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A B S T R A C T   

Objective: Major depressive disorder has been associated with lower prefrontal thickness and hippocampal vol-
ume, but it is unknown whether this association also holds for depressive symptoms in the general population. 
We investigated associations of depressive symptoms and depression status with brain structures across 
population-based and patient-control cohorts, and explored whether these associations are similar over the 
lifespan and across sexes. 
Methods: We included 3,447 participants aged 18–89 years from six population-based and two clinical patient- 
control cohorts of the European Lifebrain consortium. Cross-sectional meta-analyses using individual person 
data were performed for associations of depressive symptoms and depression status with FreeSurfer-derived 
thickness of bilateral rostral anterior cingulate cortex (rACC) and medial orbitofrontal cortex (mOFC), and 
hippocampal and total grey matter volume (GMV), separately for population-based and clinical cohorts. 
Results: Across patient-control cohorts, depressive symptoms and presence of mild-to-severe depression were 
associated with lower mOFC thickness (rsymptoms = − 0.15/ rstatus = − 0.22), rACC thickness (rsymptoms = − 0.20/ 
rstatus = − 0.25), hippocampal volume (rsymptoms = − 0.13/ rstatus = 0.13) and total GMV (rsymptoms = − 0.21/ rstatus 
= − 0.25). Effect sizes were slightly larger for presence of moderate-to-severe depression. Associations were 
similar across age groups and sex. Across population-based cohorts, no associations between depression and 
brain structures were observed. 
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Conclusions: Fitting with previous meta-analyses, depressive symptoms and depression status were associated 
with lower mOFC, rACC thickness, and hippocampal and total grey matter volume in clinical patient-control 
cohorts, although effect sizes were small. The absence of consistent associations in population-based cohorts 
with mostly mild depressive symptoms, suggests that significantly lower thickness and volume of the studied 
brain structures are only detectable in clinical populations with more severe depressive symptoms.   

1. Introduction 

Large meta-analyses pooling cohorts including clinically depressed 
patients and healthy controls, relate clinical depression in adults to a 
smaller grey matter structures in several regions, with most consistent 
findings and largest effect sizes for thickness of the rostral anterior 
cingulate (rACC), medial orbitofrontal cortex (mOFC) and hippocampal 
volume (Arnone et al., 2016; Schmaal et al., 2016; Schmaal et al., 2017), 
although effect sizes are modest (Cohen’s d − 0.09 to − 0.14). Whereas 
clinical depression is not uncommon with a prevalence of around 4.4 % 
(World Health Organization, 2017), mild depressive symptoms not 
reaching psychiatric thresholds are more common, with an estimated 
prevalence of up to 17 % of the general population (Rodríguez et al., 
2012; Luppa et al., 2012). Due to this high prevalence, the burden of 
(mild) depression on society is high. Mild depressive symptoms are 
related to reduced quality of life (Rodríguez et al., 2012), increased 
disability burden (Barry et al., 2009), decreased physical health (Braam 
et al., 2005), increased economic costs (Luppa et al., 2012), and mor-
tality risk (Win et al., 2011). Presence of mild depression also increases 
the risk of developing clinical depression (Cuijpers and Smit, 2004), 
leading to an even larger burden on the person and society (Cuijpers 
et al., 2014; Kessler, 2012; Hare et al., 2014). Some studies suggest that 
the smaller grey matter volumes in clinical depression are also present in 
individuals with mild depressive symptoms (Besteher et al., 2020). 
Whereas some studies report similar lower volume or thickness in the 
anterior cingulate (Webb et al., 2014; Hayakawa et al., 2014), orbito-
frontal cortex (Webb et al., 2014) and hippocampus (Osler et al., 2018; 
Szymkowicz et al., 2019) for mild depression, others do not find these 
associations (Szymkowicz et al., 2016). However, no studies have 
investigated depressive symptoms and depression status in population- 
based cohorts as well as clinical patient-control cohorts. 

