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Abstract: We describe applications of two-dimensional subwavelength quantum emitter arrays
as efficient optical elements in the linear regime. For normally incident light, the cooperative
optical response, stemming from emitter-emitter dipole exchanges, allows the control of the
array’s transmission, its resonance frequency, and bandwidth. Operations on fully polarized
incident light, such as generic linear and circular polarizers as well as phase retarders can be
engineered and described in terms of Jones matrices. Our analytical approach and accompanying
numerical simulations identify optimal regimes for such operations and reveal the importance of
adjusting the array geometry and of the careful tuning of the external magnetic fields amplitude
and direction.
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1. Introduction

Subwavelength arrays of emitters react cooperatively to coherent laser illumination, owing to
the strong intrinsic near-field dipole-dipole interactions [1–4]. In essence, their linear optical
response is similar to that of arrays of classical dipoles, such as is the case for plasmonic lattices
[5–9], in the fact that light couples to delocalized surface excitations with tunable resonances. In
addition, the linewidths of these collective resonances can also be tuned: the collective coupling
of all emitters to the ubiquitous electromagnetic vacuum, in which they are inherently embedded,
leads to super- or subradiant behavior, i.e., spontaneous emission rates smaller or larger than the
independent emitter radiative rate [10,11]. Theoretical and experimental proposals are currently
exploring the fascinating properties of emitter arrays with potential use as metasurfaces which can
e.g. exhibit perfect reflectivity [12–16], for applications as photon storage devices and in quantum
information processing [17–23], or as atom-thick membranes with extremely small mass, useful
for optomechanical applications [24,25]. In the direction of topological quantum optics [26–29],
it has been proposed to combine the subradiant protection of excitation against radiative losses
with the topological protection of excitation against structural defects. The intrinsic nonlinearity
of electronic transitions adds further possibilities into applications in nonlinear optics [30–33].
Possible experimental implementations of quantum emitter arrays include atoms trapped in
optical lattices [14,34] as well as localized excitons in semiconductor structures [35,36] where
each platform is subject to different kinds of defects and disorder.

Here, we theoretically characterize the functionality of two-dimensional subwavelength emitter
arrays as linear optical elements, such as polarizers or waveplates. More specifically, we show that
tuning of the array geometry combined with the application of an externally controllable magnetic
field allows for the implementation of quasi general Jones matrices. For fully polarized incident
light, such 2 × 2 matrices describe polarizers, i.e., filters for light polarization perpendicular to
some chosen axis, or phase retarders exhibiting controllable delays eiφx and eiφy for the orthogonal
x- and y-polarization components. The main tuning knob revealed by our theoretical analysis is the
possibility of manipulating the band structure of the collective excitations, residing on the surface
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of the array, by the control of the magnitude and direction of an externally applied magnetic field.
In particular, for the simplified situation of normal, uniform plane-wave illumination, only the
zero-momentum mode surface excitation is driven, i.e., a symmetric collective mode of all emitter
dipoles oscillating in phase. In such a case, the tuning up of the magnetic field allows to create
a large gap between the optimal points of the reflection windows for orthogonal polarizations.
For example, a large magnetic field in the x direction can help shift the reflectivity window
of the y-polarized light thus allowing it to be completely transmitted while at the same time
fully reflecting the x-polarization component. The situation is roughly depicted in Fig. 1 which
illustrates the array geometry, the internal electronic structure of an individual quantum emitter,
the field intensity for the two orthogonal polarizations and the frequency gap in transmission
peaks between the two polarizations, introduced by a controllable externally applied magnetic
field.

(a)

Fig. 1. (a) An incoming plane wave propagating along the z direction is impinging, at
normal incidence, on a two-dimensional subwavelength quantum emitter array. The inset
shows two possible arrangements of the emitters comprising the metasurface. The lower
panel shows the internal electronic structure of each emitter, where the excited electronic
states can be split in energy by an externally controlled magnetic field (here pointing in
the z direction). (b) Field intensity distribution for the x polarization (upper plot) and y
polarization (lower plot) for a metasurface acted upon with a magnetic field in the x direction.
The array acts as a perfect polarizer, fully reflecting the x-polarized light while allowing full
transmission for the orthogonal y-polarization component. (c) Scan of the reflectivity for the
x-polarized light (upper plot) and y-polarized light (lower plot) as a function of the incoming
field frequency (quantified by the detuning ∆ with respect to the bare array resonance). An
increasing magnetic field in the x direction allows for the progressive shift of the reflection
peak for the y polarization far enough from the reflectivity window, thus allowing for the
implementation of a perfect polarizer.

The analytical procedure involves the following steps: i) connecting the outgoing, far field to
the cooperative response of the emitters, ii) computing the response of the array to the incident
field in both real space and Fourier domains and iii) connecting the total outgoing, transmitted
field to the incoming field via a transmission matrix such that E(+)(Z>0) = TE(+)

in (Z<0). On
the way, a reduction from a three-component treatment to two components is performed owing
to the subwavelength nature of the array, which imposes that the z-polarized component of the
outgoing field always vanishes. This allows the derivation of an analytical expression of a 2 × 2
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Jones matrix directly connecting the two components of the outgoing field to the ones of the
incoming field [37,38]. These analytical expressions allows to identify the tuning knobs for the
on-demand implementation of a subset of polarizers or waveplates and to manipulate the effective
macroscopic polarizability tensor of the array.

The paper is organized as follows: The analytical formalism is introduced in Sec. 2. The
far field emitted as a cooperative response to normal incident illumination is connected to the
dipolar response of the array in the weak driving limit. The array response is computed with
an open system approach, in the form of a master equation, to light-matter interactions. In Sec.
3, the reduction to a two-by-two description is detailed which allows then for the derivation
of a general expression for the Jones matrices under the action of an external magnetic field.
The implementation procedure for polarizers and waveplates is detailed in Secs. 3.2 and 3.3.
Additional aspects relevant for experimental implementations such as the effect of thermal motion,
defects and the departure from the weak excitation condition are discussed in Sec. 4.

2. Linear optical response of a two-dimensional array

We consider the situation depicted in Fig. 1(a) showing a fully polarized incident field with wave
vector kℓ êz, frequency ωℓ = 2πc/λ (with wavelength λ = 2π/kℓ) and electric field amplitudes
Ein,x and Ein,y (such that the total polarization points in some direction θ in the xy plane). The field
impinges, at normal incidence, upon a subwavelength quantum emitter array located in the xy
plane at z = 0. Later, we will generalize the approach to oblique incidence. The array is comprised
of N identical emitters, each with an internal structure described by a J = 0 to J = 1 transition,
such that an externally applied magnetic field B can split the degeneracy of the three excited
sublevels by Zeeman frequency shifting. This is depicted in the lower panel of Fig. 1(a). While
the transitions used in current experiments exhibit a more complex magnetic substructure [14],
this transition provides the minimal increase in complexity from the standard two-level system
approximation. The results presented in the next section for the implementation of polarizers are
completely generic as we show that in the limit of large magnetic fields, the dynamics can always
be mapped onto an effective two-level description. For the implementation of waveplates, one has
to be more careful since the magnetically-induced couplings between different transitions become
important. Denoting the four states by |g⟩ and |ν⟩ (with ν = 0,±), the transition dipole operator
for each emitter can be written as d =

∑︁
ν dνσν + h.c. where dν = ⟨g|d|ν⟩ and σv = |g⟩⟨v| is the

corresponding lowering operator for the transition. Alternatively, we can define combinations
σx = σ− + σ+ and σy = i(σ− − σ+) and rewrite d = d(+) + d(−), in terms of positive and negative
frequency components. The positive frequency component is then expressed in a Cartesian
basis as d(+) = dxσxêx + dyσyêy + dzσzêz (with the negative component obtained as its Hermitian
conjugate). We will denote by the index α = x, y, z any components in the Cartesian basis. The
scattering from such atomic arrays has been discussed in many previous works [12,13,39] and
we essentially follow the formalism introduced in Ref. [13].

