH 23.56 0.30 30 351.83
225 CaO 28.95 0.19 60 324.41
225 MgO 67.84 0.17 60 452.82

Table 6.4: Bulk thermal conductivities and
simulation times for materials with exper-
imental reference. Corresponding experi-
mental references are listed in Tab. H.1 in
appendix H.



Conclusion

Summary

We have presented a systematic study of ab initio thermal transport
in experimentally known semiconductors and insulators, focusing on
strongly anharmonic systems. To this end, we have developed a novel
scheme based on first-principles force calculations which enables to
measure the “strength of anharmonicity” in materials across chemical
space, and facilitates to uncover strongly anharmonic dynamical effects
in individual systems in a computationally efficient way [141]. We
found that this measure of anharmonicty, 𝜎A, correlates significantly
with experimental thermal conductivities, and used the logic to predict
materials with potentially low thermal conducitivity based on estimating
their anharmonic strength.
To study heat transport in these systems, we have presented a com-
prehensive exposition of classical Green-Kubo theory from first princi-
ples in the framework of DFT, and discussed the implementation of a
slightly adapted version of the ab initio Green Kubo (aiGK) method first
presented by Carbogno, Ramprasad and Scheffler in Ref. [15] in FHI-
vibes [168]. In Chp. 6.2, we have verified this approach by computing
thermal conductivities at room temperature for 24 materials which are
well characterized by experiments. We computed 33 more materials
without experimental reference, finding 28 materials with low ther-
mal conductivity 𝜅 < 10 W/mK, with several materials in the range
of state-of-the-art thermoelectrics ≤ 2 W/mK, in particular the class of
chalcopyrite materials discussed in Sec. 6.3.1.
The number of materials studied in this work with fully non-perturbative
ab initio Green Kubo theory of thermal transport is therefore an order of
magnitude higher than all previously published results for solid systems
combined. These comprise solid silicon and zirconia [15], ice X [16],
and amorphous silica [17].5 5 Further aiGK calculations have been pub-

lished for liquids: Liquid Argon, heavy wa-
ter, and water in different phases [14, 16,
17].

Outlook

To conclude the thesis, we want to give a short outlook on topics and
questions that naturally arise from this project.
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Remaining open questions

One question that is not fully answered after this project is at which
degree of anharmonicity fully non-perturbative Green Kubo calculations
become necessary to compute accurate thermal conductivities, and when
perturbative treatment in terms of cubic or cubic and quartic anharmonic
contributions in the framework of self-consistent or effective phonons
is sufficient [88–90, 223, 232]. As discussed in Sec. 4.6, already mildly
anharmonic materials with 𝜎A ≈ 0.2 such as AlSb show strong fourth-
order phonon scattering. The findings of this work therefore suggest to
take great care when using perturbative techniques for materials with
𝜎A ≳ 0.2.
The conceptual tools for studying this question in more detail have been
laid out completely in this work: The anharmonicity measure 𝜎A can
be generalized to quantify third, fourth, and higher order anharmonic-
ity separately in straightforward manner. Furthermore, the molecular
dynamics data produced in this work are made accessible to the commu-
nity so that force constants models as input for perturbative expressions
of thermal conductivity can be extracted with regression or sensing
approaches [233, 234]. And of course, the thermal conductivities com-
puted in this work can serve as benchmark for identifying materials with
significant deviations which are suited for further testing. This should
be possible as of now at least for the binary systems with high symmetry
studied in this work, as for more complex systems a treatment of quartic
anharmonicity might become infeasible because of the unfavorite scal-
ing of quartic force constants with number of irreducible atoms, see the
discussion in appendix D of Ref. [90].

Next steps for materials discovery

Our screening for thermal insulators was governed by a single compu-
tational parameter, i. e., the anharmonicity measure 𝜎A. It is certain
that including further structural and harmonic material properties in
semi-empirical equations derived by feature extraction techniques can
improve thermal conductivity predictions and thereby accelerate mate-
rials discovery [142, 235–237]. From our perspective, the most promis-
ing complementary information next to anharmonicity could be derived
from the concept of phonon-scattering phase space [238–241], as al-
ready demonstrated, e. g., in Ref. [130, 131, 239]. The systematic data
computed in the course of this project can serve as a testbed for these
approaches.

Next steps for ab initio Green Kubo

As presented in the previous chapters, the ab initio Green Kubo method
in its current formulation uses an interpolation approach to deal with
long-wavelength phonons, assuming an approximative scaling 𝜏q,𝑏 ∝
𝜔−2

q,𝑏, where 𝜏q,𝑏 denotes the lifetime and 𝜔q,𝑏 the angular frequency
of a phonon with wave vector q and band index 𝑏. This relationship,
however, only holds for crystals of certain lattice types in the limit
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of vanishing wave vector and small anharmonicity [132]. Especially
when working on intermediate levels of anharmonicity, where phonons
with long wavelengths are more important, an improvement of the cur-
rent interpolation scheme is certainly desirable, e. g., by using the full
phonon spectral function 𝑆(q,𝜔) which implicitly contains information
about frequencies 𝜔q,𝑏 and lifetimes 𝜏q,𝑏, lends itself for interpolation
in momentum space, and can be systematically improved by surrogate
models beyond the harmonic approximation [123]. More advanced sur-
rogate models could also help to map out long-lived contributions better,
thereby reducing the necessary amount of effective simulation time, 𝑡eff

0 ,
by converging out the harmonic contribution to heat transport faster than
in the current approach. The data produced in the course of this work
can serve as a basis to develop and test ideas in that regard.

Challenges for ab initio Green Kubo

We see the following challenges with the current formulation of the ab
initio Green Kubo method that are worth further investigation:

The issues of defects and isotope scattering have only been
briefly mentioned in the discussion of thermal transport in MgO in
Sec. 5.4, but have not been further investigated in this work, although
they are known to impact thermal conductivity in actual materials [242].
In a supercell-based ab initio approach, these effects are notoriously dif-
ficult to study because of the required system sizes and time scales [243].
However, these are technical and not conceptual issues which might be
possible to solve by the increasing computational power, or by surrogate
models based on a DFT description of the potential-energy surface, see
also Sec. 6.4.

The topic of convective contributions to the heat flux has
been touched in Chp. 3. As these are absent in the virial-based heat
flux formulation used in this work, this rules out any study of materials
with noticeable self diffusion. Furthermore, as discussed in Sec. 2.3.1
and appendix A of Ref. [114], there is no rigorous mathematical proof
for the assumption of vanishing convective contributions to the thermal
conductivity even in system without any self diffusion, since those can,
in principle, contribute through the cross-correlation of convective and
non-convective currents. While those are often negligible [109], it would
be interesting to estimate the strength of this effect. One could compute
convective contributions to the heat flux based on a force constants
model, and evaluate its contribution. This should be sufficient to quantify
the expected deviation, and materials with noticeable deviation could be
interesting to study further, if any are found.

Nuclear quantum effects have been mentioned in the discussion
of LiF in Sec. 6.2. These are inherently absent in the formulation of
classical Green Kubo theory, and correct treatment of quantum effects
in dynamical properties such as heat transport poses a formidable chal-
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lenge already on a conceptual level, i. e., in the defintion of a heat flux
estimator, and the correct evaluation of Kubo-transformed quantum me-
chanical correlation functions. However, some very recent path-integral
molecular dynamics based approaches using classical force fields show
some promising progress in the field [244, 245].

