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1 Introduction

Dynamical systems are a fundamental modelling paradigm in many branches
of science, and have been the subject of extensive research for many decades.
A (discrete) linear dynamical system (LDS) in ambient space Rd is given by a
square d× d matrix M with rational entries, together with a starting point x ∈
Qd. The orbit of (M,x) is the infinite trajectory O(M,x) := 〈x,Mx,M2x, . . . 〉.
An example of a four-dimensional LDS is given in Figure 1. Our main focus in
the present paper is on delineating the class of assertions on the orbits of LDS
that can be algorithmically decided.

x
def
=


1
−1
2
0

 M
def
=


3 2 0 −5
0 1 0 3
0 4 3 13
3 11 6 24


Fig. 1. A four-dimensional discrete linear dynamical system.

One of the most natural and fundamental computational questions concern-
ing linear dynamical systems is the Point-to-Point Reachability Problem, also
known as the Kannan-Lipton Orbit Problem: given a d-dimensional LDS (M,x)
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together with a point target y ∈ Qd, does the orbit of the LDS ever hit the
target? This question was answered affirmatively in the 1980s in the seminal
work of Kannan and Lipton [29,30]. In fact, Kannan and Lipton showed that
this problem is solvable in polynomial time, answering an earlier open problem
of Harrison from the 1960s on reachability for linear sequential machines [27].

Interestingly, a secondary motivation of Kannan and Lipton was to propose
an approach to attack the well-known Skolem Problem, which had itself been
famously open since the 1930s (and remains unsolved to this day); phrased in
the language of linear dynamical systems, the Skolem Problem asks whether it
is decidable, given (M,x) as above, together with a (d−1)-dimensional subspace
H of Rd, to determine if the orbit of (M,x) ever hits H. This problem is known
to be decidable in dimensions d ≤ 4, and is otherwise open—for a more detailed
discussion on the topic, we refer the reader to [39]. Kannan and Lipton sug-
gested that, in ambient space Rd of arbitrary dimension, the problem of hitting
a low-dimensional subspace might be decidable. Indeed, this was eventually sub-
stantiated by Chonev et al. for linear subspaces of dimension at most 3 [18,20].
Nevertheless, the connection to longstanding and deep open mathematical prob-
lems (such as the Skolem Problem) suggests that a general algorithmic theory
of linear dynamical systems is likely to be quite complex and subtle, assuming
it can be achieved at all!

Subsequent research focussed on the decidability of hitting targets of in-
creasing complexity, such as half-spaces [26,33,37,36,38], polytopes [42,19,5], and
semialgebraic sets [6,7]. It is also worth noting that discrete linear dynamical sys-
tems can equivalently be viewed as linear (or affine) simple, branching-free while
loops, where reachability corresponds to loop termination. There is a voluminous
literature on the topic, albeit largely focussing on heuristics and semi-algorithms
(via spectral methods or the synthesis of ranking functions), rather than exact
decidability results. Relevant papers include [43,16,11,12,15,17,21,40,41,28,13,10].
Several of these approaches have moreover been implemented in software verifi-
cation tools, such as Microsoft’s Terminator [23,24].

In recent years, motivated in part by verification problems for stochastic
systems and linear loops, researchers have begun investigating more sophisti-
cated specification formalisms than mere reachability: for example, the paper [1]
studies approximate LTL model checking of Markov chains (which themselves
can be viewed as particular kinds of linear dynamical systems), whereas [32] fo-
cuses on LTL model checking of low-dimensional linear dynamical systems with
semialgebraic predicates.3 In [4], the authors solve the semialgebraic model-
checking problem for diagonalisable linear dynamical systems in arbitrary di-
mension against prefix-independent MSO4 properties, whereas [31] investigates
semialgebraic MSO model checking of linear dynamical systems in which the

3 Semialgebraic predicates are Boolean combinations of polynomial equalities and in-
equalities.

4 Monadic Second-Order Logic (MSO) is a highly expressive specification formalism
that subsumes the vast majority of temporal logics employed in the field of auto-
mated verification, such as Linear Temporal Logic (LTL).
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dimensions of predicates are constrained. To illustrate this last approach, recall
the dynamical system (M,x) from Figure 1, and consider the following three
semialgebraic predicates:

P1(x1, x2, x3, x4)
def
= x1 + x2 + x3 − x4 = 0 ∧ (x31 = x22 ∨ x4 ≥ 3x21 + x2)

P2(x1, x2, x3, x4)
def
= x1 + x2 + 2x3 − 2x4 = 0 ∧ x31 + x23 + x3 > x4

P3(x1, x2, x3, x4)
def
= x41 − x22 = 3 ∧ 2x23 = x4 ∧ x21 − 2x32 = 4x3 .