2.1. Dynamics of a driven array

We assume that the frequency splitting (for the degenerate case, in the absence of an externally
applied magnetic field) for all 3 possible optical transitions is ω0 (ℏ = 1) which is detuned by
∆ = ωℓ − ω0 from the laser frequency. Denoting now each lowering operator in the Cartesian
basis as σj,α (for the α transition within the particular emitter j) we can write the Hamiltonian of
a driven emitter in the frame of the laser as a sum between the free evolution part H0 and the
driving part Hℓ

H0 +Hℓ = −
∑︂
j,α
∆σ†

j,ασj,α +
∑︂
j,α

(︂
ηασ

†

j,α+η
∗
ασj,α

)︂
. (1)
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We have assumed constant, uniform illumination such that the Rabi frequencies ηx = dxEin,x,
ηy = dyEin,y, and ηz = 0 are independent of the emitter position.

As the emitters are closely positioned with respect to each other, dipole-dipole shifts will
occur, which can be encompassed in the following Hamiltonian

Hd-d =
∑︂

j,j′,α,α′

Ω
α,α′

jj′ σ
†

j,ασj′,α′ , (2)

describing an exchange of excitation between two emitters indexed by j and j′ and between
transitions α and α′. This can be derived from the general free space photonic Green’s tensor
(see Appendix A for more details)

G(R) =

(︄
1 +

1
k2

0
∇ ⊗ ∇

)︄
eik0R

4πR
−

1

3k2
0
δ(R), (3)

where ω0 = ck0, the symbol ⊗ denotes the dyadic product, R = |R| and the last term removes
the divergence on the self interaction terms at R = 0. The exchange rate Ωα,α′

jj′ is then given as
[40–42]

Ω
α,α′

jj′ ≡ Ωα,α′

(rjj′) = −µ0ω
2
0 d∗

α · Re[G(rjj′)] · dα′ , (4)

which strongly depends on the inter-emitter separation rjj′ = rj − rj′ and scales as |rjj′ |
−3 in the

near-field region.
In addition, an externally applied magnetic field B adds to the Hamiltonian by differentially

shifting the excited levels with magnetic moment µ. For example, the z component Bz shifts the
|±⟩ levels by ±∆

(z)
B = ±µBz. In the Cartesian basis, this can be reexpressed as

H
(z)
B = i

∑︂
j
∆
(z)
B (σ†

j,yσj,x − σ
†

j,xσj,y), (5)

which can be seen as a mixing or excitation hopping between different levels within the same
emitter. The expression for H

(x,y)
B is similar with the cyclic permutation of indexes (see

Appendix B).
To the coherent processes in the Hamiltonian, one adds the collective decay imposed by the

interaction with the electromagnetic vacuum

L[ρ] =
∑︂

j,j′,α,α′

Γ
α,α′

jj′

[︃
σj,αρσ

†

j′,α′−
1
2

{︂
σ†

j,ασj′,α′ , ρ
}︂]︃

, (6)

which describes a superoperator acting on the density operator of the system ρ. The decay terms
are also obtained from the Green’s tensor by [40–42]

Γ
α,α′

jj′ ≡ Γα,α′

(rjj′) = 2µ0ω
2
0 d∗

α · Im[G(rjj′)] · dα′ . (7)

The independent decay of an individual emitter is given by Γα,α′

jj = Γ0δα,α′ with the spontaneous
emission rate Γ0 = ω

3
0d2/(3πϵ0c3) (we assume all transitions to have identical dipole moment

dα = d in the following). The dynamics of the system is then described by an open system master
equation for ρ which reads

dρ
dt
= i[ρ,H0 +Hℓ +Hd-d +HB] + L[ρ]. (8)

We will make use of this master equation in Sec. 2.3 to compute the linear optical response as
quantified by a macroscopic polarizability tensor for the whole two-dimensional array.
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2.2. Far radiated field

The field emitted by a two-dimensional metasurface comprised of N emitters is the sum of
the individually emitted dipole fields. However, the high density, i.e., small emitter-emitter
separations, resulting in collective phase shifts and collective dissipation, will give rise to a more
complex, cooperative response. Let us denote the individual emitters by an index j and compute
the classical electric field amplitude in the far field at some position on the z axis at distance
Z>0. For simplicity, we restrict the discussion to uniform illumination at normal incidence, with
a plane wave of positive frequency component E(+)

in eikℓ z. The input field can be written as a
three-component vector (Ein,x, Ein,y, 0)⊤. The far field vector is then related to the array response
as

E(+)(Z) = E(+)

in eikℓZ −
3πΓ0
k0d

N∑︂
j=1

Gfar(Zêz − rj)βj, (9)

where each of the βj = ⟨σj⟩ is a three-component vector, containing the Cartesian components
of the expectation values of the lowering operators σj. The sum above applies to all the emitters
in the array situated at positions rj. The dipolar response is computed via the far-field component
of the Green’s tensor Gfar(Zêz − rj), which is a simplified version of the already invoked Green’s
tensor under the assumption that k0Z ≫ 1. Generally, for an arbitrary array, the dipole-emitted
field could have a component in the direction of propagation. As it will be shown in Sec. 3, in
the particular case of subwavelength arrays, the far field contains only xy components, even if the
array dipoles have a z component.

2.3. Surface modes of the array

In the low-excitation limit where each electronic transition is only weakly excited ⟨σz
j,α⟩ ≈ −1,

the response of the emitter array can be computed from the master equation approach to open
quantum systems, as detailed in the previous subsection. In particular, we consider the limit of a
weak classical drive where all system correlation functions factorize and we consider only the
quantum averages. One can alternatively consider the single-excitation subspace which leads
to similar equations of motion described by an effective non-Hermitian Hamiltonian [27–29].
The coupling of the incident field to the electronic transitions is quantified by the vector of Rabi
frequencies η with components (ηx, ηy, 0). We will proceed in analyzing the dipolar response
both in the position space and via a Fourier transform allowing the understanding in terms of
quasi-momenta residing in the reciprocal space. In the position space, one can derive a set of
equations of motion for the three-component coherence of each j-indexed emitter

β̇j = −i
∑︂

j′
Mjj′βj′ − iη. (10)

The matrix Mjj′ = −∆1δj,j′+Ωjj′− iΓjj′/2+MBδj,j′ contains the laser detuning, the effect of the
coherent and incoherent interactions induced by the electromagnetic vacuum and the couplings
introduced by the magnetic field in the Cartesian basis (explicitly specified in Appendix D).
Under the assumption of uniform illumination and that the array is quasi-infinite, all emitters are
identically excited in steady-state βj = β with the vector of amplitudes

β = −M−1η, (11)

where the matrix M =
∑︁

j′ M0j′ does not depend on the index j for an infinite array which is why
we set it to zero. This expression will later allow us to simply compute the response of the array
in the next section by replacing it into Eq. (9). Notice that M is a 3 × 3 matrix and even if the
incoming field has a vanishing z component, the dipole pattern imprinted onto the array can have
a z component.
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The solution discussed in the previous paragraph corresponds to uniform, perpendicular
illumination, where only the symmetric surface mode is activated. More generally, for non-
normal incidence of the laser with a wave vector k∥ parallel to the array plane, the equations of
motion can be expressed in Fourier space as