A potential explanation for these inconsistencies might be small 
sample sizes, heterogeneity of applied methods and limited age ranges 
across studies. Grey matter generally decreases with age, with large 
variability across brain regions in the shape of these age-related changes 
across the lifespan (Pomponio et al., 2020; Walhovd et al., 2011). While 
total grey matter volume decreases rapidly during adolescence and early 
adulthood, followed by a slower reduction in adulthood, hippocampal 
volume only starts decreasing markedly at around 50 years of age 
(Pomponio et al., 2020). However, it is unclear how age may affect as-
sociations between depression and brain structure. Within the ENIGMA 
consortium, age did not affect the association between depression and 
regional cortical or subcortical brain structural measures but associa-
tions between cortical thickness and depression were only observed in 
adults and not in adolescents, who only displayed smaller surface area 
(Schmaal et al., 2016; Schmaal et al., 2017). Some studies reported more 
pronounced differences in brain structure in late-onset depression 
(Hickie et al., 2005; Sachs-Ericsson et al., 2013) while others found no 
associations of brain structure with late-life depression (Saberi et al., 
2022). Thus, it is relevant to further investigate the moderating effect of 
age on associations between depression and brain structure, particularly 
across the adult lifespan. 

Another factor potentially influencing associations between depres-
sion and brain structure is sex, whereby depression is much more 
prevalent in women than in men (Seedat et al., 2009). While in ENIGMA 
sex did not affect the association between depression and cortical 
measures (Schmaal et al., 2017), in another study depressive symptoms 
were only related to decreased anterior cingulate cortex volume in 

women but not in men (Hayakawa et al., 2014). 

1.1. Aims of the study 

We investigated the associations of depressive symptom severity and 
depression status with brain structure using data from eight neuro-
imaging cohorts across the adult lifespan (N = 3,449, 18–89 years). We 
focused on brain regions often associated with depression (bilateral 
mOFC, rACC, hippocampus) and expected more severe depressive 
symptoms and depression status to be associated with lower thickness 
and volumes. Additionally, total grey matter volume (GMV) was 
included as control measure of global brain structure for which no as-
sociations are expected. All analyses are conducted separately across 
population-based and patient-control cohorts, and across age and sex 
strata. 

2. Material and methods 

2.1. Sample 

Adult participants (18 years or older) from the European Lifebrain 
consortium (Walhovd et al., 2018) (https://www.lifebrain.uio.no/) with 
available data on depressive symptoms and MRI measures were 
included. Samples included participants from six population-based co-
horts: the Berlin Study of Aging-II (BASE-II, Germany) (Bertram et al., 
2014), BETULA (Sweden) (Nilsson et al., 1997), the Cambridge Centre 
for Ageing and Neuroscience study (Cam-CAN, UK) (Shafto et al., 2014), 
Center for Lifebrain Changes in Brain and Cognition longitudinal studies 
(LCBC, Norway) (Walhovd et al., 2016; Fjell et al., 2018), Walnuts and 
Healthy Aging Study (WAHA, Spain) (Rajaram et al., 2017), Whitehall-II 
Imaging Sub-study (UK) (Filippini et al., 2014), and two cohorts 
including depressed patients and healthy controls (patient-control 
cohort): Netherlands Study of Depression and Anxiety (NESDA, 
Netherlands) (Penninx et al., 2008) and MOod Treatment with Antide-
pressants or Running study (MOTAR, Netherlands) (Lever-Van Milligen 
et al., 2019). Additional information for all cohorts and inclusion/ 
exclusion criteria are presented in the Supplement. 

