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Abstract

The reliable prediction of the electrical conductivity from first-principles is im-
portant for computationally guided discovery of novel materials with desired elec-
trical properties. Recent studies suggest that improving the accuracy of electrical
conductivity calculations in many materials requires accounting for the typically
ignored lattice anharmonicity by higher-order electron-phonon interactions. First-
principles supercell calculations of the electrical conductivity based on a combi-
nation of the Kubo-Greenwood (KG) formula and ab initio molecular dynamics
(aiMD) appear to be a promising approach because they naturally include these
interactions. However, the application of this approach to crystalline materials has
so far received very little attention. This thesis describes the ab initio KG approach,
the difficulties of a numerical implementation for crystalline solids, and it demon-
strates the problems with two very different systems.

The first case study for silicon (Si), which is a very harmonic material, reveals
that the ab initio KG calculations place a high demand on computational resources,
and identifies the considerable numerical difficulties. In particular, the KG calcula-
tion requires a dense k-point sampling, which hinders supercell-size convergence
and makes the calculation only feasible with (semi)local density functional approx-
imations (e.g., LDA and GGA). Besides, the necessary introduction of a broadening
parameter (1) introduces a significant uncertainty in the quantitative determination
of the electrical conductivity. Computationally efficient strategies are discussed in
this thesis to address these problems, including: (i) the "scissor operator" approach
to correct the LDA band-gap problem; (ii) the “optimal-7 scheme" to choose an ap-
propriate value of #; and (iii) the finite-size scaling method to deduce the electrical
conductivity in the limit of an infinitely large supercell. With these strategies, it is
found that while our calculations at the LDA level yield electrical conductivities in
reasonable agreement with experiment, our results do not agree well with those of
previous ab initio calculations using the Boltzmann transport equation (BTE) at the
LDA level. This comparison suggests that the 77 problem and the issue of supercell-
size convergence still require improved concepts.

The second case study for SnSe, which is a highly anharmonic material, shows
very similar numerical difficulties as in the case of Si. For SnSe, it is rather challeng-
ing to address the issue of supercell-size convergence, because of the anisotropic
electrical conductivity and that the supercell size quickly becomes computationally
unfeasible. By choosing appropriate supercell sizes and using the defined strate-
gies, the x and z components of the electrical conductivity in p-doped SnSe at 300
Kand 523 K are computed. It is found that at the GGA-PBEsol level the calculated
results are in reasonable agreement with experiment. However, the large uncer-
tainties due to the # problem and the issue of supercell-size convergence remain.
Comparison with previous ab initio BTE calculations and discussion of the influence
of lattice anharmonicity on the supercell-size convergence are presented.

It is concluded that more expertise needs to be acquired on how to deal with
the # problem and the issue of supercell-size convergence before the ab initio KG
approach can be used to predict the electrical conductivity of crystalline materials.
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Zusammenfassung

Die zuverlissige Vorhersage der elektrischen Leitfahigkeit ausgehend von ersten
Prinzipien ist wichtig fiir die rechnerisch gestiitzte Entdeckung neuer Materialien
mit erwtinschten elektrischen Eigenschaften. Jiingste Studien legen nahe, dass die
Verbesserung der Genauigkeit von Berechnungen der elektrischen Leitfahigkeit in
vielen Materialien die Berticksichtigung der typischerweise ignorierten Gitteran-
harmonizitit durch Elektron-Phonon-Wechselwirkungen hoherer Ordnung erfor-
dert. Superzellenberechnungen der elektrischen Leitfadhigkeit aus ersten Prinzipi-
en, die auf einer Kombination aus der Kubo-Greenwood-Formel (KG) und der ab
initio Molekulardynamik (aiMD) beruhen, scheinen ein vielversprechender Ansatz
zu sein, da sie diese Wechselwirkungen auf natiirliche Weise berticksichtigen. Die
Anwendung dieses Ansatzes auf kristalline Materialien hat jedoch bisher nur sehr
wenig Aufmerksamkeit erhalten. In dieser Arbeit werden der ab initio KG-Ansatz
und die Schwierigkeiten einer numerischen Umsetzung fiir kristalline Festkorper
beschrieben und die Probleme anhand zweier sehr unterschiedlicher Systeme de-
monstriert.

Die erste Fallstudie fiir Silizium (Si), das ein sehr harmonisches Material ist,
zeigt, dass die ab initio KG-Berechnungen eine hohe Anforderung an die Rechenres-
sourcen stellen, und zeigt die erheblichen numerischen Schwierigkeiten auf. Insbe-
sondere erfordert die KG-Berechnung eine dichte k-Punktabtastung, was die Kon-
vergenz in Superzellengrofie behindert und die Berechnung nur mit (halb)lokalen
Dichtefunktionalapproximationen (z.B. LDA und GGA) durchfiihrbar macht. Au-
erdem fiihrt die notwendige Einfithrung eines Verbreiterungsparameters (1) zu
einer erheblichen Unsicherheit bei der quantitativen Bestimmung der elektrischen
Leitfahigkeit. In dieser Arbeit werden rechnerisch effiziente Strategien diskutiert,
um diese Probleme zu l6sen, darunter: (i) der Scherenoperator-Ansatz zur Kor-
rektur des LDA-Bandliickenproblems; (ii) das Optimal-7-Schemafur Wahl eines
geeigneten Wertes fiir #; und (iii) die Finite-Size-Scaling-Methode zur Ableitung
der elektrischen Leitfahigkeit im Grenzfall einer unendlich grofien Superzelle. Mit
diesen Strategien zeigt sich, dass unsere Berechnungen auf LDA-Ebene zwar elek-
trische Leitfahigkeiten in angemessener Ubereinstimmung mit Experimenten erge-
ben, unsere Ergebnisse jedoch nicht gut mit denen fritherer ab initio-Berechnungen
unter Verwendung der Boltzmann-Transportgleichung (BTE) auf LDA-Ebene tiber-
einstimmen. Dieser Vergleich deutet darauf hin, dass das 77-Problem und die Frage
der Konvergenz in SuperzellengrofSe weiter verbesserte Konzepte erfordern.

Die zweite Fallstudie fiir SnSe, ein stark anharmonisches Material, zeigt sehr
dhnliche numerische Schwierigkeiten wie im Fall von Si. Bei SnSe ist die Frage
der Konvergenz der Superzellengrofie aufgrund der anisotropen elektrischen Leit-
fahigkeit und der Tatsache, dass die Grofie der Superzellen schnell rechnerisch
nicht mehr machbar ist, recht schwierig zu 16sen. Durch die Wahl geeigneter Super-
zellengrofien und die Anwendung der definierten Strategien werden die x- und z-
Komponenten der elektrischen Leitfahigkeit in p-dotiertem SnSe bei 300 K und 523
K berechnet. Es zeigt sich, dass die berechneten Ergebnisse auf der GGA-PBEsol-
Ebene in angemessener Ubereinstimmung mit dem Experiment sind. Allerdings



bleiben die grofien Unsicherheiten aufgrund des 5-Problems und das Problem der
Konvergenz in Superzellengrofie bestehen. Vergleich mit fritheren ab initio BTE-
Berechnungen und die Diskussion des Einflusses der Gitteranharmonizitiat auf die
Konvergenz der Superzellengrofie werden vorgestellt.

Man kommt zu dem Schluss, dass mehr Fachwissen tiber den Umgang mit dem
n-Problem und die Frage der Konvergenz der Superzellengrofie erworben werden
muss, bevor der ab initio KG-Ansatz zur Vorhersage der elektrischen Leitfahigkeit
von kristallinen Materialien verwendet werden kann.
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1 Introduction

The electrical conductivity, referred to as ¢ in this thesis, describes the ability of a mate-
rial to conduct charge carriers. According to Ohm’s law J = ¢E, it is the proportionality
between the electric current density J and the applied electric field E. Its value can vary
by more than a factor of 10%° from one material to another [1, 2], leading to the tra-
ditional classification of materials as metals, semiconductors, and insulators. Figure
1.1 shows the electrical conductivities of some common materials at room temperature.
Metals such as Cu are good electrical conductors with high electrical conductivities of
the order of 10* — 10° Q~'em ™! [3]. Intrinsic semiconductors such as pure Si are rather
electrically resistive with electrical conductivities of the order of 1078 — 1072 QO !em ™!
[4]. Depending on doping and temperature, the electrical conductivity of a semicon-
ductor can usually be varied in a wide range. For example, heavily phosphorus (P)-
doped Si can have significantly enhanced electrical conductivity up to the order of
10°> Q~tem~! [5]. Such a wide tunability of the electrical conductivity of semiconduc-
tors is the basis for (opto)electronic applications.

Semiconductors Metals
Si:P
GaAs Si Ge (n++)  pp Cu
GaAs:Te Al

-
1078 10°° 10°* 1072 10° 10° 10* 10°

Electrical conductivity (Q 'cm™)

Figure 1.1: Electrical conductivities (in units of Q~'em™1) of some common materials at
room temperature: high-purity single-crystal semiconductors: GaAs, Si, and
Ge [4]; Te-doped (n-type) GaAs [6]; heavily P-doped (n-type) Si [5]; high-
purity metals: Cu, Al, and Pb [3]. Note that data for semiconductors depend
sensitively on doping and temperature. Adapted from Refs. [1, 2].

Assessing the electrical conductivity of materials is typically done by experimental



1 Introduction

measurements and /or semi-empirical calculations [7]. These approaches are now being
expanded by a new research paradigm: the big-data driven materials science [8, 9]. A
prominent example [10] in this direction is the development of high-performance ther-
moelectric materials — materials in which a temperature difference converts heat into
electricity, in order to help today’s demand for waste heat management and generation
of clean electricity. The electrical conductivity is a factor entering the thermoelectric
figure of merit, zT = 0S?>T/x. Ideally, a high value of zT is realized by a large electrical
conductivity (¢), a large Seebeck coefficient (S), and a small thermal conductivity (x) at
the temperature T. However, these are a set of properties that nature is not likely to pro-
vide in a single material [11]. Fortunately, the periodic table of elements offers immense
possibilities of: (i) discovering novel thermoelectric materials where large o and S and
small ¥ manifest simultaneously, and (ii) defining strategies to optimize the known
thermoelectric materials, such as through doping, alloying, and nano-structuring [10].
For such a huge search space, it is crucial to develop methods that can reliably and
efficiently determine the electrical conductivity of materials.

First-principles calculations have emerged as a powerful approach to address the
above challenge. Over the last decade, predictive non-empirical calculations of electri-
cal conductivities and carrier mobilities using the Boltzmann transport equation (BTE)
became feasible [12, 13], owing to advances in: (i) density-functional theory (DFT)
calculations of total energies, structural properties, and electronic band structures of
solids, (ii) the development of density-functional perturbation theory (DFPT) for lat-
tice dynamics and electron-phonon (e-ph) interactions, and (iii) the rapid growth and
broad availability of supercomputing power for overcoming size and time constraints
as well as numerical complexities. The ab initio BTE approach to the calculation of
electronic transport coefficients has been successfully applied to a variety of materials,
from simple materials (e.g., Si) to complex materials (e.g., metal-halide perovskites) and
two-dimensional materials (e.g., MoS,) [12, 13].

In many ab initio BTE calculations!, the description of electron-phonon scattering by
perturbation theory relies on the harmonic approximation to lattice dynamics [14, 12].
In the harmonic approximation, the potential-energy surface (PES) is expanded to sec-
ond order in the atomic displacements, and the third- and higher-order terms, i.e., lat-
tice anharmonicity, are neglected. Thus, the reliability of the BTE calculations depend
on the validity of the harmonic approximation. This is material dependent, and in gen-
eral materials tend to be anharmonic at high temperature. For instance, Si is a highly
harmonic material even at temperatures well above room temperature [15, 16]; the ther-
moelectric material SnSe and the photovoltaic materials metal-halide perovskites are
anharmonic in nature, and are already highly anharmonic at room temperature (see,
e.g., Ref. [17, 18] for SnSe and Ref. [19, 20] for metal-halide perovskites). In state-of-the-
art ab initio BTE calculations, the role of lattice anharmonicity has largely been ignored

n this thesis, the BTE calculation is only about the calculation of electronic transport coefficients.



[21, 22, 23]. This is mainly because when going beyond the harmonic approximation,
the resulting e-ph coupling formalism is exceedingly complex (let alone computation)
[14]. However, for anharmonic materials, there are growing evidences showing that
inclusion of anharmonic effects on both the phonon dynamics and e-ph coupling is re-
quired to get the correct electronic transport coefficients. The BTE calculation of the
electrical conductivity of SnSe by Caruso et al. [24] showed that a good quantitative
agreement with experiment requires accounting simultaneously for the thermal lattice
expansion (which is an anharmonic effect) and thermal enhancement of the e-ph in-
teraction. Failure of the ab initio BTE approach may occur when calculations of e-ph
coupling matrix elements break down due to the presence of soft phonon modes in the
harmonic approximation (e.g., SrTiO3; [25, 26] and metal-halide perovskites [22]). In
this case, self-consistent phonon calculations [27, 28, 29], which approximately account
for lattice anharmonicity at finite temperature, can be performed to stabilize the soft
phonon modes; if this method works, the e-ph matrix elements and scattering rates are
then computed using the anharmonic phonons [25, 26]. Besides, the e-ph scattering
rates are usually evaluated at the lowest order of perturbation theory, and the inclusion
of higher-order e-ph coupling effects constitutes a pressing challenge [12, 30, 31].

As an alternative, first-principles supercell calculations based on a combination of
the Kubo-Greenwood (KG) formula [32] and ab initio molecular dynamics provide a
non-perturbative, fully-anharmonic approach for calculating the electrical conductiv-
ity of materials. In this approach, 2iMD simulations at finite temperature are used to
generate atomic trajectories on the ab initio PES, naturally accounting for lattice anhar-
monicity to all orders [33, 27]. A sufficiently large number of MD samples (i.e., atomic
configurations) is generated from these trajectories to represent the typical distribution
of the nuclei on the PES at the temperature of interest. The electrical conductivity for
each of the samples collected is determined from a KG calculation, which requires only
a standard DFT calculation and does not involve any perturbative treatment. The fi-
nal electrical conductivity is evaluated as an average over the collected samples. The
calculated results naturally contain information on the dynamics of the system, i.e., on
lattice vibrations and the coupling between electrons and lattice vibrations. While the
ab initio KG approach is clearly promising, to date, its application is largely limited to
warm dense matter and disordered solids and has received very little attention regard-
ing crystalline materials (see Section 3.3.4). Previous studies [34, 35] showed that the
KG calculations on crystalline solids are prone to numerical problems, e.g., the issue of
supercell-size convergence. It is necessary to carry out a thorough test of this approach
and its numerical implementation for crystalline solids.

This thesis is motivated by the quest for a first-principles approach to reliably pre-
dict the electrical conductivity in anharmonic materials, and is devoted to the ab initio
KG approach. Our goals are to (1) describe the ab initio KG approach and the difficul-
ties of a numerical implementation of this approach for crystalline solids; (2) explore a
numerical implementation of the ab initio KG approach for two very different systems
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(the harmonic crystal Si and anharmonic crystal SnSe), demonstrate the problems, and
discuss the solutions; and (3) assess the predictive power of the ab initio KG approach
to the calculation of the electrical conductivity of crystalline materials. We hope that
our work will serve as (i) a useful guide to the application of the ab initio KG approach
to calculate the electrical conductivity of crystalline solids, and (ii) a valuable starting
point towards a reliable numerical implementation of this approach for crystalline ma-
terials. The thesis is structured as follows:

Chapter 2 reviews the relevant concepts and methods in modern electronic-structure
theory of solids. This gives the theoretical foundation of DFT calculations by which ab
initio material parameters required for the KG calculations are provided.

Chapter 3 gives an overview on the theory of electronic transport in solids, from
the Boltzmann transport theory to the Kubo’s theory of linear response. It provides a
detailed introduction of the KG formula, and establishes the connection with electronic-
structure calculations including aiMD simulations of lattice vibrations. Practical aspects
of the ab initio KG approach such as the broadening of the Dirac delta function, the
methods to describe free-carrier doping, and our computer code implementation of the
KG formula are also discussed.

In Chapter 4 we apply the ab initio KG approach to calculate the electrical conductiv-
ity of Si at 300 K. With a focus on intrinsic Si, we provide a detailed convergence study
for the relevant computational parameters, including k-point sampling, broadening
parameter, basis-set size, number of MD samples, and supercell size. Computation-
ally efficient strategies are discussed to deal with the identified problems, including the
choice of broadening parameter, the DFT band-gap problem, and the issue of supercell-
size convergence. We also compute the electrical conductivities of both p- and n-doped
Si at different doping levels, and compare our calculations with experiment and with
previous ab initio calculations using the BTE approach. The latter comparison allows
for assessing the convergence of our calculations.

In Chapter 5 we apply the ab initio KG approach and the strategies defined in Chapter
4 to calculate the anisotropic electrical conductivity of the layered semiconductor SnSe
at 300 K. This case study is partly motivated by the question whether the numerical dif-
ficulties identified in the case of Si is less severe for anharmonic crystals. We consider
the x (i.e., interlayer) and z (i.e., in-plane) components of the electrical conductivity
of SnSe, and present a detailed convergence study for k-point sampling, broadening
parameter, number of aiMD samples, and supercell size. The calculated electrical con-
ductivities are compared with experiment and with previous ab initio BTE calculations.
The calculated results for SnSe 523 K are also reported.

Finally, Chapter 6 summarizes this work, and gives an outlook that may help future
developments of the ab initio KG approach.



2 AD initio electronic-structure theory

The insights of materials ultimately rest on understanding their electronic structure
[36]. This chapter reviews the basic concepts and standard formalism that have enabled
tirst-principles density-functional theory (DFT) calculations of the electronic structure
of crystalline solids. Emphasis is laid on how the material parameters, such as equi-
librium structure, electronic band structure, lattice dynamics, and more, for assessing
the electrical conductivity of real materials at finite temperature can be obtained from
solid-state DFT calculations.

2.1 Many-body Schrodinger equation

Consider a system of interacting particles, which can be either an atom, molecule or
solid, consisting of N electrons and N, nuclei. The coordinates of the electrons are
denoted as {r;} = {ry, 1y, ..., rn} (spin is omitted for simplicity), and the coordinates
of the nuclei are denoted as {R;} = {Ry,Ry,...,Ry,}, which sum up to a total of
3N + 3N, degrees of freedom. To treat this many-body system, the starting point is the
time-independent Schrédinger equation:

HY ({ri}, {Ri}) = E¥Y ({ri}, {R1}). (2.1)

In the absence of external field, the non-relativistic Hamiltonian H of the system com-
prises the following terms:

H=T"+Te+ V04 pee 4 pen (2.2)

with (i) the kinetic energy of the nuclei:

n & hz 2
™ = — L Z—MIVRI, (2.3)
(ii) the kinetic energy of the electrons:
hz N
T = —5 Z V3, (2.4)
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(ii) the Coulomb interactions between the nuclei:

2 No Nn Z]Z]
v — L 2.5)
25 & Rk
(J#I)

, (2.6)

and (v) the Coulomb interactions between the electrons and the nuclei:

N N, 2
n Zie
Ve = — E _ (2.7)
i—11=1 lt; — Ry|

In these equations, m and e are the electron mass and charge, M; and Z; are the mass
and charge of the I-th nucleus, and /i = h /27 the reduced Planck constant.

Equation (2.1) constitutes a complex quantum-mechanical many-body problem, of
which the exact solution is well beyond existing computing and data-storage capacities
(except for a few very simple systems) [37]. This is even more obvious for solids which
consist of ~ 10?® particles per cm®. Thus, reducing the degrees of freedom in Equation
(2.1) is essential to make it numerically solvable, which is achieved by the physical
approximations on the many-body problem, as introduced in the following sections.



2.2 Born-Oppenheimer approximation and potential-energy surface

2.2 Born-Oppenheimer approximation and potential-energy
surface

In order to find an approximate solution of Equation (2.1), one begins by making the
Born-Oppenheimer (BO) approximation [38]. Because the nuclei are much heavier than
the electrons (e.g., for hydrogen, My /m ~ 1836) and the forces on the particles are the
same, the electrons instantaneously and adiabatically follow the motion of the nuclei.
Thus, one can assume that the nuclei are stationary and solves first for the motion of
the electrons, then computes the energy of the system in that nuclear configuration, and
tinally solves for the motion of the nuclei, as outlined below.

For a system of interacting electrons moving in the field of the stationary nuclei, the
electronic Hamiltonian is given by:

He({R;}) =T+ V= + V" ({R}}), (2.8)

which acts on the electronic variables and depends parametrically on the coordinates of
the nuclei {R;}. The time-independent Schréodinger equation for this electronic prob-

lem reads:
H({R;})®y({r:}; {R1}) = EJ({R1 )@y ({r:}; {R1}), (2.9)

where ES({R;}) and @, ({r;}; {R;}) are the energy and wave function of the electronic
system in the v-th eigenstate. Note that in Equations (2.8) and (2.9), the nuclear coordi-
nates {R;} are only parameters that label or classify the H¢, ES, and ®,. Accordingly,
Ve ({R;}) describes the potential energy of the electrons in the so-called external field
of the nuclei.

For a given nuclear configuration {R;}, the eigenfunctions @, ({r; }; {R;}) of the elec-
tronic system form a complete basis. The wave function of the total system as the solu-
tion of Equation (2.1) can be expanded as:

Y({ri} {Ri}) = Y xo({Ri})@u({ri}; {R1}), (2.10)

where x, ({R;}) are the expansion coefficients. Inserting Equation (2.10) into Equation
(2.1) and multiplying @} ({r;}; {R;}) from the left lead to:

[T+ V™ ({Ri}) + EL({R1P)]xu({R1})

& > 2.11)
+ Z; _m[(<q>#‘le‘q}v>)Xv +2(®,|VR,|Pv) (VR Xv)] = Exu({R1}).

The second term on the left-hand side of Equation (2.11) describes the electronic transi-
tion from ®, to ®,, if there exists nuclear motion (the Vg, and V%{I operators), which is
known as the electron-vibrational coupling. This term contributes typically very little
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to the energy of the system compared to Ej;({R;}) [39], and is neglected in the BO ap-
proximation, thus allowing for a separated treatment of the dynamics of the electrons
and nuclei. Equation (2.11) then becomes:

[T+ VP ({Ri}) + EL({RiP)Ixu ({R1}) = Ex({R1}), (2.12)

which describes the motion of the nuclei, and the wave function of the system is:

Fu({ri} ARr}) = xp (R} Dy ({ri}; {R1}). (2.13)
Equation (2.12) defines a so-called BO potential-energy surface (PES) [33]:
Uu({Rr}) = VI ({R}) + Ey({R1}), (2.14)

which is the total energy of the system in the y-th electronic eigenstate, as a function
of nuclear coordinates. Therefore, in the BO approximation, the motion of the nuclei is
on a BO PES which is a solution to the electronic Schrodinger equation. Note that for a
given nuclear configuration {R;}, the V"™ ({R;}) is a constant.

When the nuclei are fixed at positions {R;}, which corresponds to zero temperature
(neglecting nuclear quantum effects), the ground-state wave function is given by:

Fo({R1}) = xo({R1})Po({r:}; {Ri}), (2.15)
and the total energy of the system is:
Eo = Uo({R;}) = V" ({R}) + E§({Ry}). (2.16)

The force acting on the I-th nucleus in the electronic ground state is defined as:

dEo({R1})
F; = TR, (2.17)
The calculation of atomic forces enables one to [38]: (i) relax the system to find the
ground-state equilibrium geometry, {R9}, which corresponds to the global minimum
of the BO PES and at which the atomic forces vanish for all the nuclei; and (ii) perform
ab initio molecular dynamics (aiMD) simulations to sample the BO PES for studying the
equilibrium properties of the system at finite temperature (see Section 2.5.2).

However, the calculation of the electronic ground state for a static nuclear configu-
ration by solving Equation (2.9) remains a complex many-body problem and requires
further simplifications. Since this is purely an electronic problem, from this point on
the parametric dependence of the electronic quantities on the nuclear coordinates will
be suppressed.
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2.3 Density-functional theory

Density-functional theory (DFT) introduced in this section reduces the complexity in
solving for the electronic ground state for a static nuclear configuration, by using the
electron density instead of the many-body wave function as the basic variable. It pro-
vides a computationally practical way to calculate the ground-state properties of a
many-electron system.

2.3.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn (HK) theorems [40], which are the foundation of DFT, state that
the (electron) density n(r) is the basic variable that determines the ground-state prop-
erties of a system of interacting electrons in an external potential. This is a significant
simplification of the many-body electronic problem as one then only needs to deal with
3 instead of 3N degrees of freedom [via r = (x,y, z), spin is omitted for simplicity]. The
HK theorems consist of two theorems:

Theorem 1. The external potential Vi (r) (apart from a trivially additive constant),
and hence the total energy, is a unique functional of the density n(r).

Theorem 2. For a static external potential Ve (r), there exists a universal functional
of n(r), F[n(r)], which is independent of Vex(r), such that the energy functional

E[n(r)] = F[n(r)] + /n(r)Vext(r)dr (2.18)

has as its minimum value the correct ground-state energy associated with Vey(r).

The HK theorems apply to the ground state of any electronic system, irrespective
of the detail of the external potential. Often the external potential is provided by the
stationary nuclei, which is the case here. However, the F[n(r)] is unknown. Further,
additional theory is required to compute the ground-state density in practice. This has
been achieved by Kohn-Sham DFT.

2.3.2 Kohn-Sham DFT

In order to use the variational principle to find the electronic ground state, Kohn and
Sham [41] considered an auxiliary, fictitious system of N non-interacting electrons with
the same density n(r) as that of the real system of N interacting electrons. With this,
the universal functional F[n(r)] for the interacting electrons is cast into the form,

F[n(r)] = Ts[n(r)] + Va[n(r)] + Exc[n(r)]. (2.19)
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In this equation, Ts[n(r)] is the kinetic energy of the non-interacting electrons:

2 N
(o] =~y 3 [ (0P ) .20

where ¢;(r) are auxiliary one-electron orbitals which are orthonormal. Ty is of compa-
rable magnitude to the true kinetic energy and is treated exactly [37]. Eg[n(r)] is the
classical electrostatic energy (Hartree energy) of the electrons:

e? n(r)n(r')
Exc[n(r)] is the exchange-correlation (xc) energy, which by construction includes two
contributions [41]: (i) the difference between T and the true kinetic energy, and (ii) the

non-classical electron-electron interaction energy. The energy functional E[n(r)] of the
real, interacting system then reads:

E[n(r)] = Ts[n(r)] + Eu[n(r)] + Exc[n(r)] + /n(r)Vext(r)dr, (2.22)

which assumes its minimum value at the ground-state density. The Euler-Lagrange
equation for this variational-principle problem is given by [42, 43]:

N
S{E[n(r)] - ;ei / (1) i (r)dr} = 0, (2.23)

where €; are Lagrange multipliers ensuring that the N one-electron orbitals ¢; are or-
thonormal. The minimization:

o . ‘
sy (EIn(n)] = Zei [ 4 ()e)ae) = 0, vi (224
leads to a single-particle Schrodinger equation:
hZ
[—%Vz + Veff(l‘)]l,bi(r) = €,‘l[]l‘<l'), (2.25)

with an effective potential:
Veff(r) = Vext(r) + VH(r) + ch(r)

= Vext(r) + 62/ |:l(_”/r)/| dr’ + OExc[n(1)] (2.26)

on(r)

10
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which yields the exact ground-state density:

N
n(r) = ; | (1)) (2.27)

The ground-state energy of the system is expressed as:

N n(r)n(r
Ey = ;ei — 822 / / ‘(r)_il‘)drdr' + Exe[n(r)] — /n(r)VXC(r)dr. (2.28)

i=1

where the single-particle eigenvalues are labeled such that e; < e, < .... Equation
(2.25)-(2.28) are called Kohn-Sham self-consistent equations, which are the basis of
Kohn-Sham DFT. The solution of the Kohn-Sham equation needs to be self-consistent
because Vgg(r) is a functional of n(r).

Kohn-Sham DFT demonstrates that for a system of N interacting electrons in an ex-
ternal potential, the exact ground-state density and energy can be found by solving self-
consistently the Kohn-Sham equation for N one-electron orbitals ¢;(r), each of which
is a function of only three arguments r = (x,y,z). Such an exact mapping provides a
practical way of computing the ground-state density and energy. Yet, the exact xc en-
ergy Exc[n] and potential Vi (r) = JEy./dén are not known [44]. Therefore, in practical
DFT calculations Ey.[n] must be approximated by some known functionals of n(r), as
introduced in Section 2.3.3.

The meaning of the Kohn-Sham eigenvalues

The eigenvalues of the Kohn-Sham equation (2.25) enter the formalism as Lagrange
multipliers. They cannot be identified with the excitation energies of the interacting
many-electron system. This is evident from that the total energy is not equal to Y | €;.
Rather, the eigenvalues are interpreted according to Janak’s theorem [45] as derivatives
of the total energy with respect to occupation numbers:

e.—iﬁ
Z_afi/

where E is the generalized energy functional:

(2.29)

2
E= —th Z fi / W (1) V2 (1)dr + Ena[n(e)] + Exc[n(r)] + / 1(r) Ve ()dr,  (2.30)

and

n(r) =) filyi(r)%, (2.31)

11
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where f; denotes the occupation number of the one-electron orbital ;. Equation (2.29)
holds for any choice of the {f;}, including fractional occupations (0 < f; < 1 with
Y fi = N) [45]. The E at its minimum is just the ground-state energy Ey that corre-
sponds to the occupation of the N lowest orbitals.

By integration of Equation (2.29) one connects the ground-state energies of the sys-
tems with N and (N — 1) electrons, i.e.,

I(N) = Eo(N —1) — Eo(N) = — /01 ei(f)df. (2.32)

where I(N) is the ionization energy of the N-electron system. Equation (2.32) has a
formal justification only if €; refers to the highest occupied eigenstate in the N-electron
system. However, it has been used with success for calculating the ionization energy of
localized states (e.g., core levels [46]):

L(N) = — /01 ei(f)df ~ —eilfi = %). (2.33)

This approach is called the Slater’s transition-state method [47] (earlier than Janak’s
theorem and DFT). When the eigenvalue ¢; is approximately constant as a function of
fi, then —e; predicts well the ionization energy of this level of the real system. This is
the analog of Koopmans’ theorem! of Hartree-Fock theory.

Extension to finite temperatures

For a system of interacting electrons in thermal equilibrium in contact with a heat bath
at temperature T, the state of the system should be described by a statistical ensemb]e.
Within the framework of DFT, this can be done using the Mermin free-energy functional
or Mermin-Kohn-Sham self-consistent equation [48, 49], which is formally similar to the
Kohn-Sham equation (the zero-T case). In this case, the density is given by:

n(r) = Zfi\¢i(r)|2, (2.34)

where f; is a Fermi-Dirac distribution:

€ — 1
fi=f(— Fy = i (2.35)
1+e*s!

In the Hartree-Fock theory, the Koopmans’ theorem states that the change in total energy due to the
removal of an electron from an unrelaxed orbital lpiHF is simply related to the eigenvalue of this orbital,

ie, E(N—1;f; = 0) — Eg(N) = —eliF [43]. This theorem requires that all the orbitals do not relax
when the occupancy f; is reduced.

12



2.3 Density-functional theory

where y is the chemical potential (or Fermi level) of the electrons, and kp the Boltzmann
constant. For a canonical ensemble, the y is determined by:

YfEEER =N (2.36)

The finite-temperature extension of Kohn-Sham DFT is useful for studying systems at
finite temperature.

2.3.3 Exchange-correlation approximations

Kohn-Sham DFT provides a practical way to determine the ground state of an inter-
acting many-electron system by self-consistent solution of the Kohn-Sham equation.
The only problem is that in practice the xc energy Ex.[n(r)] has to be approximated
by some known functionals of n(r). In the same work of Kohn-Sham DFT [41], the
Exc[n(r)] is approximated with the local-density approximation (LDA). Following the
LDA, many density functional approximations (DFAs) have been developed or are un-
der development [50]. Each of them can be assigned to a certain rung in Perdew’s
"Jacob’s ladder" of DFAs [51], with increasing complexity and numerical accuracy as
well as computational cost from lower to higher rungs. The LDA is at the lowest rung,
and the generalized gradient approximations (GGAs), which introduce also the density
gradient, are at the next higher rung of the ladder. The numerical accuracy of a DFT
calculation depends to a large extent on the chosen DFA, and there is no universally
good approximation. In practice, one may need to find a compromise between accu-
racy and computational cost, especially when performing solid-state calculations with
simulation cells containing more than a few hundred atoms [52].