Perspective

After discussing the status quo and potential futures of the methods used
in this work, I want to discuss more long-term trends that are currently
emerging in the field of heat transport simulations, and might have the
power to push the topic forward considerably: Green-Kubo simula-
tions using machine-learned expressions for the potential-energy func-
tion V(R) [246–255], and model Hamiltonian-based approaches using
Boltzmann transport theory [91] or analytical Green’s functions [112,
256].

Machine learning Green Krubo

The advent of machine-learned potentials with ab initio quality [257–
261] coupled with on-the-fly or active-learning training strategies [252,
262–264] promises to become a versatile tool for dynamical simulations
of materials in a range of subfields, especially for phenomena where
the electronic structure of a given material is only of secondary impor-
tance, i. e., in uncharged systems with electronically trivial defects. In
such materials, machine-learned potentials can remove computational
bottlenecks when aiming for statistical convergence in simulation time,
as well as system and ensemble sizes, which in turn could make GK-
based transport simulations of new materials accessible to more re-
searchers than currently.
While several proofs of principle for GK simulations from machine-
learned potentials exist already [247, 250, 251], some more fundamental
problems persist, e. g., the question of transferability across temperature
and phase transitions in particular, or how long-range electrostatic inter-
actions in polar systems can be properly described in these models [265–
268]. From materials discovery perspective, where one aims at studying
a multitude of systems, it remains to be seen how straightforward and
robust the parametrization of these force fields can be achieved in prac-
tice, and if the extra cost in human time in order to train the potentials
can be reduced to a minimum without compromising their reliability.
The aiGK data computed and made available in the course of this project
can help to develop and benchmark these approaches.

Boltzmann transport and analytical Green’s functions

A complementary route for not too complex materials is the use of model
Hamiltonians coupled with perturbation theory in the framework of lat-
tice dynamics, which become increasingly sophisticated and continue
to develop [171, 223, 269–272]. While these approaches are limited
to non-diffusing materials with a definite long-range structural order
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and limited complexity,6 they allow to study subtle dynamical effects 6 See comments in Sec. 6.4.

such as the the behavior of thermal transport close to and across phase
transitions with very good precision [256], which is particularly impor-
tant for potential thermoelectrics such as SnSe and GeTe [8, 256, 273].
Further, these methods give straightforward access to nuclear quantum
effects [274], which is a formidable task for molecular dynamics-based
Green Kubo methods as discussed above.
Worth noting are more recent approaches that try to bridge the gap
between state of the art Boltzmann transport [91] and analytical Green
Kubo in terms of phonon Green’s functions [112, 256]. Combined with
self-consistent sampling techniques [275], these approaches promise to
be a very efficient alternative for heat transport simulations in a wide
class of solid systems.
Last but not least, lattice-dynamics techniques can be coupled with
molecular dynamics simulations to extract fully anharmonic properties
such as phonon lifetimes, e. g., as we use them in the ab initio Green
Kubo method [15, 113, 276–278] – the opportunities for combining
these approaches are certainly not exhausted.
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Appendix





A
Notation

Throughout the thesis, we use the following symbols to index and label
the appearing quantities:

• 𝛼, 𝛽, 𝛾, 𝛿: Cartesian component indices,

• 𝜇, 𝜈, 𝜌: crystal-basis component indices,

• 𝐼, 𝐽: atom number labels,

• 𝑖, 𝑗 : atom labels in the primitive cell,

• L, K: lattice vectors.

We use a contra/covariant notation for vector components following
Sands [45], with an Einstein convention,

x · y =
∑︁
𝛼

𝑥𝛼𝑦𝛼 ≡ 𝑥𝛼𝑦𝛼 ,

for sums over vector components. In particular, we have

• R𝐼 = (𝑅1
𝐼 , 𝑅

2
𝐼 , 𝑅

3
𝐼 ): Atomic position of atom 𝐼 in a Cartesian compo-

nents.

• { a𝜇 }: crystal basis with lattice vectors a𝜇.

• { a𝜇 }: dual basis with inverse lattice vectors a𝜇 fulfilling a𝜇 · a𝜈 =

𝛿
𝜇
𝜈 . The cartesian components of { a𝜇 } and { a𝜇 } are related by

𝑎
𝜇
𝛼 = (𝑎−1t)𝜇𝛼 .

• R𝐼 = 𝑅
𝜇
𝐼 a𝜇: Atomic position of atom 𝐼 expressed in the crystal basis

{ a𝜇 }. The are 𝑅
𝜇
𝐼 are also called scaled or fractional components.

They are related to the Cartesian components 𝑅𝛼𝐼 by 𝑅
𝜇
𝐼 = a𝜇 · R𝐼 =

(𝑎−1t)𝜇𝛼𝑅𝛼𝐼 by the identity stated above.

• L = 𝐿𝜇a𝜇: A lattice vector L expressed in the crystal basis { a𝜇 }.

• { b𝜇 }: reciprocal lattice vectors fulfilling b𝜇 · a𝜈 = 2𝜋𝛿𝜇𝜈 , i. e., b𝜇 =

2𝜋 a𝜇 with the crystallographic convention of including the factor 2𝜋
in the basis defintion.

• q = 𝑞𝜇b𝜇: phonon wave vector in the reciprocal lattice basis { b𝜇 }.
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• q · R𝐼 = 2𝜋 𝑞𝜇𝑅𝜇𝐼 : scalar product of wave vector with atomic posi-
tion.

We remind the reader that in Cartesian space, indices can be lowered
and raised arbitrarily, i. e., the components 𝑥𝛼 and 𝑥𝛼 are equal.



B
Bloch Theorem and Brillouin Zone

“The idea of periodicity in the reciprocal space is useless but, I think,
harmless.”

Paul Gartner

B.1 Bloch theorem

The Schrödinger equation in 1d reads

𝐻̂𝜓(𝑥) =
(
− ∇2

2𝑚
+𝑉 (𝑥)

)
𝜓(𝑥) = 𝐸𝜓(𝑥) . (B.1)

In a periodic potential,

𝑉 (𝑥 + 𝑎) = 𝑉 (𝑥) , (B.2)

the periodicity can be expressed by stating that the translation operator
𝑇𝑎 defined by its action,

𝑇𝑎 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑎) , (B.3)

commutes with the Hamiltonian,[
𝐻̂,𝑇𝑎

]
= 0 . (B.4)

The eigenstates 𝜓(𝑥) of 𝐻̂ are therefore also eigenstates of 𝑇𝑎 [279].
The translation operator is unitary, 𝑇†

𝑎 = 𝑇−1
𝑎 , but not hermitian. The

eigenvalues 𝜆 associated with 𝑇𝑎 are thus complex numbers. By def-
inition, one has 𝜓(𝑥 + 𝑛𝑎) = 𝜆𝑛𝜓(𝑥). Requiring bounded solutions,
lim𝑥→∞ |𝜓(𝑥) | < ∞, imposes the condition |𝜆 | = 1. The function 𝜓 can
therefore be written as

𝜓(𝑥) = 𝑐(𝑥)𝑢(𝑥) , (B.5)

with a real, periodic function

𝑢 : R → R with 𝑢(𝑥 + 𝑎) = 𝑢(𝑥) , (B.6)

and a complex function of unit modulus,

𝑐 : R → C with |𝑐(𝑥) | = 1 . (B.7)
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We label each possible solution by the number 𝑘 , then

𝑐𝑘 (𝑥) = ei𝑘𝑥 (B.8)

is a map from the domain 𝑥 ∈ R to the complex unit circle { 𝑧 ∈ C : |𝑧 | = 1 }.
It then holds that 𝑇𝑎𝜓𝑘 (𝑥) = ei𝑘𝑎𝜓(𝑥), i. e., 𝜓𝑘 is an eigenfunction of 𝑇𝑎
with eigenvalue 𝜆 = ei𝑘𝑎. We formulate the

Theorem (Bloch). Solutions to the Schrödinger equation (B.1) with a
periodic potential of periodicity 𝑎 are of the form

𝜓𝑘 (𝑥) = ei𝑘𝑥𝑢𝑘 (𝑥) ,

with a real, periodic function 𝑢𝑘 .