2.2. Measurements 

2.2.1. Depression 
Different depression instruments were used across cohorts: Beck 

Depression Inventory (BDI (Beck and Steer, 1993); depression cut-offs 
based on Wahl (Wahl et al., 2014)) for LCBC; 20-item Center for 
Epidemiological Studies-Depression Scale (CES-D (Radloff, 1977); cut- 
off for mild depression based on Radloff (Radloff, 1977), for moderate 
depression on Wahl (Wahl et al., 2014)) for BASE-II, Betula and 
Whitehall-II; Hamilton Depression Rating Scale (HDRS (Williams, 
1988); cut-offs based on Zimmerman (Zimmerman et al., 2013)) for 
WAHA; Hospital Anxiety and Depression Scale (HADS (Zigmond and 
Snaith, 1983); cut-offs based on Zigmond and Snaith, 1983) for Cam- 
CAN; 30-item Inventory of Depressive Symptomatology - Self Report 
(IDS-SR (Rush et al., 1996); cut-offs based on Rush et al., 1996) for 
NESDA and MOTAR. All depression instruments were based on self- 
report, with the exception of the HDRS, which is clinician-rated. For 
each scale, the total score was used for analysis, and categorical vari-
ables were calculated based on validated and commonly used thresholds 
for at least mild (mild-to-severe) and at least moderate (moderate-to- 
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severe) depression (see Table S1 for thresholds for each depression scale 
and Fig. S1 for distributions of depressive symptoms for each cohort). 

2.2.2. Imaging acquisition and analysis 
Average thickness of the bilateral rostral anterior cingulate cortex 

(rACC) and medial orbitofrontal cortex (mOFC), hippocampal volume, 
total grey matter volume (GMV) and intracranial volume based on eTIV 
(ICV) were derived from T1 structural MRI scans using Freesurfer 
(version 5.3 for Whitehall-II, 6.0 for WAHA, LCBC, Cam-CAN, Betula, 
NESDA and MOTAR, and 7.0 for BASE-II). More details on scanner and 
MR acquisition parameters can be found in the Supplement (Table S1 
and cohort descriptions). 

2.3. Statistical analyses 

All statistical analyses were conducted in R (version 3.6.0). Unad-
justed brain structure data more than four standard deviations from the 
mean was excluded to remove outliers (N = 2). For analyses on 
depressive symptom scores with brain structure (i.e., thickness of rACC, 
mOFC, hippocampal volume, and total GMV), Spearman rank-order 
correlations were run for each cohort, corrected for age, sex, scanner, 
and ICV (the latter only for analyses of hippocampal volume and total 
GMV). Additional analyses were performed on depressive symptoms 
while also correcting for years of education to rule out potential dif-
ferences in education to be driving the associations. To check whether 
the use of different Freesurfer versions across cohorts influenced results, 
meta-regressions of Freesurfer version were performed. To explore as-
sociations of depression status with the included brain structures, 
additional point biserial correlations were run on a dichotomized mea-
sure of depression (mild-to-severe vs not depressed), correcting for the 

same covariates. P-values and 95 % confidence intervals (CI) were 
calculated using bootstrap procedures with 5000 iterations. Depression 
status was only analysed in cohorts with at least 20 participants with 
mild-to-severe depression. The correlation estimates and CI’s from the 
per-cohort analyses were then pooled using the R package metafor 
(Viechtbauer, 2010) to obtain pooled estimates, using random-effects 
models. To examine effects in general population cohorts and as well 
as patient-control cohorts, meta-analyses were conducted separately for 
population-based cohorts and for patient-control cohorts. All statistical 
tests were performed two-sided and corrected for multiple testing using 
Bonferroni correction for four brain regions (α = 0.0125). 

To explore effects of depression status severity, we performed addi-
tional sensitivity analyses on only a subgroup of the participants with 
moderate-to-severe depression in which we excluded participants with 
mild depression. This extreme comparison between participants with 
moderate-to-severe depression and participants without depression 
might be more comparable to comparing healthy controls to clinically 
depressed patients in clinical studies, as mild depressive symptoms 
might not warrant clinical diagnosis of depression. To test whether as-
sociations varied over the adult lifespan and between sexes, analyses of 
depression symptom scores were repeated with cohorts stratified by age 
(18–39 years, 40–59 years, 60 years and older), with only cohorts 
including at least 20 participants, and stratified by sex (without 
correction for age/ sex respectively). Forest plots were visually exam-
ined for consistently different patterns across age and sex bins. Addi-
tional meta-regressions were performed on proportion of women 
included in each cohort. 