̇̃βq = −iM(q)β̃q − iNηδq,k∥
, (12)

where the evolution matrix is now given by M(q) = −∆1 + Ω̃(q) − iΓ̃(q)/2 +MB and contains
the matrices describing the effective frequency shifts and decay rates as a function of the in-plane
momentum Ω̃(q) − iΓ̃(q)/2 which are modified by the presence of the magnetic field MB.
Diagonalization of the matrix M(q) gives rise to the photonic band structure of the array (see
paragraph below). Equation (12) indicates that only the mode corresponding to q = k∥ is driven
by the laser. The symmetric illumination scenario discussed in the previous paragraph then
simply refers to q = 0. The real and imaginary parts of the matrices describing the effective
frequency shift and decay rate of a given q mode of the array are obtained by the Fourier
transforms Ω̃(q) =

∑︁
r∈Λ e−iq·rΩ(r) and Γ̃(q) =

∑︁
r∈Λ e−iq·rΓ(r) involving a summation over all

vectors of the lattice r ∈ Λ. This can be compactly expressed in terms of the Green’s tensor as

Ω̃(q) − i
Γ̃(q)

2
= −

3
2
Γ0λ0

∑︂
r∈Λ

e−iq·rG(r). (13)

While analytical expressions for the dipole-dipole interactions are not available analytically,
for subwavelength arrays excited at normal incidence, the relevant decay rate matrix at zero
quasi-momentum can be approximated by (for derivation see Appendix C)

Γ̃(0) = 3Γ0
4π
λ2

0
A

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠
, (14)

where A is the area of the unit cell of the real-space lattice. This result implies that for the
symmetric mode of subwavelength lattices, spontaneous emission of the dipoles along the z
direction is completely suppressed while it assumes the simple expression Γ̃(0) = 3(Γ0/4π)(λ2

0/A)

for the other two directions.
The modes of the array define the response to external illumination via the polarizability

tensor. This can be expressed in the Fourier domain simply as α(q) = d2M−1
(q). For a single

incident polarization this assumes a simple form derived in Refs. [12,13] while here, owing to
its cross-coupling components, it can describe changes in one polarization owed to the other
orthogonal one. The photonic band structure and polarizability are illustrated in Fig. 2 in the
absence (left column) and with an applied magnetic field (right column). The photonic band
structure is obtained from the diagonalization of the matrix M(q), giving rise to three energy
bands (for lattices containing a single emitter per unit cell). While in Figs. 2(a),(b) the color
coding indicates the decay rate, in Figs. 2(c),(d) the color shows the relative x/y/z content of
a respective mode. In the absence of an external field, at the Γ point (corresponding to zero
quasi-momenta both in the x and y directions) the x and y bands are completely degenerate, owing
to the symmetry of the square lattice, which is also reflected in the fact that the cross term of the
polarizability tensor αxy is zero, implying that the bands do not hybridize. The z band does not
have this symmetry constraint and its resonance is at a different frequency at the Γ point. Going
away from the Γ point, the xy bands start to hybridize slightly leading to different band shapes.
Different bands for x and y also emerge due to the breaking of the xy symmetry by picking a
wave vector which does not obey this symmetry. Turning on a magnetic field in the x direction
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Fig. 2. (a)-(d) Photonic band structures (eigenvalues of M(q) for ∆ = 0) and (e)-(f)
polarizability of the emitter array in the absence (left column) and with an applied magnetic
field in x direction (right column) for a square lattice with spacing a = 0.8λ. The inset in (a)
shows the path taken between points in the 2D reciprocal space. (a) Real part of the photonic
band structure with color coding indicating the corresponding imaginary part, i.e., the decay
rate which determines how sub- or superradiant a mode is at the particular quasi-momentum.
For a = 0.8λ, the decay rate at the Γ point is subradiant for instance. The pointer indicates
the perfect reflectivity point situated at the Γ point for both incoming field polarizations.
In (b), the magnetic field shifts the reflectivity point for the y component but not for the
x component. This is more evident in (c) and (d) where the color coding indicates the
overlap of the eigenstate with the Cartesian components such that the RGB color is defined
as (|Ψx |2, |Ψy |2, |Ψz |2). The applied magnetic field hybridizes the yz bands and shifts the
resonances of these bands away from the zero energy point. In (e) and (f) we illustrate the
real part and, in the color scale, the imaginary part of certain components αxx, αyy, and αxy
of the polarizability tensor. The applied magnetic field for (b), (d), and (f) is µBx = Γ0.

has dramatic effects on all bands except the x band which is pure as seen in Figs. 2(b),(d). Indeed,
the strong hybridization of the y and z band induced by the external magnetic field in x direction
leads to a strong splitting of these bands around Ω̃(q) = 0 so that a laser with frequency ω0 is
only resonant with the x band. This can also be observed in the polarizability tensor plot on the
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bottom right where all matrix elements of the polarizability tensor are close to zero except αxx
for almost all q. Indeed, the structure of αxx(q) remains unchanged. This is also illustrated in
Fig. 3(b) where we plot the entries of the polarizability tensor as a function of the magnetic field
along the x direction µBx, showing that the y component becomes close to zero for µBx>Γ̃(0).
The gapping of the bands in the band-structure picture is therefore equivalent to an effective
two-level system description in the polarizability tensor picture.

Fig. 3. (a) Visibility V of the x- and y-polarization components as a function of the laser
detuning and lattice spacing (for a square lattice). An external magnetic field in the x
direction with magnitude µBx = 3Γ0 is applied. The blue areas indicate a y-polarizer and
the red regions an x-polarizer implementation. Optimal parameters (corresponding to the
resonances of the bands) are highlighted by yellow lines. The condition for obtaining a
perfect polarizer, for the a = 0.8λ case, is when the laser is resonant to the collective surface
excitation at the Γ point (see also Fig. 2(b)). (b) Components of the polarizability tensor
(imaginary part on the y axis, real part in color) as a function of the applied magnetic field in
x direction. With increasing field, αyy is reduced until it is negligible for values much larger
than the natural linewidth of the collective modes Γ̃(0) indicated by the dotted black line.

3. Linear optical elements

The transmitted field amplitude through a subwavelength array is computed by plugging the
result of Eq. (11) into Eq. (9). The dipole contribution then reads

E(+)

dip(Z) =
3πΓ0

k0

⎡⎢⎢⎢⎢⎣
N∑︂

j=1
Gfar(Zêz − rj)

⎤⎥⎥⎥⎥⎦ M−1E(+)

in , (15)

thus simply requiring the estimate of the contribution within the square brackets (which we denote
in the following by I). While generally, for arbitrarily chosen lattice geometries, the dipole field
can contain many contributions, we will see in the next subsection that, subwavelength arrays
impose the cancelations of all other modes except for the fundamental mode at q = 0.