The theorem is trivially extended to the 3d case by using the multiplica-
tion rule

𝑇a+b 𝑓 (x) = 𝑇a𝑇b 𝑓 (x) ≡ 𝑓 (x + a + b) . (B.9)

A more rigorous proof in terms of representation theory can be found, e. g., in [48].

B.2 Brillouin Zone

We have not yet specified the range of the quantum number 𝑘 . This can
be done by requiring the complex function 𝑐𝑘 defined in Eq. (B.8) to
map the interval 𝑥 ∈ [0, 𝑎) exactly once to the unit circle so that 𝑘 is a
unique label for the eigenvalues ei𝑘𝑎 of the translation operator 𝑇𝑎. We
therefore define the

Brillouin zone = { 𝑘 : 𝑘 ∈
[
−𝜋

𝑎
,
𝜋

𝑎

)
} . (B.10)

For a wavefunction belonging to 𝑘 ′ = 𝑘 + 𝐺, where 𝐺 is an integer
multiple of the the reciprocal lattice vector 𝑏 = 2𝜋/𝑎, we would find

𝑇𝑎𝜓𝑘+𝐺 (𝑥) = ei𝑘𝑎𝜓𝑘+𝐺 (𝑥) . (B.11)

They are therefore indistinguishable by the translation operator and we
define 𝜓𝑘 and 𝜓𝑘+𝐺 to be the same function,

𝜓𝑘 (𝑥) = 𝜓𝑘+𝐺 (𝑥) . (B.12)

This is sometimes termed “periodicity of Bloch functions in reciprocal
space”.



C
Numerical Force Constants

The force constants Φ can be obtained from first-order derivatives of
the potential-energy surface, i. e., the forces, by rewriting the second
derivative in terms of a finite difference expression,

Φ𝐼 𝛼,𝐽𝛽 =
𝜕2V(R)
𝜕𝑅𝛼𝐼 𝜕𝑅

𝛽
𝐽

�����
R0

= − 𝜕

𝜕𝑅𝛼𝐼
𝐹𝐽 ,𝛽 = − lim

𝜖→0

𝐹𝐽 ,𝛽 ({R′ : 𝑅′𝛼
𝐼 = 𝑅0,𝛼

𝐼 + 𝜖) }
𝜖

.

(C.1)

In practice, atom 𝐼 is displaced by a small but finite displacement 𝜖
in the direction 𝛼, and the force on all other atoms is recorded. By
performing the displacement in all 3𝑁 degrees of freedom, the 3𝑁 × 3𝑁
forces can be arranged in a matrix F[3𝑁×3𝑁 ] , and the displacements
can be arranged in a matrix U[3𝑁×3𝑁 ] = 𝜖1[3𝑁×3𝑁 ] . The 3𝑁 × 3𝑁
force-constants matrix Φ is obtained by the trivial matrix multiplication

F = −ΦU = −𝜖Φ1 (C.2)

=⇒ Φ = −1
𝜖

F1 . (C.3)

Figure C.1: The configurations R, R𝑔 ,
and R̃𝑔 obtained from the symmetry op-
eration 𝑔 = 90 degrees rotation for a two-
dimensional system with five atoms. Arrows
indicate the force at each atom.

If 𝑀 > 3𝑁 displacements are used, e. g., because positive and negative
displacements±𝜖 are used, the force constants can be obtained by solving
an overdetermined linear equation of the kind

F[3𝑁×𝑀 ] = −Φ[3𝑁×3𝑁 ]U[3𝑁×𝑀 ] (C.4)

=⇒ Φ = −FU+ , (C.5)

where U+ denotes the Moore-Penrose pseudo inverse of the displacement
matrix U [51, 280].

When the set of displacements and forces {U, F } comes from
thermodynamic sampling instead of finite differences, the resulting force
constantsΦ obtained via Eq. (C.5) become temperature dependent. This
is the key idea behind the temperature dependent effective potentials
(TDEP) method introduced in Ref. [171].

C.1 Space group symmetry

The number of required force calculations can be reduced by considering
the space group symmetry of the crystal. This can be achieved in two
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ways: First, the symmetry can be used to identify the set of inequivalent
displacements from which all other forces can be constructed by the
following argument: We define the representation Γ𝑔 of a symmetry
operation 𝑔 by its action on the atomic coordinates {R𝐼 = R0

𝐼 +U𝐼 } as

R𝑔𝐼 ≡ Γ𝑔 (R𝐼 ) = 𝑃
𝑔
𝐼𝐽R

0
𝐽 +𝑀𝑔U𝐼 , (C.6)

where 𝑃𝑔𝐼𝐽 is the permutation that relates the reference positions of atom
𝐼 and atom 𝐽, and 𝑀𝑔 is an orthogonal matrix representing the rotation
(or inversion) of the respective displacement.

As depicted in Fig. C.1, the forces on each atom in the rotated
system R𝑔 = {R𝑔𝐼 } are obtained by co-rotating the forces in the initial
configuration R = {R𝐼 } as

F𝐼 (R𝑔) = 𝑀𝑔F𝐼 (R) , (C.7)

i. e., the forces transform as the displacements U𝐼 . Let us now define
a new configuration R̃𝑔 where just the displacements U𝐼 are rotated
according to 𝑔. This can be achieved by rotating the entire system
according Eq. (C.6) and applying the inverse permutation 𝑃𝑔−1, i. e.,

R̃𝑔𝐼 = 𝑃
𝑔−1
𝐼 𝐽 R𝑔𝐼

(C.6)
= R0

𝐼 +M𝑔𝑃
𝑔−1
𝐼 𝐽 U𝐽 . (C.8)

It follows that the force on atom 𝐼 in the new configuration R̃𝑔 is related
to the force in the rotated system R𝑔 by this inverse permutation, so that

F𝐼 (R̃𝑔) = 𝑃
𝑔−1
𝐼 𝐽 F𝐽 (R𝑔) = 𝑀𝑔𝑃

𝑔−1
𝐼 𝐽 F𝐽 (R) . (C.9)

By means of this equation, the set of forces obtained for a configuration
{R𝐼 = R0

𝐼 +U𝐼 } can be used to generate a set of forces for each sym-
metrically equivalent configuration { R̃𝑔𝐼 = R0