Table 1 
Demographic characteristics per cohort.   

Population-based cohorts Patient-control cohorts 

Whitehall-II 
(n = 769) 

WAHA 
(n = 120) 

LCBC 
(n = 742) 

Cam-CAN 
(n = 703) 

Betula 
(n = 326) 

BASE-II 
(n = 382) 

NESDA 
(n = 284) 

MOTAR 
(n = 123) 

Oxford 
University, UK 

University of 
Barcelona, Spain 

University of 
Oslo, Norway 

Cambridge 
University, UK 

Umea 
University, 
Sweden 

Max Planck 
Institute, 
Germany 

VU University, 
Netherlands 

VU University, 
Netherlands 

Demographics 
Age, range 60–84 63–76 19–85 18–89 25–81 24–81 18–57 19–70 
Age, mean years (SD) 69.8 (5.2) 69.0 (3.2) 39.0 (15.0) 54.8 (18.4) 61.9 (13.2) 64.9 (14.3) 37.6 (10.2) 39.2 (13.5) 
Sex, female, n (%) 149 (19.4 %) 82 (68.3 %) 515 (69.4 %) 358 (50.9 %) 175 (53.7 %) 145 (37.9 %) 193 (67.9 %) 64 (52.0 %) 
Education, mean 

years (SD) 
14.7 (3.4) 11.1 (4.2) 15.8 (2.5) 16.8 (3.7) 12.9 (4.1) 14.1 (2.9) 12.8 (3.2) 13.0 (3.7)  

Depression 
Depression scale CES-D HDRS BDI HADS CES-D CES-D IDS-SR IDS-SR 
Depressive 

symptoms, mean 
score (SD) 

5.3 (6.2) 2.2 (2.5) 5.0 (4.5) 2.8 (2.5) 8.0 (6.5) 6.7 (6.1) 23.5 (14.2) 21.2 (21.3) 

Mild-to-severe 
depression, n (%) 

60 (7.8 %) 3 (2.5 %) 115 (15.5 %) 36 (5.1 %) 35 (10.7 %) 38 (9.9 %) 198 (69.7 %) 55 (44.7 %) 

Moderate-to-severe 
depression, n (%) 

15 (1.9 %) 0 (0 %) 21 (2.8 %) 10 (1.4 %) 12 (3.7 %) 11 (2.9 %) 143 (50 %) 50 (40.6 %)  

Brain 
mOFC thickness, 

mean in mm (SD) 
2.4 (1.14) 2.4 (0.11) 2.5 (0.13) 2.5 (0.12) 2.4 (0.12) 2.4 (0.10) 2.2 (0.11) 2.6 (0.15) 

rACC thickness, mean 
in mm (SD) 

2.7 (0.18) 2.8 (0.15) 2.9 (0.17) 2.8 (0.16) 2.8 (0.18) 2.6 (0.14) 2.6 (0.14) 2.9 (0.19) 

Hippocampus 
volume, mean in 
cm3 (SD) 

3.6 (0.46) 3.8(0.32) 4.1 (0.43) 4.0 (0.52) 3.8 (0.47) 3.9 (0.42) 3.9 (0.39) 4.0 (0.37) 

Total GMV, mean in 
cm3 (SD) 

606.3 (50.78) 585.9 (46.57) 679.0 (66.69) 651.1 (71.06) 632.2 (61.18) 602.0 (55.69) 643.2 (59.70) 616.5 (66.42) 

Note: Abbreviations: SD = standard deviation, mOFC = medial orbitofrontal cortex, rACC = rostral anterior cingulate cortex, GMV = grey matter volume, CES-D =
Center for Epidemiological Studies-Depression Scale, HDRS = Hamilton Depression Rating Scale, BDI = Beck Depression Inventory, HADS = Hospital Anxiety and 
Depression Scale, IDS-SR = Inventory of Depressive Symptomatology – Self Report. 
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3. Results 

