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In the last 20 years, research on turn-taking and duetting has flourished in at least
three, historically separate disciplines: animal behavior, language sciences, and music
cognition. While different in scope and methods, all three ultimately share one goal—
namely the understanding of timed interactions among conspecifics. In this perspective,
we aim at connecting turn-taking and duetting across species from a neural perspective.
While we are still far from a defined neuroethology of turn-taking, we argue that the
human neuroscience of turn-taking and duetting can inform animal bioacoustics. For
this, we focus on a particular concept, interhemispheric connectivity, and its main white-
matter substrate, the corpus callosum. We provide an overview of the role of corpus
callosum in human neuroscience and interactive music and speech. We hypothesize
its mechanistic connection to turn-taking and duetting in our species, and a potential
translational link to mammalian research. We conclude by illustrating empirical venues
for neuroethological research of turn-taking and duetting in mammals.

Keywords: bioacoustics, brain connectivity, turn-taking, time, music cognition, speech science

TURN-TAKING AND DUETTING: FROM BEHAVIOR TO
COGNITION AND NEUROSCIENCE

No matter the discipline, research on turn-taking and duetting (TTD) is currently a hot topic
(e.g., Demartsev et al., 2018; Pika et al., 2018; Benichov and Vallentin, 2020). In the last 20 years
(see e.g., Figure 1; Ravignani et al., 2019), there has been an increased and converging interest in
TTD in at least three separate disciplines: Animal behavior, language sciences and music cognition
(Greenfield et al., 2021). Research into language has explored the nuances of both the semantics
and precise timing of turn-taking; because of the short time scales involved in turn-taking in
conversation and the comparably slower reactivity of the human nervous system, turn-taking
in human speech must be predictive, rather than reactive (Stivers et al., 2009). Some have even
argued that turn-taking is at the core of human linguistic abilities (Levinson, 2016). Human
music research has experienced a strong empirical turn and likewise explored the behavioral
bases of interaction, with prime examples including the dynamics of jazz improvised duetting
or string quartet synchronization (Wing et al., 2014; Zeng et al., 2017). Finally, animal behavior
has also moved on—at least in bioacoustics—from the exclusive study of behavioral patterns in
isolation to a balanced mélange of individuals, duets, and choruses. Catching up with avian
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FIGURE 1 | Sagittal (left figure) and axial view (right figure) of the 2 main interhemispheric tracts in humans overlaid on a population template. The tracts included are
the corpus callosum with its four geometrical subdivisions (rostrum and genu, in red; truncus or body, in yellow; isthmus, in violet; splenium, in green) and the anterior
commissure (in white).

bioacoustics (e.g., Benichov and Vallentin, 2020), findings on
TTD patterns in mammals are continuously accumulating
(Takahashi et al., 2016; Demartsev et al., 2018; Pika et al., 2018;
Ravignani, 2019; Ravignani et al., 2019; de Reus et al., 2021).

Sometimes in all three disciplines, but especially in animal
behavior of TTD, the brain is “black-boxed.” Behavioral patterns
are considered and are sometimes interpreted in cognitive terms.
However, the mapping of these behaviors to neural processes is
still in its infancy. Here we propose that while we are still far
from a clear picture in the neuroethology of turn-taking, there
are still many potential low-hanging fruits in this research area. In
particular, we offer a perspective on a particular structure in the
mammalian brain, the corpus callosum (CC, Figure 1), which,
we hypothesize, might form basic building blocks of mammalian
TTD. We know about the potential neural bases of TTD
comparatively much more in humans than any other mammal.
Therefore, in the following, we provide an overview of the CC,
and its role in human music and spoken language and propose
a potential connection between CC and TTD. We discuss the
empirical venues its study can open for mammalian comparative
TTD research. Of note is that even the human evidence we
present is sometimes indirect and speculative; however, we
consider building cross-disciplinary bridges to advance valuable
knowledge of TTD that has lately received so much attention.

INTERHEMISPHERIC COMMUNICATION
AND CORPUS CALLOSUM

In both music and language, an interplay between
interhemispheric specialization and communication plays
an important role. A key structure enabling and regulating this
interplay is the CC, connecting the two hemispheres (Clarke and
Zaidel, 1994; Schlaug et al., 1995; Paul et al., 2003; Friederici
et al., 2007) and consisting of about 160–190 million fibers
(Aboitiz et al., 1992). In music performance, where among others
the timing of interactions is key, CC size correlates with musical

training (Ozturk et al., 2002). Interhemispheric connectivity
has also been linked to musical improvisation: CC may act as a
support structure in the lateral perception-action network (Loui,
2018). In language, the CC regulates among others the interplay
between syntax/semantics (what to say) and suprasegmental
prosody (how to say it) (Friederici et al., 2007). Throughout
development, we see that individuals with impaired functionality
of the CC may have, among others, impaired TTD-relevant
traits (Beens, 1995; Stickles et al., 2002). So, what are the (neuro)
biological functions of the CC?