𝐼 +M𝑔𝑃
𝑔−1
𝐼 𝐽 U𝐽 }, where 𝑔

are space group elements.
A complementary approach is to use the symmetry elements { 𝑔 } to
reduce the forceconstant matrix to an irreducible basis,

Φ =
𝐷∑︁
𝑖=1

𝑝𝑖Φ̃𝑖 , (C.10)

where the Φ̃𝑖 are solely determined by the space group elements { 𝑔 }
and analytical properties of the forceconstants, and only the irreducible
components 𝑝𝑖 are system dependent. The pseudoinverse procedure
given in Eq. (C.5) then only has to be performed for the 𝐷 parameters
𝑝𝑖 [51]. This procedure can drastically reduce the number of free
parameters in the forceconstant matrix. For example, in a 4 × 4 × 4 bcc
lattice with 128 atoms, Φ is a matrix with (3 · 128)2 = 147456 elements.
However, there are only 𝐷 = 11 irreducible parameters 𝑝𝑖 that need to
be determined [171]. For an exposition of the practical implementation
of symmetry reduction of this kind, see for example Ref. [281, p. 25 ff].



D
Geometry Optimization for Crystals

D.1 Lattice optimization at zero temperature

The task of geometry optimization is to find a local minimum R0 of
the potential-energy surface V(R). From a mathematical point of view,
V(R) is a function of the 3𝑁 coordinates R, or, when lattice degrees of
freedom are included, 3𝑁 + 9 degrees of freedom.1 Summarizing the 1 When rotations are rigorously excluded, the

lattice only has 6 degrees of freedom.positional degrees of freedom including the lattice in the generalized
coordinate

𝑥 =
(
𝑅𝑥0 , 𝑅𝑦0 , . . . , 𝑅𝑧𝑁 ; 𝑎𝑥1, 𝑎𝑥2, . . . , 𝑎𝑧3

)
, (D.1)

we seek to find

𝑥0 = arg min
𝑥

V(𝑥) . (D.2)

The standard tools to solve this problem are very well covered in the
standard reference [282]. The technical pitfalls when optimizing lattices
are thoroughly discussed in [283, 284]. A slightly different approach as
the ones discussed in the references listed above is taken in the molecular
simulations code FHI-aims [119]. We therefore review this approach
shortly in the following.

Many optimization algorithms working with gradients as input
are based on the Newton descent method in which the target function is
locally approximated by a second-order Taylor expansion [282]. In our
case, we denote the generalized force as 𝑓𝑥 and the Hessian matrix of
second derivatives as H𝑥𝑥′ , where

𝑓𝑥 = −𝜕𝑥V(𝑥) , (D.3)

H𝑥𝑥′ = 𝜕𝑥𝜕𝑥′V(𝑥) . (D.4)

Assuming that 𝑓𝑥 and H𝑥𝑥′ are known, the neighborhood of a configu-
ration 𝑥 can be written to second order in a displacement 𝑠𝑥 as Sum convention 𝑠𝑥 𝑓𝑥 ≡ ∑

𝑥 𝑠𝑥 𝑓𝑥 is im-
plied.

𝑚(𝑥 + 𝑠𝑥) = V(𝑥) − 𝑠𝑥 𝑓𝑥 + 1
2
𝑠𝑥H𝑥𝑥′ 𝑠𝑥′ . (D.5)

The minimum of this function is given by

𝑠𝑥 = H−1
𝑥𝑥′ 𝑓𝑥′ , (D.6)
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which is the essence of the Newton method. One beneficial property
of the Newton method is that the exact Hessian H is not required to
be known, and one can find approximate matrices B that yield good
results. Replacing the exact H by an approximate matrix B is known
as the quasi-Newton method. Typically, an initial approximate Hessian
B0 is chosen to be of simple form, e. g., a constant times unit ma-
trix, or based on some simpler model [285]. The initial guess is then
updated during the optimization, for example by means of the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm.2 The configuration 2 BFGS update for the estimated Hessian 𝐵𝑖

from step 𝑖 to 𝑖 + 1:

B𝑖+1
𝑥𝑥′ = B𝑖

𝑥𝑥′

+
B𝑖
𝑥𝑦
𝑠𝑖
𝑦
𝑠𝑖
𝑦′B

𝑖
𝑦′𝑥′

𝑠𝑖
𝑦

B𝑖
𝑦𝑦′ 𝑠

𝑖
𝑦′

−
𝛿 𝑓 𝑖

𝑥
𝛿 𝑓 𝑖

𝑥′

𝛿 𝑓 𝑖
𝑥
𝑠𝑖
𝑥′

,

with 𝛿 𝑓 𝑖 = 𝑓 𝑖+1 − 𝑓 𝑖 .

𝑥 is updated according

𝑥𝑖+1 = 𝑥𝑖 + 𝑠𝑖𝑥 = 𝑥𝑖 +B𝑖𝑥𝑥′ 𝑓
𝑖
𝑥′ . (D.7)

If the lattice degrees of freedom are represented by the Cartesian
components 𝑎𝛼𝑖 of the lattice vectors, the generalized force on the lattice
is given by Symbolically:

𝑓𝑎 = − 𝜕V
𝜕𝑎

= −𝑉 1
𝑉

𝜕V
𝜕𝜀︸  ︷︷  ︸

𝜎

𝜕𝜀

𝜕𝑎︸︷︷︸
𝑎−1t

.
𝑓𝑎 = −𝑉𝜎𝑎−1t , (D.8)

where𝑉 = det 𝑎 is the unit cell volume, 𝜎 is the 3× 3 stress tensor, and 𝑎

is the lattice matrix.3 For non-cubic systems, a diagonal Hessian matrix 3 The lattice matrix is the collection of lattice
vectors { a𝑖 },

𝑎 =
(
a1, a2, a3

)
. (D.9)

𝐵0 = 𝑐1 will therefore produce steps proportional to the reciprocal cell
𝑎−1t which, among other things, can break the space-group symmetry of
the crystal. This behavior can be avoided by defining the initial Hessian
as

𝐵0 = 𝑐𝑎−1t𝑎−1 , (D.10)

where 𝑐 is a numerical constant. This particular choice of 𝐵0 can be
viewed as making the Hessian diagonal in the native coordinate system
of the lattice, i. e., when deformations of the lattice are viewed as strain
transformations in terms of the strain tensor 𝜀. By the choice of the
Hessian according to Eq. (D.10), the resulting steps 𝑠𝑖𝑎 will mimic such
strain transformations early during the optimization:

𝑎𝑖+1 = 𝑎𝑖 + 𝑠𝑖𝑎 = (1 + 𝜀𝑖𝑠)𝑎𝑖 . (D.11)

Another detail that must be taken into account is that updates of the
lattice necessarily have to keep the relative atomic positions expressed
in the crystal basis, i. e., their fractional coordinates, unchanged. The
ideas outlined in this section have been implemented in FHI-aims and
the performance compared to the previous implementation is shown in
Fig. D.1.

0 2 4 6 8 10 12
No. of relaxation steps

100

102

|5 G
|(m

eV
/3 )

trm trm_2012

Full relaxation of Si (fcc diamond)

Figure D.1: Residual force component as
function of the relaxation steps, before
(trm_2012) and after (trm) optimizing the
relaxation routine in FHI-aims according to
the considerations presented in this chapter.