3.1. Derivation of the 2D transmission matrix

To estimate the sum in the brackets in Eq. (15) (see Appendix C for full details of the calculation),
we make use of the wavevectors g in the reciprocal latticeΛ∗ of the array. Any sum over individual
sites in the lattice space Λ can then be evaluated by an equivalent sum performed in the reciprocal
space Λ∗. Making use of the general form of the Green’s tensor (no far field approximation is yet
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required) the sum becomes

I =
i

2k2
0A

∑︂
g∈Λ∗

k2
01 − v(g, Z) ⊗ v(g, Z)√︂

k2
0 − g2

ei
√︂

k2
0−g2 |Z | (16)

where v(g, Z) is a three-dimensional vector with components of g in the x and y directions and
component sgn(Z)

√︂
k2

0 − g2 in the z direction. The main observation comes here by a quick

inspection of the exponent ei
√︂

k2
0−g2 |Z | . For any subwavelength lattice, only the value g = 0

can lead to a purely imaginary exponent thus describing a propagating plane wave; otherwise,
only evanescent wave solutions are obtained as g2>k2

0. Therefore, we can simply evaluate the
contribution of g = (0, 0) and obtain

I =
i

2k0A

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠
eik0 |Z | (17)

resulting in a total field (both in reflection, for Z<0, and in transmission, for Z>0) obtained as a
sum between incident and scattered field

E(+)(Z) =
[︂
1eikℓZ + Seikℓ |Z |

]︂
E(+)

in , (18)

where we used kℓ ≈ k0 which is also assumed in the rest of the text. The scattering matrix is
defined as (see Appendix D for more details such as generalized expression for oblique incidence)

S = i
Γ̃(0)

2
[M−1

]red = i
Γ̃(0)
2d2 αred, (19)

being easily connected to the polarizability tensor. Here, both [M−1
]red and αred are the reduced

2 × 2 matrices obtained by a projection into the xy plane of the array. This stems from the action
of the matrix I which effectively reduces the problem to 2 dimensions. Therefore, we can now
define the two-dimensional transmission matrix as

T = 1 + S = 1 + i
Γ̃(0)
2d2 αred. (20)

Note that the subwavelength nature of the array guarantees that, for normal incidence, even if
the dipolar response of the surface can have z-polarized components, the emitter far field will
only contain the x- and y-polarization components. This allows an input-output formalism where
the action of the array is described by a 2 × 2 Jones matrix.

3.2. Polarizers

The two simplest examples of Jones matrices [37]

Tx =
⎛⎜⎝
1 0

0 0
⎞⎟⎠ , Ty =

⎛⎜⎝
0 0

0 1
⎞⎟⎠ , (21)

describe a polarizer in one direction (either x or y) while completely canceling the propagation
of the other polarization component. In order to produce such an effect, we make use of a
magnetic field oriented along a conveniently chosen direction. The effect of the magnetic field
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is then to shift the position of the maximum reflectivity points in such a way that the array is
not simultaneously reflective/transmissive for both polarization directions. A useful, alternative
picture is that of ‘stripping’ the multilevel system of additional levels, until a single two-level
system with an appropriately chosen dipole moment orientation is obtained. More precisely,
the magnetic field can be used to pull all adjacent undesired levels far from resonance with the
incident laser frequency. To see this, we consider the transmission matrix assuming an applied
magnetic field B = Bxêx and take the magnetic field towards large values compared to the decay
rates such that (see Appendix D for full expression)

lim
Bx→∞

T = 1 + iΓ̃(0)/2
Ω̃xx(0) − ∆ − iΓ̃(0)/2

⎛⎜⎝
1 0

0 0
⎞⎟⎠ , (22)

where we used that Ω̃xx(0) = Ω̃yy(0) as it stands for a square lattice. For resonant illumination of
the array ωℓ = ω0 + Ω̃

xx(0), this describes a y-polarizing action in transmission

lim
Bx→∞

T = ⎛⎜⎝
0 0

0 1
⎞⎟⎠ = Ty, (23)

i.e., only the y component is transmitted while the x component is perfectly reflected (also
compare Figs. 1(b),(c)). Close to perfect polarizers can be reached as long as the magnetically
induced frequency shifts are much larger than Γ̃(0). Analogously, an x polarizer described by the
Jones matrix Tx can be implemented by a magnetic field B ∥ êy. The action of a polarizer for
different lattice constants at a magnetic field strength µBx = 3Γ0 is illustrated in Fig. 3(a), by
plotting the visibility V =

(︁
Ix − Iy

)︁
/
(︁
Ix + Iy

)︁
of the intensity components. The particular value

of µBx is irrelevant as long as the splitting of the resulting bands is larger than the linewidth of
all bands [cf. Figure 3(b)]. What can be seen in this plot are the frequencies at which a polarizer
in x-direction and in y-direction performs optimally, indicated by yellow dots. What is also
available is information on the linewidth of this polarizing action which is determined by the
width of the Lorentzians which emerge when taking horizontal slices of this two-dimensional
plot. It is well known that at 0.2λ and at 0.8λ there exist resonances at ∆ = 0 [12,13] which are
indeed indicated by yellow dots in the blue-shaded area of the plot. Furthermore, aside from the
resonance of the x band indicated by the blue region, one also has the resonances of the hybridized
yz bands at positive and negative detunings. Since the z component does not participate for
normal incidence, these bands also show the perfect reflection condition for resonant illumination,
therefore implementing an x polarizer.

Finally, we stress that one is not only restricted to the x or y axes: a general polarizer for
an arbitrary axis (e.g. for θ = ±45◦) can always be obtained by applying a magnetic field
perpendicular to that respective axis. Further more, polarizers for circularly polarized light can be
implemented by the application of a magnetic field in z direction. This can be easily understood in
the circular basis: By tuning the laser to the distinct resonance of the |+⟩/|−⟩ band, a polarization
filter for left(−)/right(+) circularly polarized light is obtained, respectively (the other component
is again perfectly reflected). This is described by the following Jones matrices [37]

T−=
1
2

⎛⎜⎝
1 −i

i 1
⎞⎟⎠ , T+=

1
2

⎛⎜⎝
1 i

−i 1
⎞⎟⎠ . (24)

While these expressions for the transmission matrices are obtained in the Cartesian polarization
basis {êx, êy, êz}, one can equivalently describe the problem in the circular polarization basis
{ê+, ê−, êz} with ê± = (êx± iêy)/

√
2. In this basis, the matrices T+/− are analogous to the matrices

Tx/y in the Cartesian basis.
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All together, this enables the implementation of highly tunable polarizers for both linearly and
circularly polarized light on subwavelength quantum emitter arrays.

3.3. Phase retarders

A generic waveplate (or phase retarder), without losses in either components, can be described
by the Jones matrix

Tφ =
⎛⎜⎝
eiφx 0

0 eiφy

⎞⎟⎠ , (25)

which imprints a relative phase difference of ∆ϕ = ϕx − ϕy onto the outgoing polarization
components. Quarter- and half-waveplates would correspond to phase shifts of ∆ϕ = π/2 and π,
respectively.

Let us now investigate the question of the possible implementation of general waveplates with
subwavelength arrays. As analytical considerations are hindered by the cumbersome expressions
for the scattering matrix of the array in the presence of external magnetic fields (see Appendix D
for detailed expressions) we take recourse to numerical simulations and considerations. The phase
retardation effect accompanied by the inevitable loss in transmitted intensity is illustrated in Fig. 4,
for a square lattice. In Fig. 4(a), one can see that a reasonable phase rotation, which is indicated
by red or blue color respectively is accompanied by a corresponding reduction in the outgoing
intensity with respect to the ingoing intensity on the right indicated by blue. This fundamental
problem can be traced back to the fact that the resonances of the array have a Lorentzian structure
meaning that the real and imaginary part of the response are strongly dependent on each other.
Taking the single-band limit of the expression in Eq. (18), i.e., considering only a single scattering
band with effective decay rate Γ̃(0), frequency shift Ω̃(0) and scattering amplitude S, the phase
shift of the transmitted light due to the interaction with the array can be written as

∆ϕ = arg (1 + S) = arctan
(︃
Γ̃(0)/2
Ω̃(0) − ∆

)︃
. (26)