3.1. Sample description 

Descriptive statistics of the cohorts included in the meta-analyses are 
presented in Table 1. Eight cohorts from seven sites were included, of 
which six cohorts were population-based and two included clinically 
depressed patients and healthy controls (patient-control cohorts). In 
total 3449 participants were included, 3042 from population-based co-
horts and 407 from patient-control cohorts. From the population-based 
cohorts, 287 (9 %) participants met the criteria for at least mild 
depression, of whom 69 (2 %) met the criteria for at least moderate 
depression. From the patient-control cohorts, 253 (62 %) met the 
criteria for at least mild depression, of which 193 (47 %) had at least 
moderate depression. The age range across all cohorts was 18 to 89 years 
(see supplemental Fig. 1 for age distributions of all cohorts). 

3.2. Associations between depressive symptom scores and brain structure 

In the pooled population-based cohorts, depressive symptom scores 
were not significantly associated with any brain measure of interest 
(Fig. 1 and Table S2, r = − 0.05 – r = 0.03, p = 0.133 – p = 0.623). In the 
pooled patient-control cohorts, depressive symptoms were significantly 
negatively associated with mOFC thickness (r = − 0.15, 95 % CI = − 0.25 

to − 0.05, p = 0.003), rACC thickness (r = − 0.20, 95 % CI = − 0.30 to 
− 0.10, p < 0.001), hippocampal volume (r = − 0.13, 95 % CI = − 0.22 to 
− 0.03, p = 0.012), and total GMV (r = − 0.21, 95 % CI = − 0.31 to − 0.11, 
p < 0.001). Results remained similar when also correcting for years of 
education. In meta-regressions, Freesurfer version was not associated 
with differences in effect size across cohorts for any of the included brain 
structures (Table S5). 

3.3. Associations between dichotomous depression status and brain 
structure 

In the population-based cohorts, there were no associations of mild- 
to-severe depression with any of the brain structures (Fig. 2, Table S2, r 
= − 0. 016 – r = 0.099, p = 0.025 – p = 0.911). In the patient-control 
cohorts, mild-to-severe depression was negatively associated with 
mOFC (r = − 0.22, 95 % CI = − 0.31 to − 0.12, p < 0.001), rACC thickness 
(r = − 0.25, 95 % CI = − 0.34 to − 0.15, p < 0.001), hippocampal volume 
(r = − 0.13, 95 % CI = − 0.23 to − 0.03, p = 0.009), and total GMV (r =
− 0.25, 95 % CI = − 0.35 to − 0.15, p < 0.001). 

Sensitivity analyses, comparing moderate-to-severe depression cases 
with participants without depression (and thus excluding mildly 
depressed participants), still did not yield any association with brain 
structures in population-based cohorts (Fig. S2). In patient-control co-
horts, moderate-to-severe depression was associated with low mOFC (r 

Fig. 1. Forest plots of associations between depressive symptom scores and brain structure. Forest plots illustrating the linear associations of depressive symptom 
scores with thickness of medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), and hippocampal and total grey matter volume in the 
different cohorts (coloured circles), with random model pooled effect sizes (black diamonds) separately across population-based and patient-control cohorts (adjusted 
for age, sex, scanner and volumetric measures for intracranial volume). Horizontal lines represent 95% confidence intervals (CI). 
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= − 0.24, 95 % CI = − 0.33 to − 0.14, p < 0.001) and rACC (r = − 0.28, 95 
% CI = − 0.40 to − 0.17, p < 0.001) thickness, hippocampal volume (r =
− 0.15, 95 % CI = − 0.28 to − 0.01, p = 0.037), and total GMV (r = − 0.26, 
95 % CI = − 0.36 to − 0.17, p < 0.001). 