In this subsection, we review the most widely used DFAs, including LDA, GGAs
(PBE and PBEsol as examples), and hybrid functionals (HSE06 as an example), together
with a discussion of their performance in solid-state calculations.

Local-density approximation

In the LDA [41], it is assumed that the Ey.[n(r)] is entirely local, and that the xc energy
per electron at point r is equal to the xc energy per electron of a homogeneous electron
gas (HEG) at this point with the same density; i.e.,

Exc[n(r)] = E2%[n(r)] = / n(r)exe < [n(r)]dr. (2.37)

The €!IFS[n(r)] is commonly decomposed into exchange and correlation terms:

exc o n(1)] = &FCn(r)] + e ln(r)]. (2.38)

13
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The €!EC is known analytically:

33

HEC [ (r)] = —3 (=

W3n(r)1/3. (2.39)
For €1FS, analytic expressions are known only in the high- and low-density limits. For
several intermediate values of 7(r), numerical results for e/'E¢ have been calculated
from nearly accurate Quantum Monte Carlo (QMC) simulations [53]. Several approx-
imate analytic forms for €!EG exist; they are parametrized using the QMC data and

meanwhile reproduce the known limiting behavior, and yield very similar results [38].
In our later study of Si, we will use the analytic form given by Perdew and Wang [54],

1

HEG
ec Cn(r)] = —2A(1 + aqrs) In[1 +
‘ ’ 2A(P1rY/? + Bors + Bard/? + Barl ™)

], (2.40)

3
4rn(r
value of the parameters i(n)Equation (2.40) can be found in Ref. [54].

In principle the LDA is only valid for systems with uniform or slowly-varying den-
sity. However, this approximation has turned out to work surprisingly well in predict-
ing the ground-state properties of atoms, molecules, and solids, in which the electron
density is far from homogeneous [37]. For weakly correlated solids, such as simple
metals and semiconductors, the LDA reliably describes structural and vibrational prop-
erties [33]. The success of this approximation has been partly attributed to the fact that
it gives the correct sum rule for the xc hole? [55]. The LDA also has some well-known
deficiencies: (i) It tends to overestimate the binding energies of solids and hence often
underestimates the lattice constants [56, 57]; (ii) It systematically underestimates the
band gaps of semiconductors and insulators (by about 40 — 50%) [58]. The band-gap
problem will be discussed later.

where r; = 15(r) = | ]1/3 is the dimensionless Wigner-Seitz radius. The detailed

Generalized Gradient Approximations

In order to account for density inhomogeneity, GGAs extend LDA by introducing an
additional dependence on the gradients of the density [59]; i.e.,

Ex[n(r)] = ESCGA[n(r)] = /n(r)eXHCEG[n(r)]FXC[n(r),Vn(r)]dr. (2.41)

The Fi.[n, Vn] is the xc-enhancement factor, a dimensionless parameter that describes

the deviation from €!¥C[n] (inherited from the LDA). Due to the density gradient V7,

GGAs are semilocal functionals. Since there is no unique recipe for Fy., various GGA

2The xc hole describes the depletion of electron density in the vicinity of each electron due to the exchange
and Coulomb interactions. The sum rule states that this hole should contain only one charge unit [55].

14
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functionals are available; they are different in which and how many exact physical
constraints (limits, bounds, asymptotics, etc.) for E,. are satisfied [60].

The PBE functional, developed by Perdew, Burke, and Ernzerhof [61], is the most
widely used GGA in the physics community. It is nonempirical; that is, the numerical
parameters in this functional are set solely by imposing several exact physical con-
straints on the energy functional. The PBE exchange is expressed as:

EPBE[y] = / 11(x)HEG [11] PP () dr, (2.42)

where the FLPE(s) takes a simple analytic form:

1

EPE(s) = 14 xk(1 — = pppg7-),
1+ utbEs? /x

(2.43)
where: (i) s = |Vn|/(2kgn(r)) is the reduced density-gradient, a dimensionless param-
eter measuring the local density inhomogeneity over a Fermi wavelength A = 271 /kg
with kg = [3712n(r)]'/3; (ii) x = 0.804 is set to the maximum value allowed by the
Lieb-Oxford bound (a lower bound on Ey.) [62]; (iii) #"BF = 0.21951 is set to reproduce
the slowly varying limit (s — 0), in which the gradient correction for exchange cancels
that for correlation. The correlation component of PBE has a relatively complex ana-
lytic expression and is not detailed here. As a minor modification of PBE, PBEsol [63]
is specifically parameterized to the physical constraints that are relevant to solids, and
it differs from PBE only in two parameters.

When used in solid-state calculations, the PBE functional provides a good balance be-
tween numerical accuracy and computational cost. While PBE reduces the overbinding
of the LDA, it often overestimates the lattice constants [56, 57]. This deficiency is gener-
ally improved by PBEsol [63, 56, 57]. For the band gaps, all GGAs show no significant
improvement over LDA [64].

Hybrid functionals

Hybrid functionals [65], which are at the fourth rung of Perdew’s "Jacob’s ladder" of
DFAs, replace a fraction of GGA exchange with that of Hartree-Fock:

hybrld

Ex[n] =~ E wEF 4 (1 — ) ESSA[n] 4 ESCAn], (2.44)

where EIF is the exact (Hartree-Fock) exchange, and & ~ 1/4. The exact exchange has
an explicit dependence on the occupied one-electron orbitals:

2 N
EHF[ (] = _iz / / $F (1)} (12) ’¢](r1)¢l(r2)dr1dr2, (2.45)
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which is a nonlocal functional. The one-electron orbitals are now solutions of the gen-
eralized Kohn-Sham equation [66, 67]:

2
[_thvz + Vioe (1) 9i (1) + / VEE(r, ) p; () dY = e;wi(r), (2.46)

where Vi, (r) is the usual GGA potential, and a fraction « of the GGA exchange po-
tential is replaced with the Hartree-Fock exchange potential (V/F). Due to the nonlocal
nature of the Hartree-Fock exchange potential, the numerical solution of Equation (2.46)
is computationally costly.

Considering that the electron-electron Coulomb interaction is screened in solids, Heyd-
Scuseria-Ernzerhof (HSE) screened hybrid functional [68] introduces an additional screen-
ing for the exact exchange, by partitioning the Coulomb operator 1/r = 1/|r; — r,| into
short-range (SR) and long-range (LR) components:

1 _ erfe(wr) n erf(wr)
p

. P (2.47)
N——— N——

SR LR
where w is an adjustable parameter. With such a treatment, the decay of the exact ex-
change interaction in real space is accelerated [68], enabling a substantial lowering of
the computational cost (though still much more costly than LDA and GGAs). Further-
more, the HSE functional considers only a screened short-range exchange, i.e.,

EFSE — wEHESR(()) 4 (1 — &) EPBESR () + EFBELR () 4 EPBE, (2.48)

The HSE06 [69] with the parameters v = 0.11 bohr ' and & = 0.25 has proven to
be very successful in reasonably predicting the band gaps of many semiconductors.
However, it does not provide general solutions [64].

DFT-LDA/GGA band-gap problem

As mentioned above, LDA and GGAs systematically and severely underestimate the
band gaps of semiconductors and insulators. This problem has long been discussed
since the 1980s [58, 70, 71, 43], and there is still ongoing effort to elucidate it [72, 42].
These works are reviewed as follows, and our focus is on the relation between the
fundamental band gap (Eg) and the gap of Kohn-Sham band structure (E;) for both the
exact Kohn-Sham DFT and the (semi)local approximations.

For a neutral solid of N electrons, the fundamental gap E is defined as the difference
between the electron ionization energy I(N), which is the energy required to remove an
electron from the neutral solid, and electron affinity A(N), which is the energy gained
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by adding an electron:

Ec = I(N) — A(N),
(2.49)
= [Eo(N = 1) = Eo(N)] — [Eo(N) — Eo(N +1)],
where Ey(N) is the ground-state energy of the N-electron system.
Consider first Kohn-Sham DFT with the exact functional and its extension to frac-
tional electron numbers. It has been shown that the ground-state energy as a function
of electron number is a set of straight-line segments connecting the total energies for
consecutive integer electron numbers [44]:

J x I(N)
3 x A(N)

(N —6) — Eop(N),

(N) — Eo(N +3), (20

Eg
Eo

where 0 < § < 1. Based on this linear behavior, Eg can be expressed in terms of a
difference of derivatives at N [70]:

J9E,

Jim (5N ves — 3N In-s 251

where the first (second) derivative is carried out from the right (left). According to
Janak’s theorem, Equation (2.51) leads to [70]:

Eg = }L%}r{eLUMO(N +6) —enomo(N —9)}
= li N-—-§ C—- N-—-§
(SLI&{€LUMO( )+ eromo ( )} 2.52)
= erumo(N) — eromo(N) +C
—E,+C,

where E, is a nonzero gap® separating the highest occupied orbital (HOMO) and the
lowest unoccupied orbital (LUMO) of Kohn-Sham band structure, and C is the deriva-
tive discontinuity of the xc energy:

C = lim {aE oF

XC XC
5—0t " ON ’N+5_ oN s} (2.53)

The understanding of Equation (2.51)-(2.53) is as follows [58, 42, 73]: First, it is worth
noting that when the electron number is increased from N to N + 6 and decreased from
N to N — 4, the HOMO and LUMO is "probed", respectively (this holds for the ground
state). The HOMO and LUMO, which are separated by the Eg, correspond to distinct
parts of the Kohn-Sham band structure. The gap E; implies no orbital relaxations when

3Semiconductors and insulators.
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an electron is lifted in energy from the HOMO to LUMO, i.e., both the density and
Exc are fixed to those of the N-electron ground state. This means that the E; of the
exact Kohn-Sham DFT is contributed solely by a derivative discontinuity in the kinetic
energy Ts[n] of the Kohn-Sham electrons, while the difference between E and E, stems
from the xc discontinuity as the LUMO begins to fill. Equation (2.52) suggests that even
the band gap for the exact functional underestimates the fundamental band gap.

For LDA and GGAs to DFT, the xc discontinuity is absent [58, 42]. As a result, the
fundamental gap equals the gap of Kohn-Sham band structure:

EIéDA /GGA _ E;;DA/GGA. (2.54)

Equations (2.52)-(2.54) have explained the deficiency of (semi)local functionals in pre-
dicting the band gaps.

The band-gap problem can be traced back to the self-interaction error [43, 74] (or lo-
calization and delocalization errors [72]) in the (semi)local functionals, as briefed as fol-
lows. The electronic self-interaction describes the unphysical interaction of an electron
with the Coulomb potential generated by its own charge. There is no self-interaction
error in the exact Kohn-Sham DFT, where the xc energy of a single, fully occupied
Kohn-Sham orbital cancels exactly its self-direct Coulomb energy. Such an exact can-
cellation no longer holds in the LDA and GGA functionals which are (semi)local, lead-
ing to underestimation of the band gap of semiconductors and insulators. Since the
Hartree-Fock theory is self-interaction-free, hybrids of GGA with exact exchange can
largely reduce the self-interaction error and give substantial improvement over LDA
and GGAs for the band gaps.

To partially overcome the band-gap problem, one usually resorts to the HSE06 func-
tional or, in particular, GW methods (introduced in Section 3.3.2). In this thesis, it is not
possible to use these advanced methods for electrical conductivity calculations, due to
the high computational cost. Thus, as in many state-of-the-art studies of real materials
[75], in the present work we have to address the DFT band-gap problem with compu-
tationally less expensive alternatives.
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2.4 DFT calculations with the FHI-aims code

The numerical solution of the Kohn-Sham equation is found by expanding the Kohn-
Sham eigenfunctions in a basis set [38]:

Np
Pu(r) = ) Cinepi(r), (2.55)
i=1

i.e., each unknown ¢,,(r) is expressed into a linear combination of N}, predefined func-
tions ¢;(r) with coefficients C;,, associated with 1,,. The basis functions specify the
potential field of the nuclei. Further, with Equation (2.55), the Kohn-Sham equation re-
duces to a matrix equation of the coefficients C;,,, and the resultant algebraic eigenvalue
problem is routinely solved using standard iterative matrix diagonalization technique
on a supercomputer. For having good flexibility in the self-consistent procedure, N,
should be reasonably larger than the number of ¢, to be computed.

Kohn-Sham DFT has been implemented in various DFT computer codes which en-
able practical electronic-structure calculations. A key difference between these DFT
codes is that they employ different types of basis functions. Common choices of basis
functions include plane waves [38, 76], Gaussians [77], numeric atom-centered orbitals
[78, 79], and their combinations as well [80, 81].

Numeric atom-centered orbitals as basis set in FHI-aims

Here we introduce the FHI-aims code, according to Refs. [78, 82]. FHI-aims uses nu-
meric atom-centered orbitals (NAOs) as the basis functions. The NAQO basis functions
take the form:

(1) = “iir)Yzm(Q), (2.56)

where u;(r) is a radial function specifying the radial shape and Y},,,(Q) is a spherical
harmonic. The NAO basis functions in the FHI-aims code have the following impor-
tant features. (i) First, they are real-valued by construction. This is enabled by mak-
ing Y, (Q)) comprise both the real parts (m = 0,1,...,]) and imaginary parts (m =
—1,...,—1) of the complex spherical harmonics (I and m are implicit functions of the
basis index 7). (ii) Second, the u;(r) are taken to be numerical solutions of Schrodinger-
like radial equations:

[_ldi I(1+1)
2 dr? 72

+ 0i(7) + veut (1) ui(r) = €u;(r). (2.57)

The shape of u;(r) is mainly defined by the potential v;(r), but when r is far away from
the (atomic) center, the steeply rising (yet smooth) confining potential v..(r) ensures
that each u;(r) decays smoothly to zero for r > rqyr. Owing to this, basis functions from
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well separated spatial regions of a large system do not overlap with each other. This is
essential to form sparse matrices and to enable Kohn-Sham DFT implementation with
near-O(N) [instead of O(N?)] scaling for all integrals (see below; N denotes system
size). (iii) Third, each chemical element has a minimal basis set comprising the radial
functions of occupied free-atom orbitals of this element. This is achieved by simply set-
ting the v;(r) in Equation (2.57) to the self-consistent free-atom radial potential vffe¢ (7).
This feature significantly improves both the numerical accuracy and convergence of
all-electron full-potential calculations, as it naturally accounts for wave-function oscil-

lations near the nucleus (the deep nuclear potential Z /7).

With the NAO basis functions entering Equation (2.55), one obtains a generalized
eigenvalue problem:

Y (hij — €x5ij)Cju = 0,

]
hij = <(pi|fzKS|¢j> = /go,'(r)fzKSqoj(r)dr, (2.58)

sij = (9il¢j) = /Gﬂi(r)qﬂj(r)dr,

where };; and s;; are the Hamiltonian and overlap matrix elements, respectively. Note
that the FHI-aims NAO basis functions are nonorthogonal, which renders the overlap
matrix. These real-space integrals are computed numerically using Lebedev grids [83,
84] which are overlapping atomic-centered grid points distributed in a set of radial
shells for each atomic center. The basis functions are numerically tabulated with respect
to both the basis index i and integration point. This allows for matrix operations in
performing the real-space integration.

Equation (2.58) is solved using iterative matrix diagonalization algorithms in the
standard self-consistent field (SCF) method [85]. The SCF cycle begins with an initial
guess for the density. A trial h;; is then constructed and used to solve Equation (2.58).
The resulted coefficients C;, update the density and thus h;;, and so forth. The conver-
gence of the SCF iterations is monitored by keeping a track of the changes in density
and total energy as well as other quantities between two consecutive SCF steps. Once
these changes become smaller than the given thresholds, the numerical convergence
is reached, and the SCF cycle is then finished. Note that the overlap matrix elements
sij are computed only once and do not change during a SCF cycle (during which the
nuclear positions are kept fixed). This is the reason why a SCF cycle is usually referred
to as a static DFT calculation.

The numerical accuracy and computational cost of FHI-aims calculations depend
critically on basis-set settings: (i) basis-set size (Np), (ii) cutoff radius r., and (iii)
density of integration points. For each chemical element, besides the aforementioned
free-atom minimal basis, there is a list of additional basis functions to be included in
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2.4 DFT calculations with the FHI-aims code

FHI-aims calculations. In this list, the ordering of basis functions is exactly the output
sequence of the basis-function construction process, and the additional basis functions
are grouped into different tiers, e.g., for Si, spdf (tier 1)-spdg (tier 2)-... (Each tier in-
cludes the basis functions of lower tiers). There are three predefined default basis-set
settings: "light", "tight", and "really_tight". As their names suggest, N}, rcut, and the
density of integration points are all increased from "light" to "tight" and to "really_tight"
settings. When it comes to total-energy calculations, the "light" settings usually provide
a satisfactory convergence of total-energy differences, while the "tight" settings usually
provide a satisfactory convergence of total energies [86]. Recently, a simple analytic
model was proposed to estimate the numerical error associated with basis-set settings
[87]. The "tight" settings are recommended for production calculations. However, when
dealing with large-scale periodic systems using the "tight" settings, the computational
effort can be enormous [88]. In this case, the cheaper "light" settings are usually used,
but careful basis-set convergence test is necessary. In this thesis, our electrical conduc-
tivity calculations will be carried out using the "light" basis sets, and we will provide
test calculations using the “tight" basis sets.
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2 Ab initio electronic-structure theory

2.5 DFT in the solid state

From now on our discussion will be focused on crystalline solids which are infinitely
extended systems. This section describes the electronic structure, lattice vibrations, and
their interactions in crystalline solids.

2.5.1 Periodic boundary conditions
In a crystalline solid, any nucleus can be found by the position vector in the form:
TKP - Rp + Tk, (2.59)

where: (i) R, = }_;n;a; is the lattice vector identifying the p-th primitive cell which is
the smallest structural unit spanned by the primitive lattice vectors a; with i = 1,2,3;
(ii) 7« is the position vector of the x-th nucleus in the primitive cell.

The simulation of crystalline solids, in which an infinite number of electrons moving
in the field of infinite number of nuclei, relies on using the Born-von Karman (BvK)
supercell [14]: a cell compromises N; X N, x N3 primitive cells and is imposed with
periodic boundary conditions (PBCs). The p-th primitive cell in the BvK supercell is
identified by the lattice vector R, = Y ;m;a; (n; = 0,1,...,N; — 1) which is restricted
in the BvK supercell. Starting from any point in the BvK supercell and translating
Y.ili(N;a;) (I; are arbitrary integers) will trivially find the same point. Although still
periodic, the BvK supercell no longer extends into the space outside itself.

For the BvK supercell, the Kohn-Sham Hamiltonian is given by hxs = —%Vz +
Vet (1; {Tip}). The effective potential Vig(r; {Txp}) takes the same form as Equation
(2.26), but is now a periodic potential. According to Bloch’s theorem, the Kohn-Sham
eigenfunctions are Bloch functions [89]:

1
N, cell

el

Puic(r) = KT (1), (2.60)

where 1,1 (r) = up(r+ R,) is a lattice-periodic function. By definition, ¢, and
are normalized to one in the BvK supercell and primitive cell, respectively. The eigen-
functions ¢, (r) and eigenvalues €, are now labeled by two quantum numbers: band
index n and wave vector k. The k points allowed by the BvK supercell are:

3 )
kp:_zﬂbi, n=0,1,...,Nj— 1. 2.61)

This relation indicates that a Ni x N> x N3 BvK supercell corresponds to a regularly
spaced grid of N; x N, x N3 points in the BZ of the primitive cell and vice versa. The
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2.5 DFT in the solid state

electron density is now computed with an additional sum of k points:

N
= ; Y- (), (2.62)
n=1

where N is the number of electrons in the primitive cell (instead of the BvK supercell).

Equation (2.62) indicates that by using a BvK supercell, the problem of calculating an
infinite number of one-electron orbitals in an infinitely extended solid is changed to the
one of calculating a finite number of one-electron orbitals at a finite number of k points.
This mapping becomes exact when the number of k points is infinite, corresponding
to an infinitely large BvK supercell. In practical calculations, fully converged electron
density and total energy can be obtained by using a finite, yet sufficiently large number
of k points, due to the fact that the electronic wave functions are almost identical for
k points that are very close to each other [38]. The k-point sampling is usually gen-
erated using the Monkhorst-Pack scheme [90], which leads to a regularly spaced grid
of Ni x N, X Nj points in the BZ of the primitive cell*. In principle, the magnitude of
any numerical error in the total energy due to incompletely converged k-point sam-
pling can always be reduced by using a denser set of k points [38], provided that the
computational resources allow.

Solid-state calculations with FHI-aims

In FHI-aims, the PBCs are implemented by defining the Bloch-like generalized basis
functions [78, 91]:

! Zeik'RP pi(r— Tt —Ry), (2.63)

(1) =
Xlk( ) Ncell R,

where ¢;(r — 7, — R) denotes the i-th basis function which is centered at the x-th atom
belonging to the p-th primitive cell within the BvK supercell. It is easy to verify that
xi(t + R,) = e®Rrx; (r). The Kohn-Sham eigenfunctions ,(r) are then expressed
as a linear combination of x;i(r):

lpnk Z Cln Xlk
(2.64)

\/7 chn ) Rzeik.qu)Z‘(r - TK - RP)/
cell p

which are Bloch functions by construction.

4In practical DFT calculations, one provides a "simulation cell", which is the structural model, as the
input. In FHI-aims calculations, the “simulation cell" is specified in the "geometry.in" file. Any “simu-
lation cell” is treated as a primitive cell by solid-state DFT codes.
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Figure 2.1: Schematic illustration of the central unit cell (orange area), the DFT super-
cluster (grey and orange area), and the implicit BvK supercell (all the blocks).
The dots denote atomic centers, and ¢;( denotes the most extended basis
function from the central unit cell. Adapted from Refs. [91, 92].

In FHI-aims, the so-called “supercluster” instead of the BvK supercell is actually used
in solid-state calculations [91, 92]. As shown schematically in Figure 2.1, a central unit
cell is defined, and has the lattice vector R, = (0,0,0). The basis functions from the
central unit cell extend into other unit cells (the so-called image unit cells), but since
the basis functions are strictly localized within a certain range, they can only touch the
nearby unit cells. Equivalently speaking, only those unit cells whose basis functions
can touch the central unit cell can have nonzero basis functions in the central unit cell
and contribute to the real-space integrals (which are carried out in the central unit cell).
These unit cells, including the central unit cell, forms the supercluster. The supercluster
can be viewed as the BvK supercell excluding the unit cells whose basis functions can-
not touch the central unit cell (see Figure 2.1). It is of fixed size, regardless of the k-point
sampling. The use of supercluster enables limiting the computational cost when using
a dense k-point sampling and/or a large simulation cell [78], and it is the key to enable
near-O(N) scaling in FHI-aims calculations.

The matrix elements of electron momentum operator, i.e., (x| p| k), are one of the
main quantities needed in electrical conductivity calculations. In the semi-classical the-
ory, the diagonal elements of momentum matrix are called the electron group velocities,
ie., Vo = (Yuk|p|¥nk) /m [7]. The non-diagonal elements (m # n) represent electronic
inter-band transitions. In FHI-aims, the computation of (i,,x|p|¥uxk) is straightforward
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2.5 DFT in the solid state

by using the definition of the electron momentum operator p = —ifiV, i.e,,

(Pl PI9n) = =i 1 Chu(K)Can(10) [ 25 (6) Ve (1)
L]

= —ih ZCfm(k)Cin(k)
ij
1 ‘ (2.65)
X —— Zelk'(RP’R‘l) /q)j(r — T« — Ry)Voi(r — 7, — Rp)dr
Ncell P4
. * 1 k- —
= —ih ;ij(k)cm(k) Ne pz,q:el Ry =Re) (95, Ry |V |9is Rp),

where the basis gradient elements (¢;; Ry|V|¢;; R;,) can be conveniently computed in
the spherical coordinates. Detailed derivation of the atomic-sphere contribution to
(9;;Ry|V|@i;Rp) can be found in the work of Draxl et al. [93]. The computation of
the momentum-matrix elements is a post-SCF calculation.

2.5.2 Interactions between electrons and lattice vibrations

Having outlined the key elements in DFT calculations of the electronic structure of
crystalline solids with static nuclei, we now proceed to describe lattice vibrations and
coupling between electrons and lattice vibrations in crystalline solids at finite temper-
ature. Two established methods are introduced and compared: the first (also de facto
standard) is based on approximate models; the second is based on aiMD simulations.

Supercell calculations

Lattice vibrations in crystalline solids are characterized by collective atomic displace-
ments. For this long-range behavior, the theoretical description can use a large simula-
tion cell with PBCs. The allowed lattice-vibrational modes are determined by the size of
the simulation cell, which can be understood as follows. Consider a simulation cell con-
sisting of N1 X Ny x N3 primitive cells. The BZ of the simulation cell can be obtained by
folding (towards the zone center) the BZ of the primitive cell N; times along the b; (the
reciprocal-space lattice vector of the primitive cell) for the i-th direction. Let’s sample
the BZ of the simulation cell by a single I point. Due to the periodicity of the reciprocal
lattice, the I point can be mapped to its periodic images by the lattice vector }; b;/ Nj.
This is equivalent to sampling the BZ of the primitive cell with a Ny x N, x N3 q-point
grid®, and the set of q points is given by Equation (2.61). Such an effective g-point grid
is considered to be commensurate with the simulation cell [94]. Thus, in order to allow

SFollowing the convention, q instead of k is used when discussing the lattice dynamics.
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2 Ab initio electronic-structure theory

for a fine sampling of the BZ of the primitive cell, or in other words, to access the long-
wavelength vibrational modes (characterized by small q in the BZ of the primitive cell),
a large simulation cell has to be used.

The above "large simulation cell" is called “supercell” in literature (also in this thesis),
and it is conceptually the same as the "BvK supercell”, though the former serves as an
input structural model in DFT calculations and is always treated as a “primitive" cell
by DFT codes. When the BZ of the supercell is sampled with a My x M, x M3 k-point
grid, a BvK supercell of size M; x M, x M3 will be constructed out of the supercell.
Therefore, when performing supercell calculations using a dense k-point sampling, the
calculations would be costly, especially for large supercells.

The DFT calculations based on a supercell model are known as the "supercell ap-
proach”. This approach is widely used in studying crystalline solids when the lattice-
translational symmetry is broken due to e.g. lattice vibrations [95] or point defects [52].

Phonons: Lattice vibrations in the harmonic approximation

Within the BO approximation, the motion of the nuclei is on the ground-state BO PES
U({7xp}), i.e., the total potential energy of the system which depends parametrically
on the instantaneous coordinates Ty, of all the nuclei (see Section 2.2). The lattice vi-
brations are usually treated in the harmonic approximation [33, 14]; in this approxima-
tion, the total potential energy is expanded to second order in the atomic displacement
ATiap = Teap — T,?ap (« = 1,2,3) of atom « in the p-th unit cell:

1 ’Uu
U=Uy+35 Y —
2 Kop aTKp‘paTK/lX/p/

K/Dé/p/

ATKIJCPATK,D(/]J// (2.66)

where: (i) Uy = U({T,Qp ) denotes the total energy calculated for the nuclei at their
ground-state equilibrium positions, at which the atomic forces dU /9Ty, vanish; (ii)
The interatomic force constants 92U / 0TxapdTira'p are evaluated for the equilibrium nu-
clear configuration; (iii) The third- and higher-order terms, which are called lattice an-
harmonicity, have been discarded. Equation (2.66) defines a so-called harmonic PES [96],
as schematically shown in Figure 2.2. The lattice vibrations are then described by a set
of independent harmonic oscillators, i.e., the phonons. For a given wave vector q in the
BZ of the primitive cell, there are 3N, branches (labeled by index v) of phonons with
frequencies wgq, and polarization vectors e, (q).

There are two commonly used approaches by which to obtain the interatomic force
constants from first-principles calculations [33]: (i) the frozen-phonon method on a rea-
sonably sized supercell; (ii) the density-functional perturbation theory (DFPT) method
on the primitive cell of the perfect crystal.
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2.5 DFT in the solid state

Harmonic PES

PES

Figure 2.2: Schematic illustration of the potential-energy surface (PES) (black) and its
harmonic approximation (blue). The minimum of the PES corresponds to
the ground-state equilibrium geometry.

Electron-phonon interactions

As a consequence of lattice vibrations, the crystal potential seen by the electrons fluc-
tuates and perturbs the electronic structure. Such a coupling between the electrons
and lattice vibrations in crystalline solids is known as the electron-phonon (e-ph) in-
teraction, which plays a key role in understanding the finite-temperature properties of
crystals. In fact, in the very same work [97] where Bloch presented the formal solution
of the Schrodinger equation in a periodic potential, the first quantum-mechanical de-
scription of temperature dependence of the electrical conductivity in metals was also
provided based on a discussion of the e-ph interaction.

In the theoretical description of the e-ph interaction, the key is to express the e-ph
coupling matrix elements. For this, the Kohn-Sham effective potential Veg(r; {7ip }) is
usually expanded to first order in the atomic displacements ATy, [14, 12]:

1%
Vert(1; {Tip }) = Veff(r;{ri(c)p}) +3 o
Kap aTK“P

ATKDLp/ (2.67)
where Vg (r; {T,QP}) is calculated for the nuclei in their equilibrium positions, and the
first-order derivatives are evaluated for the equilibrium geometry.

In the phonon representation, the e-ph matrix elements are expressed as [14, 12]:

Ve

——t IRy 2.68
aTKap ‘ ¢nk> ( )

gmnv(k, q) = Z W[‘%(Q)]m Z<¢mk+q|
K v 14

where 1 and ¢y q are the Kohn-Sham eigenstates for the equilibrium geometry
{T,QP}. The gmnv(k, q) describes the probability amplitude of the electronic scattering
between the states 1, and ;g by emitting or absorbing a phonon in the mode with
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2 Ab initio electronic-structure theory

frequency wqy, due to the collective atomic motion along the phonon polarization vec-
tor e,(q). It should be emphasized that the e-ph matrix elements defined by Equation
(2.68) are based on the approximation of first-order e-ph interaction considering only
electron-one-phonon processes.

The gmnv(k, q) can be computed by using either the frozen-phonon method [94, 98]
or the DFPT method [14, 33, 99]. In the frozen-phonon method, the derivatives of the
Kohn-Sham potential are evaluated by finite differences as:

aVeff ~ Veff(r; {TKp + A}) - Veff(r/' {Txp})
0Teap A ’

(2.69)

where A denotes a small displacement. This method is limited to the phonon wavevec-
tors that are commensurate with the supercell, and it is computationally prohibitive to
access long-wavelength phonons (those with small q in the BZ of the primitive cell).
This difficulty can be circumvented by performing DFPT calculations, which employ
the primitive cell of the perfect crystal and can provide gy (k, q) at arbitrary q points
in the BZ. Within DFPT, the evaluation of gy (k, q) goes through the self-consistent
calculation of the linear response of the electron density to phonon perturbations, by
evaluating the variation of the Kohn-Sham wavefunctions to first order in perturbation
theory. Since DFPT calculations for a large number of q points are computationally
prohibitive, ginv (k, q) are usually computed on a coarse grid of q (as well as of k), and
are then interpolated onto arbitrarily dense grids for calculating materials properties
related to the e-ph interaction [100]. DFPT has become the prevailing and most efficient
ab initio method to calculate e-ph interactions.

Ab initio molecular dynamics

The approximate models in the above treatment of lattice vibrations and the coupling
between electrons and lattice vibrations can be avoided altogether by performing aiMD
simulations at finite temperature, as introduced below.

