English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

MPS-Authors
/persons/resource/persons192484

Riesenberg,  Stephan       
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;
The Leipzig School of Human Origins (IMPRS), Max Planck Institute for Evolutionary Anthropology, Max Planck Society;
Genome Engineering and Repair, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

/persons/resource/persons72834

Maricic,  Tomislav       
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

/persons/resource/persons72897

Pääbo,  Svante       
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pinson, A., Xing, L., Namba, T., Kalebic, N., Peters, J., Oegema, C. E., et al. (2022). Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science, 377(6611): eabl6422, pp. 1170. doi:10.1126/science.abl6422.


Cite as: https://hdl.handle.net/21.11116/0000-000B-00A7-8
Abstract
Neanderthal brains were similar in size to those of modern humans but differed in shape. What we cannot tell from fossils is how Neanderthal brains might have differed in function or organization of brain layers such as the neocortex. Pinson et al. have now analyzed the effect of a single amino acid change in the transketolase-like 1 (TKTL1) protein on production of basal radial glia, the workhorses that generate much of the neocortex (see the Perspective by Malgrange and Nguyen). Modern humans differ from apes and Neanderthals by this single amino acid change. When placed in organoids or overexpressed in nonhuman brains, the human variant of TKTL1 drove more generation of neuroprogenitors than did the archaic variant. The authors suggest that the modern human has more neocortex to work with than the ancient Neanderthal did.