The non-systematic decrease of the residual force observed in the previ-
ous implementation (trm_2012) was due to spurious distortions of the
lattice and dislocations of the atomic arrangements generated by keep-
ing their Cartesian instead of fractional positions unchanged during the
lattice update. These artifacts are absent in the updated implementation
(trm). The force convergence is generally faster and better behaved.
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D.2 Lattice optimization at finite temperature: Lattice ex-
pansion

At finite temperatures, the nuclear motion results in dynamical pressure The volume expansion is usually measured
in terms of the thermal expansion coefficient
𝛼(𝑇 ) [286]

𝛼(𝑇 ) = 1
3𝑉

𝜕𝑉 (𝑇 )
𝜕𝑇

. (D.12)

𝑝(𝑇) and the lattice reacts by deforming,

𝑎(𝑇) = (1 + 𝜀(𝑇))𝑎0 , (D.13)

where 𝑎0 is the 0 K static lattice matrix, and 𝑎(𝑇) is the lattice at finite
temperature given in terms of a strain transformation 𝜀(𝑇). The energy
change per unit volume d𝑊 of a system subject to an infinitesimal strain
deformation 𝜀 is defined as

d𝑊 = 𝜎
𝛽
𝛼 d𝜀𝛼𝛽 , (D.14)

where 𝜎 is the stress tensor of the system. The lattice 𝑎(𝑇) in thermal
equilibrium will therefore be the lattice that minimizes the stress 𝜎 in
Eq. (D.14). Depending on the crystal symmetry [287], the strain tensor
𝜀 has up to six independent values. Equation (D.14) therefore poses a
six-dimensional optimization problem at a given temperature 𝑇 which
can be solved for example by coupling the system to a barostat and
performing an 𝑁𝑃𝑇 simulation [78]. In the language of the previous
chapter, the lattice 𝑎(𝑇) is then given as a time or ensemble average
⟨𝑎⟩ (𝑝,𝑇 ) at thermodynamic conditions (𝑝,𝑇). In practice however, this
approach is quite inefficient and suffers from large noise, especially in
the system sizes typically available to ab initio MD simulations.

An approximate solution to the six-dimensional optimization prob-
lem of finding the finite temperature lattice 𝑎(𝑇) can be found by the
following rationale: We assume that the thermodynamic pressure at a
given volume 𝑉 and temperature 𝑇 is given as

𝑝(𝑉 ,𝑇) ≈ 𝑁𝑘B𝑇

𝑉
+ 𝑝pot (𝑉0,𝑇) + 𝑝int (𝑉) , (D.15)

where 𝑝kin (𝑇) = 𝑁𝑘B𝑇/𝑉 is the kinetic pressure, and 𝑝pot (𝑉0,𝑇) is the
potential part of the pressure in the system at reference volume𝑉0 which
stems from the nuclear interaction V(R) [288]. The last term, 𝑝int (𝑉),
is an internal pressure induced by the volume change. We assume that
𝑝int (𝑉) mainly stems from the lattice and is not temperature dependent.
It can therefore be obtained from an equation of state parametrized at
0 K, for example the Vinet equation [289]:

𝑝int (𝑉) = 3𝐵0

𝑋2 (1 − 𝑋)e𝜂 (1−𝑋) with (D.16)

𝑋 =

[
𝑉

𝑉0

] 1
3

and 𝜂 =
3
2

(
𝐵′

0 − 1
)

, (D.17)

where 𝑉0 is the volume, 𝐵0 is the bulk modulus, and 𝐵′
0 = 𝜕𝐵0/𝜕𝑝

is the isothermal pressure derivative of the bulk modulus. All these
three parameters are obtained for the static lattice and we neglect their
temperature dependence. Once the full parametrization of Eq. (D.15) is
known, the temperature-dependent volume𝑉min (𝑇) is found by requiring
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zero pressure. The resulting pressure 𝑝int (𝑉min) can be used to find the
static reference lattice 𝑎(𝑇) by optimizing the geometry while applying
the external pressure 𝑝relax = −𝑝int (𝑉min) as depicted in Fig. D.2.

Figure D.2: Determination of relaxation
pressure to obtain lattice at finite tem-
perature. Dots denote volumes used to
parametrize Eq. (D.16).

The lattice 𝑎(𝑇) obtained this way will then generate the static pres-
sure contribution 𝑝int which compensates the dynamical contributions
stemming from kinetic and potential energy.

The procedure goes as follows:

1. To parametrize 𝑝int (𝑉), calculate a 𝑝(𝑉) curve for different volumes4

4 For non-cubic systems or systems with in-
ternal degrees of freedom, use a set of exter-
nal pressures 𝑝relax to obtain a set of refer-
ence structures at different volumes 𝑉𝑝relax
by geometry optimization.

and fit the Vinet equation of state given by Eq. (D.16) to obtain
(𝑉0, 𝐵0, 𝐵′

0).

2. Perform MD simulation at 𝑉0 and target temperature 𝑇 until pressure
𝑝pot (𝑉0,𝑇) is sufficiently converged.

3. Minimize Eq. (D.15) with respect to volume to find𝑉min = arg min𝑉 𝑝(𝑉 ,𝑇).

4. Predict pressure 𝑝relax = −𝑝int (𝑉min) and obtain a reference structure
of correct volume 𝑉min by applying this pressure during a geometry
optimization, see Fig. D.2. The lattice of this structure will satisfy
det 𝑎(𝑇) = 𝑉min.

After the lattice 𝑎 (𝑇 ) is obtained, it should be verified that the
pressure 𝑝 (𝑉min , 𝑇 ) is indeed minimized. If a significant residual pres-
sure 𝑝 residual persists it can be added to the pressure used for relaxation
until self consistence is reached.



E
Linear Response Theory

The aim of linear response theory is to compute the expected value
of a phase-space observable 𝐵 in presence of an external perturbation
driving the system out of equilibrium. The ensemble is characterized by
a distribution function 𝑓 (Γ, 𝑡 ) , where Γ = { R, P } is a shorthand for a
point in phase space. The expectation value of 𝐵 as defined in Eq. (2.63)
is given by

⟨𝐵 ( 𝑡 )⟩ =
∫

dΓ 𝐵 (Γ) 𝑓 (Γ, 𝑡 ) , (E.1)

and we assume without loss of generality that its equilibrium value
vanishes,

⟨𝐵 ( 𝑡 )⟩0 =
∫

dΓ 𝐵 (Γ) 𝑓 0 (Γ) = 0 , (E.2)

where 𝑓 0 (Γ) is the distribution function of the unperturbed system in
thermal equilibrium. In order to calculate Eq. (3.5) in a non-equilibrium
situation, we start by defining the Hamiltonian describing the dynamics
of the system in the absence of external perturbations, H 0, which we
take to be given by the many-body Hamiltonian

H 0 (Γ) =
∑︁
𝐼

P2
𝐼

2𝑀𝐼
+ V (R) . (E.3)

The canonical distribution function for the unperturbed system reads

𝑓 0 (Γ) = 1
Z0 e−𝛽H

0 (Γ ) , (E.4)

where the partition function Z0 normalizes the phase-space integral,∫
dΓ 𝑓 0 (Γ) = 1. In the next step, we write the full Hamiltonian as