The aiMD is a conceptually simple yet powerful computational technique [101, 102,
103], which can generate atomic trajectories on the BO PES according to the equations
of motion for the nuclei in the supercell®:

_OU({R;})

MR, (t) = R,

(2.70)
where U({R}) is the total potential energy of the supercell in the atomic configuration
{R1}. Equation (2.70) relates the acceleration of the nuclei to the ab initio forces acting
on them. For aiMD simulations in a canonical ensemble (NVT), the temperature can

6We follow the convention of the MD community using {R;} to denote the atomic configurations.
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2.5 DFT in the solid state

be controlled via e.g. a Langevin thermostat [103]. A MD run starts from an initial
condition, i.e., initial atomic positions and velocities {R;(tp), Ri(to)}. By performing
a SCF calculation on {R;(fp)}, the atomic forces obtained are used to solve Equation
(2.70) via numerical time-integration method (e.g., the velocity Verlet algorithm) with
a reasonable time step At, leading to {R;(t1),R;(t1)} (1 = to + At), and so forth, gen-
erating a trajectory on the PES. After sufficiently many time steps for equilibrating the
system (e.g., when the temperature becomes stable), one starts collecting samples (i.e.,
atomic configurations) as the MD trajectory is generated. The sampling time interval
(i.e., number of time steps for regularly selecting one sample) should be large enough in
order to create a set of uncorrelated samples. Due to numerical noise in the integration
of the equations of motion, i.e., truncation error in the Verlet integrator and round-
off error, many correlations are lost very fast. However, because of long-wavelength
phonons, some correlations may stay for very long times [104, 105], which defines the
lower bound of the allowed sampling time interval. On the other hand, one must not
use a too large sampling time interval, because this means a very long MD trajectory to
achieve a representative set of samples. These point to the subtleties involved in choos-
ing a reasonable sampling time interval. The practice is to estimate the correlation for
the physical quantity of interest (see the test in Section 4.1).

By creating a sufficiently large number of samples from MD trajectories, equilibrium
properties at the temperature T, in terms of thermodynamic expectation value (O)t of
a physical observable O (for example, the electronic band gap [106]), can be obtained
by averaging over the samples collected:

1 N

(O)r = (O)n, = N Y. O({R;}i), (2.71)

§i=1

where O({R;};) denotes the calculated value of observable O for the i-th sample {R;};,
and (O)y, is the average over N, samples. The results, evaluated as the sample mean,
naturally contain information on the dynamics of the system including the fully anhar-
monic lattice dynamics [33, 27].

Equation (2.71) holds for ergodic systems; that is to say, one is capable of creating a
set of samples to represent the typical distribution of the nuclei on the BO PES at the
temperature of interest. In general, crystalline materials at low temperature (e.g. be-
low the Debye temperature) tend to be strongly harmonic and, hence, poorly ergodic
[33]. This is understood as follows: In a harmonic system, phonons generally have a
long lifetime such that the system is prone to spend a long period of time in each of
its lattice-vibrational modes, thus requiring long MD trajectories to describe the typi-
cal distribution of the nuclei. Besides, the fluctuation of a physical observable in the
canonical ensemble is roughly proportional to 1/+/Natom (Natom denotes the number of
atoms in the system) [107], so one can expect that the smaller the system size, the larger
the N; required (in order for a good statistical convergence).
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Summary of the methods

We summarize the pros and cons of the two methods introduced in this subsection for
treating lattice vibrations and the coupling between electrons and lattice vibrations.

Phonons and e-ph interactions: In this method, finite-temperature properties can
be understood in terms of individual phonon modes and e-ph scattering events, by
which rich microscopic insights can be obtained. When e-ph matrix elements are eval-
uated from DFPT, the calculation involves only a single unit cell and is allowed for
arbitrary q points. Regarding the weaknesses, this method relies on two key assump-
tions: harmonic phonons and first-order e-ph interaction. The harmonic approxima-
tion to lattice dynamics is known to be inaccurate in many modern functional materials
[15], and even breaks down completely when applied to crystal structures which are
dynamically unstable at 0 K (i.e., soft phonon modes are found). In the latter case, self-
consistent phonon calculations [27, 28, 29], which construct an effective harmonic PES
by accounting for lattice anharmonicity at finite temperature, are usually performed to
stabilize the soft phonon modes; the e-ph matrix elements are then computed using
the anharmonic phonons [25, 26]. It should be noted that the self-consistent phonon
method is still an approximate model accounting only partially for lattice anharmonic-
ity [27]. We also briefly note that: (i) The phonon picture may be invalid for e.g. soft
systems; (ii) It could be complicated to represent the lattice distortion induced by point
defects” in the phonon picture (in this case defect supercells are also needed). Besides,
including higher-order terms, notably anharmonic terms and multiphonon terms, in
the e-ph interaction is a challenging task. Studies by means of frozen-phonon calcula-
tions [29, 108] or perturbative calculations [30, 31, 109] were both found.

AiMD simulations: This method naturally accounts for lattice anharmonicity to all
orders and does not require perturbation theory to treat the coupling between electrons
and lattice vibrations. It is versatile, i.e., solids being ideally crystalline, doped, or dis-
ordered, and, with weak or strong lattice anharmonicity can in principle be treated with
this method on the same footing. This method has two major limitations. First, it lacks
microscopic insights into the dynamics of the system, and hence cannot provide a de-
tailed understanding of the physical properties studied. Second, the system size may
prevent achieving meaningful results [33, 94]. In principle, an infinitely large super-
cell (corresponding to the thermodynamic limit) should be used in 4iMD simulations,
but in practice, the supercells allowed by current computational resources are of lim-
ited size (typically a few hundred atoms). The use of finite supercells neglects entirely
long-wavelength phonons which are relevant in semiconductors at typical operating
temperature, leading to finite-size errors.

In this thesis, we choose to use aiMD simulations, as its combination with the Kubo-
Greenwood formula constitutes a promising approach for studying the electrical con-
ductivity of anharmonic materials (see next chapter).

7Point defects cannot be ignored in real materials for their large influence on the electrical properties.
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3 Electrical conductivity and the ab initio
approaches

Electrical transport phenomena occur when materials are subjected to an applied elec-
tric field'. Such nonequilibrium dynamic states in the linear regime” obey the Ohm’s
law (1860s), which states that the macroscopic, steady-state electric current density J in
the system is proportional to the external electric field E:

J =0E, (3.1)

where the constant of proportionality ¢ is the electrical conductivity, which is a scalar
for an isotropic system. The electrical conductivity is an intrinsic material property that
quantifies the ability of a material to conduct charge carriers (free electrons and free
holes). In the literature, the electrical resistivity p = 1/ is also often used. Once the
electrical conductivity is determined, other electrical transport coefficients, such as the
electrical mobility, can be obtained.

Historically, understanding the electrical conductivity has played a central role in
the development of the theory of electrons in solids [111]. There are two most cele-
brated theories of the electrical conductivity: Boltzmann transport theory (established
by Boltzmann 1872, Drude 1900, Sommerfeld 1928, Bloch 1929, and others) and Kubo’s
theory of linear response (established by Onsager 1931, Green 1954, Kubo 1957, and
others). Over the past decades, the theoretical description of electronic transport in
solids® has mostly been based on the Boltzmann transport equation (BTE) and evolved
from early semi-empirical calculations [7] to fully ab initio calculations [12, 13].

This chapter reviews these two theories and their ab initio implementations for calcu-
lating the electrical conductivity of real materials from first principles. Despite of the
remarkable success of the ab initio BTE approach to the electronic-transport problem,
the current challenge in studying materials with strong lattice anharmonicity calls for
developing new computational approaches and leads us to explore the ab initio Kubo-
Greenwood (KG) approach.

10r other external driving forces, e.g., temperature difference across the system (thermoelectric effect)
[1].

2Where the fluxes (charge, heat, mass, etc.) depend linearly on the external driving forces [110].

3In most crystalline solids, electrical transport properties are associated with electronic transport.
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3.1 Boltzmann theory of electronic transport

In the Boltzmann transport theory, the kinetic motion of a classical ideal gas under a
uniform applied electric field E is described by the BTE [112]:

% = (%)diff + (%)drift + (%)Swtt

(3.2)

- _% : vrf —E- g{; + (%)scattz
where f = f(r,p,t) is the non-equilibrium phase-space distribution function. The
quantity f(r, p, f)drdp term gives the number of particles found at time ¢ in the phase-
space elementary volume drdp at the point (r, p). The three terms on the right-hand
side of Equation (3.2) are called the diffusion, drift, and scattering (or collision) terms,
respectively. The diffusion term vanishes for spatially uniform systems which are usu-
ally assumed. When df /dt = 0, a steady state is reached.

The modern theory of electrical conduction in solids began with the Drude model
[113], thirteen years after Thomson (1897) discovered the electron. By treating metals as
a classical free-electron gas plus ions, Drude model provides the following microscopic
picture of electron motion in metals: (i) In the absence of an external electric field, the
electrons are in thermal motion due to collisions with the ions. (ii) In the presence of
an electric field, the electrons acquire a drift motion, which is opposite the direction of
the applied electric field and superimposed on the thermal motion. The drift velocity is
typically much smaller than the thermal velocity [114]. (iii) The electron-ion collisions
are assumed as instantaneous events, which randomize completely the motion of the
electrons and dissipate the energy gained by the electrons from the external electric
tield into heat (i.e., lattice vibrations). In the Drude model, the electrical conductivity
reads [115]:

_ ne*t

= (3.3)

where e (< 0), m, and n are the electron charge, electron mass, and number density
of the electrons, respectively. The phenomenological parameter 7 is called the relax-
ation time, which is understood as the average time spent by an electron between two
successive electron-ion collisions. The value of T can be estimated by fitting the exper-
imental data, and it is typically a few tens fs at room temperature [116, 117]. A related
important concept is the mean free path | = ut (1 denotes the thermal velocity).
Drude model unveils the fundamental microscopic mechanism underlying the elec-
trical conductivity of metals: (i) The electrons are responsible for the electrical conduc-
tion, and (ii) scattering of the electrons gives rise to resistance. Despite of simplicity,
these notions remain at the heart of the modern theory of the electrical conductivity.
Sommerfeld (1928) [118] extended the Drude model by applying the Fermi-Dirac statis-
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3.1 Boltzmann theory of electronic transport

tics to the electrons, and attempted to solve the failure of the Drude model in explaining
temperature dependence of the electrical conductivity in metals, which, however, was
not successful.

Ab initio BTE approach

A milestone was reached in 1929 when Bloch presented the theory of electrons in a
periodic potential [97]. In the very same work, Bloch improved Sommerfeld’s treatment
of temperature dependence of the electrical conductivity of metals by considering the
motion of crystal electrons. He discussed the scattering of electrons by the fluctuations
of crystal potential due to thermally induced lattice vibrations (in modern language,
e-ph interactions), and derived the first expression of the e-ph matrix element. Further,
Bloch identified a semiclassical, linearized BTE where the drift term is given by [119],

9 fuc _ 9 7(1)k
(T)drlft = —¢E - vk e, (34)

where v, = %aaef(k and fgk are the band velocity and Fermi-Dirac distribution (i.e., the
distribution function in thermal equilibrium) associated with the single-particle state
|nk), respectively. Note that Bloch’s linearized BTE is still founded on the electron-gas
model, but the equilibrium states of the electrons are described by Bloch states. For
a comprehensive historical perspective of the Boltzmann transport theory of electrical
conductivity in solids, the reader is referred to Bardeen [120], Allen and Butler [119],
and Allen [121, 122].

Bloch’s work includes all the key elements of ab initio BTE calculations of the electri-
cal conductivity of solids. However, for many years, due to the lack of first-principles
approaches to systematic calculations of e-ph interactions, the relaxation-time approx-
imation (RTA) with a constant relaxation time 7 (an empirical parameter) was usually
employed [7]. In this approximation, the scattering term can be written as [12]:

9fnk 0 frn

( ot )scatt:_ T ’ (3.5)

where 6f, = fux — f;?k is the deviation from the Fermi-Dirac distribution. Solving
(0fnk/0t)dritt + (0fnk/0t)scatt = 0 with Equations (3.4) and (3.5) gives rise to a steady-

0
state current J = & 3,1 0 Vi With 8 fc = eE - (— ggzl‘z )V, T. The electrical conductiv-
ity is then given by:
e? of%
)Vnk *VukT. (36)

7= W nk<_a€nk

Within band theory, Bardeen [120] provided an intuitive understanding of the elec-
trical conductivity of metals: (i) A perfectly periodic lattice has an infinite electrical
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conductivity, because Bloch states are eigenfunctions having a infinite lifetime; but (ii)
thermally induced lattice vibrations (as well as other imperfections like point defects)
destroy the periodicity of the lattice and lead to scattering of the electrons, resulting in
finite relaxation times T, and a finite electrical conductivity.

Today, owing to the development of the DFPT method for ab initio calculations of e-ph
interactions, it has become common practice to compute the state-resolved relaxation
times T, [123, 124, 125]:

_ 27
Tnkl = 7 Z ‘gnrm/(krcmz

qmv

3.7
X [(1 = foierg +71-qu)0(Enc — 0 qu — Emcrq) + (3.7)

(frgk+q + nqv)é(enk + hqu - emk+q)]r

where gumy(k, q) are the e-ph matrix elements (defined in Section 2.5.2), and ng, is the
Bose-Einstein occupation of the phonon mode (q, v). Equation (3.7) indicates that the e-
ph interaction leads to energy- and crystal-momentum-conserving inelastic scattering
of the electrons. The e-ph scattering rates T;;kl given by Equation (3.7) are derived in
the lowest order of perturbation theory [12, 31] and are for the electron-one-phonon
scattering processes. We also note the relation Trﬁ(l = %Iman, where X, is the e-ph
self-energy [14]. The solution of the linearized BTE using iterative method (without

assuming the RTA) can also be found (see, e.g., Refs. [124, 126]).

Examples of BTE studies

Since the early 2010s, ab initio BTE calculations of electronic transport coefficients have
been successfully carried out for a variety of materials, from simple materials (e.g.,
Si and GaAs [124, 127, 125]) to modern functional materials [e.g., metal-halide per-
ovskites [22, 23], SnSe [21, 24], B-Ga,0O3 [128], and two-dimensional materials (e.g.,
MoS; [123, 129])]. The ab initio BTE approach has become the de facto standard for cal-
culating electronic transport coefficients in crystalline materials. Comprehensive and
up-to-date reviews of this approach and its applications can be found in Refs. [12, 13].

While the e-ph scattering rates are usually calculated with Equation (3.7) and with
harmonic phonons, recent ab initio BTE studies revealed the important role of lattice
anharmonicity and higher-order e-ph interactions in obtaining reliable results. In the
following, we briefly review some of them.

Caruso et al. [24] studied the temperature dependence of the electrical conductiv-
ity of the highly anharmonic material SnSe. The authors found that obtaining a good
quantitative agreement with experiment requires accounting simultaneously for (i) the
thermal lattice expansion and (ii) the temperature-dependent renormalization of the re-
laxation times. This work of Caruso et al. will be further discussed in Chapter 5 of this
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3.1 Boltzmann theory of electronic transport

thesis.

Brown-Altvater et al. [31] studied the organic molecular crystal naphthalene. The
authors computed the e-ph self-energy self-consistently, by which the temperature-
dependent renormalization of both the electronic band structure and the e-ph scattering
rates was given. By including these higher-order electron-phonon coupling effects in
the BTE calculations, the mobilities of electrons and holes calculated at 300 K are in
good agreement with experimental values.

Zhou et al. [25] computed the electron mobility of SrTiO3. For this material, the calcu-
lation of the e-ph interaction is complicated by the presence of soft phonon modes (re-
sulting from 0 K harmonic calculations). The authors used the temperature-dependent
effective potential (TDEP) method [28], which describes approximately the anharmonic
BO PES at finite temperature T, to stabilize the soft phonon modes. Then, the e-ph ma-
trix elements were computed using the anharmonic phonons. In the TDEP calculations
(which employ a supercell), the authors created a number of atomic configurations with
random thermal displacements corresponding to a canonical ensemble at temperature
T. In a more recent study of SrTiO;, for the TDEP calculations, Antonius et al. [26]
generated the atomic configurations from aiMD simulations which directly sample the
anharmonic BO PES.

For metal-halide perovskites, which feature strongly anharmonic lattice dynamics,
the effect of lattice anharmonicity on the electronic transport has not been addressed
in existing BTE studies [22, 23]. For this class of materials, the e-ph calculations are
challenging due to structural instabilities and large unit cells [130].

Given the important role of lattice anharmonicity and higher-order e-ph interactions
in many materials of current interest and the challenge to address this role by approx-
imate, perturbative models, it is worth developing new computational methods for
the electronic transport problem. This motivates us to explore approaches within the
Kubo’s theory of linear response.
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3.2 Kubo’s theory of linear response

Compared to Boltzmann transport theory, the Kubo’s theory of linear response [131]
introduced in this section provides a different perspective on the electrical conductivity
of macroscopic systems. It gives a general expression of the electrical conductivity, the
Kubo formula, which expresses the electrical conductivity in terms of electric current-
current correlation function in thermal equilibrium.

3.2.1 Fluctuation-dissipation theorem

Consider an electrical conductor in thermal equilibrium in contact with a heat bath at
finite temperature T. According to Ohm'’s law, the electric current should vanish exactly
in the absence of external driving forces, but in fact there always exists spontaneous
current fluctuations in the conductor. This phenomenon is known as Johnson-Nyquist
noise or thermal noise [132, 133], which exists in all electrical conductors at finite T.

The thermal noise is understood as follows [132, 133]: At finite T, the atoms of an
electrical conductor are always in thermal motion around their equilibrium positions*.
In response to this, the charge carriers are in a state of thermal agitation, in thermo-
dynamic equilibrium with the thermal motion of the atoms. The charge carriers are
thus in incessant random motion (i.e., Brownian motion) producing a random electric
current in the conductor.

As discussed in Section 3.1, the thermal motion of charge carriers leads to dissipa-
tion of the energy gained from external electric field into heat. It is therefore clear that
in an electrical conductor, the thermal motion of the atoms causes two kinds of effect
[135]: On one hand, it acts as an electromotive force on the charge carriers to carry out
thermal motion, leading to the electric current fluctuations in thermal equilibrium; on
the other hand, it acts as a frictional force impeding the drift motion of charge carriers
in the presence of an external electric field, leading to the energy dissipation. Thus,
fluctuation and dissipation are two aspects of the same phenomenon and are necessar-
ily related to each other [112]. This important relation is called fluctuation-dissipation
theorem [135, 136]: Irreversible processes in nonequilibrium are necessarily related to
thermal fluctuations in equilibrium. This theorem is at the heart of Kubo’s theory of
linear response.

3.2.2 Kubo formula

In this subsection, we follow the work of Kubo [131] to prove the fluctuation-dissipation
theorem. The proof itself constitutes the Kubo’s theory of linear response, and most

4There is zero-point motion at T = 0 K, but its effects on the thermal noise is under debate (see Ref. [134]
and references therein) and is not considered here.
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importantly, it gives the Kubo formula of electrical conductivity. The present derivation
is a synthesis of the works of Kubo [131], Kohn [137], Zwanzig [138], and Mahan [139].

Consider, in the very remote past (t = —o0), an electrical conductor in thermal equi-
librium in contact with a heat bath at finite T. The many-body Hamiltonian Hy of the
system, as given by Equation (2.1), includes the kinetic energy of electrons and nuclei,
electron-electron, electron-nuclei, and nuclei-nuclei Coulomb interactions. For the ini-
tial thermal equilibrium, the system is statistically represented by the canonical density
operator Qq:

1
00 = e Frh, (3.8)

where Z = Tr{exp(—BH))} is the canonical partition function, and p = 1/kgT.

At this very moment (f = —o0), an external electric field is turned on according to the
formula [137]:
Eu(t) = Ege”, (39)

where s is a positive infinitesimal (in unit of inverse of time) which ensures an adi-
abatic switching-on of the electric field. The electric field is assumed to be uniform
in space and, for convenience, directed along one of the spatial direction (labeled by
a« =1, 2, or 3). The effect of the external electric field is represented by an additional
term to the Hamiltonian [138]:

Hy () = —MEq(1), (3.10)

where M, = e} ; x;, is the dipole moment, e the electron charge, and x;, the position of
the i-th electron. The total Hamiltonian is given by

H(t) = Ho + Hg(t), (3.11)

and the equation of motion of the density operator is:

200 — S IH @, 612)

with the initial condition ¢(t = —o0) = go.

In the following, the aim is to solve Equation (3.12) to first order in the electric field
and to compute the expectation value of the electric current-density operator J, att = 0
when the electric field reaches its full strength. The density operator is now written as:

o(t) = 0o + 0r(t), (3.13)

where ¢ represents the correction which is linear in EJ. By inserting Equation (3.13)
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into Equation (3.12), one gets:

]
in 2%F = [Hp + Hg, 00 + o]

ot (3.14)
~ [Ho, or] + [HF, qo],

where the term [Hp, ¢0g], which is of the second order in Eg, has been neglected (the
validity will be discussed later). By observing the identity:

ha(’f: [Ho, or] = e—z’Hot/h[ihjt(eiHot/hQFe—iHot/h)]eiHot/h, (3.15)
the op(t) can be written as:
== / (=) Ho /M (1), ggleft =1 Ho /gy (3.16)
Since of satisfies the initial condition ¢or(t = —o0) = 0, one can introduce the ansatz
[137,139]:
or = fe*, (3.17)
where f is independent of time. This leads to:
_EO t : / / : /
f — Zhﬂ( e*l(f*t )Ho/hefs(t*f)[Mal QO]el(f*t )Hg/hdt/ (3.18)
By changing integration variable with ' — t = —#:
_EO o0 . .
f=— [ e e TN My, gole ™ at. (3.19)
0

In this equation, f is proportional to E?, thus describing the linear response. The fur-
ther derivations rely on the Kubo’s identity [131] of an arbitrary physical operator O
(detailed in Appendix A.1):

[0, 00] = —zhgo/ﬁ O(—ihA)dA. (3.20)

where O is the time derivative of O at t = 0 and O(—ihA) is a Heisenberg operator as a
function of the imaginary time t = ifiA (0 < A < B):

O(—ihA) = eMOe M, (3.21)
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3.2 Kubo’s theory of linear response

Using the Kubo’s identity, f can be written as:
o0 , B .
F=E / dteste~iHot/h / oM (—ilA)eiHot /M) (3.22)
Jo 0

On the other hand, the electric current-density operator of the whole system in the a-th
direction is given by:

e
Jo = V lzvia/ (3.23)

which is simply M, /V (V denotes the volume of the system). The final expression of f
then reads:

0 ) . B .
f= % / dte ™t~ Hot/ / Q0] (—iA)e M0 A (3.24)
0 0

The expectation value of the electric current-density operator is obtained by calculat-
ing the trace of the operator product:

(Ja) = Te{f]a}

E2 00 s B . i

= T /O dte~ste~iHot/ /0 00Ja(—ifiA)e ™t/ T dA} (3.25)
Eg 0 —st P /

= /O dte /0 Tr{00Ja (—ifA) Ju(£) YA,

where J,(t) = etHot/1 ] e=iHot/h jg the Heisenberg motion of the electric current-density
operator governed by the equilibrium Hamiltonian Hy (instead of H). Finally, a com-
parison with the Ohm’s law leads to the Kubo formula, which expresses the electrical
conductivity in terms of electric current-current correlation function:

o= 3LV SIL%L ; dte™! /oﬁ Tr{ooJ (t — ihA) - J}dA, (3.26)
where the electrical conductivity has been averaged over the three spatial directions,
and the time-translation symmetry has been used to make the expression compact
[140]. The mathematical convergence factor e~ with the limit s — 0" allows the upper
limit of the t-integration to be infinity [131].

Since the ¢p in Equation (3.26) is the equilibrium density operator, the Kubo formula
is indeed an example of the fluctuation-dissipation theorem: A measure of the electric
current fluctuations in thermal equilibrium (the right hand side of Kubo formula) is
related to the electrical conductivity (the left hand side of Kubo formula) which is a
nonequilibrium property.

39



3 Electrical conductivity and the ab initio approaches

Discussion

The Kubo's theory of linear response is restricted to nonequilibrium states near equilib-
rium. In the above derivation of Kubo formula the terms that are of second order in EJ
are consistently neglected: (i) In Equation (3.13), the g, i.e., the deviation of the density
operator from equilibrium, is taken to be linear in EY; (ii) In Equation (3.14), the term
[HF, or|, which is of second order in Eg, is discarded. These first-order treatments are
needed in order to get a steady-state electrical current that is linear in EJ. They hold for
weak EY. Experimentally it was found that for most semiconductors, Ohm'’s law breaks
down at electric fields exceeding ~ 10% —10* V/em [117, 141]. By contrast, the “internal
electric field" of a solid can be estimated by kgT /eag ~ 10 V/cm (ag is the Bohr radius,
T is e.g. 300 K). Therefore, in the linear regime where the Ohm’s law is respected, the
interaction energy with the external electric field, i.e., Hr as given by Equation (3.10),
is small compared to Hy, and the first-order correction ¢r is the dominant correction to
the density operator.

The Kubo formula (or more generally, Green-Kubo formula) is a general expression
of linear transport coefficients in macroscopic systems, and has been used for com-
puting different types of transport coefficients [142, 143]. A general extension of the
fluctuation-dissipation theorem to far-from-equilibrium situations is so far unsuccess-
ful [144, 145], and this is not the topic of this thesis.
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3.3 Ab initio Kubo-Greenwood approach

For solid-state systems, the density operator and current-density operator in the Kubo
formula are abstract many-body operators. Thus, it is difficult to directly evaluate the
Kubo formula. In practice, the Kubo-Greenwood (KG) formula is used for ab initio cal-
culations of the electrical conductivity of real materials. This section establishes the
connection between the Kubo formula and KG formula, and describes an ab initio KG
approach, which combines the KG formula and aiMD, to calculating the electrical con-
ductivity of crystalline materials.

3.3.1 Kubo formula in the Born-Oppenheimer approximation

Consider a crystalline solid in thermal equilibrium in contact with a heat bath at finite
T. The first approximation made to simplify the Kubo formula is the BO approximation
in which the equilibrium density operator gy can be written as [146, 147, 148]:

00 = 0000/ (3.27)
where ¢ff and ¢ are the canonical density operators for the nuclei and electrons, respec-
tively. The ¢f is considered as the classical distribution function of the nuclei on the BO
PES. The ¢f, which depends parametrically on the nuclei coordinates {R;}, contains
the electronic Hamiltonian H®({r;}; {R;}) for this atomic configuration [see Equation
(2.8)]. By inserting Equation (3.27) into the Kubo formula, one obtains:

o(T) = T {ofo ({R;})}, (3.28)

where o({R;}) is the electrical conductivity for the atomic configuration {R;}:

1 e p |
o({Ri}) = lim /O dte~t /O T { o8] (t — ihA) - J}dA, (3.29)

where Tr™ and Tr(® denote the traces for the nuclei and electrons, respectively.

The right-hand side of Equation (3.29) describes the thermal agitation of the electrons
and corresponds to the instantaneous atomic configuration {R;}. At the moment (de-
fined as t = 0) when the nuclei move into their positions {R;}, the electrons respond
instantaneously with random motion governed by H®({r}; {R;}), leading to electric
current fluctuations. When the nuclei adopt a new configuration {R/}, the correspond-
ing o({R}}) is understood in the same manner. The validity of the BO approximation
in simplifying the Kubo formula is under discussion (see Ref. [148]). In Equation (3.29),
infinity is used as the upper limit of the t-integration. This makes sense given that the
time scale of the electronic motion is much shorter than that of the nuclei.
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3.3.2 Kubo-Greenwood formula

To further simplify the Kubo formula, let us consider an electronic Hamiltonian for
which the eigenstates can be computed. The simplest case is the Hamiltonian H§ =
Zfiel hip for non-interacting electrons, where fig(r) = —1V? + vy (r; {R;}) is the single-
particle Hamiltonian. In this case, the many-body operators in Equation (3.29) can be
conveniently expressed in second-quantization notation using the single-particle eigen-
states of /ig|nk) = e |nk) as a complete basis set. In this representation, the electrical
current density reads® [149]:

J = % ZZ(mk|p|nk>chcnk, (3.30)

k nm

where e (< 0) is the electron charge, cjlk (cnx) is the creation (annihilation) operator of an
electron in the single-particle eigenstate |nk), and (mk|p|nk) is the matrix element of
the momentum operator. Accordingly, the Heisenberg operator J(t — ifid) in Equation
(3.29) is given by:

) e (€1 —€nk) _i
J(t —inA) = — 37 (mk|plnk)clycace T T, (3:31)

k nm

The electric current-current correlation function then reads,
Tr{ooJ (t — ihA) - J}

62 i€l —€nk) i
ZWZZe ) gk plnk) - Y Y (m'K [p|n'K) (3.32)

k nm K n'm’

x Tr{00c 1 CnkC e Curter }-
The trace can be evaluated using Wick’s theorem [150]:
Tr{ooc! wcnech noCwic Y = SunGmint fuic fri + Oicic Oan Omrm frnie (1 — Frier ), (3.33)

where
1

1—|—exp(€";;B;TEF)'

fox = flenx) = (3.34)
is the Fermi-Dirac distribution function for the Fermi level Er and temperature T. The
first term on the right-hand side of Equation (3.33) gives rise to & Y, (nk|p|nk) fyi,
which is zero (regardless of the temperature; as clear from the time-reversal symmetry);
that is to say, there is no electric current in the (exact) state of thermal equilibrium.

5The sum of k is implicitly associated with the weight of each k point.
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Equation (3.32) can be written as
(= 2) 3} = S WX I (1 ) mplak) . (335)
k nm
The two integrals in Equation (3.29) can now be derived. The A integral reads:

/S(em —€p ) —
/ﬁ e)‘(emkfenk)d/\ — ﬁl (3.36)
0 €mk — €nk

which, together with f,x (1 — fux), leads to,

eﬁ(emk_enk) — 1 fi’lk fmk
Tem—en T e 437
The time integral reads,
: = Hemx—€m)t ¢ ih
lim e Stenleme—Em)l gy — 1im (3.38)
s—0t Jo s—0F (emk - enk) +ihs’
With these, Equation (3.29) can be expressed as
f nk — f mk 2 1
o= lim (mk|p|nk —, 3.39
n—0+ 3Vm2 ;; Emk — [plnke) (€mx — €nx) + 117 (3.59)
where 7is has been replaced by 7. The real part of Equation (3.39) is,
- me’h fu — f mk 2 1 Ui
=1 k|p|nk)|*— 3.40
7 r;g{ﬁ 3Vm? ;;; Emk — (m [plnk)| 7 (Emk — €nx)? + 177 (340)
The %ﬂm is a nascent Dirac delta function, and hence approaches a Dirac
delta function in the limit # — 0, by which one gets,
ne*h d
3Vm2 ZZ | mk|p‘nk>‘ ( a£)€nk5(€mk - enk)' (3'41)

k nm

Equation (3.41) is called the Kubo-Greenwood (KG) formula, which was derived by
Greenwood [151] and later rewritten using contemporary notation by Allen [122] and
Holst et al. [152]. It turns out that for a system of non-interacting electrons, the Kubo
formula reduces to the KG formula. Note that since the €, and |nk) are solved for a
given atomic configuration {R;}, the electrical conductivity given by Equation (3.41) is
for this atomic configuration.
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Interacting electrons in real materials

The KG formula can be directly used for the fictitious, non-interacting Kohn-Sham elec-
trons of DFT, i.e., the single-particle eigenvalues €,y and eigenfunctions |¢,,) entering
the KG formula can be determined from a Kohn-Sham DFT calculation.

Since electronic transport in crystalline solids is electronic quasiparticle propagation
involving excited states of the system, its reliable description requires the concept of
the quasiparticles (i.e., single-particle-like excitations) of the system [153, 122]. The GW

method [154] can accurately predict the quasiparticle energies e%f and wavefunctions

tanlf by solving the quasiparticle equation,

~

[ (1) + v (1) 9 () + / A2V (1, ¢ XNV (1) = e XY (1), (3.42)

where Z¢" is the GW approximation to the nonlocal energy-dependent self-energy
Y(r,r';€) that includes all the electron-electron interactions (beyond the Hartree term
vy). By capturing the many-body correlation effects of the electrons in the evaluation of
the quasiparticle energies, the GW method has proven, for many materials, to describe
accurately the band gap and band-edge dispersion which are essential for the reliable
description of the electronic transport [155].

In the widely used GoWy method [156], the quasiparticle wave functions are approx-
imated with the Kohn-Sham eigenfunctions |i,x), and the quasiparticle energies are
obtained as the first-order correction to the Kohn-Sham eigenvalues,

€%’ = e + (Y| 25V (eF) — oRF T |a). (3.43)

The GoWy quasiparticle correction is becoming increasingly popular in ab initio BTE
calculations of electronic transport coefficients [21, 157, 158, 159].