Recall that the ambient space is R4. We identify the above predicates with
the corresponding subsets of R4, and wish to express assertions about the orbit
of (M,x) as it traces a trajectory through R4. For example (in LTL notation),

G(P1 ⇒ F¬P2) ∧ F(P3 ∨ ¬P1) ,

asserts that whenever the orbit visits P1, then it must eventually subsequently
visit the complement of P2, and moreover that the orbit will eventually either
visits P3 or the complement of P1. The reader will probably agree that whether
or not the above assertion holds for our LDS (M,x) is not immediately obvious to
determine (even, arguably, in principle). Nevertheless, this example falls within
the scope of [31], as the semialgebraic predicates P1, P2, and P3 are admissible,
i.e., they are each either contained in some three-dimensional subspace (this is
the case for P1 and P2), or have intrinsic dimension at most 1 (this is the case
of P3, which is ‘string-like’, or a curve, as a subset of R4). Naturally, we shall
return to these notions in due course, and articulate the relevant results in full
details.

The rest of the paper is organised as follows. In Section 2, we present a
summary of the state of the art as regards reachability and model checking
for discrete linear dynamical systems from a singleton starting set. We paint
what is essentially a complete picture of the landscape, in each situation either
establishing decidability, or hardness with respect to longstanding open mathe-
matical problems. Section 3 examines questions of robustness through the notion
of pseudo-orbit. In Section 4, we discuss the algorithmic synthesis of inductive
invariants for linear dynamical systems, and Section 5 examines the situation
in which orbits originate from an initial set rather than a single point. Finally,
Section 6 concludes with a brief summary and a glimpse of several research
directions.

2 Model Checking

Given an LDS (M,x) and an MSO formula ϕ over semialgebraic predicates
T = {T1, . . . , Tm}, the model-checking problem is to determine whether the
orbit (more precisely, the characteristic word α ∈

(
2T
)ω

of the orbit O(M,x)
with respect to T ) satisfies ϕ. Reachability problems for LDS constitute special
cases of the model-checking problem, and already the questions of determining
whether a given orbit reaches a hyperplane (Skolem Problem) or a halfspace
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(the Positivity Problem [35]) are longstanding open problems in number the-
ory couched in the parlance of linear dynamical systems. Recent research has,
however, succeeded in uncovering several important decidable subclasses of the
model-checking problem and demarcating the boundary between what is decid-
able and what is hard with respect to open mathematical problems.

Recall that a semialgebraic target T ⊆ Rd is called admissible if it is either
contained in a three-dimensional subspace of Rd, or has intrinsic dimension at
most one.5 The focus on target sets of this type has origins in the results of
[18,32,6,9]. A common theme is that for admissible targets, the proofs that es-
tablish how to decide reachability also provide us with a means of representing,
in a finite manner, all the time steps at which the orbit is in a particular target
set T . The authors of [31] show how to combine these representations (one for
each target) to obtain structural information about the characteristic word α
that is sufficient for determining whether a deterministic automaton A accepts
α, which leads to the following.

Theorem 1. Let (M,x) be an LDS, T = {T1, . . . , Tm} be a set of admissible
predicates and ϕ be an MSO formula. It is decidable whether the characteristic
word α of the orbit O(M,x) with respect to T satisfies ϕ.

It is worth noting that his delineation of the decidable fragment of the model-
checking problem is tight as trying to expand the definition of admissible pred-
icates for either of the two types of targets runs into open problems already for
ϕ that describe mere reachability properties. In particular, the Skolem Problem
in dimension 5 is open and can be encoded (i) as a reachability problem with
a four-dimensional LDS and a three-dimensional affine subspace [18] (that is,
in general, not contained in a three-dimensional linear subspace) and (ii) as a
reachability problem with a target of intrinsic dimension two [9].

To sidestep these obstacles, in [4] the authors restrict ϕ to formulas that
define prefix-independent properties. Similarly to liveness specifications, a prop-
erty is prefix-independent if the infinite words that satisfy it are closed under the
operations of insertion and deletion of finitely many letters. Such properties can
be used to describe asymptotic behaviours (“does the orbit enter T1 infinitely
often?”) but not reachability. The main theorem of [4] in this direction is the
following.