The direction of the phase shift depends on whether the detuning of the laser with respect to
the collective resonance is negative or positive. This implies that the contribution of a single band
to the phase shift of a polarization component can at most account for π/2 close to the resonance
of the Lorentzian. Around the resonance however, the array is also highly reflective meaning that
a large phase shift is accompanied with significant intensity loss. If the laser is resonant with two
or more bands, this argument does no longer hold exactly, but the general idea that a larger phase
shift also implies more losses due to reflection holds. In this sense, high phase shift differences are
always obtained only for very reflecting surfaces. For instance, one can show that for ∆ϕ = π/4
half of the ingoing intensity of the affected polarization component is always reflected. We
can instead optimize the phase shift difference for an imperfect, lossy but balanced waveplate,
where the intensity difference of the incoming polarizations is kept as constant as possible. This
would imply that there is simply a prefactor in front of the scattering matrix corresponding to
the absolute loss of light intensity due to reflection. An attempt at such an implementation is
shown in Fig. 4(c) and Fig. 4(d), where we select the appropriate magnetic field configuration
for a particular lattice and laser frequency in order to define a phase-tunable waveplate. We see
analytically, that the x and y component of the magnetic field must be modified in a symmetric
fashion in order to keep the intensity difference as constant as possible. Hence, we choose a point
where ∆Iout is minimal for a magnetic field only pointing in x-direction and then parameterize the
magnetic field symmetrically around this point µB(ε) = (−1.75Γ0, 0, 0)+ εΓ0

(︁
êx + êy

)︁
(with ε as

parameter). As seen in Fig. 4(d) this leads to an extended region where the outgoing intensity is
modified significantly, but the intensity difference ∆Iout is kept minimal. Thus there exist regions
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to the left and to the right of the resonance which provide a magnetic-field tunable waveplate
which reduces the intensity in both polarization components in a balanced manner. In particular,
we find that a quarter-waveplate is implemented by choosing µB = (−1.44, 0.31, 0)Γ0 with
Iout = 0.77Iin and a half-waveplate is implemented at µB = (−1.13, 0.62, 0)Γ0 with Iout = 0.14Iin.
We remark that for more complex array set-ups it has been demonstrated that generic waveplates
can be implemented without losses [23].

Fig. 4. (a) Phase difference ∆ϕ = ϕx − ϕy between polarization components of the
transmitted light and (b) the corresponding amount of total light transmitted by the emitter
array as a function of the lattice spacing and detuning (for a square lattice). The incoming
laser beam is equally polarized in x and y direction with no phase difference between them,
i.e., ∆ϕ = 0 in the absence of the array. In (c) and (d) we show the phase difference ∆ϕ, the
total intensity and the intensity difference ∆Iout = Ix,out − Iy,out for the x- and y-polarization
components for different external magnetic fields for a square lattice with lattice spacing
a = 0.6λ and detuned by ∆ = Γ0 from the bare emitter frequency. The incoming polarization
is (Ein,x, Ein,y) = (1, 1). In (c), the external magnetic field only has an x component for
which we show the different quantities. Then in (d), we select the point on the left with
µBx = −1.75Γ0 (as indicated by the dotted line in (c)), where the intensity difference is
minimal and modify both Bx and By in a symmetric fashion on the right, i.e., the values on
the x axis parameterize µB(ε)/Γ0 = (ε − 1.75, ε, 0).

4. Discussions and extensions

A variety of additional factors can perturb the functionality of linear optical elements implemented
on two-dimensional subwavelength quantum emitter arrays. We partially address a few of these
aspects such as thermal effects and vacancies (which are a limiting factor for atoms trapped in
optical lattices [12,14]) as well as nonlinear effects associated with high intensity driving. We
discuss the influence of these effects onto the band shapes and the transmittivity/reflectivity of
the array. We also discuss how non-Bravais lattices can be described which we illustrate for a
honeycomb lattice.
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4.1. Effects of motion

There are different strategies to quantify the action of thermal disturbances in the equilibrium
positions of the emitters in the array. In the limit in which the motion is fast compared to the
light-matter interaction time scale given by Γ−1

0 , it can be accounted for by averaging over static
disorder configurations around the equilibrium positions. Real space simulations of the effect of
motion are shown in Fig. 5. The first observation is that no additional plane wave components
aside from the ones propagating in z direction are generated. This is due to the fact that in the
infinite-array case the averaging over configurations restores the translational symmetry such that
there is no coupling between different momenta if one were to write down an effective description
including motion. It is also clear that motion in-plane and out-of-plane have very different effects
on the scattered light.

Including motion in z direction with Gaussian width Σz derogates the coherence of the
backscattered light. The only effect of coupling to the z component at the Γ point in Fig. 5(f) is a
small reduction of the frequency since the xy components now hybridize with the z component
whose resonance is at a lower frequency at the Γ point. Including motion in the array plane with
Gaussian width Σxy reduces the polarizer effect more than out-of-plane motion. From Fig. 5(e) we
see that including motion in the array plane leads to a broadening of the array response indicated
by a larger decay rate for larger Σxy. The broadening can be accounted for by considering that
motion in the xy plane leads to coupling to other momentum modes at different frequencies. This
broadening leads to a reduction in reflectivity. Note that, in order to calculate the modifications
of the band diagram we define finite-lattice momentum states |q⟩ =

∑︁
ri∈Λ e−iriq |i⟩. The band

structure is then defined by calculating Ec
q = ⟨q|Ω − iΓ/2|q⟩ for each configuration c with

component matrices Ωij = Ω(rij) and Γij = Γ(rij). The averaged band diagram is then taken
to be Ēq = Nc/(

∑︁
c 1/Ec

q) which corresponds to an average over the polarizability of the Nc
configurations. A more quantitative overview of the effect of in-plane and out-of-plane disorder
is show in Fig. 5(g) where the reflectivity is shown for different disorder strengths. While the
functional shape of both effects is similar, first parabolic and then becoming more constant, the
reduction of the reflectivity with out-of-plane disorder is much faster than with in-plane disorder.

We also note that in this simplified description, the effect of quantum fluctuations and thermal
fluctuations is completely equivalent since the wave packet of the harmonic oscillator ground
state has a Gaussian shape. Similarly, thermal disorder corresponds to static Gaussian disorder.

4.2. Role of vacancies

Vacancies inherently break the translational invariance of the system. They are difficult to treat
analytically and numerical studies show that their influence on the radiation pattern is significant.
The effect of the breaking of translational symmetry can immediately be seen in Fig. 6 where
we simulate the scattering of light on lattices with an emitter missing with probability p (from
0% to 10%) at each lattice site. In particular, for larger vacancy densities a lot of plane-wave
components aside from the one propagating in z direction are generated. Since there is usually
no averaging over different vacancy configurations, this implies that vacancies deprecate the
polarizer effect in a completely different manner from motional disorder which does not break
translational invariance. Starting from the translationally invariant picture, the vacancies induce
coupling between the previously decoupled momentum modes. This leads to indirect driving of
other modes coupled to the laser driven mode which then emit light into free space.