3.4. Effect of age and sex 

Across samples, thickness of the mOFC and rACC showed a linear 
negative association with age (Fig. S3). Hippocampal volume was rela-
tively stable until about 60 years and then showed a decline with age. No 
consistent patterns were observed when plotting associations between 
depressive symptoms and brain structure separately for different age 
groups (18–39, 40–59, 60 or more years), for both population-based and 
patient-control cohorts (Fig. 3 and Table S3). However, no estimations 
could be made for late life (60 or more years) in patient-control cohorts, 
due to limited number of participants in this age group (Table S4). Also 
when splitting the oldest age group into two additional age bins of 60 to 
69 years and 70 years or older, no differences were observed between 
age groups. 

Similarly, no consistently different patterns were visible when plot-
ting associations between depressive symptoms and brain structures 
separately per sex (Fig. S4 and Table S3). Meta-regressions showed that 
proportion of women per cohort did not influence results (Table S5). 

4. Discussion 

We investigated associations of depressive symptom severity and 
depression scale derived depression status, measured at the time of scan, 
with four brain structures, by pooling data of 3,449 participants from 
eight European cohorts. In clinical patient-control cohorts, depressive 
symptoms and depression status were significantly associated with 
lower mOFC, rACC thickness, hippocampal volume and total GMV, 
albeit effect sizes were small. In population-based cohorts, no consistent 
associations of the included brain regions with depressive symptoms 
were found, suggesting that the structural brain differences found in this 
study are limited to clinical samples. Associations were similar across 
age groups and for men and women. 

Depressive symptom scores, as well as mild-to-severe depression 
status, were associated with lower mOFC and rACC thickness, and with 
lower hippocampal volume in patient-control cohorts. This may indicate 
a dose–response relationship and is in line with large meta-analyses 
relating clinical depression to lower mOFC and rACC thickness 
(Schmaal et al., 2017) and lower hippocampal volume (Schmaal et al., 
2016). When comparing effect sizes of the current study and the meta- 
analyses by Schmaal et al. (Schmaal et al., 2016; Schmaal et al., 2017) 
by calculating Cohen’s d based on the pooled correlation coefficients of 
our analyses on mild-to-severe depression within the patient-control 
cohorts, the effect sizes of the current study were slightly larger than 

Fig. 2. Forest plots: Associations of mild-to-severe depression vs no depression with brain structure. Forest plots illustrating the associations of mild-to-severe 
depression compared to no depression with thickness of medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), and hippocampal and 
total grey matter volume in the different cohorts (coloured circles), with random model pooled effect sizes (black diamonds) separately across population-based and 
patient-control cohorts (adjusted for age, sex, scanner and volumetric measures for intracranial volume). Horizontal lines represent 95% confidence intervals (CI). 
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those observed by Schmaal et al. (Schmaal et al., 2016; Schmaal et al., 
2017) (mOFC: − 0.3 vs − 0.13 (left and right), rACC: − 0.41 vs − 0.13 
(left)/0.10 (right), hippocampus: − 0.25 vs − 0.14). More severe 
depressive symptoms and the presence of depression were unexpectedly 
also related to lower total GMV in the patient-control cohorts. This may 
indicate that depression could also be associated with global brain dif-
ferences. Findings on associations of global brain measures and 
depression are inconsistent. While one meta-analysis (Arnone et al., 
2016) did not find any associations with global brain measures, such as 
whole brain grey matter, another study (Patel et al., 2015) reported 
whole brain measures to predict late life depression. The association of 
lower total GMV with depression could also be driven by the region- 

specific effects that we found or potential other localized (unilateral) 
effects of brain regions that were not included in the current study. 
Previously reported results on these regions not included in our study 
were inconsistent and had smaller effect sizes (Arnone et al., 2016; 
Schmaal et al., 2016; Schmaal et al., 2017). More research is needed to 
confirm widespread differences of the brain in relation to depression. 