Theorem 2. Let (M,x) be an LDS with diagonalisable M and ϕ be a prefix-
independent MSO formula over T . It is decidable whether the characteristic word
α of the orbit O(M,x) satisfies ϕ.

Note in the above that the semialgebraic sets are entirely unrestricted (in
particular, not required to be admissible). However, the restrictions to prefix-
independent formulas and diagonalisable systems both again turn out to be

5 The intrinsic dimension of a semialgebraic set is formally defined via cell decompo-
sition; intuitively, one-dimensional semialgebraic sets can be viewed as ‘strings’ or
‘curves’, whereas zero-dimensional semialgebraic sets are finite collections of single-
ton points.
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crucial. Since the Skolem Problem is open for diagonalisable systems (in dimen-
sions d ≥ 5), the model-checking problem for diagonalisable LDS is Skolem-hard
already for four-dimensional systems and affine subspace targets, as discussed
earlier. On the other hand, if we allow non-diagonalisable systems, then the
problem of determining whether the orbit of an LDS is eventually trapped in a
semialgebraic target T (known as the Ultimate Positivity Problem, correspond-
ing to the prefix-independent formula ϕ = FGT ) is hard with respect to certain
longstanding open problems in Diophantine approximation [35].

Taken together, Theorems 1 and 2 therefore not only subsume—to the best
of our knowledge—all existing results regarding model-checking and reachabil-
ity problems for discrete linear dynamical systems, but moreover paint an es-
sentially complete picture of what is (even in principle) feasible, barring major
breakthroughs in mathematics.

3 Pseudo-Reachability and Robustness

In this section we discuss decision problems about pseudo-orbits that are related
to robustness of computation. Given a LDS (M,x), recall that the orbit of x
under M is the sequence 〈x,Mx,M2x, . . . 〉. We say that the sequence 〈xn : n ∈
N〉 is an ε-pseudo-orbit of x under M if x0 = x and xn+1 = Mxn + dn for some
perturbation dn with ||dn|| < ε. The pseudo-orbit of x under M is then defined
as the set of points that are reachable from x via an ε-pseudo-orbit for every
ε > 0. This notion of an (ε-)pseudo-orbit, introduced by Anosov [8], Bowen [14]
and Conley [22], is an important conceptual tool in dynamical systems. From
the computational perspective, an ε-pseudo-orbit can be viewed as a trajectory
after a rounding error of magnitude at most ε is applied at each step.

Given these definitions, we can consider the reachability and model-checking
problems for pseudo-orbits. A natural analogy to the Kannan-Lipton Orbit Prob-
lem is the Pseudo-Orbit Problem, which is to determine whether a target point y
belongs to the pseudo-orbit of x under M . In [25] the authors show that, just like
the Orbit Problem, the Pseudo-Orbit Problem is decidable in polynomial time.
Generalising from points to sets, let us say that a target set T is pseudo-reachable
if for every ε > 0 there exists an ε-pseudo-orbit of x under M that reaches T . We
can then define the Pseudo-Skolem Problem and the Pseudo-Positivity Problem
to be the pseudo-reachability problems with a hyperplane and a halfspace as
target sets, respectively. Surprisingly, [25] shows that both of these problems are
in fact decidable!

Inspired by the decidability of the Pseudo-Skolem and the Pseudo-Positivity
problems, we can consider the model-checking problem for pseudo-orbits, namely
the problem of determining, given (M,x) and a formula ϕ, whether for every
ε > 0, there exists an ε-pseudo-orbit that satisfies ϕ. After all, as discussed in the
preceding section, for genuine orbits the fragments of the reachability problem
and the full MSO model-checking problem that are known to be decidable (i.e.,
the restrictions on the targets T and the property ϕ that make the problems
decidable) are essentially the same. This optimism is, however, quickly shattered
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by the following observation. Let H be a closed halfspace and ϕ be the prop-
erty GH (“the trajectory always remains inside H”). Then the pseudo-orbits
satisfy ϕ (in the sense defined above) if and only the (genuine) orbit satisfies ϕ.
The problem of determining whether the orbit O(M,x) always remains in H, is
however, equivalent to the problem of determining whether the orbit ever hits
an open halfspace, which itself is the open Positivity Problem.