H (Γ, 𝑡 ) = H 0 (Γ) + 𝜆H ′ (Γ, 𝑡 ) , (E.5)

where the perturbation is given by some yet unspecified phase-space
function H ′ (Γ, 𝑡 ) with explicit time dependence, and 𝜆 = 1 is a book-
keeping parameter that we introduce to count the order in the perturba-
tion.
We write the distribution function in presence of the perturbation as

𝑓 (Γ, 𝑡 ) = 𝑓 0 (Γ) + 𝜆Δ 𝑓 (Γ, 𝑡 ) , (E.6)
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where Δ 𝑓 is the perturbation in the distribution generated by H ′. Using
that 𝑓 0 carries no explicit time dependence, the Liouville equation for
Δ 𝑓 reads

𝜆
dΔ 𝑓

d𝑡
= { H , 𝑓 }
= 𝜆 { H 0 , Δ 𝑓 } + 𝜆 { H ′ , 𝑓 0 } + O (𝜆2) , (E.7)

=⇒ dΔ 𝑓

d𝑡
≈ { H 0 , Δ 𝑓 } + { H ′ ( 𝑡 ) , 𝑓 0 } (E.8)

where { ·, · } denotes the Poisson bracket and in Eq. (E.8) we only keep
the terms to linear order in the perturbation. The solution to this differ-
ential equation is found to be1 [93] 1 The solution is given below in Sec. E.1.

Δ 𝑓 (Γ, 𝑡) =
∫ 𝑡

−∞
e−iL0 (𝑡−𝑡 ′ ) {H ′ (Γ, 𝑡′), 𝑓 0 (Γ) } d𝑡′ , (E.9)

where eiL0𝑡 propagates a phase-space point Γ by a time 𝑡 according to
the equations of motion following from H0. By splitting the interaction
Hamiltonian H ′ (𝑡) into an operator part 𝐴(Γ) and an explicitly time
dependent force function 𝐹 (𝑡),

H ′ (Γ, 𝑡) = 𝐴(Γ)𝐹 (𝑡) , (E.10)

equation (E.8) can be simplified in the canonical ensemble by using that
𝜕 𝑓 0/𝜕H0 = −𝛽 𝑓 0, which leads to2 2 This can be seen by using the chain rule

and the canonical equations of motion:

{ 𝐴, 𝑓 0 } =
∑︁
𝑖

𝜕𝐴

𝜕𝑞𝑖

𝜕 𝑓 0

𝜕𝑝𝑖
− 𝜕𝐴

𝜕𝑝𝑖

𝜕 𝑓 0

𝜕𝑞𝑖

=
∑︁
𝑖

𝜕𝐴

𝜕𝑞𝑖

𝜕 𝑓 0

𝜕𝐻0
𝜕𝐻0

𝜕𝑝𝑖

− 𝜕𝐴

𝜕𝑝𝑖

𝜕 𝑓 0

𝜕𝐻0
𝜕𝐻0

𝜕𝑞𝑖

= −𝛽 𝑓 0
∑︁
𝑖

(
𝜕𝐴

𝜕𝑝𝑖
¤𝑞𝑖 + 𝜕𝐴

𝜕𝑞𝑖
¤𝑝𝑖

)
= −𝛽 𝑓 0 d𝐴

d𝑡
≡ −𝛽 𝑓 0 ¤𝐴 .

{ 𝐴, 𝑓 0 } = −𝛽 ¤𝐴 𝑓 0 , (E.11)

so that the Poisson bracket appearing in Eq. (E.9) becomes{H ′ (Γ, 𝑡′), 𝑓 0 (Γ) } = −𝛽 ¤𝐴(Γ) 𝑓 0 (Γ)𝐹 (𝑡′) , (E.12)

i. e., a product of minus the inverse temperature 𝛽with the time derivative
of the operator part ¤𝐴(Γ), the distribution 𝑓 0 (Γ), and the time-dependent
force function 𝐹 (𝑡).

We are now in position to formulate the expected response
of a phase space observable 𝐵 to linear order in a perturbation described
by the Hamiltonian H ′ (Γ, 𝑡) defined in Eq. (3.4), i. e.,

⟨𝐵(𝑡)⟩ =
∫

dΓ 𝐵(Γ)Δ 𝑓 (Γ, 𝑡) (E.13)

= −𝛽
∫ 𝑡

−∞

∫
dΓ 𝐵(Γ) e−iL0 (𝑡−𝑡 ′ ) ¤𝐴(Γ) 𝑓 0 (Γ)𝐹 (𝑡′) d𝑡′ (E.14)

= −𝛽
∫ 𝑡

−∞
⟨𝐵(Γ𝑡 ) ¤𝐴(Γ𝑡 ′ )⟩0 𝐹 (𝑡′) d𝑡′ , (E.15)

where ⟨·⟩0 denotes a phase-space average with respect to the unperturbed
canonical distribution function 𝑓 0 (Γ), and the notation implies that for
each phase-space point Γ in the ensemble, 𝐵(Γ) and ¤𝐴(Γ) are evaluated
at phase-space points separated in time by 𝑡 − 𝑡′ [69, p. 498]. The time
propagation of phase-space points is generated byL0 and therefore given
by the canonical equations of motion with conserved energy as defined in
Eq. (2.66). The phase-space average ⟨·⟩0 on the other hand corresponds
to a canonical ensemble average with respect to the distribution function
𝑓 0 defined in Eq. (3.7).
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E.1 Perturbed distribution function

To solve forΔ 𝑓 (𝑡) defined in Eq. (E.8), we introduce a shorthand notation
such that

dΔ 𝑓

d𝑡
= −iLΔ 𝑓 (𝑡) − iΔL(𝑡) 𝑓 0 , (E.16)

where the Liouville operator L0 is defined by

iL0𝑔 = { 𝑔,H0 } , (E.17)

and similarly

iΔL(𝑡)𝑔 = { 𝑔,H ′ (𝑡) } . (E.18)

Equation (E.16) is a first order linear differential equation of the form

d𝑦
d𝑡

+ 𝑝(𝑡)𝑦 = 𝑞(𝑡) , (E.19)

which is straightforward to solve by using an integrating factor as follows:
We identify 𝑦 = Δ 𝑓 , 𝑝(𝑡) = iL0, and 𝑞(𝑡) = −iΔL(𝑡) 𝑓 0. Following
Ref. [290, p. 68], we define the integrating factor 𝜌(𝑡) = exp(

∫
d𝑡 𝑝(𝑡)) = exp(iL0𝑡),

multiply Eq. (E.19) with 𝜌(𝑡), and use that d
d𝑡 𝜌(𝑡) = 𝜌(𝑡)𝑝(𝑡) to obtain

d
d𝑡

(𝜌(𝑡)𝑦) = 𝜌(𝑡)𝑞(𝑡) .