In population-based cohorts, no consistent associations were found 
between depression and the examined brain measures. The absence of 
consistent associations between depression and regional measures in 
population-based cohorts is not in line with some other studies 
demonstrating associations with mild depressive symptoms (Besteher 
et al., 2020). However, in those studies only associations with certain 

Fig. 3. Associations of depressive symptoms with thickness of mOFC, rACC and hippocampal volume per age category. Forest plots illustrating the associations of 
depressive symptom scores with thickness of medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), and hippocampal and total grey matter 
volume in the different cohorts (coloured circles), with random model pooled effect sizes (black diamonds) across the age categories (18–39 years, 40–59 years, 60 or 
more years) (adjusted for sex, scanner and volumetric measures for intracranial volume). Horizontal lines represent 95 % confidence intervals (CI). 
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brain regions such as OFC and ACC were observed, but not with the 
hippocampus (Webb et al., 2014; Dotson et al., 2009; Taki et al., 2005). 
An earlier study from one of the included samples (Whitehall-II) also 
found no association between depressive symptoms and global grey 
matter measures (Allan et al., 2016). The absence of associations in 
population-based cohorts could be due to the low level of depressive 
symptoms in these samples, with only relatively few participants having 
mild or moderate-to-severe depression. Between 3 % and 16 % had at 
least mild depressive symptoms and less than 3 % had at least moderate 
depressive symptoms. This is lower than the estimated prevalence of 
depression in the general population of 4.4 % (World Health Organi-
zation, 2017) which could partly be explained by exclusion of partici-
pants with a psychiatric history in some of the population-based cohorts. 
However, our findings could also suggest that the mild depressive 
symptoms most often observed in the general population are not related 
to differences in the brain structures we investigated. Depressive 
symptoms in the population-based samples could be more of a state 
measure not related to differences in brain structure but careful inter-
pretation of the findings is warranted as levels of depression are low. 

Taken together, our findings suggest that lower thickness and vol-
umes of the investigated brain regions are only associated with clinical 
levels of depression and not with mild depressive symptoms. Compared 
to milder depressive symptoms, clinical depression is more heritable, 
has an earlier period of development with a peak in adolescence, is a 
more severe and often a chronic, recurrent condition and related to 
several neurobiological dysregulations (Otte et al., 2016). The observed 
brain differences could therefore be related to these characteristics of 
clinical depression. Lower thickness and volume could be a consequence 
of depression episodes and be related to other disturbances also seen in 
depression, such as inflammation (Byrne et al., 2016), lower brain- 
derived neurotrophic factor (BDNF) levels (Polyakova et al., 2020), or 
increased activity of HPA-axis related processes (Frodl and O’Keane, 
2013). On the other hand, lower thickness and volume might also be 
related to risk factors indicating vulnerability for developing depression, 
such as familial risk (Zhang et al., 2020) or (early) life stress (Ho and 
King, 2021; Frodl et al., 2017), which might underlie both development 
of depression as well as the mean brain differences seen in depression. 
However, whether brain differences reflect vulnerability or long-term 
‘scarring’ consequences cannot be concluded from our cross-sectional 
study. Longitudinal studies have suggested that differences might be 
related to depression onset or vulnerability rather than be the result of 
depressive episodes (Binnewies et al., 2021; Demnitz et al., 2020), 
although findings are inconsistent (Dohm et al., 2017). 

While age was negatively associated with brain structure across 
studies, especially with hippocampal volume and total GMV (Fig. S3), 
associations of depression with brain measures were consistent across 
age groups. Within the oldest group (60 years or older), no consistent 
associations were found in the population-based cohorts, even when we 
split the age group in 60 to 70 years and 70 years and older. Further-
more, results were consistent for men and women, in line with lack of 
sex-differences previously observed in ENIGMA meta-analyses (Schmaal 
et al., 2016; Schmaal et al., 2017). 