4 Invariant Generation

In the absence of fully general algorithms to decide whether the orbit of a given
LDS reaches targets of arbitrary forms, much effort has been expended on over-
approximation problems, particularly in constructing certificates of
(non-)reachability. This splits into two broad lines of attacks: ranking functions
and invariants. The former are certificates of reachability, demonstrating that
progress is being made towards the target. Inductive invariants are, on the other
hand, certificates of non-reachability, they demonstrate that the orbit will not
reach the target by enclosing the orbit within a set that is itself disjoint from
the target. We focus on the algorithmic generation of invariants in this section.

To be precise, a set I ⊆ Rd is said to be an inductive invariant of (M,x) if
it contains x (x ∈ I), and is stable under M , that is:

MI def
= {My : y ∈ I} ⊆ I.

Clearly there are some trivial invariants, such as Rd and the orbit O(M,x)
itself. They are not particularly useful in the sense that the ambient space Rd is
never disjoint from whatever target is under consideration, whereas for various
classes of targets (such as hyperplanes or half-spaces; or more generally arbitrary
semialgebraic sets) we do not in general know how to decide whether O(M,x)
is disjoint from the target. Hence one does not seek any invariant, but rather an
invariant that can be algorithmically established to be disjoint from the target.

We therefore seek a sufficiently large, or expressive, class of invariants F which
moreover exhibits favourable algorithmic properties. A natural family to consider
is the collection of all semialgebraic sets, which can be defined in the first-order
theory of real numbers, or equivalently as Boolean combination of polynomial
inequalities. We now have:
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Theorem 3 ([3]). Given an LDS (M,x) in ambient space Rd, together with a
semialgebraic target T ⊆ Rd, it is decidable whether there exists a semialgebraic
invariant of (M,x) that is disjoint from T .

Furthermore, the algorithm explicitly constructs the invariant when it exists, in
the form of a Boolean combination of polynomial inequalities.

Theorem 3 holds for an even larger class F , namely that of o-minimal sets. We
give an informal definition. Recall the contents of Tarski’s quantifier-elimination
theorem, to the effect that semialgebraic subsets of Rd are closed under pro-
jections. Moreover, semialgebraic subsets of R are quite simple: they are finite
unions of intervals and singletons. Other families of sets that enjoy these cru-
cial properties exist, notably those definable in the first-order theory of the real
numbers augmented with a symbol for the exponential function, an important
result due to Wilkie [45]. Structures of Rd that are induced by such logical the-
ories are called o-minimal, and an o-minimal set is a set that belongs to such a
structure [44]. These include semialgebraic sets, as well as sets definable in the
first-order theory of the reals with restricted analytic functions.

In [2], it is shown that it is decidable whether there exists an o-minimal
invariant (for a given LDS (M,x)) that is disjoint from a semialgebraic target
T ; and moreover, when such an invariant exists, it is always possible to exhibit
one that is in fact semialgebraic [3]. Once again, these results are effective, and
the invariants can always be explicitly produced.

Varying the class of invariants and the class of tar-
gets gives rise to a number of natural questions that—
for the most part—remain unexplored. Let us however
mention a further desirable property enjoyed both by
the class of o-minimal sets and that of semialgebraic
sets: in either case, they admit minimal families of
invariants, a notion which we now explain. Let F be a
class of sets—either the class of o-minimal sets or that
of semialgebraic sets. Note that in general, F does not
possess minimal invariants: indeed, let (M,x) be an
LDS whose orbit is (countably) infinite, and consider
any invariant I ∈ F for (M,x). Since I will neces-
sarily be uncountably infinite, one can always remove
finitely many points from I in such a way that the resulting set remains an
invariant of (M,x). However, [2,3] show how to produce a sequence of (M,x)-
invariants 〈Ck : k ∈ N〉, all belonging to F , and such that Ck+1 ⊂ Ck. It can
moreover be shown that, given any (M,x)-invariant I ∈ F , it is always the case
that I contains one of the Ck, except for finitely many points (depicted in red
on the picture) corresponding to some initial segment of the orbit of (M,x).

5 Semialgebraic Initial Sets

Up until now we have exclusively considered problems concerning the orbit
O(M,x) of a single initial point x. It is natural to ask whether the algorith-
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mic problems which we have discussed remain solvable if one instead considers
an entire set of initial points S ⊆ Rd. Unfortunately the answer is negative.
We sketch below the proof of the undecidability of a natural model-checking
problem.