3.3.3 Combination with aiMD simulations

Finally, the electrical conductivity by Equation (3.28) is evaluated as an arithmetic av-
erage over a sufficiently large number of uncorrelated atomic configurations generated
from aiMD simulations in the canonical ensemble (NVT) at finite T [147, 148]:

1 N

o(T) = Z;U({Rl}i)/ (3.44)

i=

where o({R;};) is the electrical conductivity of the i-th sample, and N5 the number of
samples collected. Note that the aiMD simulations are based on the supercell approach
and so does the evaluation of the KG formula. A discussion of computing equilibrium
properties from aiMD simulations can be found in Section 2.5.2.
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3.3.4 Summary of the approach

Taken together, Equations (3.41) and (3.44) constitute a promising first-principles ap-
proach to the calculation of the electrical conductivity of solids. This approach, referred
to as the ab initio KG approach in this thesis, naturally accounts for all the anharmonic
effects and does not require perturbation theory to treat the coupling between electrons
and lattice vibrations. This is understood as follows. First, the material parameters en-
tering the KG formula for determining the o({R;}) for the atomic configuration {R;}
are the €, and ¥, that are calculated for this atomic configuration. These material
parameters inherently include a portion of information on the dynamics of the system,
i.e., lattice vibrations and the coupling between electrons and lattice vibrations. Sec-
ond, this information is fully captured by averaging over a sufficiently large number of
aiMD samples. In light of these, the ab initio KG approach is ideally suited for studying
the electrical conductivity of anharmonic crystals.

Practical ab initio KG calculations employ a supercell containing a large number of
atoms and are of three steps: (i) First, perform aiMD simulations to generate a suffi-
ciently large number of samples; (ii) Second, for each of the samples collected, compute
the eigenvalues €, and momentum-matrix elements (mk|p|nk), and subsequently in-
put these quantities into the KG formula to evaluate the electrical conductivity for this
sample; (iii) Third, compute the expectation value of the electrical conductivity as the
sample mean.

The aiMD simulations can be performed at the DFT level of theory using LDA /GGAs,
while the €, and (mk|p|nk) should in principle be evaluated at the GW level. Since
the focus of this thesis is on exploring the KG method and that the supercell calcu-
lations are computationally demanding (even at the DFT level), we will approximate
both the €, and (mk|p|nk) by DFT values. As a result, the predictive power of our
calculations will be limited by (i) the approximate nature of DFT xc functionals and (ii)
the approximate meaning of the Kohn-Sham eigenvalues and eigenfunctions.

Examples of KG studies

Owing to its computational simplicity, the ab initio KG approach has been widely used
to study the electrical conductivity of non-crystalline systems: (i) warm dense matter
and plasmas [160, 161, 162]; and (ii) alloys and disordered materials [163, 164, 165].
However, the application of this approach to crystalline solids is rarely found in the
literature. To our knowledge, there are only three previous works on crystalline solids,
and all the systems studied exhibit metallic electrical conductivity. Alfe et al. [34] calcu-
lated the electrical conductivity of bcc iron at ambient pressure and two temperatures
(300 and 500 K). The authors paid special attention to the numerical convergence of
their KG calculations with respect to supercell size and k-point sampling of the Bril-
louin zone, and found that obtaining converged electrical conductivities requires using
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large supercells, especially for the lower temperature (i.e., 300 K). Their calculated re-
sults fall within the experimental range at 500 K, and are slightly overestimated at 300
K. French et al. [35] studied molybdenum at 1000 K, and found that supercells con-
taining at least 250 atoms are needed to converge the electrical conductivity. Recently,
noticing that the ab initio KG approach can conveniently capture strong lattice anhar-
monicity, Paola et al. [166] applied this approach to Cui,Sb4S13, which is an uninten-
tionally heavily-doped semiconductor for thermoelectric applications. In this work, the
authors employed a 2 x 2 x 1 (232-atom) supercell and a 3 x 3 x 6 k-mesh. The electri-
cal conductivities calculated at 300 — 700 K are about two times larger than the upper
range of the experimental values.

For crystalline semiconductors with a moderate doping level and at typical device
operating temperatures (e.g., room temperature), the KG calculations are likely to suffer
from convergence problems. For example, in this case the Fermi level lies within the
band gap, so a dense k-point sampling is required to describe the Fermi-Dirac tail. It is
necessary to conduct a systematic test of the ab initio KG approach to see whether it can
provide reliable results for the electrical conductivity of crystalline solids.

46



3.4 Computational implementations

3.4 Computational implementations

In this section, we discuss the practical aspects of a numerical implementation of the ab
initio KG approach for crystalline solids, and introduce our FHI-kubo code that allows
for an integrated workflow of KG calculations.

3.4.1 Thermodynamic limit and broadening parameter

Special care must be taken with regard to the limit7 — 0" in going from Equation (3.40)
to (3.41). This limit makes sense only in the thermodynamic limit of a macroscopic
system where the single-particle energy spectrum is quasi-continuous®; it has to be
taken after the thermodynamic limit [167, 168, 169].

However, in practical KG calculations, 77 has to be kept finite and exists as a numer-
ical parameter. This is because one can only deal with finite-size supercells (i.e., large
yet finite systems with periodic boundary conditions), whose single-particle energy
spectrum is inevitably discrete. Accordingly, one should instead use

2

= Z ey Lk g p L

% mm Emk — €nk u| (€mk —en)? + 1% (3.4)
by keeping 7 finite’. A nonzero 7 is referred to as broadening parameter. The appro-
priate choice of 7 is very important: On one hand, # should be large compared to the
average level spacing, in order to recover the thermodynamic limit [167]; on the other
hand, 7 should be as small as possible to reflect the limit # — 07. For a given supercell
size, using either a too large or a too small # will lead to incorrect results.

Besides the above numerical consideration, the physical origin of # is clear [137, 171].
In the derivation of the Kubo formula, the limit # — 0% (in its original form n = hs
and s — 07; the inverse 1/s is in unit of time, and # = fs is in unit of energy) guar-
antees that the external electric field (in the form of Epe®) is slowly turned on starting
from the remote past t = —oo, such that the system can at all times adjust itself to the
instantaneous strength of the external electric field, and reaches a steady state at t = 0
when the electric field reaches its full strength. The switch-on time 1/s should be large
compared to the time necessary for the system to relax [137]: (i) 1/s > t;, where t, is of
the order of the relaxation time; (ii) 1/s > t,, where ¢, is an “internal” time associated
with the dynamics of the electrons (as discussed in the BO approximation) and and has

®Single-particle eigenvalues €, as a function of band index n. “Quasi-continuous" instead of “continu-
ous" considering gapped systems.

"This is identical to Equation (3.41) by replacing the ¢ function in this equation with Lorentzian. The use
of Lorentzian instead of Gaussian makes more sense from a theoretical perspective because in Equation
(3.41) the delta function is derived from the Lorentzian function in the limit 7 — 0. Similar argument
can be found in Ref. [170].
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3 Electrical conductivity and the ab initio approaches

nothing to do with ¢,. It was argued that there exists a tremendous range of s for which
the electrical conductivity is practically independent of s [137]. We suspect that this
argument is valid for a sufficiently large system.

In short, the bulk value of the electrical conductivity can be determined using Equa-
tion (3.45) with the limit process: The system size first approaches infinity (thus )E — 0)
and then 5 approaches zero; at each stage of this process for a given system size, the
value of  is larger than J6E [172].

Practice in the literature

Desjarlais et al. [173] proposed that for a finite-size supercell, # can be chosen to be
roughly the average level spacing of the Kohn-Sham energy levels. This has been fol-
lowed by several authors [34, 174, 175]. For example, in the study of Alfe et al. [34], 5
was set to 16, 8, 4, 2.4, 2, and 1.4 meV for the 64-, 128-, 250-, 432-, 686-, and 1024-atom
supercells of bec iron, respectively. The main drawback of this method is that the level
spacings are difficult to estimate [176].

A simpler strategy for choosing an appropriate value of 7 may be drawn from the
work of Nomura and MacDonald [177], who studied the quantum transport of dis-
ordered 2D massless Dirac fermions (i.e., disordered graphene) at T = 0 K. In this
work, the systems are of finite size L with periodic boundary conditions, and the elec-
trical conductivity has only the inter-band contribution®. For a given system size L,
the authors computed the electrical conductivity ¢ at a large number of 7 values. It
was found that ¢ is a maximum when 7 corresponds to ~ JE (which is the level spac-
ing at the Fermi level), and vanishes for both small and large #. Finally, the electrical
conductivity at a given system size L was estimated by the maximum of o vs #.

3.4.2 Simulation of doping

For semiconductors, the electrical conductivity is largely influenced by doping (i.e.,
creation of native point defects and/or incorporation of impurities into the crystal lat-
tice) and temperature. Under thermal equilibrium conditions, free charge carriers (free
electrons and free holes) arise from two mechanisms [117]: (i) thermal excitation of
electrons from upper valence bands to lower conduction bands, leaving holes in the
upper valence bands (this is the only source of free charge carriers in intrinsic semi-
conductors that are free of native point defects and impurities); and (ii) thermal ioniza-
tion of dopants releasing charge carriers into the host material. The band states (i.e.,
single-particle energy levels) are populated by electrons according to the Fermi-Dirac

8See definitions of the intra-band, degenerate-state, and inter-band contributions to the electrical con-
ductivity in Subsection 3.4.3.
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distribution function: .

3.46
1+ exp(e”k EF) (3.46)

fux = flen) =

Er is the electron chemical potential (known as Fermi level), which is determined by
that the system has a fixed number of electrons. The (free) electron concentration .
and hole concentration ny, are given by:

VZ Y. faxo (3.47)
k neCB

%Z Y (1= fux), (3.48)
k neVB

where VB (CB) denotes the valence (conduction) bands. In an intrinsic (undoped) semi-
conductor, 1, = n. = nj, where n; denotes the intrinsic carrier concentration.

In the following, we introduce three different approaches that can be used for model-
ing free-carrier doping in ab initio KG calculations, two of which are self-consistent and
the third of which is non-self-consistent.

Realistic point defects

A general approach to treat doping is to introduce a dopant into the supercell [52] used
for ab initio KG calculations (as early as when performing aiMD simulations).

This approach would lead to unrealistically high dopant concentration, given that in
tirst-principles solid-state calculations the supercell size is typically 100 — 1000 atoms.
For example, replacing a Si atom with a boron (B) atom in the cubic supercell of 1000
Si atoms will result in 5 x 10! cm™3 Bg; (Boron-on-Si antisite). In order to realize a
typical dopant concentration on the order of 10'® cm~3, a supercell of around 20,000
atoms will have to be used [178]. Nevertheless, this approach is suited for studying e.g.
thermoelectric materials and transparent conductive oxides, where the doping level
can be as high as ~ 10 cm~3 [179, 180, 181]. As mentioned before, Paola et al. [166]
computed the electrical conductivity of Cuj2SbsSi3 using a 232-atom supercell. This
material can be viewed as CuzSbS, containing ordered sulfur vacancies. The authors
found that their system (i.e., the supercell model) is heavily p-doped, with the Fermi
level entering into the upper valence bands.

Virtual-crystal approximation (VCA)

The second approach is to simulate doping by means of the virtual-crystal approxi-
mation (VCA) [182, 183, 184], without explicitly incorporating dopants into the host
material. In this approach, one modifies the nuclear charge (denoted as Z, an integer
number) of the atoms in the supercell by a small fraction AZ. When AZ is negative, this
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3 Electrical conductivity and the ab initio approaches

leads to excess holes in the valence (conduction) bands; when AZ is positive, this leads
to excess electrons in the valence (conduction) bands.

The VCA approach can be easily realized in the FHI-aims calculations, and here
we introduce this approach with the example discussed by Richter [183]. Consider a
(charge-neutral) MgO supercell consisting of Nyig magnesium atoms and No oxygen
atoms (Nyg = No). To realize a target hole concentration ny,, one needs to reduce 1,V
electrons from the supercell (V denotes the volume of the supercell). This can be done
by changing the nuclear charge Zyg of each magnesium atom by AZng = —n,V/ Nug,
i.e., the nuclear charge of each magnesium atom should be set to Zyg — (nyV/ Nmg)-
Accordingly, the number of (valence) electrons of each magnesium atom should also
be reduced by the same amount in order to observe the charge-neutrality condition.
By means of this, an artificial element is created, whose nuclear charge and number of
electrons are both Zyg — (1,V/ Nuvg).

Similar to the description of doping with realistic point defects, the VCA approach
allows for a self-consistent treatment of doping. It is suited for modeling moderate
doping level resulted from point defects with delocalized states [183].

Rigid-band approximation

The above two approaches can be computationally involved if one wants to study the
electrical conductivity at different doping levels. In order to alleviate the computational
burden, one can approximately treat doping using the rigid-band approximation [7,
157]. This is done by adding a small number of charges to the calculated electronic
band structure of an intrinsic (undoped) semiconductor. The Er at a given temperature
T is set in such a way that the net charge density equals the target doping level. For
p-type doping with excessive holes,

n,—ne =90/V, (3.49)
and for n-type doping with excessive electrons,
He—np=290/V, (3.50)

where ¢ is a small positive number which controls the doping level.

In the rigid-band approximation, one assumes that the doping will not change the
electronic band structure. Thus, such a description of doping is nothing but a shift of
the Fermi level within the band gap of the intrinsic semiconductor. As a result, carrier-
defect scattering is entirely missing. This approach is commonly used in ab initio BTE
calculations of electronic transport [124, 125]. It has been suggested that the rigid-band
approximation is good as long as the Fermi level (controlled by ¢) lies well within the
band gap [7] (probably for doping level less than ~ 10'® cm~3). This approach will be
adopted in our work to make the calculations tractable.
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3.4.3 Decomposition of Kubo-Greenwood formula

Following the work of Calderin et al. [32], we decompose Equation (3.45) into three
components according to the sum over band index n:

o({R1}) = Owra({R1}) + 0aeg({R1}) + Grer ({R1}), (3.51)

where (i) 0o ({R]}) denotes the intra-band contribution with m = n:

ne’h 1
Tua({R1}) = szz Je=eu (nklpInk) 20, (3.52)

(ii) 0qeg ({R1}) denotes the degenerate-state contribution with m # n and €, = €k

me*h 8f , 1
Odeg({R1}) = 3m2VZZn: mgn 3¢ Je=enc| (mk|p|nk)| el (3.53)
Emk=E€nk

and (iii) oier ({R;}) denotes the inter-band contribution® with m # n and €1 # €

e?h Flemd) = Fleme) 2 1 7
(1R ™ ‘
Ger({R1}) = 377 Z; m;ﬂ e e [mklplnl] 701 (e — )2+ 112
€k FEnk

(3.54)

Here we note that the terms “intra-band contribution" and “inter-band contribution"
usually refer to the electronic band structure of the primitive cell. For convenience,
we adopt these concepts, despite the fact that the simulation cells in KG calculations
are supercells. In the KG formula, the wavevectors k refer to the Brillouin zone of the
supercell, and the momentum matrix elements (mk|p|nk) are diagonal in k. The Fermi
derivatives in Equation (3.52) and (3.53) can be written as [97, 13],

d
(_ajer)e—enk = k;Tfnk(l - fnk)/ (3.55)

which are nonzero only for partially occupied states.

Clearly, both the 0ira ({R1}) and 0geg ({R1}) depend inversely on broadening parame-
ter 7. If one replaces 71/ by T, then it follows that the oy ({R;}) has the same algebraic
structure as the BTE in the constant RTA [see Equation (3.6)]. The behavior of oter ({R1})

can be qualitatively understood in terms of a simple two-level system: By increasing #
and thus the degree of mixing of the two levels, the oier({R;}) of the two-level system

9Note that in the KG formula, indirect inter-band transitions between different k points are not allowed.
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is expected to increase first, then be nearly stable, and decrease finally.

3.4.4 Code implementation: FHI-kubo

The evaluation of Equation (3.45) is a postprocessing of first-principles material param-
eters. Its code implementation is straightforward, since it is generally easy to access
Kohn-Sham eigenvalues €, and momentum matrix elements (mk|p|nk) from typical
solid-state DFT codes (e.g., FHI-aims). We have developed a computer code, named
FHI-kubo, which is a set of Python scripts for postprocessing the DFT material parame-
ters for a single atomic configuration {R;} and evaluating the o({R;}) for this sample.
Figure 3.1 depicts our whole workflow of performing ab initio KG calculations, as ex-
plained in the following:

(i) aiMD simulations at finite temperature are performed using the FHI-aims code
and monitored by the FHI-vibes code. The FHI-vibes code, which is developed by
Knoop et al. [185], has many useful tools for e.g. creating supercells and picking sam-
ples from a MD trajectory.

(ii) For each of the samples collected, a static DFT calculation using a dense k-mesh
provides the €, and (mk|p|nk); Due to the need of using dense k-point sampling, it is
not a good idea to compute these quantities “on the fly" in MD simulations. The calcu-
lated €,k and (mk|p|nk) are stored in binary files. Note that in FHI-aims calculations,
the momentum-matrix elements are actually (| V| ¥px)-

(iii) The FHI-kubo code reads the stored quantities, and uses them to evaluate Equa-
tion (3.45) for c({R;}). A number of computational parameters can be specified, in-
cluding broadening parameter 7, free-carrier doping level, and band-gap scissor shift,
etc. Since (mk|p|nk) are diagonal in k space, the postprocessing of different k points
are independent of each other and can be fully parallelized. This is implemented by
using the MPI4py module [186] and by following the k-point parallelization scheme
as implemented in FHI-aims. Owing to this, the FHI-kubo code is very efficient in
both reading data and computation. Finally, the calculated electrical conductivities and
other useful quantities are written into a text file.

In the above process, the aiMD simulations and the static DFT calculation of €, and
(mk|p|nk) dominate the computational cost, which are computationally very expen-
sive for large supercells. In contrast, the computational cost of the postprocessing KG
calculation is minor. This is the reason why we develop a stand-alone computer code
for the postprocessing, as it can re-use the DFT material parameters whenever the post-
processing settings need to be changed. We note that the KG formula has also been
implemented for use with plane-wave electronic-structure calculations [32].
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Figure 3.1: Workflow of our electrical conductivity calculations which involve three
codes: FHI-aims, FHI-vibes, and FHI-kubo, as explained in the text.
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silicon

This chapter, as our first attempt to apply the ab initio KG approach to study the elec-
trical conductivity of crystalline materials, considers the prototypical semiconductor
silicon (5i) at T = 300 K, for which extensive, high-quality literature data are available.
Si is known to be a very harmonic crystal [15, 16], and therefore it is an example where
the ab initio BTE approach works well [157]. Since little is known about ab initio KG cal-
culations for crystalline materials, by focusing on the electrical conductivity of intrinsic
Si, we provide a detailed convergence study of the relevant calculational parameters,
such as k-point sampling, broadening parameter (77), number of aiMD samples, and
supercell size. After elucidating the best practices for choosing these parameters and
addressing the identified numerical difficulties, we compute the electrical conductivi-
ties of both p- and n-type Si at different doping levels, and compare our calculations
with experiment and with ab initio BTE calculations in the literature.

4.1 Computational details

All DFT calculations in this chapter were done with the FHI-aims code using the "light"
basis set of Si and the LDA functional [54], without considering spin-orbital coupling
(SOC). First, aiMD simulations were carried out in the canonical (NVT) ensemble us-
ing a time step of 4 fs and a Langevin thermostat [102] at 300 K. They were performed
(separately) in the 2 x 2 x 2 (64-atom), 3 x 3 x 3 (216-atom), 4 x 4 x 4 (512-atom), and
5 x 5 x 5 (1000-atom) cubic supercells (constructed out of the conventional cell of Si),
using 3 x 3 x 3,2 x 2 x 2, I'-only, and I'-only k-meshes, respectively. In the MD simula-
tions, the density convergence criterion was set to 1070 eV /A3 for both the 2 x 2 x 2 and
3 x 3 x 3 supercells, and 10~% eV /A3 for both the 4 x 4 x 4 and 5 x 5 x 5 supercells (see
test calculations in Section A.2.1 in the Appendix). For the 2 x 2 x 2and 3 x 3 x 3 super-
cells, an initial period of 4 ps was used for thermal equilibration, and this duration was
reduced to 2 ps for the 4 x 4 x 4 and 5 x 5 x 5 supercells due to the computational cost.
For a given supercell size, after equilibration, the atomic configuration of the supercell
was sampled every 50 time steps (i.e., 200 fs). This sampling time interval was shown to
lead to uncorrelated samples (see Figure A.2). The MD samplings were accelerated by
using 5, 4, 4, and 2 independent and equally long trajectories for the2 x 2 x 2,3 x 3 x 3,
4 x4 x4,and 5 x 5 x 5 supercells, respectively. The number of collected samples for
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each supercell size will be detailed in Section 4.3. Second, the KG calculation was car-
ried out for each sample, which involves two steps: (i) A static DFT calculation with
denser k-point sampling was performed to compute the Kohn-Sham eigenvalues €,
and momentum-matrix elements (mk|p|nk). In this calculation, the SCF convergence
criteria for the density, sum of eigenvalues, and total energy were set to 10¢ eV /A,
10~* eV, and 10~° eV, respectively, and the k-point samplings will be detailed in Section
4.2.1. (ii) Using the DFT material parameters, the electrical conductivity in this sample
was computed by evaluating Equation (3.45) as implemented in our FHI-kubo code.
More computational details can be found in later sections.

thermal lattice expansion of Si

Here we present the calculated lattice constant of Si at T = 0 and 300 K. The zero-T
lattice constant is obtained by an usual structural relaxation of the unit cell of Si. Since
the electrical transport properties of materials are largely influenced by temperature,
it is important to take into account the thermal lattice expansion, which is purely an
anharmonic effect [33]. Our computation of the lattice constant of Si at 300 K is based
on a "quasi-NPT" method as detailed in Appendix A.2.3 (This method also involves
structural relaxation).

Table 4.1: Calculated lattice constant of Si, compared to experimental value [187, 188].
In the table, “Relaxation” means an usual DFT-LDA structural relaxation;
“Extrapolation” means extrapolating the DFT-LDA relaxed (0 K) lattice con-
stant to 300 K using the measured thermal expansion coefficients [187].

o

Lattice constant (A)

T (K) Relaxation Quasi-NPT Extrapolation Expt.

0 5.417 - - 5.422
300 - 5.424 5.421 5431

In Table 4.1 we see that the quasi-NPT method captures the thermal lattice expansion
of Si. The calculated lattice constants are slightly smaller than the experimental values,
which is expected for LDA. For comparison, we have also extrapolated the DFT-LDA
zero-T lattice constant to 300 K using the measured thermal expansion coefficients (de-
tailed in Appendix A.2.3), and find that the extrapolation is in good agreement with
the quasi-NPT method (see Table 4.1). The thermal lattice expansion is rather small,
suggesting that Si is a very harmonic material at 300 K. Our later electrical conductiv-
ity calculations for Si at 300 K will be based on the lattice constant obtained with the
quasi-NPT method.
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4 Electrical conductivity of harmonic crystal silicon

4.2 Convergence of the KG calculation

Our ab initio electrical conductivity calculations based on a combination of aiMD and
the KG formula [in the form of Equation (3.45)] involve a number of calculational pa-
rameters: (i) In 4iIMD simulations, we need to consider the MD trajectory length which
determines the number of samples (i.e., atomic configurations). (ii) In the KG calcula-
tion for a single sample, we need to consider the k-point sampling of the Brillouin zone,
energy window (in other words, number of bands), broadening parameter (7, which is
for the Lorentzian functions in the KG formula), and basis-set size. (iii) Furthermore,
we also need to consider the supercell size. A proper choice of these parameters and ad-
dressing possible numerical issues are prerequisites for obtaining reliable results for the
electrical conductivity. In addition, the underestimation of the band gaps by DFT-LDA
is expected to cause large systematic error in the calculated electrical conductivities
when comparing with experimental data.

In this section, by focusing on the electrical conductivity of intrinsic Si at 300 K, we
investigate the convergence of the KG calculation with respect to k-point sampling,
energy window, broadening parameter, and basis-set size, and overcome the band-gap
problem. To this end, we take two MD (300 K) samples as examples: Oneisa 2 x 2 x
2 supercell and the other is a 4 x 4 x 4 supercell. We note that in this section, there
is no sample mean and T = 300 K is for Fermi-Dirac distributions. Also, because
the computational parameters are largely interdependent, several of them have to be
discussed together in some situations. The convergence with respect to number of MD
samples and supercell size will be discussed in Section 4.3 and 4.4, respectively.

4.2.1 k-point convergence

We first examine the convergence of the electrical conductivity with respect to the k-
point sampling of the Brillouin zone. In the evaluation of Equation (3.45), the Brillouin-
zone integration is carried out by replacing the continuous integral with the summa-
tion over a regularly spaced mesh of n X n X n points, generated according to the
Monkhorst-Pack scheme. At this stage the DFT-LDA band gaps are not corrected.
Figure 4.1 shows the calculated intrinsic electrical conductivities, which have been
separated for holes and electrons, in the 2 x 2 x 2 supercell and in the 4 x 4 x 4 su-
percell® as a function of T-centered k-point sampling. These results are obtained with
7 = 10 meV (which is just an example). We see that the 20 x 20 x 20 and 10 x 10 x 10
k-meshes can yield k-point converged electrical conductivities for the 2 x 2 x 2 and
4 x 4 x 4 supercells, respectively. The convergence is well within 0.5%2. Obviously, the
k-point convergence is tied to the supercell size; that is to say, the 20 x 20 x 20 k-mesh

! Again we stress that in this entire section, we use only one MD sample of the 2 x 2 x 2 supercell and
one MD sample of the 4 x 4 x 4 supercell. There is no sample mean.
2Gimilar k-point convergence was guaranteed in predictive ab initio BTE calculations for Si [157].
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Figure 4.1: Calculated electrical conductivities, for both the holes and electrons, in the
2 x 2 x 2 supercell and in the 4 x 4 x 4 supercell of intrinsic Si at 300 K as
a function of k-point sampling (of the Brillouin zone of the supercells). The
broadening parameter (77) is set to 10 meV, and the DFT-LDA band gaps are
not corrected. The dashed lines are a guide to the eye.

for the 2 x 2 x 2 supercell and the 10 x 10 x 10 k-mesh for the 4 x 4 x 4 supercell are
of the same density of k-point sampling, which is easily understood from the Brillouin-
zone folding.

The importance of using dense k-point sampling in electronic transport calculations
for semiconductors has been shown in previous ab initio BTE calculations [157]. For in-
trinsic Si at 300 K, the Fermi level (Er) lies in the band gap, and the carriers are confined
within a narrow energy range near the band extrema. Therefore, the k-point sampling
must be fine in order to precisely determine the Fermi level (see Figure 4.2) and thus
to capture the tails of the Fermi-Dirac distribution. In Figure 4.1, we note that the cal-
culated hole and electron conductivities exhibit similar k-point convergence behavior.
This is because the current results are for intrinsic Si, for which the Fermi level is given
by ny, = ne, i.e., both the upper valence bands and lower conduction bands are equally
important in determining the position of the Fermi level. For a intrinsic semiconductor,
the Fermi level can be estimated by Er = %Eg + %kBTln(%—Z), where Ny and N are the
effective density of states of the valence and conduction bands, respectively, and E, is
the band gap [111]. The precise determination of the Fermi level requires that Ny, Nc,
and E, are precisely determined.

The convergence of k-sampling is expected to be dependent on the broadening pa-

57



4 Electrical conductivity of harmonic crystal silicon

0.1819————— —
I 2 X 2 X 2 supercell
I:‘-—
- 1
> L / |
L 0.1818F / i
o F I i
w !
1
1
i
1
1
'I
0.181710'"'20'A--3o....40

n (n X n x n k-mesh)

Figure 4.2: Calculated Fermi level (referenced to the VBM) for the 2 x 2 x 2 supercell of
intrinsic Si at 300 K as a function of k-point sampling. The DFT-LDA band
gaps are not corrected. Note that the span of the y-axis is only 0.2 meV. The
dashed line is a guide to the eye.

rameter (77). This can be understood from a related quantity, the density of states (DOS).
As shown in Figure 4.3, which is for the 2 x 2 x 2 supercell, the DOS calculated with the
20 x 20 x 20 k-mesh and # = 20 meV has discrete peaks. These unphysical peaks re-
flect that the eigenvalues €, are discrete with respect to k, and can be eliminated using
denser k-point samplings, e.g., the 32 x 32 x 32 k-mesh. However, when 7 is decreased
to 10 meV, the 32 x 32 x 32 k-mesh becomes insufficient to provide a smooth DOS.
Since 7 in principle should be as small as possible, the DOS results indicate that upon
decreasing # to a new value, one needs to increase the k-point sampling accordingly.
Unlike the DOS case, the k-point convergence of the electrical conductivity is largely
independent of 7, as shown in Figure 4.4 (an additional test is given in the Appendix,
Section A.2.4). But, the k-point converged electrical conductivities depend strongly on
1, suggesting that a careful choice of 7 has to be made. We will come back to this issue
in Subsection 4.2.3. It is now clear that for a given supercell size and 7 value, k-point
converged electrical conductivities can be achieved. We note that the k-point conver-
gence of the electrical conductivity is faster than that of the DOS. This is understood
from that the DOS is an energy-resolved spectral property, while the electrical conduc-
tivity given by Equation (3.45) involves an additional sum over the band index and is
thus an integrated spectral property.

The above discussion allows us to decide the k-meshes for performing KG calcu-
lations for Si at 300 K. As listed in Table 4.2, we will use 20 x 20 x 20, 14 x 14 x 14,
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Figure 4.3: Calculated DOS for the 2 x 2 x 2 supercell of Si, using: (i) 20 x 20 x 20 k-
mesh and broadening parameter 7 = 20 meV (red dashed line), (ii) 32 x
32 x 32 k-mesh and n = 20 meV (black solid line), and (iii) 32 x 32 x 32
k-mesh and 7 = 10 meV (blue dash-dotted line). The energy zero is at the

Fermi level, and the displayed range is [-0.4, 0.4] eV for visual clarity.
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Figure 4.4: Calculated electron conductivity (ce) in the 2 x 2 x 2 supercell of intrinsic
Si at 300 K as a function of k-point sampling, for different choices of the
broadening parameter (7). The DFT-LDA band gap is not corrected. The

dashed lines are a guide to the eye.
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10 x 10 x 10, and 7 x 7 x 7 k-meshes forthe2 x 2 x 2,3 x3x 3,4 x4 x 4,and5 x5 x 5
supercells, respectively. Unfortunately, we are unable to maintain the same k-point
density for these supercell sizes. For example, in order to obtain the same k-point den-
sity as the 20 x 20 x 20 k-mesh for the 2 x 2 x 2 supercell, we need to use a 8 x 8 x 8
k-mesh for the 5 x 5 x 5 supercell, but this exceeds our computational capacities. In-
deed, since the KG calculation is performed in supercells, the dense k-point sampling
required makes the calculation very demanding, especially when using large supercells
(see further discussion in Subsection 4.2.5).

Table 4.2: Chosen k-meshes for performing KG calculations in the Si supercells.

Supercell size k-mesh

2xX2x2 20 x 20 x 20
3x3x3 14 x 14 x 14
4x4x4 10 x 10 x 10
5x5x5 7X7x7

4.2.2 Convergence with energy window

Here, we briefly mention the convergence of the electrical conductivity with respect to
the energy window which determines the number of electronic bands to be included in
the KG calculation. It is found that this convergence is rapidly achieved with a small
energy window, i.e., a few hundred meV below the valence-band maximum (VBM) and
above the conduction-band minimum (CBM). This is because for intrinsic Si at 300 K,
thermally-excited charge carriers are confined within a narrow energy range (typically
a few kgT) near the band extrema. Also for this reason, one should use a larger energy
window when the temperature and/or doping level become higher. For safety and
consistency, we suggest simply using a large energy window as this parameter is not
the primary cause of the computational cost.

4.2.3 Choice of the broadening parameter

We proceed to address the issue related to the choice of the broadening parameter ()

raised in Subsection 4.2.1. As discussed in Section 3.4.1, Equation (3.45) containing

Lorentzian functions 7%17 ﬁ with finite # has to be used for practical KG calcu-
lations, because the Kohn-Sham energy levels of a finite-size supercell are discrete [with
respect to band index n (at each k point)]. The value of 7 should be large compared

to the average level spacing, in order to recover the quasi-continuous single-particle
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4.2 Convergence of the KG calculation

energy spectrum in the thermodynamic limit (corresponding to an infinitely large su-
percell) [167]. In the work of Alfé et al. [34], for a given supercell, 7 is set to the average
level spacing of this supercell. In the work of Nomura and MacDonald [177], the au-
thors computed the electrical conductivity of disordered graphene at 0 K by evaluating
the KG formula at a large number of 7 values. In this study, the electrical conductivity
has only the inter-band contribution. Nomura and MacDonald found that the electri-
cal conductivity is a maximum when 7 corresponds to ~ JE (the level spacing at the
Fermi level), and used this maximum as the result for the electrical conductivity. More
detailed discussion of these works can be found in Section 3.4.1.