Some limitations of the current study should be kept in mind. In the 
population-based cohorts, the prevalence of depression was lower than 
expected based on general population prevalence, potentially due to 
selection bias in the studies, as history of psychiatric illness was an 
exclusion criterion in some of the studies. However, given the large 
sample size of the population-based cohorts, it is unlikely that null 
findings are only due to limited number of depressed cases. There may 
also be a sampling bias in the population-based studies as participants 
may not take part in research when currently not feeling well which may 
not be the case for participants of patient-control studies which may be 
included in a clinical setting. Also, depression status was based on 
depression scales and not clinician-rated instruments measuring clinical 
depression. However, validated cut-offs were used to determine 
thresholds for depression status. For most of the population-based 

cohorts, information on clinical characteristics such as use of antide-
pressant medication or (history of) mental disorders was limited. Thus, 
although their influence is likely limited, these factors could not be 
accounted for as potentially influencing associations in the current 
study. For some of the population-based cohorts, antidepressant-use was 
an exclusion criterion, while data on antidepressant-use was not avail-
able for the other population-based cohorts. Associations between 
depression and the included brain structures in the patient-control co-
horts are not likely to be influenced by current antidepressant-use; in 
MOTAR participants with current antidepressant-use were excluded, 
and in NESDA we have previously shown that correcting for 
antidepressant-use did not change associations of depression and the 
included brain regions of interest (Binnewies et al., 2021). Another 
limitation is that the age range of the patient-control cohorts was mainly 
restricted to young and middle-aged adults, but older age groups were 
well represented in the population-based cohorts, and that only two 
patient-control cohorts were included. Yet, our findings can still be 
relevant as the cohorts were well phenotyped and clinically homoge-
nous. Also, other factors potentially influencing both depression as well 
as brain measures, such as stress or lifestyle, were not taken into 
account. 

For the current study, we restricted the number of regions of interest 
and only included regions that have been most strongly linked with 
depression (Arnone et al., 2016; Schmaal et al., 2016; Schmaal et al., 
2017) as we expected rather small effect sizes based on earlier studies on 
(clinical) depression (Schmaal et al., 2016; Schmaal et al., 2017), limited 
depressive symptoms in the population-based cohorts, and relatively 
small samples including participants with clinical depression. Poten-
tially, methodological differences between studies may have induced 
bias, such as different Freesurfer versions, scanner parameters, or 
depression instruments. Where possible, we have tried to account for 
these differences by choosing similar depression instruments, perform-
ing meta-regressions, and controlling for confounders, which all sug-
gested that these factors did not influence our results. Another potential 
methodological limitation is the use of age groups to explore effects of 
age on associations of depression and the included brain structures. 
While other approaches for analysing age effects, such as meta- 
regression or interaction analyses might often be preferable, dividing 
the cohorts into age groups was the best approach for the current study 
due to the differences in mean age and age ranges across cohorts. 

Future studies should investigate clinical as well as mild depression 
in broad age ranges, including adequate sample sizes of children as well 
as the oldest age groups, to further explore potential age effects. Future 
studies would benefit from including more brain regions and more 
detailed information on (characteristics of) potential clinical depression, 
such as age of onset, recurrence of potential clinical depression and 
antidepressant medication, when investigating population-based co-
horts. Despite these limitations, the strengths of our study include the 
large sample size, inclusion of cohorts with different populations, access 
to individual level data from all samples allowing for structured and 
consistent data analyses across cohorts, and the inclusion of population- 
based as well as patient-control cohorts, allowing for investigation of 
associations within and across these populations. 

To conclude, using pooled analyses we found that only in clinical 
cohorts but not in population-based cohorts, depression was modestly 
associated with lower thickness of mOFC and rACC, and hippocampal 
and total grey matter volume. These effects were also consistent over the 
adult lifespan and between sexes. This suggests that only in clinical 
populations, with more severe depressive symptoms, significant struc-
tural brain differences are detectable, whereas this is not the case for the 
more prevalent milder depressive symptoms seen in population-based 
samples. Differences in brain structure could be related to vulnera-
bility or characteristics of clinical depression such as chronicity or 
severity, or be a long-term consequence of clinical depression, and more 
research is needed to gain further insight into the association between 
clinical depression and brain structure. 
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