Quantitative estimations of effects that break the translational invariance are difficult since the
effect depends completely on the physical configuration that is actually achieved in the system.
While the plots in Fig. 6 are for vacancies, they also give qualitative statements about other
effects which break the translational symmetry of the array. Since these kinds of effects introduce
coupling between different momentum modes, the physics can be perturbatively understood in the
original momentum space picture. The mode that is originally driven scatters into other modes
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Fig. 5. Real space simulations of the electric field intensity of the x-polarization component
of an incoming field with (Ein,x, Ein,y) = (1, 1) for a square lattice with a = 0.8λ and
N = 402 = 1600 emitters. The magnetic field is µBx = Γ0. The Gaussian widths of the
static disorder are marked by the in-plane Σxy and out-of-plane Σz symbols. The numerical
simulations are performed for Nc = 100 configurations and then averaged. (e), (f) Effective
band diagram calculations including effects of motion. (e) Band diagrams for in-plane motion
and (f) band diagram for out-of-plane motion for disorder widths of Σ = 0, 0.1λ, 0.15λ,
respectively. (g) Plot of the average effect of in-plane and out-of-plane disorder on the
reflectivity for different disorder strengths. Here we performed an average over Nc = 1500
configurations for each point for an array size N = 302.



Research Article Vol. 31, No. 4 / 13 Feb 2023 / Optics Express 6017

−30

−20

−10

0

10

20

X
[λ
]

p=0%(a) p=1%(b)

−20 0 20
Z[λ]

−30

−20

−10

0

10

20

X
[λ
]

p=5%(c)

−20 0 20
Z[λ]

p=10%(d)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

I/Iin

Fig. 6. Simulations of the field intensity accounting for single configurations where the
lattice has a vacancy randomly located at any lattice site with a probability p. (a) 0%, (b)
1%, (c) 5%, and (d) 10%. The incoming polarization is (Ein,x, Ein,y) = (1, 1) and all other
parameters are kept as in Fig. 5.

in first order with the coupling strengths depending on the particular configuration. These modes
then radiate into the particular plane wave outside modes that corresponds to the momentum
vector of the mode.

4.3. Beyond the linear regime

The main focus of the paper has been devoted to the linear response of the array, i.e., the regime
in which the emitters are far from saturation. Let us now consider a strong laser drive which
can considerably modify the equations of motion of the emitter amplitudes, mainly leading
to a power broadening effect responsible with a decrease of the overall reflectivity at higher
incoming intensities. Let us first consider the instructing case of a single emitter, driven by an
arbitrarily large external light source. Considering only a single polarization degree of freedom,
the equations of motion for the coherence β and population inversion variable βz = ⟨σ†σ − σσ†⟩

are given by

β̇ = −

(︃
Γ0
2

− i∆
)︃
β + iβzη, (27a)

β̇z = −Γ0(β
z + 1) − 4η Im(β). (27b)

Assuming steady-state, this yields a simple expression of the coherence

β =
iη(Γ0/2 + i∆)
Γ2

0/4 + ∆2
βz = −βlinβz, (28)



Research Article Vol. 31, No. 4 / 13 Feb 2023 / Optics Express 6018

where we denote by βlin the response in the linear regime, where βz is close to −1 (low excitation
regime). The population inversion is given by

βz = −
1

1 + 2η2

Γ2
0/4+∆

2

, (29)

showing that, with increasing saturation of the emitter, its coherence gets reduced. Assuming
moderately high driving intensity, the first correction reads

β ≈

[︄
1 −

2η2

Γ2
0/4 + ∆2

]︄
βlin, (30)

which is responsible for the Kerr effect where the polarizability of the emitter depends on the
intensity of the applied light field. The overall effect on the emitter’s response to the external
stimulation is then a simple reduction in the overall reflectivity by the reduction in its coherence.

Let us now extend the analysis to the full two-dimensional emitter arrays case (also see
Refs. [43,44] for related works on nonlinear effects in quantum emitter arrays). A full classical
real-space simulation allows to identify the effect of higher driving power as an inhibitor for the
overall reflectivity as seen in the progression from Fig. 7(a) to Fig. 7(d) corresponding to an
increase of η from Γ0/20 to Γ0. Note that we assume a regime where the applied magnetic field
shifts the y resonance very far from the x resonance such that a simplified two-level description
fully captures the dynamics of the system. After performing a semiclassical approximation,
where we factorize all correlation functions ⟨σiσj⟩ and ⟨σi σ

z
j ⟩ if i ≠ j, we see that similarly to

Sec. 2.3 all emitters respond the same for an infinite array. This allows us to make a mean-field
approach and identify βj = β. The equations of motion become

β̇ = −

(︃
Γ0
2
− i∆

)︃
β+ iββz

(︃
Ω̃(0)− i

Γ̃(0)−Γ0
2

)︃
+ iηβz, (31a)

β̇z = −Γ0(β
z + 1) − 2(Γ̃(0) − Γ0)|β|

2 − 4η Im(β). (31b)

We calculate the results of the equations above in steady-state to obtain an expression for β (and
thus a renormalized reflectivity) and compare the predicted reflectivity with that of full numerics
for real-space scattering. For a relatively moderate array size of 71 × 71 emitters, the exact
numerics converge and agree with the reflectivity derived from the equations above, as illustrated
in Fig. 7(e). The main observed effect is the reduction in reflectivity (increase in transmission)
with increasing driving power, which can be simply explained by the reduction in the dipole
strength predicted by Eq. (28) combined with a modification of the collective interactions due to
the nonzero occupancy. Another effect that contributes to the total intensity emitted from the
array is incoherent radiation due to spontaneous emission. We can however see in Figs. 7(b-d)
that this effect is short range and small in comparison to the coherent part of the intensity and
does thus not contribute significantly in the far-field. While this equation in principle supports
two solutions (see Ref. [44]), we only find a single solution numerically. This is in complete
agreement with the results in Ref. [44] for large lattice spacings such as a = 0.8λ.

4.4. Beyond square lattice: honeycomb lattice

Let us now exemplify the extension of our formalism and result to more complicated lattice
structures, in particular numerically simulating a two-dimensional honeycomb lattice (as illustrated
in Fig. 8(a)). The underlying Bravais lattice of the honeycomb lattice is a triangular lattice
with a two-atom unit cell. For non-Bravais lattices like the honeycomb lattice, an additional
sublattice degree of freedom must be introduced, which we denote by ν. The modification of
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Fig. 7. Numerical simulations in the regime reaching beyond linear optical response,
for a strong laser drive of the x-polarization component in the case where a y-polarizer
is implemented. Since the drive has the same magnitude everywhere, |η | is used as a
measure for the nonlinearity. (a) |η | = Γ0/20, (b) |η | = Γ0/4, (c) |η | = Γ0/2, and (d)
|η | = Γ0. The calculation is performed in real space for a square lattice with a = 0.8λ also
for N = 402 = 1600 emitters. (e) Numerical calculation of the reflectivity of the array Rx
for the x polarization for different array sizes (N = 512, 612, 712). It is compared to the
analytical expression (obtained from the steady-state solution of Eqs. (31)) as a function of
the driving strength |η |.
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the theory is detailed in Appendix E and it mainly consists of a recalculation of the Green’s
tensor now including the additional degree of freedom. For a particular configuration chosen
with a nearest-neighbor spacing of 0.9λ, the intensity pattern seen in Fig. 8(c) shows perfect
reflection of the x component, while the y component is fully transmitted as seen in Fig. 8(d).
The operating conditions were set such that ∆ = −0.18Γ0 with respect to the natural transition
frequency and a magnetic field of strength µBx = 5Γ0 is applied.

Fig. 8. Implementation of a polarizer on a honeycomb lattice with nearest-neighbor spacing
0.9λ. (a) The honeycomb lattice is described by a combination of two triangular (Bravais)
sublattices labeled by A and B. (b) Band structure for such a lattice of three level systems
(without magnetic field). (c) and (d) Intensities of the polarization components. The laser is
detuned by ∆ = −0.18Γ0 with respect to the natural transition frequency. A magnetic field
of strength µBx = 5Γ0 is applied in x-direction.