Because it is difficult to estimate the average level spacing, we follow the work of
Nomura and MacDonald to define a strategy to determine an appropriate value for
1. Although in our study the electrical conductivity is not limited to the inter-band
contribution, we determine the value of 77 based purely on the inter-band contribution
versus 77. Below, we present a test of this strategy. For this, we take again the two MD
samples used in Subsection 4.2.1: oneis a2 x 2 x 2 supercell and the otherisa 4 x 4 x 4
supercell, and perform KG calculations at a large number of # values using 20 x 20 x 20
and 10 x 10 x 10 k-meshes, respectively.

In Figure 4.5 we plot the calculated electrical conductivities as a function of 7, for
both holes and electrons in both supercells. The electrical conductivities have been de-
composed into intra-band, degenerate-state, and inter-band contributions, according to
Equations (3.52)-(3.54). Due to thermally induced symmetry breaking, the contribution
from degenerate states® is zero for both supercells (thus not shown). As seen in Figure
4.5, e.g., the hole conductivity in the 2 x 2 x 2 supercell, the intra-band contribution
is much larger than the inter-band contribution (for the # range displayed). The intra-
and inter-band contributions exhibit distinct behaviors: (i) The intra-band contribution
is inversely proportional to 77, which diverges as 7 — 0 and vanishes for 7 — oo; (ii) The
inter-band contribution shows a concave behavior, which peaks at some intermediate
value of 77 and vanishes for either 7 — 0 or 7 — oo (similar behavior was found in Ref.
[177]). There are also clear differences in the plots for the inter-band contribution versus
1 between the two supercells: (i) The curves for the 4 x 4 x 4 supercell are steeper along
with stronger peaks compared to those for the 2 x 2 x 2 supercell; (ii) In the case of the
2 x 2 x 2 supercell, the maxima of the curves for the holes and electrons are located at
7 = 64 and 53 meV, respectively, while they are moved to smaller 1 values of 17 and 20
meV in the case of the 4 x 4 x 4 supercell.

We give a qualitative explanation for the observed behavior of inter-band contribu-
tion. Without loss of generality, we focus on the inter-band contribution to the hole
conductivity in the 4 x 4 x 4 supercell. In this case, the inter-band contribution arises
from (direct) inter-band transitions between the upper valence-band levels*. When us-

3We consider that two energy levels are degenerate when their spacing is smaller than 107 eV.
4For the electrical conductivity, only the upper valence bands and lower conduction bands matter.
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Figure 4.5: Calculated electrical conductivities for the holes and electrons in the 2 x 2 x
2 supercell and in the 4 x 4 x 4 supercell of intrinsic Si at 300 K as a func-
tion of broadening parameter (17). The (full) electrical conductivities have
been decomposed into intra-band contribution (dashed red line) and inter-
band (solid blue line) contribution. In each subplot, the left and right y-
axes are for the intra-band and inter-band contributions, respectively. Note
the different scales of the y-axes in each subplot and between different sub-
plots. The vertical dotted line denotes the maximum of the inter-band con-
tribution versus 7. In the upper right subplot, the full electron conductiv-
ity at # = 5, 10, 20, and 30 meV have been shown in Figure 4.4 at the
20 x 20 x 20 k-mesh.

ing a too small 7 (e.g., 5 meV), the Lorentzian broadening is not sufficient to make
the upper valence-band levels describe a quasi-continuous energy spectrum. As a con-
sequence, the inter-band transitions are suppressed, leading to underestimated inter-
band contribution. When using a too large 7 (e.g., 75 meV), the Lorentzian broadening
does make the upper valence-band levels describe a quasi-continuous energy spectrum,
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4.2 Convergence of the KG calculation

but the broadening is overdone. As a consequence, the inter-band transitions between
the neighboring levels become less important, resulting in underestimated inter-band
contribution. It is thus clear that for # ~ 17 meV (mentioned above), the Lorentzian
broadening makes the upper valence-band levels represent a quasi-continuous energy
spectrum as in the thermodynamic limit, yielding both numerically stable and physi-
cally reasonable result for the inter-band contribution. This implies that: (i) The average
level spacing of the upper valence bands in the 4 x 4 x 4 supercell is close to 17 meV; (ii)
The maximum of the inter-band contribution versus #, which appears at 7 = 17 meV, is
probably the optimal estimate of the inter-band contribution to the hole conductivity in
the 4 x 4 x 4 supercell, and accordingly, # = 17 meV is probably the appropriate choice
of 5. To verify this, we have estimated the average level spacing of the upper valence
bands at the I'-point and found that it is 12 meV. As a further check, we also estimate
the average level spacing of the upper valence bands in the 2 x 2 x 2 supercell and find
that it is 59 meV, which is comparable to 77 = 64 meV (mentioned above). These results
suggest that the behavior of the inter-band contribution versus 7 reflects the average
level spacing of the supercell, and that the choice of # is required to be related to the
supercell size (at least when the supercell is not sufficiently large).

Optimal-;7 scheme

The above discussion suggests that for a given supercell, an appropriate choice of 77 can
be found as follows: compute the inter-band contribution (to the electrical conductiv-
ity) as a function of 7, and take the 7 value at which the inter-band contribution is a
maximum. By means of this, 77 is no longer an adjustable parameter, but is decided by
the supercell size, or to be more precise, by the average level spacing of the Kohn-Sham
energy levels of the supercell. We refer to the choice of # in this way as the "optimal-y
scheme" in the following of the thesis. The chosen 7 value will be used to evaluate
Equation (3.45) for the (full) electrical conductivity. Since the upper valence bands and
lower conduction bands usually have different level spacings, 77 will be different for the
hole and electron conductivities.

It might be argued that the optimal-# scheme is not reasonable, because in this scheme
the choice of 7 is based purely on the inter-band contribution versus 1. We recognize
this, and that the validity of the optimal-1 scheme is required to be checked. Yet, the
optimal-#7 scheme is physically motivated, i.e., its goal is to recover the thermodynamic
limit which is not captured by finite-size supercell calculations. More importantly, it
opens up a new possibility to discuss the 77 problem, given that one of the main pur-
poses of this thesis is to describe the difficulties of a numerical implementation of the
ab initio KG approach for crystalline solids.

We note that the k-meshes listed in Table 4.2 guarantee a satisfactory k-point conver-
gence for the inter-band contribution to the electrical conductivity (see Section A.2.4).
The first application of the optimal-7 scheme is found in Section 4.3.
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Choice of broadening parameter in ab initio BTE calculations

We can gain additional insight into the choice of # from previous calculations of elec-
tronic transport coefficients using the ab initio BTE approach. In BTE calculations, the
e-ph relaxation time T, of the Kohn-Sham eigenstate |nk) is given by Equation (3.7), in
which the delta functions® §(e, £ wqy — €mk+q) Need to be replaced by Lorentzian (or
Gaussian) functions with an appropriate value of 77. Unlike the KG calculation which
uses the supercell approach, the BTE calculation is based on the unit cell of the perfect
crystal and requires an additional q-point sampling to describe the e-ph interaction.
These two approaches can nevertheless be connected: A supercell implicitly defines a
q-mesh with the same size as that of the supercell (elucidated in Section 2.5.2). In the
BTE calculation, one usually starts from a certain # value (which is a constant for all
bands and k points) and q-mesh size, and monitors the convergence behavior of the
results by decreasing # and increasing the q-mesh size [189, 190, 170]. When 7 is suf-
ficiently small (typically a few meV) and q-mesh size is sufficiently large (typically on
the order of 100 x 100 x 100), stable results can be obtained [189, 190, 170]. As shown
in FIG. S2(a) of Poncé et al. [157], if one decreases 17 while keeping the q-mesh sampling
tixed, the results diverge as o< 1/7 for 7 — 0.

In view of the above, it is clear that the choice of 7 must be small enough and at the
same time compatible with the q-point sampling. It also implies that 7 as small as a
few meV cannot be used in our KG calculations, because our simulated supercells are
very small. The dense gq-mesh required in BTE calculations implies that supercell-size
convergence is likely to be a crucial issue in our KG calculations (see Section 4.4).

4.2.4 Correction of DFT band gaps

The electrical conductivity of a material depends largely on the band gap of the mate-
rial. This is exemplified by the empirical law used in experiment to describe the tem-
perature dependence of the electrical conductivity of an intrinsic semiconductor [191]:

_EO

o(T) = A(T)e %7, (4.1)
where E¢(0) is the zero-T band gap, and the prefactor A(T) accounts for the tem-
perature effects (e.g., the temperature renormalization of the electronic band struc-
ture [192]). Equation (4.1) indicates that in electrical conductivity calculations, the re-
sults will be significantly overestimated if the band gap is severely underestimated by
(semi)local DFT. Indeed, our DFT-LDA calculated electrical conductivities for intrinsic
Si at 300 K reported in the previous subsections are around five orders of magnitude
larger than the experimental value (3.33 x 107® Q~tem ™! [193)).

5The delta functions in the KG formula are of the form (e, — €mk ), without explicit phonon frequencies.
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The severe underestimation of the band gaps can be largely corrected by perform-
ing hybrid-functional theory or GW calculations, which, however, are associated with
high computational cost (especially for supercell calculations). The main purpose of
this thesis is to implement and analyze the ab initio KG approach to the calculation of
the electrical conductivity of crystalline materials, assuming that accurate quasiparticle
energies and wave functions will be provided by e.g. GW calculations in the future.
Therefore, in this work we perform conventional DFT calculations using (semi)local xc
functionals. In the following, we discuss how to deal with the DFT band-gap problem.

Our strategy for addressing the band-gap problem in our electrical conductivity cal-
culations is to rigidly shift the conduction bands upwards by a constant energy A (while
keeping the valence-band positions unchanged):

E" = ELPA + A, (4.2)

where EZ°" denotes the corrected band gap. This is the so-called "scissor operator” ap-
proach, which was widely used in first-principles calculations of point defects in solids
[52, 194]. For a given material, we define A as the difference between the DFT-LDA

band gap of the equilibrium structure at 0 K, E;DA’ “l(0K), and the experimental band

gap at0 K, EEXpt(O K); that is,
A = EgP(0K) — Eg”M (0 K). (4.3)

The A defined in this way estimates the underestimation of the band gap by DFT LDA.
For Sj, EéE,Xpt(O K) is 1.17 eV [195], and our calculated EgDA’ “I(0K) is 0.503 eV, and thus

A = 0.667 eV. For a given material, we assume that A is a constant, regardless of the

supercell size and thermal atomic displacements in the supercell. In case the E?Xpt(O K)
is not available, one can perform a GW calculation on the equilibrium structure at 0
K. It is worth mentioning that A may also be estimated based on finite-T band gaps
with the temperature renormalization (see Zacharias et al. [192] and references therein).
A particular advantage of the non-self-consistent scissor operator is that it adds no
computational cost. In addition, this scheme is based on the rigid-band approximation
which will used for simulating free-carrier doping in our work.

Let us take the 2 x 2 x 2 supercell used in the previous subsections as an example.
The DFT-LDA band gap of this supercell is 0.391 eV, so after the scissor shift, the band
gap is enlarged to be 1.057 eV. Also, the intrinsic Fermi level, which originally lies at
0.182 eV (referenced to the VBM)), is raised to 0.515 eV. Figure 4.6 shows the intrinsic
electrical conductivities® of the holes and electrons as a function of the Fermi-level posi-
tion, with and without the scissor correction to the band gap. To help explain the results
illustrated in this figure, we note that: (i) For a rigid band structure, varying the Fermi

6These results are calculated using 20 x 20 x 20 k-mesh and with the 7 parameter set to 10 meV.
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Figure 4.6: Calculated electrical conductivities of (a) holes and (b) electrons in the 2 x
2 x 2 supercell of intrinsic Si at 300 K as a function of Fermi level, with and
without the scissor correction to the band gap. E;;DA and EZ*" denote the
DFT-LDA band gap and the gap with scissor correction, respectively. The
Fermi level is referenced to the VBM. The “translation” means that we shift
the plot for the electron conductivity (before band gap correction) along the
x-axis together with the conduction bands when correcting the band gap.
Note the logarithmic scale of the y-axes.

level away from the intrinsic Fermi-level position is equivalent to introducing free-
carrier doping; (ii) When the Fermi level lies inside the band gap (i.e., non-degenerate
doping), both the carrier concentration and electrical conductivity in the logarithmic
scale are linear functions of the Fermi level [196]. In Figure 4.6, we see that: (i) When
the Fermi level is fixed (e.g., at 0.182 eV), an upward shift in the conduction bands has
no impact on the hole conductivity, while the electron conductivity becomes negligibly
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small; (ii) By contrast, if the Fermi level is also shifted upwards by the correction A,
the band-gap correction then has no impact on the electron conductivity, while the hole
conductivity becomes negligibly small. As a result of the band-gap correction, the cal-
culated (total) intrinsic electrical conductivity drops from 0.19 to 4.79 x 1077 'em ™1,
now in similar order of magnitude to the experimental value. This shows that the "scis-
sor operator" approach can significantly reduce the error due to the band-gap under-
estimation. Interestingly, Figure 4.6 also implies that when the Fermi level is located
near the VBM (or CBM), where the hole conductivity and electron conductivity differ
by several orders of magnitude, we do not need to deal with the band-gap problem if
we include in the result only the electrical conductivity of the majority carriers. This is
a result of the simulation of doping in the rigid-band approximation.

4.2.5 Basis-set convergence

In this work we use the “light" basis sets for all the DFT calculations. However, in
FHI-aims, the “tight" basis sets are recommended which, compared to the “light" ones,
provide more reliable results but are also computationally more expensive. In this sub-
section we perform test calculations with the “tight" basis set of Si to check whether the
“light" basis set of Si produce reliable electrical conductivity results.

With the “tight" basis set, the LDA-relaxed lattice constant of Si is 5.404 A, which
is slightly smaller than the value of 5.417 A for the “light" basis set. Based on these
two lattice constants, we have constructed two 2 x 2 x 2 (64-atom) Si supercells with
the nuclei at the ideal positions’, and compute the intrinsic carrier concentrations and
electrical conductivities in these two supercells using the respective basis sets. For the
KG calculations, the k-point sampling is 20 x 20 x 20, T = 300 K, and # = 10 meV
(which is just an example). As shown in Table 4.3, the DFT-LDA band gap® given by
the "light" basis set is 47 meV larger than that given by the “tight" basis set. As a result,
the intrinsic carrier concentration, hole conductivity, and electron conductivity given
by the “light" basis set are all smaller (about 2.5 times) than those given by the “tight"
basis set. From this comparison, it seems that the electrical conductivity calculations
using the "light" basis set are not converged.

Interestingly, we find that by enlarging the band gaps of the two supercells to 1.17
eV using the “scissor operator" approach, the two basis sets give very close results, as
shown in Table 4.3. This finding suggests that the “light" and “tight" basis sets pro-
duce nearly identical electronic band structures (at least the upper valence bands and
lower conduction bands) for Si, except the band-gap values. Otherwise, the intrinsic
carrier concentration, which depends sensitively on the electronic eigenvalues, would
be noticeably different even after the band-gap correction. We also note that the DFT

"Keeping the nuclei at ideal positions is conveniently for comparing the impact of basis sets.
8Here the band-gap values are obtained from the DFT calculation using 20 x 20 x 20 k-mesh.
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Table 4.3: Band gaps (Ey), intrinsic carrier concentrations (1;), hole conductivities (c1,),
and electron conductivities (ce) in the ideal 2 x 2 x 2 supercells of Si at 300 K,
calculated using both the “light" and “tight" basis sets, with and without the
scissor correction to the band gaps.

Eg ni Oh Oe
Basis set (eV) (em™3) (Q7'em™) (Q7lem™)
"light" 0503  1.89x10° 0114 0.221
"tight" 0456  462x10 0273 0.570

"light"  1.17 (scissor) 4.77 x 10° 2.87x 1077 5.58 x 10~/
"tight"  1.17 (scissor) 4.73x10° 279x 1077 5.84 x 1077

quantities needed in the KG calculation are essentially derivative quantities, i.e., Fermi-
function derivatives (0f /9€)e,, and momentum-matrix elements (mk|p|nk) (which are
gradients of wave functions). These derivative quantities computed with the “light" ba-
sis set have been sufficiently converged.

In a second test, we consider again the MD sample of the 2 x 2 x 2 supercell used in
the previous subsections. The geometry (both the cell length and atomic coordinates)
of this supercell is fully obtained from the LDA calculation with the “light" basis set.
We perform KG calculations in this supercell using both the “light" and “tight" basis
set”. The LDA band gap given by the “light" basis set is 30 meV larger than that given
by the “tight" basis set. For the KG calculations, we fix the Fermi level at 0.1 eV above
the VBM, and compare the hole conductivities. We find that the “light" and “tight" ba-
sis sets produce very close results for the hole conductivity, 14.46 and 14.11 O~ !em™},
respectively. This indicates that the upper valence bands given by the two basis sets are
nearly identical. Similar basis-set convergence can be found for the electron conductiv-
ity by setting the Fermi level close to the CBM.

The above two tests suggest that the "light" basis set can provide reliable results for
the electrical conductivity. Nevertheless, the band-gap underestimation needs to be
corrected using the “scissor operator" approach when computing the intrinsic electrical
conductivities, and this is always done in our later calculations.

Computational cost

At the end of this section, we explain why in this work we choose not to use the “tight"
basis set of Si. The reason is the high computational cost in the KG calculation, which

9The other settings are the same as in the first test.
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is performed in supercells and requires dense k-point sampling. For example, our KG
calculation in the 2 x 2 x 2 supercell with a 20 x 20 x 20 k-mesh, is carried out using
four computer nodes'’. When using the “light" basis set of Si, the computing time is 11
minutes and the peak run-time memory is 27 GB (per node, the same in the following);
by contrast, when using the “tight" basis set of Si, the computing time and peak run-
time memory are increased to 90 minutes and 72 GB, respectively. The memory quickly
becomes a bottleneck as supercell size increases. For instance, in order to perform the
KG calculation in the 5 x 5 x 5 (1000-atom) supercell with a7 x 7 x 7 k-mesh and “light"
basis set, we need to use 512 nodes to share the memory, and the peak run-time mem-
ory is 190 GB, almost exceeding the maximally allowed memory (192 GB). The peak
run-time memory occurs when performing the real-space integration to compute the
momentum-matrix elements, since this involves also basis-function gradients. For a
given material, we need to perform the KG calculation for a series of supercell sizes (in
order for finite-size scaling). For a given supercell size, we need to perform the KG cal-
culation for a large number of aiMD samples that are collected from aiMD simulations
for several tens of picoseconds. Apparently, the computational cost is enormous. So far,
our discussion is limited to Si, which is a simple material. The computational cost will
be much heavier for materials consisting of heavy elements, which is the case for SnSe
studied in the next chapter.

From the above discussion, we conclude that (i) currently it is computationally infea-
sible to use the “tight" basis sets for a systematic ab initio KG study on crystalline solids,
and (ii) the “light" basis sets are good enough to provide reliable results for the electrical
conductivity at a reduced computational cost, and enables using large supercells.

19Each node consists of two Intel Xeon Gold 6148 processors (Skylake, 20 cores @ 2.4 GHz). See
https://docs.mpcdf. mpg.de
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4.3 Convergence with number of MD samples

In the last section we considered only one MD sample of the Si supercells at 300 K.
Within the ab initio KG approach, the electrical conductivity should be evaluated as
an arithmetic mean over a sufficiently large number of MD samples. Starting from
this section, we report the electrical conductivities estimated by sample means. For
this, from aiMD simulations at 300 K, we have generated N; = 655, 404, 204, and 100
samples for the 2 x 2 x 2,3 x 3 x 3,4 x4 x 4,and 5 x 5 x 5 supercells, respectively. In
this section, we compute the intrinsic electrical conductivity at 300 K in these supercells,
and examine whether the samples collected lead to a good statistical convergence.

The computational details of the evaluation of Equation (3.45) in this section are as
follows. The k-point samplings are listed in Table 4.2. The LDA band gaps are corrected
by a scissor operator of 0.667 eV. Note that the calculation of the intrinsic electrical con-
ductivity is not trivial, as the band gap is an important parameter. For all simulated
supercells, the sample-averaged, scissor-corrected band gaps underestimate the exper-
imental value by about 60 meV, leading to an overestimation of the intrinsic carrier
concentration by a factor of slightly more than two (see Table A.1 in the Appendix).
To further analyze the 7 problem, we consider two different ways of choosing #: The
first one is to use 7 = 20 meV (an intermediate 7 value albeit arbitrary) for all the KG
calculations for all four supercells; The second one is to use supercell-size-dependent 7
values determined with the optimal-# scheme (detailed later).

Results for 7 = 20 meV

All the electrical conductivity results reported in this part are obtained with 7 = 20
meV, regardless of the supercell size and carrier type (hole or electron). For each super-
cell size, we plot in Figure 4.7 the hole conductivity oy, ({R;}) and electron conductivity
oe({R;}) for each individual sample!!, and their cumulative moving averages (CMAs):

N
CMA<N> = %ZU({RI}Z'), (44)
i=1

where the index i labels the i-th sample, and N will grow from 1 to Ns. When N = N,
Equation (4.4) becomes Equation (3.44) and gives the sample mean over Ns samples. As
can be seen in Figure 4.7, for a given supercell size, both 0y,({R;}) and o ({R]}) vary
from one sample to another, and their CMAs become gradually stable as more samples
are included. Besides, as the supercell size increases, the fluctuation of both oy, ({R;})
and o.({R;}) is readily reduced, and so does the CMAs. This reflects a reduction of
finite-size effects with increasing supercell size.

11IR;} denotes a generic atomic configuration.
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Figure 4.7: Convergence of electrical conductivity with respect to number of MD sam-
ples, for different supercells of intrinsic Si at 300 K. The left and right panels
of the plot are for holes and electrons, respectively. All the electrical conduc-
tivity results are computed with broadening parameter 7 = 20 meV. Dark-
gray thin lines: 03,/.({R;}) for an individual sample {R;}. Red/blue thick
lines: cumulative moving averages (CMAs). The y-axes show the electrical
conductivities in units of 107¢ Q" 'em 1.

For each supercell size, we list in Table 4.4 the hole conductivity which is estimated
by the mean of 0y, ({R;}), and the electron conductivity which is estimated by the mean
of 0o ({R;}). To quantify the statistical convergence of the electrical conductivities, we
present also the standard error of the mean'? (SEM). As shown in Table 4.4, for each of

12The SEM informs us the extent to which the sample mean approaches the true mean [197, 198].
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our simulated supercells, the SEM is rather small compared to the sample mean, indi-
cating a good statistical convergence. Our results suggest that it is not a big problem to
converge the electrical conductivity of Si at 300 K with respect to number of MD sam-
ples, even though Si at 300 K is a highly harmonic system [15, 16]. Harmonic systems
are thought to be poorly ergodic, as explained in Section 2.5.2.

Table 4.4: Hole conductivity (¢3,) and electron conductivity (ce) in the supercells of in-
trinsic Si at 300 K. The electrical conductivity and its statistical convergence
are estimated by the sample mean and standard error of the mean (SEM),
respectively. All the electrical conductivity results are computed with broad-
ening parameter 7 = 20 meV. The values of the electrical conductivity and
SEM are in units of 107® Q~'em~1.

Hole Electron

Supercell size #samples o, SEM o¢. SEM

2x2x2 655 0.81 0.020 0.72 0.016
3x3x3 404 0.66 0.008 0.64 0.007
4x4x4 204 0.63 0.006 0.60 0.005
5x5x%x5 100 0.59 0.004 0.60 0.005

In addition, we note that: (i) For small supercells (e.g., the 2 x 2 x 2 supercell), achiev-
ing good statistical convergence requires using a large number of samples, though the
KG calculation for an individual sample is computationally cheap; (ii) By contrast, for
large supercells (e.g., the 5 x 5 x 5 supercell), while much less samples are needed to
achieve good statistical convergence, the KG calculation for a single sample is compu-
tationally expensive. It is important to ensure good statistical convergence for all the
supercells simulated, in order not to add uncertainty to the finite-size scaling (to be
discussed in Section 4.4). In case of restricted computational resources, we suggest that
one sets a target statistical convergence at the very beginning, starts performing KG cal-
culations upon the MD sampling starts, and consistently monitors the statistical error
to check whether the target convergence is reached. This could help achieve the target
convergence with a minimum number of samples.

Results for the optimal-;; scheme

The electrical conductivity results presented in this part are computed with the # values
determined according to the optimal-7 scheme. To be more specific, the value of 7 for
each supercell size and a given carrier type (hole or electron) is found in the following
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4.3 Convergence with number of MD samples

way. We compute the inter-band contribution to the hole/electron conductivity in each
MD sample at a large number of 7 values. Then, we compute the sample mean'® of
the inter-band contribution at each # value, and plot the sample-averaged inter-band
contribution as a function of 77, as shown in Figure 4.8. Finally, we take the 77 value
which corresponds to the maximum of the plot. The chosen 7 values are listed in Table
4.5, where we see that: (i) For a given supercell size, the 7 value is different for holes
and electrons, suggesting that the upper valence bands and lower conduction bands
have different level spacings; (ii) For a given carrier type, the 77 values decrease as the
supercell size increases, indicating that the level spacings are reduced with the increase
of the supercell size.
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Figure 4.8: Sample-average inter-band contribution to the electrical conductivity as a
function of broadening parameter (1), for the holes (left) and electrons
(right) in the supercells of intrinsic Si at 300 K. Each curve has been aver-
aged over the respective collected MD samples. Note the scale of the y-axes.

For each supercell size, in Figure 4.9 we plot oy, ({R;}) and 0. ({R;}) for each individ-
ual sample and their CMAs. A qualitative comparison of Figures 4.7 and 4.9 shows that
the extent of fluctuations of 0y,/.({R;}) are seemingly different for different 7 values.
The final electrical conductivities estimated by the sample means are listed in Table 4.6.

13Tn principle, for a given supercell size, 7 should be sample specific, because the level spacings are dif-
ferent in different MD samples. However, we find that for a few samples of the 2 X 2 x 2 supercell
and of the 3 x 3 x 3 supercell, the inter-band contribution decreases monotonically as # increases, due
to the presence of nearly degenerate Kohn-Sham energy levels in these samples. In this case, it is not
possible to find the optimal 7 value, and as a result we choose to use the sample mean of the inter-band
contribution to avoid this difficulty.
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4 Electrical conductivity of harmonic crystal silicon

Let us take the hole conductivity in the 2 x 2 x 2 supercell as an example. We have
computed it with both # = 20 and 65 meV, and the results are 0.81 and 0.26 (in units
of 107% O~ lem 1), respectively. The difference of these two results is mainly due to the
intra-band contribution that is inversely proportional to 7. In addition, it is easy to see
that the ratio of the SEM to the sample mean hardly changes with 7, suggesting very
similar statistical convergence for different # values.

Table 4.5: The 17 values determined with the optimal-# scheme. They correspond to the
maxima of the respective curves in Figure 4.8. 77, and 7, are for the hole and
electron conductivities, respectively.

Supercell size 7, (meV) 7. (meV)

2X2x2 65 53
3x3x3 36 26
4x4x4 24 14
5x5x5 18 10

Table 4.6: Same as Table 4.4 but the electrical conductivity results are computed with
the respective 1 values as listed in Table 4.5. Both the electrical conductivities
and SEMs are in units of 107® Q" lem 1.

Hole Electron

Supercell size #samples o, SEM 0. SEM

2x2x2 655 0.26 0.006 0.28 0.006
3x3x3 404 0.38 0.004 0.50 0.006
4x4x4 204 0.53 0.005 0.84 0.008
5x5x5 100 0.65 0.005 1.14 0.009

In the next section we will use the electrical conductivity results in Tables 4.4 and 4.6
to discuss supercell-size convergence.
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Figure 4.9: Same as Figure 4.7 but the electrical conductivity results are computed with
the 17 values as listed in Table 4.5. The y-axes show the electrical conductivi-
ties in units of 107¢ O~ lem L.
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4 Electrical conductivity of harmonic crystal silicon

4.4 Supercell-size convergence

Ab initio calculations of the electrical conductivity of crystalline solids within the KG
approach in principle have to be done in the thermodynamic limit, i.e., using a suffi-
ciently large supercell. However, for Si, the 5 x 5 x 5 (1000-atom) supercell is the largest
supercell we can afford and guarantee satisfactory k-point convergence. In this section,
we investigate the convergence of our electrical conductivity calculations with respect
to supercell size, based on the electrical conductivity results for intrinsic Si at 300 K
presented in Tables 4.4 and 4.6.

Figure 4.10 shows our calculated electrical conductivities as a function of inverse
supercell length. We see that the electrical conductivities (especially those for the elec-
trons) in the four supercells are systematically smaller than the experimental values,
exhibiting significant supercell finite-size errors. The finite-size effects in our calcula-
tions (including the aiMD simulations) can be understood from two aspects. From the
point of view of phonons, long-wavelength phonons (those with wavevectors q — 0)
are entirely missing in our simulated supercells. Further, these supercells are too small
to describe phonons with long mean free paths (MFPs). As a very harmonic system,
Si at 300 K has about half of its thermal conductivity contributed from phonons with
MFPs longer than one micron [104]. From the point of view of electrons, our simu-
lated supercells cannot describe charge carriers with long MFPs. Ab initio BTE studies'*
[127, 199] found that the hole and electron MFPs of Si at 300 K are in the range 5 — 55
and 15 — 110 nm, respectively. Based on the fact that the electron MFPs are (on average)
longer than hole MFPs, we can understand why for each of the supercells the electron
conductivity shows larger finite-size effects compared to the hole conductivity.

The finite-size supercell calculations are inadequate for a proper description of the
e-ph dynamics in Si and ultimately the electronic transport. The long MFPs of both the
charge carriers and phonons in Si suggest that Si is probably the most challenging test
system for the ab initio KG approach.

Under the two different ways of choosing 7, the electrical conductivities show oppo-
site behavior with respect to the supercell size (Figure 4.10). In the case of the common
choice 7 = 20 meV, both the hole and electron conductivities decrease with increasing
supercell size, and they are comparable at each supercell size. Experiment [193], how-
ever, shows that for intrinsic Si at 300 K, the electron conductivity is about two times
larger than the hole conductivity. This implies that using such a common 7 is not appro-
priate for our simulated supercells (physically they are very small simulation cells). In
contrast, in the case of the optimal-7 scheme, we see that (i) both the hole and electron
conductivities increase with increasing supercell size, approaching the experimental
values, and (ii) although the hole and electron conductivities in the 2 x 2 x 2 (64-atom)

14Often MFPs data are obtained from BTE calculations, and there is usually a large scatter in the calculated
MFPs data from different calculations (one can compare Ref. [127] and [199]).

76



4.4 Supercell-size convergence

Q Q
NNy % © Q ©
le6 °>” v & le—6 x° %” 2 >
2.571 |ntr|nsic Si, 300 K ] 2-5"5\ |ntrm5|c Si, 300 K |
hole conductivity 1 F N electron conductivity
[ ] N ]
2_0' O n=20 meV ] 20 [ \\ O n=20 meV ]
— [ > optimal-n scheme | ] —_ [ \\ > optimal-n scheme| ]
' I * Expt. ] ' [ \  |% Expt. ]
\
5 1sf 1 Eust \ -
| | i 1
e 1 S 1 \Q
< 1.0 ~ . v 1.0F \ 1
5 I S ] o [ & ]
N O] : ;
_ Y g © ] : 0-0:%:0 ©
0.5F ~o. ] 0.5 \Q\ 1
I *-——e— [ ~-<>‘
0. 00 O 02 O 04 O 06 O 08 0 10 0.00 0.02 O 04 O 06 0 08 0 10
L1 (A1) L1 (A1)

Figure 4.10: Hole conductivity (left panel) and electron conductivity (right panel) ver-

sus inverse supercell length (1/L), for intrinsic Si at 300 K. There are two
groups of calculated results: (i) The first group of results (denoted by black
circles) are obtained with broadening parameter # = 20 meV for both the
holes and electrons for all four supercells; (ii) The second group of results
(denoted by blue diamonds) are obtained with the # values determined
with the optimal-# scheme [as listed in Table 4.5, the # values vary with
the supercell size and carrier type]. The finite-size results are fitted with
0(00) +ay/L+a3/L3[0(c0), a1 and a3 are free parameters], as illustrated by
the gray dashed lines and orange dash-dotted lines. Experimental results
are from Green [193]. Direct comparison with ab initio BTE calculations is
not available. Compared to the scales of the axes, the statistical errors are
smaller than the symbols and thus not shown. The upper x-axes indicate
the number of atoms of the four supercells.

supercell are very close, the electron conductivity becomes increasingly larger than the
hole conductivity as the supercell size increases, showing a correct trend.