This gets integrated to

𝜌(𝑡)𝑦 =
∫ 𝑡

−∞
d𝑡′ 𝜌(𝑡′)𝑞(𝑡′)

under the boundary condition 𝑦(𝑡 → −∞) = 0. In total we obtain

𝑦(𝑡) = 𝜌−1 (𝑡)
∫ 𝑡

−∞
d𝑡′ 𝜌(𝑡′)𝑞(𝑡′) , (E.20)

=⇒ Δ 𝑓 (𝑡) = −e−iL0𝑡

∫ 𝑡

−∞
d𝑡′ eiL0𝑡 ′ iΔL(𝑡′) 𝑓 0 . (E.21)





F
Explicit Formulas

F.1 Harmonic approximation

In Sec. 2.2.5, we introduced the shorthand notation 𝑠 = (𝑏, q), −𝑠 =

(𝑏,−q) to write brief formulas. We give the explicit form of these
formulas here.

The normal mode coordinates in the periodic case in terms of
complex amplitudes 𝑎 (†)

𝑏 (q) read

𝑢𝑏 (q) = 1√︁
2𝜔𝑏 (q)

[
𝑎†𝑏 (−q) + 𝑎𝑏 (q)

]
(F.1a)

𝑝𝑏 (q) = i
√︂

𝜔𝑏 (q)
2

[
𝑎†𝑏 (−q) − 𝑎𝑏 (q)

]
(F.1b)

The inverse relation is given by

𝑎𝑏 (q) =
√︂

𝜔𝑏 (q)
2

𝑢𝑏 (q) + i√︁
2𝜔𝑏 (q)

𝑝𝑏 (q) (F.2a)

𝑎†𝑏 (−q) =
√︂

𝜔𝑏 (q)
2

𝑢𝑏 (q) − i√︁
2𝜔𝑏 (q)

𝑝𝑏 (q) (F.2b)

The displacements are recovered by

u𝑖L =
1√︁
𝑁q

∑︁
𝑏q

eiq·R0
𝑖L e∗𝑏𝑖 (q)𝑢𝑏 (q) (F.3)

and likewise for p.
The Hamiltonian reads

H(𝑢𝑏, 𝑝𝑏) = 1
2

∑︁
𝑏q

[
𝑝∗𝑏 (q)𝑝𝑏 (q) +𝜔2

𝑏 (q)𝑢∗𝑏 (q)𝑢𝑏 (q)
]

(F.4)

Equations of motion

¥𝑢𝑏 (q) = ¤𝑝𝑏 (q) = − 𝜕H
𝜕𝑢∗𝑏 (q)

(F.5)
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F.2 Heat capacity

𝛽 =
1

𝑘B𝑇
(F.6a)

𝑐𝑉 =
𝜕𝐸

𝜕𝑇
(F.6b)

𝐸 (𝑇) =
∑︁
𝑠

ℎ̄𝜔𝑠𝑛𝑠 (𝑇) (F.6c)

𝑛𝑠 (𝑇) = 1
𝑒𝛽ℎ̄𝜔𝑠 − 1

(F.6d)

𝜕𝑛𝑠
𝜕𝑇

=
ℎ̄𝜔𝑠
𝑘B𝑇2 𝑛𝑠 (𝑛𝑠 + 1) (F.6e)

=⇒ 𝑐𝑉 =
∑︁
𝑠

ℎ̄2𝜔2
𝑠

𝑘B𝑇2 𝑛𝑠 (𝑛𝑠 + 1)︸               ︷︷               ︸
𝑐𝑉 ,𝑠

(F.6f)

Classical limit 𝑘B𝑇 ≫ ℎ̄𝜔𝑠

𝑛𝑠 (𝑇) → 𝑘B𝑇

ℎ̄𝜔𝑠
≫ 1 (F.7a)

=⇒ 𝐸 (𝑇) → 3𝑁𝑘B𝑇 (F.7b)

=⇒ 𝑐𝑉 → 3𝑁𝑘B (F.7c)



G
Anharmonicity Screening

Tables G.1–G.3 list results from the one-shot anharmonicity screening
performed in Ref. [141]:

Space group 𝑁primitive Material Materialsproject ID 𝜎A
OS

56 20 Sb2O3 mp-2136 0.28
61 16 ZnSb mp-753 0.31
62 8 SnSe mp-691 0.35
62 24 BaSi2 mp-1477 0.25
62 20 KCaF3 mp-5926 0.37
62 20 KCdF3 mp-9628 0.40

122 8 AgAlS2 mp-5782 0.28
122 8 AgAlSe2 mp-14091 0.27
122 8 AgAlTe2 mp-14092 0.29
122 8 AgGaS2 mp-5342 0.30
122 8 AgGaSe2 mp-5518 0.30
122 8 AlCuS2 mp-4979 0.24
122 8 AlCuSe2 mp-8016 0.28
122 8 AlLiTe2 mp-4586 0.26
122 8 CuInS2 mp-22736 0.29
122 8 GaLiTe2 mp-5048 0.27
122 8 InLiTe2 mp-20782 0.26
164 5 MgSb mp-2646 0.31
166 4 Ba2BrN mp-1018098 0.41
166 4 Ba2ClP mp-27869 0.29
166 4 CuGaO2 mp-4280 0.21
166 4 CuScO2 mp-4636 0.27
166 4 InLiSe2 mp-10618 0.35
166 4 InNaO2 mp-5175 0.21
166 4 InNaS2 mp-20289 0.26
166 4 InNaSe2 mp-22473 0.32
166 4 LiF2H mp-24199 0.45
166 4 LiRhO2 mp-14115 0.22
166 4 LiScS2 mp-1001786 0.28
166 4 NaF2H mp-27837 0.41
166 4 Sr2ClN mp-23033 0.28
166 4 Sr2HN mp-690794 0.30
166 4 Sr2IN mp-569677 0.28
166 5 Bi2Te3 mp-34202 0.24

Table G.1: Results from anharmonicity
screening for space groups 56–166.
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Space group 𝑁primitive Material Materialsproject ID 𝜎A
OS

186 4 AgI mp-22894 0.42
186 4 CdS mp-672 0.27
186 4 CdSe mp-1070 0.26
186 4 MgTe mp-1039 0.26
186 4 ZnO mp-2133 0.22
186 4 ZnS mp-560588 0.22
186 4 ZnSe mp-380 0.22
206 40 Sc2O3 mp-216 0.23
216 2 AlAs mp-2172 0.17
216 2 CdS mp-2469 0.24
216 2 CdTe mp-406 0.26
216 2 CuBr mp-22913 0.52
216 2 CuCl mp-22914 0.55
216 2 CuI mp-22895 0.37
216 2 GaAs mp-2534 0.18
216 2 InAs mp-20305 0.21
216 2 ZnS mp-10695 0.23
216 2 ZnSe mp-1190 0.23
216 2 ZnTe mp-2176 0.25
216 3 LiAsMg mp-12558 0.27
216 3 LiAsZn mp-9124 0.26
216 3 LiNZn mp-7575 0.25
216 3 ZnPLi mp-10182 0.25
221 2 CsBr mp-22906 0.42
221 2 CsCl mp-22865 0.39
221 2 CsI mp-1056920 0.40
221 5 BaLiF3 mp-10250 0.27
221 5 CsCaF3 mp-7104 0.26
221 5 CsCdF3 mp-8399 0.32
221 5 KMgF3 mp-3448 0.24
221 5 KZnF3 mp-5878 0.32
221 5 RbMgF3 mp-8402 0.23
221 5 RbZnF3 — 0.30
221 5 SrTiO3 mp-5229 0.28

Table G.2: Results from anharmonicity
screening for space groups 186–221.
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Space group 𝑁primitive Material Materialsproject ID 𝜎A
OS