5. Conclusions

We have investigated the applicability of subwavelength quantum emitter arrays as optical
elements in the linear regime. To this end, we have highlighted the necessary steps to first derive
the characteristics of the excitation modes on the two-dimensional array and then quantify the
linear optical response via the polarizability tensor of the array. We then provided a general
analytical expression for the transmission matrix which connects the polarization components of
the outgoing, transmitted field to the ones of the incoming field. The subwavelength nature of the
array, combined with the particular case of normal incident driving, allowed for a reduction to an
exact two-by-two matrix formulation for this scattering problem. The possibility to design the
array geometry, in combination with external control through an applied magnetic field allows
for the implementation of various Jones matrices such as polarizers and phase retarders. We
have also provided some numerical and analytical treatment of various effects that might be
detrimental to the efficient operation of such metasurfaces, ranging from thermal motion to
disorder and to optical nonlinearities induced by high intensity operation.
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Such subwavelength arrays might find other applications as, for example, bilayers of emitter
arrays present an interesting platform for cavity quantum electrodynamics with extremely narrow
and strongly frequency-dependent resonances [3,45]. Another aspect is that of imprinted spin
patterns realizable via a spatially varying magnetic field. A possibility is that these spin patterns
could be used to implement more generic optical elements such as perfect waveplates. Similar
ideas have been put forward for classical metasurfaces [46].

A. Dyadic Green’s function

The free-space photonic Green’s tensor evaluated at the resonance of the emitters ω0 = ck0 is
given by

G(R) =

(︄
1 +

1
k2

0
∇ ⊗ ∇

)︄
eik0R

4πR
−

1

3k2
0
δ(R), (32)

where ⊗ denotes the dyadic product, R = |R| and the last term removes the divergence on the self
interaction terms at R = 0. This can be expressed more explicitly as

G(R) =
eik0R

4πk2
0

[︄(︄
k2

0
R
+

ik0

R2 −
1
R3

)︄
1 +

(︄
−

k2
0

R
−

3ik0

R2 +
3
R3

)︄
R ⊗ R

R2

]︄
−

1

3k2
0
δ(R), (33)

where 1 is a 3 × 3 identity matrix, the vector R has components X, Y and Z and the dyadic
product is explicitly given by the following matrix

R ⊗ R =
⎛⎜⎜⎜⎜⎝
X2 XY XZ

YX Y2 YZ

ZX ZY Z2

⎞⎟⎟⎟⎟⎠
. (34)

In the far field, only terms falling off as 1/R are contributing and the far field Green’s tensor
can be expressed in matrix form as

Gfar(R) =
eik0R

4πR

⎛⎜⎜⎜⎜⎝
1 − X2/R2 −XY −XZ

−YX 1 − Y2/R2 −YZ

−ZX −ZY 1 − Z2/R2

⎞⎟⎟⎟⎟⎠
. (35)

Notice that for the case where the only component is Z, the matrix can be reduced to a 2 × 2
diagonal matrix with eik0Z/(4πZ) on the diagonal. Furthermore, for the scattering problem
considered here, a Fourier decomposition of the Green’s tensor with respect to the in-plane wave
vector components q = (qx, qy) is useful. Decomposing also R = (r∥ , Z) into lattice plane and
out-of-plane coordinate, one can make use of the Weyl expansion [47]

eik0R

R
=

i
2π

∫
dq 1

qz
eiq·r∥eiqz |Z | , (36)

with qz =
√︂

k2
0 − q2. The Green’s tensor can now be written as

G(R) =
i

8π2k2
0

∫
dq

k2
01 − v(q, Z) ⊗ v(q, Z)

qz
eiq·r∥eiqz |Z | , (37)

where we have introduced the function v(q, Z) = (qx, qy, sgn(Z)
√︂

k2
0 − q2). Notice that the

expansion above includes the divergent self-interaction (i.e., we have dropped the delta function
term).
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B. Master equation formalism

The master equation describing the dynamics of the laser-driven quantum emitter array reads

dρ
dt
= i[ρ,H] +

∑︂
j,j′,α,α′

Γ
α,α′

(rjj′)

[︃
σj,αρσ

†

j′,α′−
1
2

{︂
σ†

j,ασj′,α′ , ρ
}︂]︃

, (38)

with the Hamiltonian

H = −
∑︂
j,α
∆σ†

j,ασj,α +
∑︂
j,α

(︂
ηα(rj)σ

†

j,α+η
∗
α(rj)σj,α

)︂
+

∑︂
j,j′,α,α′

Ω
α,α′

(rjj′)σ
†

j,ασj′,α′ +HB, (39)

where ηα(rj) = ηαeik∥ ·rj is the generalized position-dependent Rabi frequency for oblique
incidence with wave vector k∥ parallel to the array plane. HB is the Hamiltonian which describes
the effect of a magnetic field. In the Cartesian basis which we mainly use this Hamiltonian reads

HB = iεα1,α2,α3 µi,α1Bi,α1 |i,α2⟩⟨i,α3 |, (40)

with Einstein sum convention where αi = x, y, z and µi,α, Bi,α are the Cartesian components of the
magnetic dipole moments and the magnetic field at emitter i, respectively. εijk is the Levi-Civita
symbol.

C. Fourier space expressions for far-field Green’s tensor and decay rates

Let us now move to the Fourier domain. The dipole-scattered field can be expressed as an integral
over all wave vectors in the Brillouin zone B

E(+)

dip(R) = −
3πΓ0
k0d

∫
q∈B

dq eiq·r∥ ˜︁G(q; Z)βq, (41)

where ˜︁G(q; Z) =
∑︁

r∥ ∈Λ e−iq·r∥G(R) is the (discrete) 2D lattice Fourier transform in the first
two arguments of the Green’s tensor. We can connect the discrete ˜︁G(q; Z) and the continuous
Fourier transform Ḡ(q; Z) = 1

(2π)2
∫

r∥ ∈R2 dr∥e−iq·r∥G(R) by making use of the Poisson summation

formula in two dimensions
∑︁

r∥ ∈Λ f (r∥) =
(2π)2
A

∑︁
g∈Λ∗ f̄ (g) where A is the area of the unit cell.

To recast the lattice transform of the Green’s tensor into a sum over reciprocal lattice vectors g,
we identify f (r∥) = e−iq·r∥G(R) in the Poisson sum formula to obtain

˜︁G(q; Z) =
(2π)2

A

∑︂
g∈Λ∗

Ḡ(q + g; Z). (42)

The expression for the continuous Fourier transform can be identified from the Weyl expansion
Eq. (37)

Ḡ(q; Z) =
i

8π2

(︄
1 −

v(q, Z) ⊗ v(q, Z)
k2

0

)︄
eiqz |Z |

qz
. (43)

Instead of a sum over the real-space lattice, ˜︁G is now represented via a reciprocal lattice
summation

˜︁G(q; Z) =
i

2A

∑︂
g∈Λ∗

(︄
1 −

v(q + g, Z) ⊗ v(q + g, Z)
k2

0

)︄
ei

√︂
k2

0−(q+g)2 |Z |√︂
k2

0 − (q + g)2
(44)

Notably, the geometric prefactor in front of the plane wave ensures that the polarization of the
outgoing plane wave is perpendicular to the propagation direction. It is thus a projector onto the
plane orthogonal to v(q + g, Z).
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The fundamental argument for the directional character of the light scattered from subwavelength

arrays is the fact that the exponential term ei
√︂

k2
0−(q+g)2 |Z | becomes evanescent for g ≠ 0 when

a<λ/2 (this condition depends on the angle of incidence, with a<λ/2 for full oblique and a<λ
for normal incidence) so that only the zeroth summand in the reciprocal lattice sum remains