Finite-size scaling

We have used the finite-size scaling method to deduce the electrical conductivity in the
thermodynamic limit. As in first-principles studies of point defects in solids (see e.g.
the work of Castleton et al. [178] and Lany et al. [200]), the finite-size scaling involves
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4 Electrical conductivity of harmonic crystal silicon

two steps. (i) First, we compute the electrical conductivities for a series of supercell
sizes with the same cell shape (as we have done). For cubic system like Si, the supercells
are preferably constructed to be cubic. (ii) Second, we fit the finite-size results (L) (L
denotes the supercell length and L? the volume) to a polynomial in 1/L, usually:

o(L) =0(0)+ —=+-5+-—5+..., (4.5)

where a3, a3, a3, ..., and 0(o0) are free parameters to be determined; (o) being the
extrapolated electrical conductivity in the limit of an infinitely large supercell.

By testing we find that the polynomial in the form of o(c0) + a1/L + a3/L? gives a
high-quality fit of our finite-size results, as shown in Figure 4.10. In the case of the
optimal-7 scheme, the extrapolated intrinsic electrical conductivities are oy, = 1.20 X
107 O 'em ! and 0, = 2.51 x 107 Q" lcm~!. We compare them to the experimental
data (0, = 0.84 x 107 O lem ™! and 0. = 2.49 x 107% Q~lem ™! [193]), given that ab
initio BTE calculations on intrinsic Si are not available. It is found that the extrapolated
electron conductivity is in excellent agreement with experiment, while the extrapolated
hole conductivity is about 43% above the experimental value. In this comparison, we
note that there is an error cancellation in our calculations to account for an overestima-
tion of the intrinsic carrier concentrations (see Table A.1).

For the finite-size results that are all evaluated at # = 20 meV, we find a rather large
discrepancy between our extrapolated and experimental electron conductivity. This
discrepancy cannot be eliminated by simply adjusting # to e.g. 5 meV, as it will lead to
unreasonable results for the hole conductivity.

The pros and cons of the finite-size scaling method are briefly discussed as follows.
This method can in principle provide accurate extrapolated results for the limit of an
infinitely large supercell, without the need to analyze the finite-size effects in detail
[200]. However, obtaining a high-quality fit (thus an accurate size extrapolation) re-
quires that (i) the remaining errors (e.g., statistical errors) are small in the finite-size
results, and (ii) sufficiently many and sufficiently large supercells are computed. The
latter is a challenging task for KG calculations which require dense k-point sampling.
For Si, we can employ the 5 x 5 x 5 (1000-atom) supercell, simply because Si is a simple
material and also we are able to access more than 20,000 CPU cores for a single DFT
calculation!>. When only a few supercell sizes are studied (as in our work), it will be
difficult to assess the precision of the extrapolated results, due to the lack of physical
insight. In Figure 4.10, it can be seen that the extrapolated electrical conductivities will
change slightly if we leave out the data for the 2 x 2 x 2 supercell (which is a too small
simulation cell) and apply a linear extrapolation. Overcoming the shortcomings of the
finite-size scaling method is beyond the scope of this thesis.

We summarize the recipe for improving supercell-size convergence of ab initio KG

15This is still an usual amount of computational resources for a single DFT calculation today.
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4.4 Supercell-size convergence

calculations: (i) performing calculations for at least three (better four) supercell sizes
using supercell-size-dependent # values determined with the optimal-1 scheme, (ii)
defining an appropriate fit function [based on Equation (4.5)], and (iii) extrapolation
to the limit of an infinitely large supercell. If computational resources allow, we sug-
gest using supercells as large as possible, because this is the physical way to reduce
the uncertainties in the finite-size scaling. Obtaining physically meaningful results fol-
lowing the proposed recipe depends on the validity of the optimal-1 scheme, which is
currently still questionable. Yet, our predicted electrical conductivities for intrinsic Si
at 300 K compare reasonably well with experiment.

Up to now, we have completed the ab initio KG calculations of the electrical conduc-
tivities in intrinsic Si at 300 K. After presenting the electrical conductivities for both p-
and n-type Si at 300 K in the next section, we will comment on the main problems in
our calculations.
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4 Electrical conductivity of harmonic crystal silicon

4.5 Electrical conductivity of doped Si at 300 K

In this section we further explore the ab initio KG approach by applying it to calculate
the electrical conductivity of both p- and n-doped Si at 300 K.

The computational details of the evaluation of Equation (3.45) in this section are as
follows. First of all, we simulate free-carrier doping using the rigid-band approxima-
tion (introduced in Section 3.4.2). That is, in the postprocessing step of the KG calcula-
tion, the Fermi level is set such that the net carrier density ny, — 1. (or ne — ny) equals
the desired doping level. This is done separately for each of the 655, 404, 204, and 100
samples of the 2 x 2 x 2, 3 x3 x 3,4 x4 x4, and 5 x 5 x 5 supercells, respectively.
For the sake of a convenient comparison, we consider several experimental doping
levels at 300 K (see Ref. [201] with boron for p-type doping and phosphorous for n-
type doping): (i) p-type doping with 1.325 x 104, 4.670 x 10!, 5.646 x 10'°¢, 2.744 x
10'7,and 4.06 x 10 cm™3; (ii) n-type doping with 4.769 x 10™,4.739 x 10'°,3.261 x
10'6,9.137 x 10'%,and 4.921 x 10 cm 3. By simulating doping using the rigid-band
approximation, impurity scattering is entirely absent. In addition, this approximation
leads to the same carrier concentration for all the samples. This is different from the
case of intrinsic Si, where the carrier concentration varies from one sample to another
(as a result of band-gap fluctuation). As before, the k-point samplings used are listed in
Table 4.2. The LDA band gaps are corrected with a scissor operator of 0.667 eV. In fact,
here we do not need to consider the band-gap problem (explained in Section 4.2.4). The
1 values are determined with the optimal-77 scheme and given in Table A.2, and they are
very close to those in Table 4.5. The electrical conductivities in the limit of an infinitely
large supercell are obtained from finite-size scaling. As in the case of intrinsic Si, we fit
the finite-size results with o(c0) + a1 /L + a3/L3, which is found to yield high-quality
tits (as exemplified in Figure A.4).

Of particular importance is to assess the overall convergence of our calculations.
Since Si is a very harmonic system where the ab initio BTE approach works well, this
can be done by comparing our calculations with the ab initio BTE calculations'® by Ma
et al. [127] and Poncé et al. [157]. For this, we introduce the relevant computational
details of these two BTE studies, but focus only on their calculations at the LDA level
and without SOC (as in our calculations). In these two BTE studies, the DFPT calcu-
lations of phonons and e-ph matrix elements were based on the crystalline unit cell'”
using a 6 x 6 X 6 q-mesh. A noteworthy difference is that Ma et al. solved the BTE using
an iterative method, while Poncé et al. solved the BTE in the relaxation-time approx-

16There are also two earlier BTE studies for n-doped Si: Li [124] and Fiorentini et al. [125].

7Ma et al. and Poncé et al. used the LDA and experimental lattice constants, respectively. Poncé et al.
compared the carrier mobilities (LDA results without SOC) for both LDA-relaxed and experimental
structures, and found close results. For the data of Poncé et al., we refer to those for the experimental
structure, since we consider thermal lattice expansion.
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4.5 Electrical conductivity of doped Si at 300 K

imation (RTA)lS. The former does not assume the RTA, and is therefore, in principle,
more accurate than the latter (we do not assume the RTA in our calculations). These
two BTE studies reported phonon-limited hole and electron mobilities, by simulating
weakly doped Si using the rigid-band approximation. We transform their mobility data
to electrical conductivities using the relation o = epyy, for p-doping and o = enp,. for
n-doping (where ¢, p, n, up, and p. denote the elementary charge, hole concentration,
electron concentration, hole mobility, and electron mobility, respectively).
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Figure 4.11: Electrical conductivity as a function of carrier concentration for p-doped Si
at 300 K. The BTE-iterative results and BTE-RTA results are derived from
the hole mobilities reported by Ma et al. [127] and Poncé et al. [157], respec-
tively. All the numerical results are at the LDA level of theory and without
considering SOC. The LDA band-gap problem is not important here, due
to the use of the rigid-band approximation for simulating free-carrier dop-
ing. The experimental data are from Thurber et al. [201]. Note that both the
x and y axes are on a logarithmic scale.

Figure 4.11 compares our results for the electrical conductivity of p-doped Si at 300 K
with the literature data. At the carrier concentration of 1.325 x 10 cm ™3 (low-doping
regime), where the electronic transport is mainly limited by e-ph scattering, our result
is 33% smaller than the experimental data [201] (we recall that we overestimate the hole

18Both studies reported BTE-iterative and BTE-RTA results, but only a few of these results are at the LDA
level without SOC.
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conductivity of intrinsic Si, due to overestimation of the intrinsic carrier concentrations.
This overestimation does not exist here). Given that only e-ph scattering is accounted
for in our electrical conductivity calculations, our results should be larger than the ex-
perimental data (which gradually become saturated with increasing doping level as a
result of increased impurity scattering). Therefore, the seemingly good agreement be-
tween our calculations and experiment at the moderate doping level of ~ 107 cm—3
just reflects the absence of impurity scattering in our calculations.

For Si at 300 K, our KG calculations should give results nearly identical to those of
the iterative solution of the BTE by Ma et al. [127] (as introduced above), given that
(i) Si at 300 K is a very harmonic system and (ii) both calculations are performed at
the same level of theory (i.e., LDA without SOC) and treat doping using the rigid-
band approximation. This, however, is not the case, as can be seen in Figure 4.11. Our
results are noticeably smaller than the BTE-iterative results of Ma et al. At the carrier
concentration of 1.325 x 10 cm—3, the BTE-iterative result of Ma et al. is in excellent
agreement with experiment.

Similar conclusions can be drawn for the n-doped case (Figure 4.12). We see that at
the carrier concentration of 4.769 x 10'* cm~3 (low-doping regime), our result is notice-
ably smaller (about 50%) than both the experimental and the BTE results.
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Figure 4.12: Electrical conductivity as a function of carrier concentration for n-doped Si
at 300 K. The BTE-iterative results and BTE-RTA results are deduced from
the electron mobilities reported by Ma et al. [127] and Poncé et al. [157],
respectively. Other description of the data can be found in Figure 4.11.
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The large discrepancy between our results and the results of ab initio BTE calcula-
tions suggests that our KG calculations for Si fall short of convergence. This can be
mainly attributed to the 7 problem and the issue of supercell-size convergence in our
calculations. First, the necessary introduction of an # parameter in the evaluation of
the KG formula introduces a significant uncertainty in our determination of the electri-
cal conductivity for each of the supercells and ultimately for the limit of an infinitely
large supercell (via finite-size scaling). Second, the supercell-size convergence is very
challenging, since in Si both the charge carriers and phonons have long MFPs. From
a computational standpoint, the limited size of the simulation supercells has hindered
us so far from obtaining many insights into these two issues. While there are other
sources of error, including the errors associated with the “light" basis set of Si and with
the number of MD samples, we believe that they are much less significant compared to
the 7 problem and the issue of supercell-size convergence, in view of the convergence
tests for basis set and number of MD samples in the previous sections. The rigid-band
approximation and the band-gap problem should in principle not contribute to the ob-
served discrepancy. This is because both our calculations and the BTE calculations de-
scribe doping within the rigid-band approximation, and in this situation the band-gap
problem requires no particular attention. However, we note that the BTE calculations
involve only a single unit cell, but our calculations for each supercell involve a number
of atomic configurations.
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4.6 Summary

In this chapter we explored, improved, and assessed the ab initio KG approach to com-
pute the electrical conductivity of Si at 300 K.

We have performed a detailed convergence study of our electrical conductivity cal-
culations in the N x N x N (N = 2, 3, 4, and 5) cubic supercells of intrinsic Si at 300
K, and have defined strategies to address the identified numerical problems. These
resulted in the following findings and understanding:

(1) The convergence with respect to k-point sampling is challenging, because the car-
riers are confined in a narrow energy range near the band extrema. To achieve good
k-point convergence, it is necessary to use n X n x n k-mesh with n x L (L is the super-
cell length) larger than 200 A. The convergence of k-point sampling is insensitive to the
broadening parameter (7). The dense k-mesh required makes the supercell-based KG
calculation very demanding.

(2) When computing the intrinsic electrical conductivities, the severe underestima-
tion of the band gaps by DFT-LDA cause errors of several orders of magnitude. This
problem can be largely solved by using a “scissor operator" approach, considering that
it is currently computationally infeasible to perform hybrid-functional theory or GW
calculations. In the case of a moderate/high free-carrier doping simulated using the
rigid-band approximation, the band-gap problem requires no particular attention if one
includes in the result only the electrical conductivity of the majority carriers.

(3) Compared to the “tight" basis set, the “light" basis set can deliver reliable electrical
conductivity calculations at a reduced computational cost.

(4) The convergence with respect to number of aiMD samples is not a big problem,
but it is computationally expensive for large supercells. This statistical convergence
should be carefully ensured for all the supercells simulated, in order not to affect the
subsequent finite-size scaling.

(5) The finite-size supercell calculations pose two severe problems. One is the neces-
sary introduction of a broadening parameter (77), due to the discrete Kohn-Sham energy
levels. The electrical conductivity results depend strongly on 7, and this introduces a
significant uncertainty in our quantitative determination of the electrical conductivity
in each of the supercells. We have discussed an optimal-# scheme to determine 7: com-
pute the inter-band contribution to the electrical conductivity as a function of 7, and
take the 77 value at which the inter-band contribution is a maximum. The chosen 7
value reflects the Kohn-Sham level spacings of the supercell. We recognize that the va-
lidity of the optimal-77 scheme is currently uncertain. The supercell-size convergence is
not achieved even for the 5 x 5 x 5 (1000-atom) supercell. This second problem is un-
derstood by the fact that the MFPs of both the charge carriers and phonons in Si at 300
K well exceed the size of our simulated supercells. We have used the finite-size scal-
ing method with a polynomial function o(co) + a1 /L + a3/ L3 to deduce the electrical
conductivities in the limit of an infinitely large supercell.
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4.6 Summary

With these efforts, we have computed the electrical conductivities of both intrinsic
and doped Si at 300 K. It is found that at the LDA level of theory the calculated electrical
conductivities are in reasonable agreement (to within about 50%) with experimental
data. However, our results do not agree well with previous ab initio BTE calculations at
the same level of theory, suggesting that our strategies for dealing with the 1 problem
and the issue of supercell-size convergence need to be improved.

In future developments of the ab initio KG approach, if Si is considered as a test sys-
tem, we suggest focusing on Si at room temperature in the low-doping regime, in which
case the uncertainties in the electrical conductivity results due to the band-gap problem,
the neglect of impurity scattering, and the rigid-band approximation are small. While
the DFT eigenvalues and eigenfunctions are approximate quantities, we do not suggest
investigating the effect of different DFT xc functionals on the KG calculations for Si be-
fore the 17 problem and the issue of supercell-size convergence are convincingly solved.
Indeed, previous ab initio BTE studies [124, 125, 127, 157] have shown that the LDA
functional is good enough to describe the electronic transport in Si.
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crystal SnSe

Ab initio KG calculations of the electrical conductivity naturally account for lattice an-
harmonicity and is therefore a promising approach for studying anharmonic materials.
An interesting question is whether the numerical problems identified in our calcula-
tions for the very harmonic crystal Si are less severe for anharmonic crystals in which
phonons typically have short MFPs [202]. In this chapter, we apply the ab initio KG ap-
proach to study the electrical conductivity of SnSe, a strongly anharmonic crystal with
high thermoelectric performance. We present a detailed convergence study on the k-
point sampling, broadening parameter, number of samples, and supercell size. Then,
we compute the electrical conductivities at 300 K and at 523 K, and assess our results
by comparing them with experiment and previous ab initio BTE calculations.

5.1 Introduction

Tin selenide (SnSe) is a layered semiconductor [depicted in Figure 5.1(a)] in which indi-
vidual atomic layers are held together by van der Waals (vdW) interactions. The crystal
has the orthorhombic space group Pnma below about 800 K [203, 204]. SnSe features
highly anisotropic bonding: (i) Within a two-atom-thick atomic layer that is perpendic-
ular to the crystallographic a-axis, each Sn atom is covalently bonded to three neigh-
boring Se atoms forming a puckered structure; (ii) The three bonds, of which one is
slightly shorter than the other two, take up the 5p? valence electrons of Sn, leaving the
lone-pair 5s® valence electrons of Sn** (nominal valence) oriented towards the adjacent
layers [205]. The crystal lattice of SnSe is very "soft", as evidenced by its low Debye
temperatures of 154 K and 345 K [206]. As a consequence of the anisotropic bonding,
the electronic band structure of SnSe exhibits strong anisotropy along different direc-
tions of the Brillouin zone [see Figure 5.1(b)]. Both the valence- and conduction-band
edges are characterized by highly dispersive valleys, while the highest valence band
along the I'-X line is rather flat (or localized) and deep in energy. The band gap of
SnSe is indirect, with the valence-band maximum (VBM) located on the I'-Z line and
the conduction-band minimum (CBM) on the I'-Y line. Due to the low symmetry of
the crystal structure, the degree of band degeneracy around both the VBM and CBM is
rather low [207]. Both the upper valence bands and lower conduction bands are mainly
composed of the Sn 5p orbitals and the Se 4p orbitals [see Figure 5.1(b)].
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Figure 5.1: Crystal structure and electronic band structure of SnSe in the orthorhom-
bic phase. (a) Perspective views of the atomic structure along the crystallo-
graphic b and ¢ axes, respectively. The black border indicates the crystalline
unit cell consisting of eight atoms, with the room-temperature lattice con-
stants 4 = 11.502 A, b = 4.153 A, and ¢ = 4.445 A [203]. This subplot
is created using the VESTA program [208]. (b) Band structure and (partial)
density of states (DOS) calculated using the GGA PBEsol functional. The
PBEsol band gap has been enlarged to match the experimental band gap
(about 0.9 eV at room temperature [209]) as illustrated by the shaded area.
The inset depicts the Brillouin zone with high-symmetry points and lines.
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In the search for high-efficiency, environmentally friendly thermoelectric materials,
SnSe has recently gained significant attention, since Zhao et al. [210, 179] reported re-
markably large figure-of-merit values in both the as-grown p-type and Na-doped p-
type single-crystal SnSe samples. The outstanding thermoelectric performance of SnSe
has been attributed to a combination of the extraordinary heat and charge transport
properties of this material [211, 210, 179]. (i) First, SnSe has an ultra-low intrinsic lat-
tice thermal conductivity, due to strong lattice anharmonicity associated with the very
"soft" (puckered and layered) crystal structure. The mean free paths (MFPs) of major
heat-carrying phonon modes in SnSe are found to be very short and comparable to the
unit-cell lattice parameters [18, 212]. (ii) Second, SnSe can be heavily doped p-type with
hole concentrations up to the order of 10%° em~3. (iii) Third, SnSe shows a large en-
hancement of the thermoelectric transport at high hole doping levels where the Fermi
level enters into the energetically close-lying valence-band valleys [see Figure 5.1(b)].
SnSe exemplifies that puckered layered crystal structure is an important material fea-
ture for the discovery of novel thermoelectric materials.

Figure 5.2 summarizes some of the reported electrical conductivity results of SnSe in
the literature. As can be seen, the experimental data [210, 211] are highly anisotropic;
that is, the electrical conductivity along the a axis (corresponding to the interlayer hole
transport) is much smaller than those along the b and ¢ axes (corresponding to the in-
plane hole transport). In addition, the electrical conductivities fall with increasing tem-
perature (up to 550 K). These observations have been quantitatively reproduced by the
ab initio BTE calculations of Caruso et al. [24], achieved by accounting simultaneously
for (i) the thermal lattice expansion (experimental crystal structure at each temperature
was used to compute the electronic band structure) and (ii) the temperature-dependent
renormalization of hole relaxation times [temperature effects were accounted for via
the Fermi-Dirac and Bose-Einstein occupation factors; see Equation (3.7)]. However, in
the work of Caruso et al., the e-ph calculations were based on the harmonic phonons for
the DFT-relaxed crystal structure at 0 K. Future ab initio BTE calculations on SnSe will
be required to include (i) more anharmonic effects (e.g., the thermal shift of phonon fre-
quencies) and (ii) higher-order e-ph coupling effects (e.g., the temperature-dependent
renormalization of the electron eigenvalues, which was found to be pronounced in SnSe
[24]). This remains a very challenging task mainly because of the computational com-
plexity associated with the e-ph calculations [31]. This difficulty is solved automatically
by the ab initio KG approach, which, through aiMD, naturally accounts for all anhar-
monic effects and does not require a perturbative treatment of the coupling between
electrons and lattice vibrations.

This chapter is mainly devoted to assessing whether the ab initio KG approach can
provide reliable results for the electrical conductivity of SnSe. We will focus on p-doped
SnSe, and our results will be analyzed in terms of the unusual crystal structure, elec-
tronic band structure, and anharmonic lattice dynamics of SnSe as reviewed above.
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Figure 5.2: Literature results for the electrical conductivity of p-doped SnSe as a func-
tion of temperature. The experimental data are adapted from the work of
Zhao et al. [210, 211], and are for single-crystal SnSe samples (which are
p-doped as grown) along the crystallographic axes a, b, and c. The numeri-
cal results are adapted from the work of Caruso et al. [24], who performed
ab initio BTE calculations in the relaxation-time approximation (RTA). In this
BTE study, the authors used a constant hole concentration of 4.5 x 107 ecm—3
for different temperatures. The dashed lines are a guide to the eye.

5.2 Computational details

General settings. All DFT calculations in this chapter were done with the FHI-aims
code using the "light" basis sets of Sn and Se and the PBEsol functional [63]. The PBEsol
functional lacks long-range vdW interactions [213]; this was not corrected in the present
study, as in previous ab initio BTE studies (e.g., Ref. [21, 24]). The SCF convergence cri-
teria for the density, sum of eigenvalues, and total energy were set to 10-¢ eV /A3, 10~*
eV, and 107 eV, respectively. These basic settings were kept in all following calcula-
tions, except a few small changes for the 2iMD simulations.

Equilibrium lattice constants. In structural-relaxation calculations for determining
the equilibrium geometry of SnSe, atomic forces were minimized to below 10~ eV /A.
The thermal lattice expansion at 300 K was described using the quasi-NPT method (in-
troduced in Section A.2.3). Previous studies found that SnSe exhibits negative thermal
expansion along the c axis [203, 214, 215]. This behavior cannot be reproduced by the
quasi-NPT method, so we determined the lattice constants of SnSe at 523 K by extrapo-
lating the calculated lattice constants at 300 K to 523 K, using the experimental thermal

89



5 Electrical conductivity of anharmonic crystal SnSe

expansion coefficients [215]. Our calculated lattice constants are listed in Table 5.1. The
DFT-GGA study of the phase transition of SnSe by Dewandre et al. [204] showed that
including the long-range vdW corrections does not affect the interlayer significantly. As
mentioned before, Caruso et al. [24] considered thermal lattice expansion by employing
at each temperature the experimental crystal structure.

Table 5.1: Calculated lattice constants of SnSe. The lattice constants at 0, 300, and 523
K are determined by direct structural relaxation, the quasi-NPT method, and
extrapolation, respectively. Note that the lattice constant along the crystallo-
graphic a axis is much longer than those along the b and c axes. In parentheses
we list the previous PBEsol data at 0 K [207], and the experimental data at 300
K and 523 K [203].

T (K) ay (A) bo (A) co (A)

0  11.568 (11.396) 4.183 (4.147) 4.377 (4.369)
300 11.635(11.502) 4.196 (4.153) 4.404 (4.450)
523 11.706 (11.571) 4.222 (4.190) 4.379 (4.429)

AiMD simulations. Supercells with different sizes were constructed and grouped
into two subsets: N x4 x4 (N =1, 2, and3)and2 x N x N (N = 2, 3, 4, and 5). AiMD
simulations were performed (separately) in these supercells in the NVT ensemble using
a time step of 4 fs and a Langevin thermostat at 300 K. The k-meshes used are listed in
Table 5.2. In the MD simulations, only the density convergence was checked, and this
criterion was reduced to 5 x 10¢ eV /A3 for the 3 x 4 x 4 and 2 x 5 x 5 supercells. After
an initial period of 4 — 5 ps for equilibration, atomic configurations were sampled every
50 time steps until a sufficiently large number of samples were created (see discussion
in Section 5.3.2). The MD simulations were also performed at 523 K. The FHI-vibes
code [185] was used for the MD simulations.

KG calculations. For each MD sample, a two-step KG calculation was performed. (i)
First, a static DFT calculation using dense k-mesh (see Section 5.3.1) was carried out to
evaluate the Kohn-Sham eigenvalues €, and momentum-matrix elements (mk|p|nk).
(ii) Second, with the DFT material parameters, the electrical conductivity of this sam-
ple was computed using Equation (3.45) as implemented in our FHI-kubo code. More
computational details can be found in later sections.

It is important to note that the electrical conductivity of SnSe is anisotropic. The x, v,
and z components of the electrical conductivity can be evaluated by including in the KG
calculation only the momentum-matrix elements in the x, y, and z directions, respec-
tively. From now on we use 0y, 0;, and ¢ to denote the electrical conductivity in the
x, Y, and z directions, respectively (corresponding to the orthorhombic crystallographic
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a, b, and c axes). In this work, we focus on the x and z components of the electrical
conductivity of p-doped SnSe.

Table 5.2: Two groups of supercells used in our electrical conductivity calculations for
p-doped SnSe at 300 K. The listed details include supercell sizes, number of
atoms, and k-meshes used in the aiMD simulations.

Supercell size  #atoms k-mesh (for MD)

Group-I (for oy)

1x4x4 128 2x2x2
2x4x4 256 2XxX2x2
3x4x4 384 1x2x%x2
Group-II (for o)
2x2x%x2 64 2x4x4
2x3x3 144 2XxX2x%x2
2x4x4 256 2X2x2
2x5x5 400 2x2x2

Comments on supercell size

As discussed in the last chapter on Si, the electrical conductivity in the limit of an in-
finitely large supercell can be obtained via finite-size scaling. Usually, we prefer using
a series of supercells in the shape of N x N x N with N = 2, 3, 4, and 5. However, be-
cause the component elements of SnSe are not light, the supercell size quickly becomes
computationally intractable. The KG calculation in the 4 x 4 x 4 (512-atom) supercell is
not allowed by our computational resources, unless an underconverged k-mesh is used
for this supercell. This poses an additional difficulty for studying the anisotropic elec-
trical conductivity of SnSe, and we have to choose appropriate supercell sizes. When
computing the oy, the supercells must be large enough in both the y and z directions.
Our computation of the oy is based on the N x 4 x 4 supercells, which are reasonably
large in both the y and z directions, and moreover, our computational resources allow
for N =1, 2, and 3. This will provide three data points for finite-size scaling. Similarly,
our computation of the ¢, uses the 2 x N x N (N = 2, 3, 4, and 5) supercells, which
contain four SnSe atomic layers in the x direction. These explain why the N x 4 x 4
(N =1, 2, and 3) supercells and the 2 x N x N (N = 2, 3, 4, and 5) supercells are
used in our electrical calculations. Note that the 2 x 4 x 4 supercell is employed for
computing both the ¢, and o.
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5.3 Convergence of the electrical conductivity in p-doped SnSe
at 300 K

In this section, by focusing on the x and z components of the anisotropic electrical con-
ductivity of SnSe at 300 K, we present a convergence study with respect to the k-point
sampling, broadening parameter (77), number of samples, and supercell size. Experi-
mentally it was found that the single-crystal SnSe sample grown at 300 K is intrinsically
p-type with a hole doping level of 3 x 107 cm~3 [210, 211]. We simulate this hole dop-
ing using the rigid-band approximation (see Section 3.4.2), i.e., the Fermi level (of each
MD sample) is set under the condition 1, — 1 = 3 x 1017 cm~3. The PBEsol band gaps
are corrected with a scissor shift of 0.659 eV, which is the difference between the PBEsol
band gap (0.311 eV) and experimental band gap at 0 K (0.97 eV [209]).

5.3.1 k-point convergence

We begin by examining the convergence with respect to k-point sampling. For this, we
take a sample of the 2 x 2 x 2 supercell as an example, and perform KG calculations
in this supercell using two different (I'-centered) k-point samplings: n x 30 x 30 (i.e.,
k-mesh with varying size in the k, direction) and 10 x 30 x 7 (i.e., k-mesh with varying
size in the k, direction). In addition, we consider two different 77 values, 20 and 30 meV,
to show the influence of 77 on the k-point convergence.

Let us consider first the electrical conductivity in the x direction (i.e., 0y). For the oy
calculated at 7 = 30 meV, we see in Figure 5.3 that good k-point convergence! can be
obtained using a k-mesh with the size of 8 and 25 in the k, and k, directions, respec-
tively. This result should not be interpreted as that the o, converges much faster with
respect to the k-point sampling in the k, direction than in the k, direction, because the
cell length in the x direction is about 2.6 times longer than that in the z direction. It
is interesting to note that although the oy is related to the momentum-matrix elements
in the x direction, its convergence depends also critically on the sampling in the k, di-
rection. This is because the VBM of SnSe is on the I'-Z line of the Brillouin zone? (see
Figure 5.1), so the k-point sampling in the k, direction plays a key role in determining
the Fermi-level position (according to the condition mentioned above). In Figure 5.3,
we further find that the k-point convergence hardly changes when 7 is decreased to 20
meV. But, the k-point converged oy are drastically different for 7 = 20 meV and = 30
meV, suggesting that it is crucial to choose an appropriate value of 7. We come back to
this issue in the next subsection.

Consider then the electrical conductivity in the z direction (i.e., o). In Figure 5.4, we
see that the o, converges very quickly as a function of the sampling in the k, direction.

I This has been further confirmed with a 16 x 40 x 40 k mesh.
2The qualitative analysis is based on the electronic band structure of the equilibrium geometry of SnSe.
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Figure 5.3: The x-component electrical conductivity (oy) in the 2 x 2 x 2 supercell as
a function of n for a n x 30 x 30 k-point sampling (left panel) and for a
10 x 30 x n k-point sampling (right panel), with two different choices of the
broadening parameter (7 = 20 and 30 meV). The results are for p-doped
SnSe at 300 K. The gray dashed lines are a guide to the eye.

This is understood by the fact that the valence bands along the k, direction are deep
in energy and therefore play a negligible role in determining the ¢,. By contrast, the
o, converges much more slowly with respect to the sampling in the k, direction, and
good k-point convergence can be obtained using a k-mesh with the size of 25 in this
direction. This is expected, since the highest valence band along the I'-Z line, on which
the VBM is located, is highly dispersive (see Figure 5.1).

In addition, the k-point convergence of both the o, and ¢, with respect to the sam-
pling in the k, direction is faster than in the k, direction (as shown in the Appendix,
Figure A.5). This is understood from that the VBM in the k, direction is lower (about
50 meV) than the global VBM (see Figure 5.1).

The above discussion suggests that when analyzing the k-point convergence of the
electrical conductivity of an anisotropic material, one should keep in mind the mate-
rial’s electronic band-structure features, including: (i) the energy positions and disper-
sion of the band edges along each reciprocal-space direction; (ii) the k locations of the
VBM and CBM. This is especially so for materials having a indirect band gap and highly
dispersive band edges, e.g., the currently studied SnSe.

In our later calculations, we will use a 10 x 30 x 30 k-mesh to compute the electrical
conductivities in the 2 x 2 x 2 supercell. This k-point sampling is equivalent to the 20 x
60 x 60 k-mesh used in the BTE calculations for the SnSe unit cell (i.e., the 1 x 1 x 1 cell)
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Figure 5.4: The z-component electrical conductivity (¢;) in the 2 x 2 x 2 supercell as

a function of n for a n x 30 x 30 k-point sampling (left panel) and for a
10 x 30 x n k-point sampling (right panel), with two different choices of the
broadening parameter (7 = 20 and 30 meV). The results are for p-doped
SnSe at 300 K. The gray dashed lines are a guide to the eye.