Since the seminal split-brain studies by Sperry (1961) in the
fifties and sixties of the last century, we have gained a significant
understanding of the role of the CC in interhemispheric
brain communication. Specifically, this evidence confirmed
that the CC not only transfers information between the two
hemispheres of the human brain, but significantly contributes to
the development of lateralized function as well as the upkeep of
functional integration across the hemispheres (Gazzaniga, 2000;
Güntürkün et al., 2020). Despite the lack of general agreement
on the functional significance of callosal morphology (Aboitiz
et al., 1992), most authors associate a larger callosal area with a
better capacity for interhemispheric transfer. A larger diameter
and number density of myelinated fibers increase the conduction
speed between the two hemispheres, leading to faster and
more efficient cross-hemispheric integration and communication
(Westerhausen et al., 2006; Horowitz et al., 2015). It is not yet
fully understood whether callosal fibers exert an inhibitory or
excitatory influence on interhemispheric communication and
integration (Bloom and Hynd, 2005); we make no claims here as
the particular case of TTD could be explained by both influences.
One hypothesis is that the CC provided placental mammals
with shorter and more direct pathways between bilateral cortical
regions than the anterior commissure, thus speeding up the
interhemispheric transfer of information (Buzsáki et al., 2013;
Aboitiz, 2017). This could have been even more advantageous in
larger brains, such as those of mammals (Aboitiz, 2017; Font et al.,
2019).
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HUMAN MUSIC AND TURN-TAKING

Some of the characteristics predicted by the general function of
CC have been observed in musicians—individuals with more
than 6 years of formal musical training (Zhang et al., 2020)—
due to training-related neuroplastic effects on callosal fiber
composition and volume (Lee et al., 2003). Musicians exhibit a
larger midsagittal callosal size (e.g., Schlaug et al., 1995, 2005) and
more organized callosal bundles (e.g., Elmer et al., 2016; Habibi
et al., 2018) than musically naive individuals. These findings
suggest a positive association between the amount of musical
training and the strength of interhemispheric connectivity
(Schlaug et al., 1995; Bengtsson et al., 2005; Hyde et al., 2009;
Steele et al., 2013; Elmer et al., 2016; Habibi et al., 2018).
Stronger cross-hemispheric anatomical connections may explain
the enhanced capabilities observed in musicians, as well as
in non-musicians (Lumaca et al., 2021) for music perception
and performance that rely on high-speed interhemispheric
conduction, such as binaural temporal integration, visuo-motor
integration, and bimanual motor planning, execution, and
control (Gooijers and Swinnen, 2014).

In music, these perceptuo-motor skills are critical for different
forms of interpersonal synchrony, including playing jazz in
ensembles. Thus, one may hypothesize that the ability of
individuals to coordinate their actions in time is associated, and
can be predicted by, the microstructural characteristics and the
size of their CC. Jazz improvisers, who show a large flexibility and
precision in their coordination and joint action, exhibit higher
callosal integrity and larger tract volume than classical musicians
and non-musicians (Zeng et al., 2017). Conversely, deficits in
spatial and temporal interpersonal synchrony have been observed
in populations with reduced size of the CC such as Autism
Spectrum Disorder (Casanova et al., 2009; Fitzpatrick et al., 2016;
Kaur et al., 2018). A recent study with fNIRS on Autism Spectrum
Disorder children shows that these deficits are accompanied by
reduced symmetrical activations in superior and middle temporal
regions compared to typically developed children (Su et al., 2020).
This research further supports a key role of interhemispheric
brain communication in socially embedded actions.

HUMAN SPOKEN LANGUAGE AND
TURN-TAKING

A prime example of interactive human communication, with
some potential parallels to mammalian TTD, is language use.
Successful communication depends on at least two aspects:
the rapid integration of lateralized verbal (segmental) and
non-verbal (suprasegmental) information in speech/language
comprehension and production (Kotz and Schwartze, 2010,
2016) and swift turn-taking in interpersonal interaction (Holler
et al., 2015; Levinson, 2016).