Theorem 4. The following problem is undecidable. Given a natural number k ∈
N, a semialgebraic set S ⊆ Rd, a d × d rational matrix M , and a hyperplane
H in Rd (having rational normal vector), determine whether there exists x ∈ S
such that the orbit generated by (M,x) hits H at least k times.

In symbols, whether there is some x ∈ S such that

|O(M,x) ∩H| ≥ t

is undecidable.
It is worth noting that all the problems that we have discussed so far (in-

cluding the Skolem and Positivity Problems) are not known to be undecidable,
and are in fact conjectured to be decidable. It is therefore perhaps somewhat
surprising that this natural generalisation of our setting immediately leads to
undecidability.

The proof of Theorem 4 proceeds by reduction from a variant of Hilbert’s
tenth problem. Recall that Hilbert’s tenth problem asks whether a given poly-
nomial P ∈ Z[Y1, Y2, . . . , Yd−1] with integer coefficients and d − 1 variables has
a root with all unknowns taking integer values. It is undecidable, as shown by
Davis, Putnam, Robinson, and Matiyasevich [34].

The variant that we will reduce from asks whether the polynomial has roots
with the unknowns being distinct natural numbers. It is fairly straightforward
to show that this variant is also undecidable.

Let d ∈ N, d > 1, and P ∈ Z[Y1, Y2, . . . , Yd−1] be an arbitrary polynomial.
We define the subset S ⊆ Rd via a formula of the first-order theory of the reals:

S(x1, x2, . . . , xd)
def
= ∃y1, y2, . . . yd−1



0 = P (y1, y2, . . . , yd−1),

x1 = (1− y1)(1− y2) · · · (1− yd−1),

x2 = (2− y1)(2− y2) · · · (2− yd−1),
...

xd = (d− y1)(d− y2) · · · (d− yd−1).

A point x := (x1, . . . , xd) ∈ Rd is in the set S if and only if one can find real
numbers y1, . . . , yd−1 for which the above equations hold. The idea behind this
definition comes from the fact that one can construct a d × d matrix M with
rational entries such that

(Mnx)1 = (n− y1)(n− y2) · · · (n− yd−1) ,

for all n ∈ N, where (·)1 refers to the first entry of the vector. Admitting the exis-
tence of such a matrix, let H be the hyperplane having normal vector (1, 0, . . . , 0)
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and going through the origin. Then clearly O(M,x) enters H at least d−1 times
if and only if the reals y1, . . . , yd−1 are distinct natural numbers, because only
then is the first entry of Mnx—the polynomial (n− y1) · · · (n− yd−1)—equal to
zero.

The existence of the matrix M rests on the fact that the expression un =
(n− y1) · · · (n− yd−1) (for fixed y1, . . . , yd−1) can be obtained as a linear recur-
rence sequence of order d, and in turn such a linear recurrence sequence can be
represented as the sequence of fixed-position entries of increasing powers of a
fixed d× d matrix M . In the standard construction of this matricial representa-
tion, one must in addition set x1 = u1, x2 = u2, . . . , xd = ud, which is achieved
through the definition of our initial semialgebraic set S.

It is worth noting that Theorem 4 holds even if k is fixed, due to the fact
that Hilbert’s tenth problem remains undecidable for a fixed number of variables.
Furthermore, if k is fixed to be 1, then the problem becomes decidable in low
dimensions, however even in the case where the ambient space has dimension 2
and k = 2, the problem does not seem to be trivially decidable.

6 Research Directions and Open Problems

We have presented an overview of the state of the art regarding decidability
and solvability of a range of algorithmic problems for discrete linear dynami-
cal systems, focussing on reachability, model-checking, and invariant-generation
problems. Regarding model checking in particular, we have painted an essen-
tially complete picture of what is achievable even in principle, in the sense that
extending the existing results further runs up against formidable mathematical
obstacles (longstanding open problems in number theory); the results presented
therefore appear to lie at the very frontier of what is achievable, barring major
breakthroughs in mathematics. From a technical standpoints, the tools deployed
offer a pleasant mixture of number theory and mathematical logic.

Further interesting research directions nevertheless remain, particularly along
the lines of parametric synthesis and analysis (see, e.g., [9]), continuous and
hybrid systems, control-theoretic problems, and non-linear dynamics.
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