˜︁Gfar(q; Z) ≈
i

2A
eiqz |Z |

qz

(︄
1 −

v(q, Z) ⊗ v(q, Z)
k2

0

)︄
(45)

For perpendicular incidence of the laser only the q = 0 component will be selected and this
simply becomes

˜︁Gfar(0; Z) =
i

2A
eik0 |Z |

k0

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠
(46)

The same argument as above can be used to deduce the decay rate for subwavelength arrays
since the plane-wave term only contributes to the imaginary part if g = 0 so that

˜︁Γ(q) ≈ 3Γ0
4π

(︃
λ2

A

)︃
k0
qz

(︄
1 −

v+(q) ⊗ v+(q)
k2

0

)︄
, (47)

with v+(q) = v(q, 0+) = (qx, qy,
√︂

k2
0 − q2). This can be used below to simplify the expression for

the scattering matrix of the 2D array. Notice that the expression for the discrete Green’s tensor
does not include the delta function term. Therefore, it suffices for the analytical computation
of the far field Green’s tensor and of the decay rate matrix but it cannot be used to compute
the dipole-dipole collective shifts. The reason for that is that the summation does not converge
owing to the divergent self interaction. This can instead be dealt with more easily in real space by
canceling any contributions from r∥ = 0 or alternatively, via a fluctuation averaging procedure as
in Ref. [27].

D. Explicit expression of scattering matrix

The matrix M(q) = −∆1 + Ω̃(q) − iΓ̃(q)/2, which appears in Sec. 2 when solving the linear
system for the polarizations of the dipoles on the lattice is explicitly given by (without applied
magnetic field)

M(q) = −∆1 +

⎛⎜⎜⎜⎜⎝
Ω̃xx(q) − iΓ̃xx(q)/2 Ω̃xy(q) − iΓ̃xy(q)/2 0

Ω̃yx(q) − iΓ̃yx(q)/2 Ω̃yy(q) − iΓ̃yy(q)/2 0

0 0 Ω̃zz(q) − iΓ̃zz(q)/2

⎞⎟⎟⎟⎟⎠
. (48)

This matrix is is block-diagonal since there is no coupling to the z component for primitive
lattice vectors in the xy plane. Defining the projector into the plane orthogonal to v as Pv,
the decay rate matrix for a subwavelength array in Fourier space may be approximated from
Eq. (47) as Γ̃(q) ≈ Γ̃(q)Pv+(q). A magnetic field B = (Bx, By, Bz) introduces couplings among
the Cartesian components with magnetic dipole moments µ = (µx, µy, µz) which adds to the
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above matrix M(q) as

MB =

⎛⎜⎜⎜⎜⎝
0 −iBzµz iµyBy

iBzµz 0 −iµxBx

−iµyBy iµxBx 0

⎞⎟⎟⎟⎟⎠
. (49)

Including the effect of the magnetic field, the q dependent scattering matrix for a subwavelength
array may finally be expressed as

S(q, Z) = i
Γ̃(q)

2
Pv(q,Z)

[︄(︄
−∆+Ω̃xx(q) Ω̃xy(q)−iBzµz iµyBy
Ω̃yx(q)+iBzµz −∆+Ω̃yy(q) −iµxBx

−iµyBy iµxBx −∆+Ω̃zz(q)

)︄
− i
Γ̃(q)

2
Pv+(q)

]︄−1

Pv+(q). (50)

This still depends on the sign of Z as for non-normal incidence, the reflected and transmitted
waves have different propagation directions.

Generally, the matrix inversion in the equation above leads to a cumbersome expression for
the scattering matrix. A simplified expression can be obtained by considering a square lattice at
normal incidence q = 0 which corresponds to the situation mostly considered in the main text of
the manuscript. Additionally only considering a magnetic field along the x direction, B = Bxêx,
the scattering matrix S(0) ≡ S becomes

S = C ⎛⎜⎝
−µ2

xB2
x +

(︁
iΓ̃(0)/2 + ∆ − Ω̃xx(0)

)︁ (︁
∆ − Ω̃zz(0)

)︁
Ω̃xy(0)

(︁
∆ − Ω̃zz(0)

)︁
Ω̃xy(0)

(︁
∆ − Ω̃zz(0)

)︁ (︁
iΓ̃(0)/2 + ∆ − Ω̃xx(0)

)︁ (︁
∆ − Ω̃zz(0)

)︁⎞⎟⎠ ,

(51)
with

C =
iΓ̃(0)/2

µ2
xB2

x
(︁
iΓ̃(0)/2 + ∆ − Ω̃xx(0)

)︁
+

[︂ (︁
iΓ̃(0)/2 + ∆ − Ω̃xx(0)

)︁2
− Ω̃xy(0)2

]︂ (︁
Ω̃zz(0) − ∆

)︁ , (52)

where we used that Ω̃xx(0) = Ω̃yy(0) for the square lattice. In the limit of Bx → ∞, this leads to
the expression for the transmission matrix T = 1 + S in Eq. (22).

E. Generalization to non-Bravais lattices

For more complicated lattices that are non-Bravais, an additional sublattice degree of freedom
must be introduced since the lattice Fourier transform is only well defined for a Bravais lattice
[27]. Let us denote the sublattice degree of freedom by ν.

Indeed, first of all Eq. (41) is actually unchanged, but the Green’s tensor now includes the
sublattice degree of freedom. For the sublattice blocks, one can then more explicitly denote how
the lattice Fourier transforms of the blocks differ˜︁Gν,ν′(q; Z) =

∑︂
r∥ ∈Λ

e−iqr∥G(r∥+bν,ν′ + êzZ), (53)

where bν,ν′ = bν − bν′ for the sublattice vectors bν which are also the locations of the emitters in
the unit cell. For each sublattice block, the Poisson sum formula can now be leveraged to write

˜︁Gν,ν′(q; Z) =
(2π)2

A

∑︂
g∈Λ∗

ei(q+g)·bν,ν′ Ḡ(q + g; Z). (54)

This has some remarkable consequences. One point is the far-field (only taking the g = 0
contribution) ˜︁Gfar

v,v′(q; Z) ≈
i

2A
eiqz |Z |

qz
eiq·bν,v′

(︄
1 −

v(q, Z) ⊗ v(q, Z)
k2

0

)︄
(55)
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which simply implies that the plane waves emitted by the different sublattices interfere in a way
that is determined by the spacing between the sublattices.

Furthermore, the matrix consisting of these sublattice phases is Hermitian such that the
argument that only the g = 0 component contributes to the decay rate of the band structure for
a<λ/2 can also be applied for multiple sublattices

˜︁Γν,ν′(q) ≈
3Γ0
4π

(︃
λ2

A

)︃
k0
qz

eiq·bν,ν′

(︄
1 −

v+(q) ⊗ v+(q)
k2

0

)︄
. (56)

It is particularly useful now to consider the special case of two sublattices. We can then choose
the sublattice vectors as b1 = 0 and b2 = b so that the sublattice matrix becomes

⎛⎜⎝
0 eiqb

e−iqb 0
⎞⎟⎠ . (57)

This matrix has eigenvalues ξ1 = 0 and ξ2 = 2. Since the g = 0 term also contributes in a major
way to the frequency component of the Green’s function this implies that the diagonalization
leads to a very flat, subradiant band and a more dispersive superradiant (with respect to the case
without an additional sublattice) band corresponding respectively to the eigenvalues 0 and 2.
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