The integration of left-hemispheric segmental and right-
hemispheric suprasegmental information necessitates rapid
information flow between the two hemispheres (Friederici and
Alter, 2004). Such transfer likely engages the commissural

fibers crossing through the CC, but the structural and
functional differentiation of these fibers indicates that they
are topographically organized based on their cortical origin.
Diffusion-weighted imaging revealed that while the anterior
portions of the CC (genu and truncus) connect the orbital
and frontal lobes, the posterior third (isthmus and splenium)
link the temporal, parietal, and occipital lobes of the two
hemispheres (e.g., Huang et al., 2005; Hofer and Frahm, 2006;
Zarei et al., 2006; Dougherty et al., 2007; Park et al., 2008).
Empirical evidence in support of such topographical connectivity
comes from studies exploring the rapid integration of segmental
(syntax) and suprasegmental (prosody) information in patients
with CC lesions. Results confirmed a reciprocal speech processing
interface between the two hemispheres via the posterior CC that
seems to underlie speech/language comprehension (Friederici
et al., 2007; Sammler et al., 2010). Recent work with children
and adolescents, suffering from developmental agenesis of the
corpus callosum, a congenital brain disorder where the axons
of the CC are either completely or partially absent (Rauch and
Jinkins, 1994; Laìbadi and Beke, 2017), have further confirmed
the integrative function of the posterior CC within the language
network (Bartha-Doering et al., 2020) and its relation to language
abilities (Bartha-Doering et al., 2021). Further evidence also
points to interhemispheric information flow for other functions.
For example, lesions in the middle and posterior troncus of
the CC mainly affect interhemispheric transfer of motor and
somatosensory information (Risse et al., 1989; Fabri et al.,
2001), while isthmus and splenium lesions mostly affect auditory
(Pollmann et al., 2002) and visual transfer (Corballis et al., 2004).

Whether or not turn-taking, a communicative act between
two or more speakers, relies on the integrative function of the
CC per se or may only relate to the swift integration between
segmental and suprasegmental information that speakers and
listeners use in communication is currently an open scientific
question. Levinson (2016) proposed that turn-taking is at
the root of human communication and might derive from
three factors. First, turn-taking is one of many means that
form human interaction, including non-verbal information
such as facial expression, gaze, and gestures. Second, turn-
talking might reflect a prototypical form of human interaction
as evidenced in pre-lingual infants, and third turn-taking is
also found in non-human primates as part of their vocal
communicative repertoire. Recently, the cognitive and neural
processes underlying turn-taking in humans have also been
explored, highlighting the human capacity to anticipate one’s turn
to communicate (Holler et al., 2015). Thus, the timely integration
of segmental and suprasegmental information while anticipating
one’s turn might facilitate swift information flow between a
speaker and a listener.

To bridge the gap on how turn-taking might rely on
CC interhemispheric connectivity might be best informed by
studies on developmental agenesis of the CC. Next to altered
language abilities (Bartha-Doering et al., 2021), there are
reports on communication deficits that entail pragmatic skills
(understanding jokes and non-verbal cues such as emotional
vocal and facial expressions; see for example, Brown et al., 2005;
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Tu et al., 2009). Further, younger children with CC agenesis
seem to struggle with initiating and sustaining conversations and
lack a basic understanding of social reciprocity and non-verbal
communication (Badaruddin et al., 2007). Adults with CC
agenesis further exhibit difficulties in social cognition and
social behavior (Laìbadi and Beke, 2017). Of note is their
atypical facial scanning while observing emotional expressions
of others (Bridgman et al., 2014). A speculative conclusion
could therefore be that missing out on rapidly detecting and
integrating non-verbal information in social interaction affects
how children and adults, suffering from CC agenesis, understand
and implement turn-taking.

PERSPECTIVES FOR TURN-TAKING
RESEARCH ACROSS MAMMALS
LINKING BRAIN TO BEHAVIOR

Some building blocks of human TTD may have mechanistic
bases in the CC. These building blocks may be potentially
analogous or homologous to TTD in other mammals (Fröhlich,
2017; Pika et al., 2018; Anichini et al., 2020; Greenfield et al.,
2021). What do we know about TTD mechanisms in other
species? Some work has found links between rodent turn-
taking behavior and underlying neural mechanisms, highlighting
hierarchical, cortical control of this behavior (Okobi et al.,
2019). If the interhemispheric neuroscience of TTD in humans
is little explored, the non-human animal counterpart is even
less so. While, to our knowledge, no mechanistic link has been
sought between TTD and their interhemispheric neural bases in
other mammals, we consider that combined behavioral evidence
in mammals and neural evidence in humans can provide
fruitful research directions and predictions for experiments.
In other words, we suggest to (1) look for mammalian
TTD traits which show strong behavioral similarities to either
human music or spoken language; (2) capitalize on human
neuroscientific evidence while translating it to other species
for which at least some (callosal) brain anatomy is known,
and (3) within these species, target and behaviorally test
those with maximally divergent predictions in terms of how
interhemispheric connectivity should affect TTD features.