Table 5.3: Chosen k-meshes for performing KG calculations in the SnSe supercells.

by Caruso

Supercell size k-mesh
Group-1 (for oy)
1x4x4 20 x 15 x 15
2xX4x4 10 x 15 x 15
3x4x4 7 x15x 15
Group-1I (for o)
2x2x2 10 x 30 x 30
2x3x%x3 10 x 20 x 20
2x4x4 10 x 15 x 15
2xX5xb 10 x 12 x 12

et al. [24], and can be conveniently scaled with the size of our other simulated

supercells, as shown in Table 5.3. For instance, the scaling leads to the 3 x 4 x 4 supercell
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with a 7 x 15 x 15 k-mesh, 2 x 5 x 5 supercell with a 10 x 12 x 12 k-mesh, or even
4 x 4 x 4 supercell with a 5 x 15 x 15 k-mesh. For the 3 x 4 x 4 supercell with a 7 x
15 x 15 k-mesh and the 2 x 5 x 5 supercell with a 10 x 12 x 12 k-mesh, the calculations
are very demanding. And, as mentioned earlier, the 4 x 4 x 4 supercell with a 5 x
15 x 15 k-mesh is beyond our computational capabilities (a memory problem). For
this supercell, the largest k-mesh size we can afford is 5 x 6 x 6, which is insufficient.
This is why the 4 x 4 x 4 supercell is not studied. Our chosen k-meshes can guarantee a
good k-point convergence of the electrical conductivities in the respective supercells. In
addition, there is no need to worry about the influence of 1 on the k-point convergence
(an additional test is given in the Appendix, Section A.3.2).

5.3.2 Broadening parameter and number of MD samples

In this subsection, we discuss the choice of # which is a crucial numerical parameter
in the evaluation of Equation (3.45). For ease of discussion, we also examine the con-
vergence with respect to the number of MD samples. Through the aiMD simulations
at 300 K, we have generated (i) 160, 125, 75 samples for the N x 4 x 4 supercell with
N =1, 2, and 3, respectively, and (ii) 250, 200, 100, and 44 samples for the 2 x N x N
supercell with N = 2, 3, 4, and 5, respectively. Note that the N x4 x 4and 2 x N x N
supercells are used for calculating the oy and ¢, of p-doped SnSe at 300 K, respectively.
The KG calculations are performed using the k-meshes listed in Table 5.3.

Choice of broadening parameter

We have considered two different ways for choosing 7. First, we describe how we
determine the value of 17 with the optimal-r7 scheme (described in Section 4.2.3). This
scheme is to use the # value that maximizes the inter-band contribution (to the electrical
conductivity) for computing the (full) electrical conductivity.

Following the optimal-1 scheme, we show in Figure 5.5 for each of our simulated su-
percells the calculated sample-averaged inter-band contribution (to the electrical con-
ductivity) versus 7. Note that the results in Figure 5.5(a) are the inter-band o, in the
N x4 x4 (N =1, 2, and 3) supercells, and those in Figure 5.5(b) are the inter-band
0y inthe 2 x N x N (N = 2, 3, 4, and 5) supercells. As can be seen, for all the su-
percells (except the 2 x 2 x 2 supercell), the inter-band contribution versus # shows a
concave behavior and exhibits a maximum when 7 is about 30 meV. This behavior is
due to the discreteness of Kohn-Sham energy levels in the finite-size supercell calcula-
tions (see Section 4.2.3). We note that the inter-band contribution to ¢, in the 2 x 2 x 2
supercell increases very slowly with 77 and its maximum is at very large # [not fully dis-
played in Figure 5.5(b)], implying that for this supercell the upper valence bands along
the I'-Z direction have rather large level spacings. This is understood by noticing that
the highest valence band along the I'-Z line is highly dispersive. In view of this, the
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Figure 5.5: Sample-averaged inter-band contribution to the (a) oy and (b) o as a func-
tion of broadening parameter (1), for different SnSe supercells. The inter-
band o, are for the N x4 x 4 (N = 1, 2, and 3) supercells; the inter-band
o, are for the 2 x N x N (N = 2, 3, 4, and 5) supercells. Note the different
scales of the y axes in the two graphs. The results are for p-doped SnSe at
300 K and calculated using the k-meshes listed in Table 5.3.

2 x 2 x 2 supercell is a too small simulation cell for computing the ¢,. The low degree
of band degeneracy around the VBM [207] might be an additional factor that prevents
the 2 x 2 x 2 supercell from having small level spacings.

Table 5.4 lists the 77 values that correspond to the maxima of the curves in Figure 5.5.
We find that for the 2 x 4 x 4 supercell, the determined 7 values are slightly different for
ox and 0, indicating the anisotropy of SnSe. Consider the N x 4 x 4 supercells (for oy).
The 7 value for the 3 x 4 x 4 supercell is slightly larger than that for the 2 x 4 x 4 su-
percell, seemingly suggesting that the average level spacing of the upper valence-band
levels is larger for 3 x 4 x 4 supercell than for the 2 x 4 x 4 supercell. This contradicts
our intuition at the first sight, but can be understood from that the lattice vibrational
modes allowed in these two supercells are very different (due to the different super-
cell size in the x direction), and so are their impact on the electron eigenvalues. From
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the point of view of the thermodynamic limit, neither the 2 x 4 x 4 supercell nor the
3 X 4 x 4 supercell can be viewed as a large simulation cell, though computationally
both are large systems. Consider then the 2 x N x N supercells. On the whole, the
value is reduced when the size N is increased from 2 to 5. The 7 value for the2 x 3 x 3
and 2 x 4 x 4 supercells are the same, in contrast to our expectation. In addition, the
1 value for the 2 x 2 x 2 supercell is very large, which makes us question whether it is
reasonable to use this supercell as a simulation cell. Yet, the 2 x 2 x 2 supercell will still
be included in our calculations.

Table 5.4: The # values determined with the optimal-# scheme. They correspond to
the maxima of the respective curves in Figure 5.5. Two groups of supercells:
Group-1is for computing the oy; Group-II is for computing the o.

Supercell size  #samples 7 (meV)

Group-I (for oy)

1x4x4 160 36
2x4x4 125 31
3x4x4 75 33
Group-II (for o)
2xX2x2 250 207
2x3x%x3 200 34
2x4x4 125 34
2xX5xb 44 26

The supercell-size-dependent 7 values given in Table 5.4 will be used to calculate the
electrical conductivities in the respective supercells. Figure 5.5 also suggests that it is
sensible to take 7 = 30 meV as a common choice for all the supercells simulated. Thus,
our second way for choosing 7 is to simply use # = 30 meV, irrespective of the supercell
size and direction. In addition, another two # values, 10 and 50 meV, will be used as
such common choices. The resulted comparison will help us check the validity of the
optimal-# scheme.

Statistical convergence

We now compute the electrical conductivities in our simulated supercells. This is done
for each of the collected MD samples, by evaluating Equation (3.45) with the respective
1 values given in Table 5.4. In the left panels of Figure 5.6, for each of the N x 4 x 4
(N =1, 2, and 3) supercells, we show the o ({R;}) and its cumulative moving average
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Figure 5.6: Convergence of electrical conductivity with respect to number of MD sam-
ples. Left panels: oy inthe N x 4 x 4 (N =1, 2, and 3) supercells. Right pan-
els: 0, inthe 2 x N x N (N = 3, 4, and 5) supercells. Gray dots: 0y, ({Rr})
for an individual MD sample ({R;} denotes the atomic configuration). For
instance, in the graph for oy in the 1 x 4 x 4 supercell, there are 160 gray
dots, each of which corresponds to a MD sample. The data points follow the
time order of the MD simulations. Red and blue lines: cumulative moving
average (CMA) of 0y, ({R1}). The results are for p-doped SnSe at 300 K, and
calculated using the k-meshes listed in Table 5.3 and with the 7 values listed
in Table 5.4. Note the different scales of y-axes in the left and right panels.

(CMA); in the right panels, for each of the 2 x N x N (N = 3, 4, and 5) supercells, we
plot the 0 ({R;}) and its CMA. For convenience of plotting, the results for the 2 x 2 x 2
supercell are shown in Figure A.9 in the Appendix.
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It can be seen qualitatively that for each supercell, the o,,,({R;}) varies from one
sample to another, and its CMA becomes gradually stable as the number of samples
is increased. Relatively stable CMA, namely acceptable convergence with respect to
number of samples, is achieved with about 50 samples, for most cases shown in the
figure. There is no sign of reducing fluctuation of o, ,,({R;}) as the supercell size in-
creases, unlike what was observed in the last chapter on Si. For instance, the extent of
fluctuation of oy ({R;}) in the 2 X 4 x 4 and 3 x 4 x 4 supercells looks comparable. This
may be understood as follows: SnSe is a soft material, so even for the large supercells,
thermal atomic fluctuation with large displacements can occur in the MD simulations,
leading to a large variation of the electrical conductivity.

Table 5.5 presents the electrical conductivities calculated in the supercells. These val-
ues are the sample means corresponding to the end points of the respective CMA curves
displayed in Figure 5.6. As can be seen, the results for o, are much larger than those for
0y, in line with experimental findings (see Figure 5.2). The statistical convergence of the
results has been quantified by the standard error of the mean (SEM). We can see that the
SEMs are small enough compared to the respective sample means, and that the ratio of
the SEM to the sample mean is generally smaller than 2%. For o, in the 3 x 4 x 4 super-
cell, the statistical error is a little large, suggesting that more MD samples are needed
to improve the precision. Although we try to limit the ratio of the SEM to the sample
mean to within 1%, this is not achieved due to the high computational cost®. Since
SnSe is a material whose component elements are not light*, the KG calculation in the
3 x 4 x 4 (384-atom) and 2 x 5 x 5 (400-atom) supercells is very demanding, making it
challenging to compute many samples for these two supercells. Yet, we find that for o,
in the 2 x 5 x 5 supercell, a satisfactory statistical convergence has been achieved with
less than 50 samples.

It should be mentioned that our results for different supercells are obtained with a
different number of MD samples (here we limit our discussion to either oy or ¢;). This
does not mean that we ignore the consistency. Instead, in our experience, it is often
the case that for different supercell sizes we have to use a different number of samples,
in order to achieve a similar statistical convergence of the electrical conductivity. Usu-
ally, smaller supercells require a larger number of samples. This can be seen from the
quantitative error analysis for ¢, in the 2 x N x N supercells (see Table 5.5).

Besides, we have evaluated the electrical conductivities at three common choices 17 =
10, 30, and 50 meV. As an example, we present in Table 5.6 the results calculated at 7 =
30 meV [see Figure A.8 for 0y,,({R;})]. By comparing the last columns of Table 5.6 and
Table 5.5, we see that the ratio of the SEM to the sample mean hardly changes with 7.
This indicates that the statistical convergence is decided by the number of samples. In

3Reducing the statistical error by including more MD samples is a slow process ~ 1/, / Nsample [52]-

4As a comparison, SnSe and Si both have a conventional cell containing 8 atoms, but the number of
electrons of SnSe is 3 times of that of Si.
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5 Electrical conductivity of anharmonic crystal SnSe

next subsection, the electrical conductivity results in Tables 5.5 and 5.6 as well as those
evaluated at 7 = 10 and 50 meV will be used to discuss the supercell-size convergence.

Table 5.5: Sample-averaged electrical conductivities in different SnSe supercells: oy in
the N x4 x4 (N = 1, 2, and 3) supercells; o, in the 2 x N x N (N =
2, 3, 4, and 5) supercells. The results are for p-doped SnSe at 300 K and with
the doping level of 3 x 10'” cm ™3, and calculated using the k-meshes listed in
Table 5.3 and with the 77 values listed in Table 5.4. The statistical convergence
is estimated by the SEM.

Supercell size  #samples 0y/, (O 'em™!) SEM (Q !'em™!) SEM/c

Group-1 (for oy)

1x4x4 160 1.57 0.018 1.16%
2x4x4 125 1.46 0.023 1.58%
3x4x4 75 1.05 0.034 3.26%
Group-1I (for o)
2X2x2 250 1.41 0.011 0.82%
2x3x%x3 200 6.82 0.078 1.14%
2x4x4 125 7.19 0.056 0.78%
2x5x5 44 8.80 0.137 1.55%

Table 5.6: Same as Table 5.5 but for the common choice # = 30 meV.

Supercell size  #samples 0y, (Q 'em™) SEM (Q !'em™!) SEM/c

Group-I (for oy)

1x4x4 160 1.86 0.022 1.16%
2x4x4 125 1.50 0.024 1.60%
3x4x4 75 1.11 0.038 3.40%
Group-II (for o)
2x2x2 250 8.31 0.092 1.10%
2x3x%x3 200 7.64 0.089 1.17%
2x4x4 125 8.06 0.064 0.79%
2x5x5 44 7.73 0.119 1.54%
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5.3 Convergence of the electrical conductivity in p-doped SnSe at 300 K

5.3.3 Supercell-size convergence

The electrical conductivity results presented in the last subsection now enable us to dis-
cuss the convergence with respect to the supercell size. The discussion below will also
include (i) a comparison of the results for the different choices of # and (ii) a compari-
son of our results with experiment and previous ab initio BTE calculations. We discuss
the experimental data for single-crystal SnSe samples of Zhao et al. [210, 211] and the
BTE results of Caruso et al. [24], Li et al. [216], and Ma et al. [21].

Before proceeding, we summarize the relevant computational details of the above-
mentioned BTE studies, which will help explain the differences in the numerical results.
These studies were all done at the PBE level (Ma et al. employed a GoW)j correction to
the DFT-PBE eigenvalues; we use instead PBEsol). Caruso et al. and Ma et al. both used
the experimental crystal structure, while Li et al. used PBE-relaxed structure. In these
studies, phonons and e-ph matrix elements were computed using DFPT. As mentioned
in the Introduction, the DFPT calculations of Caruso ef al. were done for the PBE-
relaxed structure’. Caruso et al. and Li et al. both solved the BTE in the relaxation-time
approximation (RTA). While Ma et al. also provided BTE-RTA calculations, the authors’
focus was on an iterative solution of the BTE (which does not assume the RTA). It is
worth noting that these studies employed different k- and q-meshes not only in the
solution of BTE but also in the DFPT calculations® (as detailed in the Appendix, Table
A.3). Caruso et al. reported temperature-dependent electrical conductivities, assuming
a constant hole concentration of 4.5 x 107 cm~3 for different temperatures. Li et al.
presented electrical conductivities at 300 K as a function of hole concentration. Ma et
al. reported temperature-dependent hole mobilities”. Hole doping was simulated using
the rigid-band approximation, and hence (carrier-)defect scattering is entirely absent (as
in our study). Note that defect scattering does exist in real single-crystal SnSe samples,
which are unintentionally p-doped by Sn vacancies [217].

We also note here that all the electrical conductivity results discussed in this subsec-
tion are for p-type SnSe at 300 K and at the corresponding experimental hole doping
level of 3 x 107 cm ™ (this value was actually measured at 303 K) [210, 211]. For com-
parison, we (i) reduce the BTE results of Caruso et al. by 1.5 times and (ii) transform
the mobility data of Ma et al. to electrical conductivities using the relation o = epupny,
where py, and ny, are the hole mobility and hole concentration, respectively (here ny, =
3 x 107 em™3).

5This is understandable since Caruso et al. considered a number of temperatures. Performing DFPT
calculations for the crystal structure at each temperature is a formidable task.

®Interpolation of DFPT e-ph matrix elements on coarse k- and q-meshes to fine meshes was made in the
solution of the BTE.

7In the work of Ma et al., temperature dependence was investigated with the experimental crystal struc-
ture at 300 K (i.e., only one crystal structure was used in the DFPT calculations). In addition, Ma
et al. performed a test calculation of the 300 K hole mobilities at three different hole concentrations
(1.57 x 10, 7.49 x 10'®, and 3.56 x 1017 cm—3), and found the identical results.
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5 Electrical conductivity of anharmonic crystal SnSe

Convergence of the o, with respect to the supercell size in the x direction

In Figure 5.7, we have plotted our calculated x-component electrical conductivities (o)
inthe N x4 x4 (N =1, 2, and 3) supercells, as a function of 1/ L, (the inverse supercell
length in the x direction).
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Figure 5.7: The x-component electrical conductivity (cy) as a function of 1/Ly (the in-
verse supercell size in the x direction). Our results are obtained from KG
calculations in the N x 4 x 4 (N = 1, 2, and 3) supercells, using differ-
ent choices of broadening parameter (1): supercell-size-dependent # val-
ues (determined with the optimal-# scheme; listed in Table 5.4); Three dif-
ferent common choices (10, 30, and 50 meV). Our results are fitted with
0x(Ly = o) + a1/Ly, as indicated by the red solid line and black dashed
lines. Literature data are included for comparison: experimental result of
Zhao et al. [210, 211]; BTE-RTA results (obtained from solution of the BTE in
the RTA) of Caruso et al. [24], Li et al. [216], and Ma et al. [21]; BTE-iterative
results (obtained from iterative solution of the BTE) of Ma et al. [21]. All
the data displayed in this graph are for p-doped SnSe at 300 K and with the
doping level of 3 x 10 cm 3. The result of Caruso et al., which is originally
for the doping level of 4.5 x 1017 cm ™3, has been reduced by 1.5 times.

As can be seen, the o, obtained from the 1 x 4 x 4 supercell calculations is in good
agreement with experiment [Here and below, unless specified otherwise, we refer to
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5.3 Convergence of the electrical conductivity in p-doped SnSe at 300 K

our results for the optimal-7 scheme, i.e., the data points marked by red diamonds)].
This indicates that the 1 x 4 x 4 supercell, which contains two SnSe atomic layers in the
x direction, provides a satisfactory description of the hole transport in the x direction.
This observation can be understood in terms of the short MFPs of both the holes and
phonons in SnSe in the x direction. First, as reported in Ref. [21], the hole MFPs in
SnSe are in the range of 1 — 13 nm, which are (on average) much shorter than in Si
(5 — 55 nm) [127]. While to our knowledge there is no information available on the
hole MFPs of SnSe in a specific direction, it can be speculated that the hole MFPs are
short in the x direction, given that (i) the layered crystal structure of SnSe constitutes a
barrier for the interlayer hole transport in the x direction, and (ii) the highest valence
band along the I'-X line is rather dispersionless (i.e., localized hole states). Second,
because of the puckered layered crystal structure and strong lattice anharmonicity, the
lattice vibrations in SnSe are localized irrespective of the spatial direction. Previous
heat transport studies found that in SnSe at 300 K heat is mainly carried by phonons
with MFPs on the order of nanometers (~ 0.84 nm reported by Xiao et al. [18] and
1 — 30 nm by Guo et al. [212]), which are much shorter than those in Si at 300 K (longer
than 1 micron [104]). From these two aspects, we can understand why the 1 x 4 x
4 supercell seems adequate to accommodate the hole carriers and lattice vibrational
modes that dominate the hole transport in the x direction. Similarly, the 2 x 4 x 4
supercell is found to give a very satisfactory description of the interlayer hole transport.
However, the 0, shows a noticeable decrease (slightly less than 30%) when going from
the 2 x 4 x 4 supercell to the 3 x 4 x 4 supercell. This is entirely unexpected, but may
be understood from that the allowed lattice vibrational modes in the 3 x 4 x 4 supercell
are very different from those in the 2 x 4 x 4 supercell.

Fitting the 0, in the N x 4 x 4 (N = 1, 2, and 3) supercells with the polynomial func-
tion® oy (Ly = 0) + a1/Ly and extrapolating to infinite Ly (i.e.,, 1/Ly — 0), we obtain
our final result for the oy, 0.97 QO lem~!, which is about 35% below the experimental
value of 1.5 Q~tem ™1 [210, 211]. The quality of the fit is not very good (see the red solid
line in Figure 5.7; note the large scale of the y-axis), for the reason mentioned above.
We expect that the fit quality will get improved by including the o, in the 4 x 4 x 4
supercell whose calculation is, however, not affordable.

From Figure 5.7, we further see that the finite-size oy for the common choice # = 30
meV (marked by black empty circles) are very close to those for the optimal-77 scheme.
This is simply because the 7 values determined with the optimal-# scheme are close
to 30 meV (see Table 5.4, for the oy). Thus, these two 7 choices result in very close
extrapolated oy. Let us focus now on the results for the three common choices of # (all
black circles). We see that the finite-size oy increase as 1 varies from 50 to 30 meV, and
that the increase is more pronounced as 7 varies from 30 to 10 meV. In the case of 7 = 10
meV, although the extrapolated value looks very close to the experimental value, the

8By observing the data, including higher-order terms of 1/ L, will give very wrong results.
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5 Electrical conductivity of anharmonic crystal SnSe

fit quality is rather poor, so the extrapolated value is not reliable. We believe that our
simulation supercells are not large enough to allow 7 to be as small as 10 meV.

We comment on the BTE reference data in Figure 5.7. (i) First, they scatter widely, but
are all larger than the experimental value which correctly reflects the absence of defect
scattering. (ii) Second, the BTE-RTA results of Li et al. [216] and of Ma et al. [21] agree
well with each other (despite that Li et al. and Ma et al. used different lattice parameters
and that Ma et al. used a GoWj correction to the DFT-PBE eigenvalues), but they are
different from the one of Caruso et al. [24]. We tentatively interpret this in terms of
the coarse q-meshes in their e-ph calculations. As detailed in Table A.3, for the DFPT
calculations, Li et al. and Ma et al. used 3 x 3 x 3 and 3 X 6 x 6 q-meshes, with the
same q-point sampling in the k, direction. In contrast, Caruso et al. used a 2 x 4 x 4
g-mesh (which is equivalent to the 2 x 4 x 4 supercell in our KG calculations). (iii)
Third, in the work of Ma et al., the BTE-RTA result is much closer to the experimental
value compared to the BTE-iterative result. This contradicts the expectation that the
BTE-iterative result should be more accurate than the BTE-RTA result.

Because SnSe is a very anharmonic crystal, whether these BTE results can be used as
a good reference for assessing the convergence of our KG calculations is questionable.
This is even more so considering the large scatter in the BTE results. Nevertheless, our
extrapolated o, (for the optimal-7 scheme) is noticeably smaller than the BTE results
(even the one of Caruso et al.).

Convergence of the o, with respect to the supercell size in the z direction

In Figure 5.8, we have plotted our calculated z-component electrical conductivities (o)
inthe2 x N x N (N = 2, 3, 4, and 5) supercells, as a function of 1/L, (the inverse
supercell length in the z direction).

Let us first look at our calculated results for the optimal-1 scheme. As can be seen,
the finite-size o, (marked by red diamonds) are systematically smaller than the exper-
imental value. This is the case for the 2 x 5 x 5 supercell (the largest SnSe supercell
that we can afford), not to mention the smaller supercells which suffer from very large
finite-size effects. The slow supercell-size convergence of the ¢, is not unexpected. As
mentioned before, the hole MFPs of SnSe are in the range of 1 — 13 nm [21]. While the
hole MFPs in a specific direction are unknown, the hole MFPs in the z direction are
probably (on average) the longest among all three directions, considering that (i) the
hole transport in the z direction is within the SnSe atomic layers, and (ii) the highest va-
lence band of SnSe along the I'-Z line (on which the VBM is located) is highly dispersive
(i.e., delocalized states). In fact, the hole MFPs must be long within the SnSe atomic lay-
ers, otherwise SnSe will not possess the known superior thermoelectric performance.
As a result, even the 2 x 5 x 5 supercell (whose L, is about 2.3 nm) is inadequate for
describing the hole transport in the z direction. Note that due to the strong lattice an-
harmonicity, the phonon MFPs are short irrespective of the spatial direction [18, 212].
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Figure 5.8: The z-component electrical conductivity (c;) as a function of 1/L, (the in-
verse supercell size in the z direction). Our results are obtained from KG
calculations in the 2 x N x N (N = 2, 3, 4, and 5) supercells, using differ-
ent choices of broadening parameter (7): supercell-size-dependent # val-
ues (determined with optimal-r7 scheme; listed in Table 5.4); Three dif-
ferent common choices (20, 30, and 50 meV). Our results are fitted with
0;(L; = o0) +a1/L,, as indicated by the red solid line and black dashed
lines. Other description of the data (including the literature data) in this
graph is the same as in Figure 5.7 and not repeated here.

Thus, we conclude that even for strongly anharmonic crystal with short phonon MFPs,
the convergence of KG calculations with respect to supercell size will be slow if the asso-
ciated charge-carrier MFPs are long. Since materials with long charge-carrier MFPs are
usually preferred in thermoelectric and (opto)electronic applications, the supercell-size
convergence is expected to be a common issue in ab initio calculations of the electrical
conductivity within the KG approach.

The observed slow supercell-size convergence necessitates the use of the finite-size
scaling method to deduce the ¢ in the thermodynamic limit. As illustrated by the red
solid line in Figure 5.8, fitting the ¢ in the 2 x N x N (N = 2, 3, 4, and 5) supercells
with the polynomial function (L, = o) + a1 /L, and extrapolating to infinite L (i.e.,
1/L, — 0), we obtain our final result for the o3, 13.69 QO 'cm~!. This value is about
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10% above the experimental value of 12.4 Q~'em~! [210, 211]. We note that the ¢ in
the 2 x N x N supercells increase as N is increased from 2 to 5, and this is largely due to
that the # values decrease with the increase of N (see Table 5.4). It should be mentioned
that the o, for the 2 x 2 x 2 supercell is evaluated with a very large 7 value. If we
leave out the 2 x 2 x 2 supercell, the extrapolated value will be slightly smaller than
the experimental value.

Figure 5.8 (black circles) shows our calculated ¢, versus L, for the three common
choices of 77 (here 7 = 20 meV instead of 10 meV is considered, as the latter leads
to very large o, values). At the common choice # = 50 meV, the results are nearly
independent of L., but obviously this supercell-size convergence does not make sense.
At the two smaller 7 values, the finite-size 0, show a decreasing trend with increasing
L, (ie.,1/L; — 0), unlike the case of the optimal-7 scheme.

From Figure 5.8, we see that the BTE reference data for the ¢, are widely scattered.
They are noticeably smaller than the experimental data, except for the BTE-iterative
result of Ma et al. [21] which, unlike for the oy, is in good agreement with experiment.
Unlike for the oy, the BTE-RTA result for the o, of Caruso et al. [24] deviates significantly
from experiment. The three BTE-RTA results for the ¢, do not agree with each other.
Again, we attribute this difference to the fact that Caruso et al., Li et al. [216], and
Ma et al. used 2 x 4 x 4,3 x3 x 3,and 3 x 6 x 6 q-meshes in the DFPT calculations,
respectively (see Table A.3). These coarse gq-meshes result in a quite different q-point
sampling e.g. in the k, direction, but for this no convergence test was reported. Our
extrapolated o (for the optimal-r7 scheme) agrees well with the BTE-iterative result of
Ma et al. Despite this, we refrain from assessing the convergence of our calculations in
terms of this comparison, given the wide scatter of the BTE results.

Convergence with respect to the supercell size in other directions

Our calculations of the o, using the N x 4 x 4 (N = 1, 2, and 3) supercells and of the
0, using the 2 X N x N (N = 2, 3, 4, and 5) supercells offer us the best compromise be-
tween accuracy and computational cost. Despite this, we still need to check (i) whether
the size of the N x 4 x 4 supercells in the y and z directions is sufficient for describing
the hole transport in the x direction, and (ii) whether the size of the 2 x N x N supercells
in the x direction is sufficient for describing the hole transport in the z direction. These
are addressed below. For the necessary parameter 77, we consider both the optimal-z
scheme and the common choice 7 = 30 meV.

In Figure 5.9, we compare the o, calculated in the N x 4 x 4 supercell with that in
the N x 5 x 5 supercell (N = 1 and 2). Figure 5.9(a) shows the finite-size o, for the
optimal-; scheme’. We see that (i) the 1 x 4 x 4 and 1 x 5 x 5 supercell calculations

For the 1 x 5 x 5 supercell, we generate 126 samples from aiMD simulations at 300 K. The 7 values
determined with the optimal-77 scheme are 55 and 39 meV for evaluating the oy in the 1 X 5 x 5 and
2 x 5 x 5 supercells, respectively. Other oy results can be found in Tables 5.5 and 5.6.
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Figure 5.9: Calculated oy in the N x4 x4 and N x5 x5 (N = 1 and 2) supercells.
The oy are computed with: (a) the  values determined with the optimal-%
scheme (see main text); and (b) # = 30 meV. All the results are for p-doped
SnSe at 300 K and with the doping level of 3 x 10" cm~3. The results for the
N X 4 x 4 supercells are already displayed in Figure 5.7. Due to insufficient
amount of data points, the red and black dashed lines are a guide to the eye.
The experimental result of Zhao et al. [210, 211] is marked by blue star.

yield quite different o, (evaluated at 7 = 36 and 55 meV, respectively), and (ii) the
2 x4 x4and 2 x 5 x 5 supercell calculations give close oy (evaluated at # = 31 and 39
meV, respectively). Figure 5.9(b) shows the results that are all evaluated at 7 = 30 meV.
We see that, for both N = 1 and 2, the N x 4 x 4 and N x 5 x 5 supercell calculations
produce very close 0.

Second, we compare the o, calculated in the 1 x N x N supercell with that in the
2 x N x N supercell (N = 4 and 5). From Figure 5.10(a), which shows the finite-size
0, for the optimal-y7 scheme!’, we see that (i) the 1 x 4 x 4 and 2 x 4 x 4 supercell
calculations yield different o, (evaluated at 7 = 46 and 34 meV, respectively), and (ii)
the 1 x5 x 5 and 2 x 5 x 5 supercell calculations give quite different ¢, (evaluated at
n = 39 and 26 meV, respectively). Figure 5.10(b) shows the results that are all evaluated
at 7 = 30 meV. We see that, for both N = 4and 5, the 1 x N x Nand 2 x N x N
supercell calculations produce very close c.

The present test shows that when using the 77 values determined with the optimal-#
scheme, the convergence of the electrical conductivity in one direction with respect to
the supercell size in other directions seems not systematic, due to the dependence of 7

10The # values determined with the optimal-7 scheme are 46 and 39 meV for evaluating the ¢ in the
1 x5 x5and 2 x5 x 5 supercells, respectively.
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Figure 5.10: Calculated ¢, inthe 1 x N x N and 2 x N x N (N = 4 and 5) supercells.
The o, are computed with: (a) the 77 values determined with the optimal-y
scheme (see main text); and (b) 7 = 30 meV. All the results are for p-doped
SnSe at 300 K and with the doping level of 3 x 107 cm 3. The results for the
2 X N x N supercells are already displayed in Figure 5.8. Due to insufficient
amount of data points, the red and black dashed lines are a guide to the eye.
The experimental result of Zhao et al. [210, 211] is marked by blue star.

on the supercell size in this scheme. Thus, there are large uncertainties in our results
for the 0, and o, as reported in Figures 5.7 and 5.8 (those at the optimal-# scheme). In
contrast, systematic convergence behavior is seen at the common choice 7 = 30 meV,
but we add that this behavior will no longer be seen if we adjust # to smaller values
(e.g., 20 meV). Because of the large uncertainties associated with 7, at present it is not
possible to make a conclusive analysis of the supercell-size convergence based on the
results in the present test. Essentially, this difficulty is due to the very limited size of our
supercells. To aim for a conclusive analysis, future work will be required to compute the
oy inthe N x 6 x 6 (N = 1 and 2) supercells and the ¢, in the 3 x N x N (N = 4 and 5)
supercells (both are currently computationally infeasible).
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5.4 Electrical conductivity of p-doped SnSe at 523 K

In this section we perform ab initio KG calculations of the electrical conductivity in SnSe
at 523 K. Experimentally it was found that the single-crystal SnSe sample prepared at
523 K is intrinsically p-type with a hole doping level of 3.16 x 107 cm~! [210, 211]. Due
to the high computational cost, here we consider only the x component of the electrical
conductivity, and the calculations are performed in the N x 4 x4 (N = 1, 2, and 3)
supercells using the respective k-meshes as listed in Table 5.3.

In Table 5.7, we present for each of the three supercells: (i) the number of samples
generated from the aiMD simulations at 523 K, (ii) the value of # determined with the
optimal-y scheme, (ii) the oy result which is the sample mean of the oy ({R;}) for indi-
vidual samples, and (iv) the statistical convergence estimated by SEM. For each super-
cell, we find that the 7 value is quite large compared to the one in the 300 K case (Table
5.4). This implies that the spacings of Kohn-Sham energy levels are larger at 523 K than
at 300 K. Besides, for each supercell, the statistical convergence is found to be slower
compared to the 300 K case (Table 5.5). This can be understood by the fact that the MD
simulations explore a larger subspace of the PES at higher temperature.

