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We explore a simple but extremely predictive extension of the scotogenic model. We promote the

scotogenic symmetry Z2 to the flavour non-Abelian symmetry Σ(81), which can also automatically

protect dark matter stability. In addition, Σ(81) leads to striking predictions in the lepton sector:

only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be mlightest ≈
7.5 × 10−4 eV and the Majorana phases are correlated in such a way that |mee| ≈ 0.018 eV. The

model also leads to a strong correlation between the solar mixing angle θ12 and δCP , which may

be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the

sense that no additional symmetries or flavons are required.

I. INTRODUCTION

Motivated by two fundamental problems of particle and astroparticle physics, namely the origin of neutrino

masses [1–9] and the nature of dark matter [10], there has been a great effort to relate them within a single,

predictive framework. Unarguably, they both point towards the presence of physics beyond the Standard Model

(SM), presumably with the addition of new particles and symmetries that account for a mass mechanism for

neutrinos, a viable dark matter candidate and its stability.

An economical approach to combine all these appealing properties is to consider radiative neutrino mass

models [11–18] (for a review see [19]). In this kind of models, fields running in a loop generate neutrino masses,

giving rise to two clearly distinguishable particle sectors, one of which can be associated to a dark sector by

means of a symmetry. The stability of the dark matter candidate, i.e. the lightest of the particles belonging

to the dark sector, is determined by the transformation properties of the SM fields and the dark sector under

symmetries [20–22]. In the most simple scenarios, the SM fields transform only under an invariant subgroup of

the symmetry, while any particle beyond those of the SM not belonging to this subgroup will not be able to

decay solely to the SM, i.e. it will be part of the dark sector. A popular implementation of this principle is the

scotogenic model [23] and its many variants (see for instance [24–33]).

While a large number of models built following the described approach are consistent with experimental

data from neutrino oscillations and bounds from dark matter searches, there are further unknowns about

fundamental particles that are also important to address. The SM lacks a suitable theoretical explanation for

the masses and the mixing pattern of fermions. Furthermore, the majority of input parameters of the SM are
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directly related to this flavour puzzle. The lepton mixing angles, being large and with a completely different

structure in comparison to their analogues in the quark sector, manifest the lack of a first principle explanation

of the flavour phenomenology [34–36]. Here is where flavour symmetries can play a major role in explaining

such mixing patterns and mass hierarchies.1 By means of imposing a flavour symmetry between the three

generations it is possible to predict strong correlations between different observables. This is essential for a

flavour symmetry model to be verifiable.

In this paper we build a model for radiative neutrino masses with a flavour symmetry Σ(81). We focus on

such a discrete group due to an interesting feature: Σ(81) contains a non-trivial subgroup formed by the singlets

and one of the triplet representations. This ensures, as we will show in section IV, that for a reasonable choice of

the transformation properties of the field content under the flavour symmetry, one can straightforwardly obtain

a stable dark matter candidate. Thus, providing a natural framework to account for dark matter stability along

with light radiative Majorana neutrino masses through a scotogenic-like mechanism. Other works with flavoured

stability are, for example, [39–42].

A more conventional role played by Σ(81) symmetry is to strongly constrain the structure of the mass matri-

ces of fermions, leading to strong predictions that can be tested in the following years by the next generation

of neutrino oscillation [43–47], and neutrinoless double beta decay experiments [48–53]. While the idea of

imposing a flavour symmetry is certainly not new, we will show that our setup has a series of attractive and

unique features, namely explaining the lepton mixing pattern, as well as predicting the absolute mass scale of

neutrinos, their ordering and the Majorana phases, and therefore leading to a definite prediction for neutrinoless

double beta decay (0νee). Moreover, this is obtained without the need of extra flavons, i.e. extra scalars that

further break the flavour symmetry. In our setup the breaking of the flavour symmetry is done by extending

the number of Higgs doublets, as a variant of a 3HDM [54–60] and giving them non-trivial charges under Σ(81).

The paper is structured as follows: in section II we present the model setup, i.e. the field content, the

charges under the SM gauge group and flavour symmetry and discuss some of its most important attributes.

In section III we delve into its most important phenomenological predictions: absolute neutrino mass scale and

ordering, strong correlations between oscillation observables and the implications for neutrinoless double beta

decay. In section IV we explicitly flesh out the non-Abelian stability mechanism provided by Σ(81). The paper

then closes with a short summary and conclusions. Details about the symmetry group Σ(81) are relegated to

Appendix A.