Let us consider a concrete example. A recent important
finding is that, in mammals, two possible routes of
interhemispheric communication exist. While eutherian
mammals evolved a corpus callosum for interhemispheric
communication, non-eutherian mammals, i.e., monotremes
and marsupials (e.g., platypus and kangaroo) do not have
this—they use other, potential slower routes for interhemispheric
communication (Suárez et al., 2018). In other words, the
CC evolved within the last 120 million years, so that non-
eutherian mammals and birds use non-callosal structures for
interhemispheric communication (Rogers et al., 2013). For
instance, monotremes and marsupials mostly use the anterior
commissure (see Figure 1; Aboitiz and Montiel, 2003).

This “discontinuity” in mammals provides a powerful testbed
for our proposed TTD-CC link; in particular, even in behavioral
experiments, we expect to find an evolutionary jump in the

TTD phenotype. Within mammals, one often finds pairs of
species that have convergently evolved similar behavioral traits
or anatomy from two separate ancestors, one marsupial the other
placental. Examples of this are, respectively: sugar gliders vs.
flying squirrels, marsupial vs. non-marsupial moles, echidnas vs.
porcupines. Based on our hypothesis, one could compare TTD
abilities between pairs of species, expecting more developed ones
in eutherian mammals. Even within eutherians there may be pairs
of closely related species one of which duets while the other does
not, featuring a variety of social and parental care systems. One
could study variation in CC size between pairs of duetting and
phylogenetically close non-duetting placental mammals. More
generally and going beyond this admittedly simple dichotomy,
one could study TTD acoustic phenotypes in species for which
tractography data or measures of CC thickness exist, potentially
expecting a positive correlation between the two.

In addition, non-invasive cognitive neuroscience techniques
could be used to either measure or disrupt interhemispheric
connectivity and relate this to behavioral TTD markers.
For instance, electroencephalography (EEG) can be used to
measure brain responses to sounds or phonatory actions. It
appears that interhemispheric EEG coherence correlates with
the size of CC and strongly decreases when the CC is
damaged (Nielsen et al., 1993; Pogarell et al., 2005). Non-
invasive EEG could then be employed in TTD experiments
to test whether, as we hypothesize, interhemispheric EEG
coherence will positively correlate with behavioral metrics
of well-coordinated TTD. In addition, and to obtain more
causal inference, techniques such as magnetic stimulation could
be used to disrupt TTD patterns and therefore to obtain
mechanistic explanations (Fitzgerald et al., 2002; Voineskos et al.,
2010).

While we focus on mammals here, it is important to
mention that several avian species have very developed TTD
capacities (Mann et al., 2006; Pika et al., 2018; Benichov and
Vallentin, 2020; Coleman et al., 2021; Kishimoto and Seki,
2022; Norton et al., 2022). Birds achieve this fine timing
via developed intra-hemispheric connectivity, often resulting
in motor inhibition to avoid overlap (Norton et al., 2022).
However, similarly to non-eutherian mammals, birds do not
have a CC. How do birds achieve impressive TTD without a
CC? We hypothesize that TTD have different neuroanatomical
bases in birds and eutherian mammals. While in humans
the CC is responsible, and grants high-speed transmission,
for most interhemispheric excitation and inhibition, birds rely
on non-callosal structures (Rogers et al., 2013), which may
still grant fast communication given the relatively smaller
brain sizes and hence long distances (Ringo et al., 1994).
In other words, we hypothesize that fast interhemispheric
connection is achieved in birds via smaller brains and
in eutherian mammals via the CC granting similar cross-
brain speed irrespective of size (Phillips et al., 2015). This
indirectly predicts lack of, or slow, TTD in non-eutherian
mammals (and speculatively in large dinosaurs) which have
brains on average larger than extant birds but also no CC
(Weisbecker and Goswami, 2010; Naumann, 2015; Font et al.,
2019).
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CONCLUSION

Our perspective aims at spurring more mammalian TTD research
at the behavior-cognition-neuroscience interface. We highlight
the value of back-forth human-animal translational approaches,
especially important in TTD because the three disciplines have
partly solved three parts of the puzzle. The path we propose
might become easier now that the field of diffusion analyses
is rapidly advancing (e.g., Berns et al., 2015). Compared to a
few years ago, diffusion analyses are more sophisticated and
their results are getting close to what is observed in vivo.
White matter diffusion analysis research may help pinpoint TTD
behaviors to specific aspects of micro- (density) or microstructure
(volume) and to biologically plausible metrics of connectivity
(e.g., fiber bundle capacity). We predict that humans will
end up being one example within a plethora of mammalian
instances of TTD: The “neural phylogenies” approach we
suggest will hopefully provide a roadmap for future integrative
work.
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