Table 5.7: The size of the supercells simulated, number of collected aiMD samples, 7
values (determined with the optimal-# scheme) in our calculations of the oy
in p-doped SnSe at 523 K. The electrical conductivities are estimated by the
sample means, and their statistical convergence is quantified by standard er-
ror of the mean (SEM).

Supercell #samples 7 (meV) oy (Q lem™!) SEM/0y

1x4x4 200 78 0.52 1.44%
2x4x4 125 50 0.55 2.43%
3x4x4 75 49 0.43 3.62%

Figure 5.11 shows the calculated oy for the three supercells. We see a noticeable de-
crease of the oy when going from the 2 x 4 x 4 supercell to the 3 x 4 x 4 supercell
(similar to what we have observed at 300 K). With a simple linear fit and extrapolation
to infinitely large L., we obtain our final result for the oy, 0.45 Q- lem~!. The finite-size
and the extrapolated oy are smaller compared to the calculations at 300 K (see Figure
5.7). This is consistent with the experimental observation [210, 211] that the electrical

conductivity of SnSe falls as temperature increases (see Figure 5.2;up to 550 K).

Our extrapolated oy is about 40% below the experimental value of 0.74 QO !cm™!

measured at 523 K [210, 211]. By contrast, the BTE-RTA result for the oy reported by
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Figure 5.11: The x-component electrical conductivity (ox) as a function of 1/L, (the
inverse supercell size in the x direction), for SnSe at 523 K and with the
hole doping level of 3.16 x 10'7 cm 3. The finite-size results are fitted with
0x(Ly = o) + a1/ Ly. Literature data are included for comparison: exper-
imental result from Zhao et al. [210, 211]; ab initio BTE calculations in the
RTA from Caruso et al. [24].

Caruso et al.'! [24] agrees much better with experiment and, moreover, is larger than
the experimental value (similar to the 300 K case). We discuss this difference in the
ability to compare with experiment in the next section.

11The BTE result for the oy at 523 K is not directly available from the work of Caruso et al., but we estimate
it from FIG. 3 of this reference.
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5.5 Discussion

We add some remarks on what we have learned from Sections 5.3.3 and 5.4.

First, when comparing the electrical conductivity results of KG and BTE calculations,
itis important to pay attention to (i) the size of the supercell used in KG calculations and
(ii) the size of the DFPT q-mesh used for computing phonons and e-ph matrix elements
in BTE calculations. This is especially so when such sizes are very limited, in which case
the calculated results might even depend on whether the size is an even or odd number.
We have seen that in our KG calculations of the o, the 2 x 4 x 4 supercell calculations
yield results closer to the experimental data than the 3 x 4 x 4 supercell calculations'2.
In the BTE calculations of the o,, Caruso et al. [24], Li et al. [216], and Ma et al. [21]
used 2 x 4 x 4,3 x 3 x 3,and 3 x 6 x 6 q-meshes in the DFPT calculations, respectively
(see Table A.3). These DFPT q-meshes, which are very coarse e.g. in the k, direction,
describe different phonon modes, and therefore provide different starting points for
interpolating the e-ph matrix elements to fine meshes for the solution of the BTE. By
looking at these q-point samplings especially in the k, direction, we may understand
why the BTE-RTA results for the oy by Li ef al. and Ma et al. agree with each other but
different from the one by Caruso et al. (Figure 5.8). A careful convergence test with
respect to the DFPT g-mesh is needed to verify this speculation.

The above discussion implies that our finite-size scaling of the oy in the N x 4 x 4
(N =1, 2, and 3) supercells will not lead to improved supercell-size convergence (as
we have already seen). To quantitatively reproduce the oy results of Caruso et al., we
may need to check the finite-size scaling of the oy inthe 1 x4 x 4,2 x 4 x4,and 4 x 4 x 4
supercells, without considering the 3 x 4 x 4 supercell. It should be pointed out that
such a selection of supercells is not necessary (and should not be done) if sufficiently
many and sufficiently large supercells can be computed. We expect a better understand-
ing of the 7 problem and the issue of supercell-size convergence when KG calculations
in the 4 x 4 x 4 supercell become possible.

Second, a quantitative and predictive calculation of the electronic transport coeffi-
cients in SnSe may be a challenging task in view of the widely scattered BTE results.
We think that the calculation of the oy in p-doped SnSe is a good test case for discussing
the predictive power of the ab initio BTE approach to anharmonic crystals. In future
developments of the ab initio KG approach, if SnSe is considered as a test system, we
suggest focusing on the oy in p-doped SnSe at 300 K.

Third, we can now shed light on the question of whether strong lattice anharmonicity
facilitates the supercell-size convergence of KG calculations. Our study of SnSe shows
that the supercell-size convergence is not only determined by the lattice vibrations, but
also by the charge carriers. While we do find that the 1 x 4 x 4 supercell provides a
satisfactory description of the hole transport in the x direction, this is built on that both

12Here and in the following we refer to our results in the case of the optimal-i7 scheme.
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the holes and phonons in SnSe probably have short MFPs in the x direction. In contrast,
the supercell-size convergence of the ¢ is slow, because the hole MFPs in the z direction
well exceed the size of our simulation supercells. These bring us to the conclusion that
in the theoretical description of electronic transport in crystalline solids, one should
keep in mind two aspects: charge carriers and lattice vibrations. This is different from
the study of heat transport (i.e., thermal conductivity) in crystalline solids, where lattice
anharmonicity plays a dominant role [218].

Lastly, we have not discussed the uncertainties in the experimental data. This is be-
cause (i) the experimental electrical conductivities discussed in the previous sections
were measured for single-crystal SnSe samples [210, 211] and (ii) our considered tem-
peratures are well below the phase-transition temperature of SnSe (about 800 K). Yet,
we notice that SnSe is a compound whose component elements are prone to volatilize
especially at high temperature [217, 219].
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5.6 Summary

In this chapter we explored and assessed the ab initio KG approach by applying it to
study the anisotropic electrical conductivity of the anharmonic material SnSe.

By focusing on the x and z components of the electrical conductivity in p-doped SnSe
at 300 K, new insights have been obtained:

(i) The k-point convergence of the electrical conductivity is related to the highly
anisotropic valence bands. The convergence of the o, depends critically on the k-point
sampling in the k, direction, since the VBM is on the I'-Z line. On the contrary, the o
converges very quickly with respect to the k-point sampling in the k, direction, because
the valence bands in the k, direction are deep in energy.

(ii) The anisotropic nature of SnSe poses an additional challenge in addressing the
issue of supercell-size convergence with the finite-size scaling method. To achieve a
good compromise between accuracy and computational cost, we compute the ¢, using
the N x4 x4 (N =1, 2, and 3) supercells, which are reasonably large in both the y and
z directions and provide three data points for performing finite-size scaling to deduce
the o, in the limit Ly — oo. In a similar spirit, the 2 x N x N (N = 2, 3, 4, and 5)
supercells are employed to calculate the .

For p-doped SnSe at 300 K, it is found that both the 1 x 4 x 4 and 2 x 4 x 4 supercell
calculations yield o, results in good agreement with experiment. This is attributed to
that the holes and phonons both probably have short MFPs in the x direction. In con-
trast, the o, obtained from the 2 x 5 x 5 supercell calculations suffers from considerable
finite-size effects, and this is understood from the probably long hole MFPs in the z
direction. With the optimal-17 scheme and the finite-size scaling method, our final re-
sults for the oy and 0, are in reasonable agreement with experiment. However, the large
uncertainties due to the 77 problem and the issue of supercell-size convergence remain.
The comparison of our results with previous ab initio BTE calculations is somewhat
hindered by the wide scatter of the BTE results.

We have not achieved a systematic study on the temperature dependence of the elec-
trical conductivity of SnSe, though we have calculated the o, of SnSe at 523 K. Realizing
high thermoelectric performance in SnSe requires both high temperatures and heavily
p-type doping [210, 179], but we are unable at this time to apply the KG approach to
these cases due to the high computational cost.
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6.1 Conclusions

Motivated by the quest for a first-principles approach to reliably predict the electri-
cal conductivity in anharmonic materials, in this thesis we described the ab initio KG
approach to the calculation of the electrical conductivity of crystalline solids, and ex-
plored a numerical implementation of this approach for two very different systems: the
harmonic crystal Si and anharmonic crystal SnSe.

Starting from the Kubo’s theory of linear response, we introduced the KG formula,
and established the connection with electronic-structure calculations including aiMD
simulations of lattice vibrations in the supercell approach. Practical aspects such as the
methods to account for carrier doping were also discussed.

The case study for Si at 300 K revealed that a number of numerical difficulties need
to be overcome in order to obtain reliable results for the electrical conductivity from
ab initio KG calculations. First, the evaluation of the KG formula requires a dense k-
point sampling of the Brillouin zone, which places a high demand on computational
resources and severely limits the size of supercells. Second, due to the high computa-
tional cost, currently the calculations are only feasible at the LDA /GGA level, at which
the severe underestimation of band-gaps significantly overestimates the electrical con-
ductivity. This problem is largely corrected by the “scissor operator" approach without
additional computational cost. Third, in order to make the calculations tractable, the
“light" basis set of Si should be used but nevertheless the resulting electrical conductiv-
ities are very close to those obtained with the “tight" basis set. Fourth, carrier doping
is simulated within the rigid-band approximation in order to reduce the computational
cost. Despite these efficient strategies, we are only able to calculate supercells up to
1000 Si atoms. Fifth, due to discrete Kohn-Sham energy levels in the finite-size super-
cell calculations, a broadening parameter (7) has to be introduced in the evaluation of
the KG formula. It is found that the calculated electrical conductivities depend strongly
on the choice of #, which introduces a significant uncertainty in the quantitative calcu-
lation of the electrical conductivity. An “optimal-1 scheme" is discussed to determine
the appropriate value of 7, by making the choice of 7 reflect the average level spacing of
the supercell. Sixth, the calculations suffer from considerable finite-size effects, which
is understood by the fact that the (typical) MFPs of the charge carriers and phonons
in Si well exceed the size of our supercells (or more generally the size possible with
first-principles calculations). The finite-size scaling method is used to extrapolate the
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electrical conductivities calculated in the N x N x N (N = 2, 3, 4, and 5) cubic su-
percells to the limit of an infinitely large supercell. Lastly, while the convergence of
the calculations with respect to the number of 2iMD samples is not a big problem, it is
computationally expensive for the large supercells.

With these efforts, our KG calculations at the LDA level yield electrical conductivities
that are in reasonable agreement with experiment. The discrepancy is within about
50%, for both intrinsic and doped Si at 300 K. For doped Si, we also compared with
previous ab initio BTE calculations which work well for the very harmonic crystal Si. It
is found that our results do not agree well with previous BTE results obtained at the
same level of theory. This suggests that our strategies for dealing with the 77 problem
and the issue of supercell-size convergence need to be improved.

The case study for the layered semiconductor SnSe shows very similar numerical
difficulties as in the case of Si, so the defined strategies were applied to this case study.
For SnSe, it is rather challenging to address the issue of supercell-size convergence, be-
cause of the anisotropic electrical conductivity and that the 4 x 4 x 4 (512-atom) super-
cell is computationally unfeasible. As a result, we computed the x-component electrical
conductivity (oy) using the N x 4 x 4 (N = 1, 2, and 3) supercells, which are reason-
ably large in both the y and z directions and provide three values of o, for finite-size
extrapolation in the x (i.e., interlayer) direction. Similarly, the z-component electrical
conductivity (¢;) was computed using the 2 x N x N (N = 2, 3, 4, and 5) supercells.

Our calculated results (at the GGA-PBEsol level) for the 0, and ¢, of p-doped SnSe
at 300 K are in reasonable agreement with the experimental data. However, the large
uncertainties due to the 77 problem and the issue of supercell-size convergence remain.
Comparison with previous ab initio BTE calculations is elusive because of the wide scat-
ter of the BTE results. Still, it indicates that our KG calculations so far provide no
improved predictive power over existing BTE calculations, despite the highly anhar-
monic nature of SnSe. The same conclusions hold for our calculated results for the oy
of p-doped SnSe at 523 K.

Despite the limited size of the supercells and the large uncertainty associated with 7,
the case study for SnSe provides an insight into the influence of lattice anharmonicity
on the convergence of KG calculations. That is, while the supercell-size convergence
can benefit from the short phonon MFPs due to strong lattice anharmonicity, this con-
vergence is also determined by the MFPs of charge carriers.

From the two case studies, we conclude that more expertise needs to be acquired on
how to deal with the 1 problem and the issue of supercell-size convergence before the
ab initio KG approach can be applied for quantitative and predictive calculations of the
electrical conductivity of crystalline materials.
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6.2 Outlook

Our work is a first step towards a reliable numerical implementation of the ab initio
KG approach for crystalline materials. From what we have learned, we think that the
following efforts are needed in the future developments of this framework.

First, the primary effort should be put on addressing the 77 problem and the issue of
supercell-size convergence. To this end, it is necessary to have an in-depth compari-
son of KG and BTE calculations of the electrical conductivity. We suggest the following
recipe. One performs (i) KG calculations in a N X N x N supercell and (ii) BTE cal-
culations in the unit cell using a N x N x N g-mesh (here interpolation of the e-ph
matrix elements to fine q-mesh must not be done in the solution of the BTE). All other
computational settings such as the lattice constants, xc functional, basis set, broadening
parameter (1), and k-point sampling should be the same in the two calculations. The
k-point sampling should be tightly converged, and the KG calculations should be well
converged with respect to the number of MD samples. Then, one compares the electri-
cal conductivity results cXS(N) and ¢BE(N). For the highly harmonic crystal Si at 300
K, cXG(N) and ¢BTE(N) should, in principle, be (nearly) identical. If this is case, insight
into the # problem will be gained. In another test, one considers e.g. the oy in p-doped
SnSe at 300 K, and investigates convergence of the difference o*¢(N) — ¢BTE(N) with
respect to the size N. If cXG(N) — ¢BTE(N) can be converged for not too big N, the
electrical conductivity can then be computed as:

o= oPTE(N = o0) + oXC(N) — eBTE(N) (6.1)

Where 0PTE(N — o) is the result obtained from fully converged BTE calculations with
a fine q-mesh. Equation (6.1) defines cXC(N) — ¢PTE(N) as a correction to ¢BTE(N —
o). This scheme combines the advantage of the BTE approach with that of the KG
approach: (i) The BTE approach can account for the charge-carriers and phonons with
long MFPs albeit within the harmonic approximation and perturbation theory in the
e-ph interaction; (ii) The KG approach naturally accounts for lattice anharmonicity to
all orders albeit limited by the size of supercells. Thus, Equation (6.1) provides an
anharmonic correction to BTE calculations.

Second, in order to make larger-supercell calculations possible, it is crucial to reduce
the computational cost due to the dense k-point sampling. For this, it is necessary
to go beyond the Monkhorst-Pack scheme that generates a regularly spaced k-mesh,
given that the charge carriers in semiconductors are typically distributed near the band
extrema. Previous BTE studies have shown that the k-point convergence can be accel-
erated using quasirandom grids with a densified sampling near the band extrema (see,
e.g., Ref. [157]). If one prefers the Monkhorst-Pack scheme, a simple linear interpolation
of the electronic eigenvalues and momentum-matrix elements from a relatively coarse
grid to a fine grid can be performed. The linear interpolation has been used to interpo-
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late the e-ph matrix elements in ab initio BTE calculations (see, e.g., Ref. [124]; Wannier
interpolation [89, 100] is more commonly used but complex). In KG calculations, the
linear interpolation is expected to be simple, because thermal atomic displacements in
the supercell eliminate band degeneracies and different k-points do not couple.

Besides, since aiMD simulations are typically limited to system sizes of a few hun-
dred atoms and time scales of tens of picoseconds, neural network based schemes are
being actively developed to substantially overcome this limitation while at the same
time retaining the aiMD accuracy [220, 221, 222].

Third, more case studies are needed to enhance the understanding of the role of lat-
tice anharmonicity in electronic transport in crystalline solids. The metal-halide per-
ovskites are such interesting systems, as they are found to exhibit strong lattice anhar-
monicity and even dynamic disorder at room temperature [19, 20].

Improving the predictive power of ab initio description of electronic transport in crys-
talline solids is an active area of research, though the current focus is on the ab initio
BTE approach. Here we introduce some recent topics and advances in this research
area. First, efforts are being made to study complex materials, such as metal-halide per-
ovskites [22, 23], transition-metal oxides [223], and organic molecular crystals [31, 224].
These studies have revealed the critical role of higher-order electron-phonon interac-
tions (e.g., multiphonon processes, temperature-dependent renormalization of the elec-
tronic band structure) in understanding the electronic transport properties of complex
materials. Second, efforts are being devoted to push the accuracy of the ab initio BTE
approach to its limits, e.g., by using the GW correction of DFT eigenvalues and includ-
ing spin-orbital coupling [225, 127, 157]. It is worth noting that while the e-ph matrix
elements are usually computed at the DFPT level, the recently developed GW perturba-
tion theory (GWPT) gives access to e-ph matrix elements at the GW level [226]. Third,
attention is being paid to a long-standing challenge — ab initio calculations of carrier-
defect interactions. This is crucial for studying the electronic transport in realistic doped
semiconductors. First-principles approach to this problem has existed for more than a
decade [227, 228]: perturbative calculations of electron-defect interaction matrix ele-
ments (Y |(Va — Viet) | Pmie) (Where Vg and Vs are the crystal potential in the defect
and pristine supercells, respectively). However, due to the high computational cost, so
far carrier-defect scattering is usually treated using semi-empirical models [125, 157].
The recent progress in this direction is to develop specialized numerical techniques
to make such calculations tractable [229]. It is straightforward to account for realistic
point defects in ab initio KG calculations, which are based on the supercell approach
(commonly used for first-principles calculations of point defects in crystalline solids
[52]). Finally, a good news for this research area is the looming “exascale computing"
with an unprecedented amount of computational power [230].

117



A Appendix

A.1 Kubo’s identity

Here we give a proof of the "Kubo’s identity" [131, 231] for a physical observable O:
L (P
[00,0] = if / 000 (—ihA)dA, (A1)
0

where O is the time derivative of O att = 0, i.e.,

ao 1
P = Lo,H), (A2)
and O(—ihA) is a Heisenberg operator with an imaginary time t = —ifiA, following
O(t) = et/ Qe ot/ (A3)
First,
Hpy,—BH, Pd | abypy, AH
ef OeﬂO—O:/—[e 00e~ 0]
0o dA
P d d
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6 (A4)
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Second,
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(A.5)

= ePH[O, e PH0].
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Then we get,

g
[O,e‘ﬁHO] = e_ﬁHO/ Mo [H, O]e_AHOdA
0
B )
_ ihePHo / Mo (e~ AHog) (A.6)
0

b .
— ife—FHo / O(—inA)dA,
0

which is just the Kubo’s identity by noticing 0g = e PHo /Tr{e=FHo}.

A.2 Supplementary data for the study of silicon

A.2.1 Convergence of atomic forces in MD simulations

AF; » (eV/R)

1.00

0.75 -
0.50 |-
0.25 |

0.00
-0.25
-0.50
-0.75
-1.00

(a) 64-atom cell (b) 512-atom cell

le-3
1k sc_accuracy_rho
le-4
e s o Syl sisiisesasi|
—_— ]e-5
- 4 —_— le-6
0 20 40 600 200 400
I-th atom I-th atom

Figure A.1: Convergence of atomic forces for different density convergence criteria: le-

4, 1e-5, le-6 eV /A3 (specified by the “sc_accuracy_rho" tag in the FHI-
aims standard input file control.in). (a) 64-atom supercell calculated with
a 3 x 3 x 3 k-point mesh. (b) 512-atom supercell calculated with a I'-only
k-point mesh. Here the atomic forces are reported as a difference to those
for the case of 1e-8 eV/A? (for this reference, the convergence criterion for
the atomic forces is also set and is 1074 eV /A).
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In aiMD simulations, each time step involves a SCF calculation, at the end of which
the atomic forces are computed and used for updating the MD trajectory. In Figure A.1,
we show that converged atomic forces can be guaranteed by checking only the density
convergence criterion, which is the most important SCF convergence criterion in the
FHI-aims calculations. Based on this test, we set the density convergence criterion to
1076 eV /A3 for both the 64- and 216-atom supercells, and to 105 eV /A3 for both the
512- and 1000-atom supercells.

A.2.2 Uncorrelated samples
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0.8 )
0.6 i

autocorrelation function of o
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Figure A.2: Autocorrelation function of the electrical conductivity along a aiMD trajec-
tory. Each time step is 4 fs.

In order to generate a set of uncorrelated samples from aiMD simulations, it is impor-
tant to collect samples regularly with a sufficiently large sampling time interval. To see
how many time steps are needed to guarantee that two samples (or snapshots) can be
viewed as uncorrelated, we calculate the autocorrelation function of the electrical con-
ductivity for both the 2 x 2 x 2 and 4 x 4 x 4 supercells (The electrical conductivities are
calculated using 20 x 20 x 20 and 10 x 10 x 10 k-meshes, respectively, and broadening
parameter 7 = 20 meV). As shown in Figure A.2, the correlation is lost very fast, and
a sampling time interval of 10 time steps (i.e., 40 fs) is sufficient for the samples being
uncorrelated. By weighing the computational cost and for safety, we choose to use a
sampling time interval of 50 time steps (i.e., 200 fs).
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A.2.3 thermal lattice expansion

We describe how to determine the lattice constant of Si at 300 K using the “quasi-NPT"
method as implemented in the FHI-vibes code [185]. This method has two steps.

In the first step, we evaluate the internal pressure of the zero-T (DFT-LDA optimized)
equilibrium structure of Si when it is at 300 K. To this end, we perform aiMD-NVT
simulations at 300 Kina 2 x 2 x 2 (64-atom) cubic supercell, which is constructed based
on the zero-T lattice constant. The total MD time length is 10 ps, of which the last 8 ps
period is used for computing the stress tensor, i.e., internal pressure [232]. The internal
pressure at 300 K is calculated to be 0.0023 eV / A3, suggesting that the zero-T structure
tends to expand at 300 K. Test calculation using a 3 x 3 x 3 (216-atom) supercell yields
a very similar value of pressure. This is expected, as the lattice anharmonicities are
generally short-range interactions.

In the second step, we perform again structural relaxation but this time the unit cell
is under an external hydrostatic pressure (denoted as pext), thus requiring minimizing
the enthalpy [232]:

Hf(pext) = Etot(V) + pextV, (A7)

where Eit(V) is the DFT total energy, and V the unit-cell volume. Here, the pex is
negative and has the same absolute value as the computed internal pressure in the first
step. In the structural relaxation, atomic forces were required to be less than 10~# eV /A.
By means of this, we obtain the lattice constant of Si at 300 K, as shown in Table 4.1 in
the main text. Using the calculated thermally expanded lattice constant, we repeat the
first step, and find that the internal pressure becomes negligibly small.

To verify the “quasi-NPT" method, we have also estimated the lattice constant at 300
K using extrapolation based on the empirical formula [187]:

T
a(T) = ao[/o «(T)dT + 1], (A8)

where « is the temperature-dependent thermal expansion coefficient, and ag the zero-
T lattice constant. In experiment, Equation (A.8) was used to fit the temperature-
dependent lattice constant of Si, and a(300K) = 2.57 x 107® K~! [187]. Here we use
the DFT-LDA optimized lattice constant (5.417 A) as the ag to derive the lattice constant
at 300 K. The extrapolated lattice constant is shown in Table 4.1 in the main text.

In Chapter 5, the lattice constants of SnSe at 300 K and at 523 K are determined using
the “quasi-NPT" method and the extrapolation method, respectively. For the former,
we did not do the calculation ourselves, but instead we obtain the lattice-constant data
from the NOMAD repository (Florian Knoop, not yet published).

121



A Appendix

A.2.4 k-point convergence and broadening parameter
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Figure A.3: The hole and electron electrical conductivities (upper panels) and their
inter-band contributions (lower panels) in the 4 x 4 x 4 supercell as a func-
tion of broadening parameter (1), for different k-point samplings. “full"
means that the electrical conductivity is not decomposed into its constituent
terms. The results are for intrinsic Si at 300 K. Note the different scales of
the y-axes. The dashed lines and grids are a guide to the eye.

We have further checked how the broadening parameter (1) affects the k-point con-
vergence, following the discussion in Section 4.2.1 in the main text. The 4 x 4 x 4 super-
cell used in Section 4.2.1 and 4.2.3 in the main text is studied here. We focus on whether
the 10 x 10 x 10 k-mesh can produce reliable results for the electrical conductivity in
the 4 x 4 x 4 supercell, and how 7 affects this.

The upper subplots of Figure A.3 show that the k-point convergence of the (full)
electrical conductivity is well achieved with the 10 x 10 x 10 k-mesh and largely inde-
pendent of 7. This conclusion also holds for the 2 x 2 x 2 supercell (not displayed).

The lower subplots of Figure A.3 show that the inter-band contribution constitutes
only a very small portion of the full electrical conductivity, and its k-point convergence
depends on 7. With the 10 x 10 x 10 k-mesh, the inter-band contribution (especially
for the hole conductivity) is slightly underconverged. The largest underconvergence is
at the 77 value where the inter-band contribution is a maximum. Despite the small un-
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derconvergence, the maximum of the inter-band contribution given by the 10 x 10 x 10
k-mesh and given by the denser k-meshes are located at nearly the same 7 value. In
the optimal-77 scheme, we take the # value which maximizes the inter-band contribu-
tion. In this respect, the 10 x 10 x 10 k-mesh is good enough, since it has precisely
located the 77 value we want. We also find that the 20 x 20 x 20 k-mesh fully converges
the inter-band contribution to the electrical conductivity in the 2 x 2 x 2 supercell (not
displayed). The case of the 5 x 5 x 5 supercell is not checked, simply because k-mesh
denser than 7 x 7 x 7 (which is used for this supercell) is computationally unfeasible.

A.2.5 Intrinsic Si: Band gaps and carrier concentrations

Table A.1: Band gaps (E,) and intrinsic carrier concentrations (1;) in the supercells of
intrinsic Si at 300 K. They are estimated by the sample means. The LDA
band gaps have been corrected with a scissor operator of 0.667 eV. At 300 K,
the measured band gap and intrinsic carrier concentration are 1.1242 eV and
1.07 x 10 cm~3, respectively [193].

Supercell size # samples E (eV) n; (cm=3)

2x2x2 655 1.0595 2.5715 x 1010
3x3x3 404 1.0629  2.2035 x 1010
4x4x4 204 1.0743  2.1983 x 100
5x5x5 100 1.0758  2.2128 x 10

A.2.6 Doped Si: Broadening parameter and finite-size scaling

Table A.2 presents our chosen # values for the electrical conductivity calculations in
hole- and electron-doped Si at 300 K. Note that the free-carrier doping is simulated
using the rigid-band approximation, as detailed in the main text. Compared to the 7
values listed in Table 4.5 for intrinsic Si, the 7 values are hardly changed by the doping,
except for the 2 x 2 x 2 supercell. In addition, for the 3 x 3 x 3 supercell, the 77 value
is 35 meV when the hole concentration is 4.06 x 10'® cm~3. In our KG calculations, we
see this kind of problem in the case of small supercells, i.e., 2 x 2 x 2 and 3 x 3 x 3.
These two supercells are far from being a good approximation to the thermodynamic
limit. However, we still include them in the finite-size scaling, since we do not have a
convincing reason to leave them out.

In the case of intrinsic Si, we have employed the polynomial in the form of ¢ (c0) +
a1/L + a3 /L3 (1/L denotes the inverse supercell length) to perform the finite-size scal-
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ing.

Now we check whether this polynomial form can still produce good fit in the

presence of carrier doping. To this end, we take two of our considered hole densities
as examples, which are n;, = 1.325 x 10'* and 4.06 x 10'® cm~3. Figure A.4 shows the
finite-size scalings of the calculated electrical conductivity results for these two hole
doping levels. We find that for both cases, the polynomial form ¢ (o) + a1 /L + a3 /L3
provides good fit quality. In fact, we have done tests for all considered doping levels
for both hole and electron conductivities.

Table A.2: The i values determined with the optimal-1 scheme. The 7}, are used for

computing the hole conductivities in hole-doped Si at 300 K; the 7. are used
for computing the electron conductivities in electron-doped Si at 300 K.

Supercell size 7, (meV) 7. (meV)

2X2x%x2 55 50

3x3x3 34 26

4x4x4 24 14

5x5x5 18 10

Q Q
SO o SO Wb
N Y > N Y >
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Figure A .4: Finite-size scaling of the calculated electrical conductivities in the supercells
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of hole-doped Si at 300 K. Two hole doping levels, n, = 1.325 x 10 and
4.06 x 10'® cm—3, are considered. The polynomial function in the form of
0(c0) 4+ ay /L + a3/ L3 is used as the fit function.
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A.3 Supplementary data for the study of SnSe

A.3.1 Convergence of k-point sampling in the y direction
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Figure A.5: Left panel: the x-component electrical conductivity (oy) in the 2 x 2 x 2
supercell as a function of n for a 10 x 1 x 30 k-point sampling; Right panel:
the z-component electrical conductivity (¢;) in the 2 x 2 x 2 supercell as a
function of n for a 10 x n x 30 k-point sampling. The results are for hole-
doped SnSe at 300 K. The gray dashed lines are a guide to the eye.

A.3.2 k-point convergence and broadening parameter

We have also checked the influence of 77 on the k-point convergence of the electrical
conductivity and its inter-band contribution. For this, we consider the 2 x 4 x 4 su-
percell as it is used in computing both the oy and ¢;. We take a random sample of
the 2 x 4 x 4 supercell as an example, and perform KG calculations using different k-
meshes, including the 10 x 15 x 15 mesh listed in Table 5.3.

Figure A.6(a) shows that the k-point convergence of the o, in the 2 x 4 x 4 supercell
is well achieved with the 10 x 15 x 15 k-mesh and independent of 77 (over the # range
displayed). With the 10 x 15 x 15 k-mesh, the inter-band contribution to oy shows very
satisfactory k-point convergence, as seen in Figure A.6(b). Similar conclusions can be
draw from Figure A.7(a) for the ¢, and from Figure A.7(b) for the inter-band contri-
bution to ¢,. These additional tests suggest that there is generally no need to worry
about the influence of 77 on the k-point convergence of the electrical conductivity. This
is especially so considering that we use the sample-averaged inter-band contribution in
determining the value of # with the optima-# scheme.
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Figure A.6: The oy (left) and its inter-band contribution (right) in the 2 x 4 x 4 supercell
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versus the broadening parameter (1), for three different k-meshes: 10 x
15 x 15, 10 x 16 x 16, and 16 x 20 x 20. “full" means that the electrical
conductivity is not decomposed into its constituent terms. The results are
for hole-doped SnSe at 300 K. Note the different scales of the y-axes. The
gray grids are a guide to the eye.
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Figure A.7: Same as Figure A.6, but for the ¢, and its inter-band contribution.
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A.3.3 Statistical convergence for two cases
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Figure A.8: Same as Figure 5.6 in the main text but for the common choice 77 = 30 meV.
Note the different scales of the y-axes in the left and right panels. Also note
that the scales of the y-axes in the left panels are different from those in

Figure 5.6.
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number of samples, for the 2 x 2 x 2 (64-atom) supercell. Left panel: results
calculated at 7 = 207 meV (determined with the optimal-# scheme). Right
panel: results calculated at # = 30 meV. Gray dots: 0, ({R;}) for individual
samples ({R;} denotes the atomic configuration). The results are for hole-
doped SnSe at 300 K, and calculated using the k-meshes listed in Table 5.3.
Blue lines: cumulative moving average (CMA).
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A.3.4 k- and g-point samplings in previous BTE studies

Table A.3: The k- and g-meshes used in the ab initio BTE calculations of the electronic
transport in SnSe reported in literature. In these studies, the e-ph matrix
elements on the coarse grids in the DFPT calculations were interpolated to
the fine grids in the solution of the BTE.

Purpose k-mesh q-mesh

DFPT e-ph calculations

Caruso et al. [24] 4x8x8 2x4x4
Liet al. [216] 6 xX6x6 3x3x%x3
Ma et al. [21] 3X6x%X6 3X6x6
Solution of the BTE
Caruso et al. [24] 20 x 60 x 60 88,942 random points
Liet al. [216] 40 x 40 x 40 25 x 25 x 25
Ma et al. [21] 36 x 96 x 96 36 x 96 x 96
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