II. THE MODEL SETUP

We extend the Standard Model gauge symmetry SU(3)C × SU(2)L ×U(1)Y by a global, discrete flavour group

Σ(81). This group is of the type Σ(3N3) and contains 9 singlets and 4 complex triplets, denoted as 1(i,j) with

i, j = 0, 1, 2 and 3X(3̄X) with X = A,B,C,D (see Appendix A for details). The irreducible representations

3D (3̄D), together with the singlets, form a closed set under tensor products, implying that if every Standard

Model field transforms as 3D, 3̄D or as one of the singlets, then any field transforming as 3A,B,C and their

conjugates, will belong to the dark sector. The lightest among them will then be a dark matter candidate. This

relation between Σ(81) and dark matter will be further discussed in section IV.

1 While there is a vast bibliography on this topic, we direct the interested readers to the reviews [37, 38].
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Fields SU(3)C × SU(2)L ×U(1)Y Σ(81)

V
is

ib
le L (1,2,−1/2) 3D

`R (1,1,−1) 3̄D

H (1,2, 1/2) 3̄D

D
a
rk

NL,R (1,1, 0) 3A

η (1,2, 1/2) 3A

φ (1,2, 1/2) 3̄A

TABLE I. Particle content and symmetry transformation properties under the SM gauge group and the flavour symmetry Σ(81).

Note that the fields of the visible sector transform as 3D, 3̄D or 1(i,j), while the dark sector transforms as 3A or 3̄A. The lightest

particle of the dark sector will be automatically stable. See text for details.

The field content of the SM is extended by adding a vector-like singlet N and two Higgs-like scalars, trans-

forming non-trivially under Σ(81). All the fields and charges are given in table I. Comparing to the original

scotogenic model [23], new fields were also required to generate neutrino masses at one-loop with Σ(81). While

for the simple Z2 symmetry of the scotogenic model, any product of an odd field under Z2 times itself transforms

as a singlet under Z2, this is not the case for any of the triplet representations of Σ(81). For this reason, one

needs to promote the right-handed neutrino to a vector-like fermion and, on a similar footing, two copies of the

inert doublet Higgs are required, η and φ.

For simplicity, we split the most relevant parts of the Lagrangian as,

L ⊃ LVY + LDY − Vs , (1)

where the scalar potential is further divided into parts, for convenience, as Vs = Vν+Vsoft + ... . The first part of

the potential contains the scalar interactions that enter in the neutrino mass, the second of soft breaking terms

of mass dimension 2 and “...” denotes the rest of the usual four-scalar interactions, that are not interesting for

the purpose of our discussion.

The soft breaking terms in Vsoft are of the form,

Vsoft = µ2
ij H

†
iHj , (2)

and break the flavour symmetry Σ(81) at the dimension two level. These terms are necessary in order to satisfy

phenomenological bounds. On the one hand, the addition of these terms allow a deviation from symmetrical

vacuum expectation value (VEV) alignments. On the other hand, they are needed in order to decouple the

heavier physical Higgs scalars and suppress FCNC [61].

A. Charged lepton masses

In this section, we derive the mass matrix for the charged leptons given the particle content of table I. The

relevant piece of the Lagrangian in equation (1) is the first term, which contains the Yukawa interaction terms

among fields of the visible sector. To make the derivation clearer, all terms have been expanded in Σ(81)

components, for example, L = (L1, L2, L3)T, and similarly for the other triplets, following the tensor products

given in the second edition of the book “An Introduction to Non-Abelian Discrete Symmetries for Particle

Physicists” [62] (see also appendix A for more details). In this way, it is made explicit in the Lagrangian itself
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FIG. 1. Diagram generating neutrino masses at one-loop in our model, analogous to the original scotogenic model. Fields

running in the loop are charged as 3A or 3̄A under Σ(81), while fields in the external legs (SM) transform as 3D or 3̄D.

that several contractions may lead to a singlet under Σ(81). For instance, three triplets 3D have three different

contractions to an invariant singlet 1(0,0).

The Yukawa interactions among the visible sector are given by,

LVY = Y e1

3∑
i=1

L̄i`RiHi (3)

+ Y e2
(
L̄1`R3

H2 + L̄2`R1
H3 + L̄3`R2

H1

)
+ Y e3

(
L̄1`R2

H3 + L̄2`R3
H1 + L̄3`R1

H2

)
+ h.c. ,

where SU(2)L indices and contractions have been omitted for simplicity.

After electroweak symmetry breaking (EWSB) the Lagrangian LVY in last equation gives rise to the mass

matrix for charged leptons,

Me =
1√
2

 Y e1 v1 Y e3 v3 Y e2 v2

Y e2 v3 Y e1 v2 Y e3 v1

Y e3 v2 Y e2 v1 Y e1 v3

 , (4)

in the basis {(L1, L2, L3), (`R1 , `R2 , `R3)}, with the vacuum expectation values of the Higgs defined as, 〈Hi〉 =

vi/
√

2 and
∑
i v

2
i = v2

SM the Standard Model VEV. The mass matrix Me is then diagonalised by the unitary

rotations U` and V` as,

M̂e = U†`MeV`, with L→ U` L, `R → V` `R , M̂e = diag(me,mµ,mτ ) . (5)

B. Neutrino masses

The term LDY in the RHS of equation (1), describes the interactions with the fields of the dark sector. This

piece, together with the scalar potential, will give rise to the one-loop neutrino mass diagram depicted in figure 1

and its corresponding mass matrix.
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This term in the Lagrangian is given by,

LDY = MN

(
N̄L1

NR1
+ N̄L2

NR2
+ N̄L3

NR3

)
(6)

+ Y N1
(
L1N̄R2

η1 + L2N̄R3
η2 + L3N̄R1

η3

)
+ Y N2 (L1NL1

φ2 + L2NL2
φ3 + L3NL3

φ1)

+ h.c. .