225 2 AgBr mp-23231 0.48
225 2 AgCl mp-22922 0.50
225 2 BaO mp-1342 0.44
225 2 BaS mp-1500 0.25
225 2 BaSe mp-1253 0.23
225 2 BaTe mp-1000 0.22
225 2 CaO mp-2605 0.20
225 2 CaTe mp-1519 0.23
225 2 CsF mp-1784 0.42
225 2 KBr mp-23251 0.41
225 2 KCl mp-23193 0.43
225 2 KF mp-463 0.41
225 2 KH mp-24084 0.35
225 2 KI mp-22898 0.39
225 2 LiBr mp-23259 0.40
225 2 LiCl mp-22905 0.38
225 2 LiF mp-1138 0.30
225 2 LiH mp-23703 0.26
225 2 LiI mp-22899 0.47
225 2 MgO mp-1265 0.17
225 2 NaBr mp-22916 0.39
225 2 NaCl mp-22862 0.36
225 2 NaF mp-682 0.33
225 2 NaI mp-23268 0.36
225 2 PbTe mp-19717 0.29
225 2 RbBr mp-22867 0.44
225 2 RbCl mp-23295 0.36
225 2 RbF mp-11718 0.41
225 2 RbI mp-22903 0.41
225 2 SnTe mp-1883 0.45
225 2 SrO mp-2472 0.22
225 2 SrS mp-1087 0.21
225 2 SrTe mp-1958 0.22
225 3 CaF2 mp-2741 0.26
225 3 CdF2 mp-241 0.35
225 3 K2O mp-971 0.46
225 3 K2S mp-1022 0.31
225 3 K2Te mp-1747 0.32
225 3 Li2O mp-1960 0.24
225 3 Li2S mp-1153 0.29
225 3 Li2Se mp-2286 0.25
225 3 Li2Te mp-2530 0.33
225 3 Na2S mp-648 0.29
225 3 Na2Se mp-1266 0.33
225 3 Na2Te mp-2784 0.31
225 3 Rb2O mp-1394 0.40
225 3 Rb2Se mp-11327 0.38
225 3 SrF2 mp-981 0.30

Table G.3: Results from anharmonicity
screening for space group 225.





H
Experimental References

Experimental thermal conductivities for all materials in the initial screen-
ing set are listed in Tab. H.1.
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Space group materialsproject ID material 𝜅experiment References

61 mp-753 ZnSb 3.50* [291]
62 mp-691 SnSe 0.60*, 1.00, 1.30 [8, 10, 211]
62 mp-1477 BaSi2 1.38*, 1.60* [217, 292]
62 mp-20331 CuSbSe2 2.00* [293]

122 mp-5342 AgGaS2 1.40 [219]
122 mp-5518 AgGaSe2 1.00 [219]
164 mp-2646 Mg3Sb2 2.08, 2.50 [212, 213]
186 mp-22894 AgI 0.30* [294]
186 mp-672 CdS 16.0 [11]
186 mp-1070 CdSe 9.00, 9.00* [295, 296]
186 mp-2133 ZnO 60.0 [11]
206 mp-216 Sc2O3 17.0* [297]
216 mp-2172 AlAs 98.0 [11]
216 mp-406 CdTe 8.00 [298]
216 mp-22913 CuBr 1.25 [195]
216 mp-22914 CuCl 0.84* [196]
216 mp-22895 CuI 1.68 [195]
216 mp-2534 GaAs 45.0 [11]
216 mp-20305 InAs 30.0 [11]
216 mp-10695 ZnS 27.0 [11]
216 mp-1190 ZnSe 19.0 [11]
216 mp-2176 ZnTe 18.0 [11]
221 mp-22906 CsBr 0.94 [299]
221 mp-22865 CsCl 1.00, 1.00 [299, 300]
221 mp-1056920 CsI 1.10 [299]
221 mp-3448 KMgF3 10.0 [301]
221 mp-5878 KZnF3 5.50 [302]
221 mp-5229 SrTiO3 10.0, 11.5 [303, 304]
225 mp-23231 AgBr 1.10 [305]
225 mp-22922 AgCl 0.90*, 1.00 [306, 307]
225 mp-1342 BaO 2.30 [11]
225 mp-2605 CaO 27.0 [11]
225 mp-23251 KBr 2.80*, 3.40 [11, 308]
225 mp-23193 KCl 6.50*, 7.10 [11, 308]
225 mp-463 KF 6.43 [11]
225 mp-22898 KI 1.96*, 2.60 [11, 308]
225 mp-23259 LiBr 1.83* [309]
225 mp-1138 LiF 17.6 [11]
225 mp-23703 LiH 14.7 [200]
225 mp-1265 MgO 55.2, 60.0, 61.7 [11, 180, 184]
225 mp-22916 NaBr 2.30*, 2.80 [11, 310]
225 mp-22862 NaCl 6.00*, 6.06, 6.57, 6.90, 7.10 [11, 180, 311–313]
225 mp-682 NaF 16.50 [11]
225 mp-23268 NaI 1.33, 1.80 [11, 311]
225 mp-22867 RbBr 3.38*, 3.80 [11, 308]
225 mp-23295 RbCl 2.41*, 2.80 [11, 308]
225 mp-11718 RbF 2.27 [309]
225 mp-22903 RbI 1.98*, 2.30 [11, 308]
225 mp-2472 SrO 10.00 [11]
225 mp-2741 CaF2 9.76 [314]
225 mp-241 CdF2 4.30 [314]
225 mp-23209 SrCl2 2.30 [315]
225 mp-981 SrF2 8.07, 10.00 [314, 315]

Table H.1: Experimental thermal conductiv-
ities at room temperature with experimen-
tal reference. Values marked with (∗) come
from measurements of polycrystalline sam-
ples.



I
Data Availability and Computational Details

A github repository including raw data and latex files, as well as plotting
scripts and additional notes will be made available via thesis.flokno.me
after the thesis is accepted.

All ab initio molecular dynamics simulations have been performed
with the PBEsol functional [167], 2 × 2 × 2 k-point sampling, and
light_default basis sets in FHI-aims [119]. All input and output files are
uploaded to NOMAD [231] with the DOI 10.17172/NOMAD/2021.11.11-
1. Supercell sizes (𝑁Supercell) are listed for each crystal class in Tab. I.1.

Space group Lattice 𝑁Primitive 𝑁Supercell Prototype

62 orthorombic 8 256 SnSe
62 orthorombic 16 192 CuSbSe2

62 orthorombic 20 160 KCaF3

122 tetragonal 8 216 AgAlS2

164 trigonal 5 160 Mg3Sb2

166 trigonal 4 192 Ba2BrN
186 wurtzite 4 192 AgI
216 zincblende 2 216 AlAs
216 heusler 3 162 LiAsMg
221 cesium chloride 2 128 CsBr
221 perovskite 5 160 BaLiF3

225 rock salt 2 216 AgBr
225 fluorite 3 198 CaF2

Table I.1: Supercell sizes for the studied ma-
terials, given for one prototype of each class.

http://thesis.flokno.me
https://dx.doi.org/10.17172/NOMAD/2021.11.11-1
https://dx.doi.org/10.17172/NOMAD/2021.11.11-1
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