While the relevant scalar couplings, analogous to the λ5 interaction from the original scotogenic model [23], are

Vν = λ
(1)
5

[
(H1η

†
2)(H1φ

†
1) + (H2η

†
3)(H2φ

†
2) + (H3η

†
1)(H3φ

†
3)
]

+ λ
(2)
5

[
(H1η

†
1)(H2φ

†
3) + (H1η

†
3)(H3φ

†
2) + (H2η

†
2)(H3φ

†
1)
]

+ h.c. . (7)

The expansion in components of Σ(81) makes explicit that not every entry of the neutrino mass matrix will be

generated. In fact, there are only six possible diagrams with different Σ(81) components outside the loop and

running in it. After EWSB, the resultant neutrino mass matrix is of the form,

Mν ∼
1

2

 0 C1v
2
3 + C2v1v2 C1v

2
2 + C2v1v3

C1v
2
3 + C2v1v2 0 C1v

2
1 + C2v2v3

C1v
2
2 + C2v1v3 C1v

2
1 + C2v2v3 0

 . (8)

For the sake of clarity, we have assigned colours to each entry of the matrix and to its corresponding terms in

the Lagrangian LDY and the scalar potential Vν in equations (6) and (7) respectively. The coefficients Ca are

obtained by computing the different diagrams of the type of figure 1 that contribute,

Ca ∼
1

16π2

λ
(a)
5 (Y N1 ) (Y N2 )

MN
. (9)

A very remarkable feature of the UV-realisation with Σ(81) that we present here, is the fact that the neutrino

matrix is exactly traceless with vanishing diagonal entries. This feature is protected by the symmetry and yields

several strong predictions in the neutrino sector, as we will discuss in the next section.

The matrix in equation (8) coefficients Ca correspond to the dominant contribution. The neutrino mass

matrix is, in general, given by,

(Mν)αβ =
1

16π2
(Y N1 )βij (Y N2 )αijMN

∑
X=R,I

σX (UαX)1i (UαX)i2B0(0,MN ,m
2
Xi) , (10)

where σR,I = ±1. The expression for the neutrino mass matrix (10) is very similar to that of the original

scotogenic model, where after electroweak symmetry breaking the neutral part of the scalar doublet in the loop

splits into its CP -even and CP -odd components (denoted as R and I, respectively) due to the quartic coupling

λ5. The result is the sum of two B0 Passarino-Veltman loop functions [63] with a relative minus sign. Also,

similar to the generalised scotogenic models with several scalars [64], the mixing among the different scalar

doublets in the loop need to be considered. The main subtlety is that, given the flavour symmetry Σ(81), not

every coupling is allowed. The only non-zero Yukawa couplings are (Y N1 )112 = (Y N1 )223 = (Y N1 )331 = Y N1
and (Y N2 )121 = (Y N2 )232 = (Y N2 )313 = Y N2 . While the mass matrices mixing the neutral components of the

scalars can be trivially obtained from (7), with diagonalising matrices UαR and UαI , for the CP -even and odd

components respectively, in the basis (ηα, φk). Note that again Σ(81) only allows the mixing among specific

pairs of η and φ (see the scalar potential (7)).
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III. PREDICTIONS

The neutrino mass matrix in equation (8) is diagonalised as,

UTν Mν Uν = diag(m1,m2,m3) , (11)

where Uν is the neutrino unitary mixing matrix and mi are the neutrino masses. In the Normal Ordering case

m1 > m2 > m3, while in the Inverted Ordering case m2 > m1 > m3.

Considering both equations (5) and (11) we obtain the lepton mixing matrix,

Ulep = U†` Uν . (12)

Ulep is constrained by neutrino oscillation experiments. We choose the so-called symmetric parametrisation of

a general unitary matrix [5, 65],

Ulep = P (δ1, δ2, δ3)U23(θ23, φ23)U13(θ13, φ13)U12(θ12, φ12) , (13)

where P (δ1, δ2, δ3) is a diagonal matrix of unphysical phases and the Uij are complex rotations in the ij plane,

as for example,

U23(θ23, φ23) =

1 0 0

0 cos θ23 sin θ23 e
−iφ23

0 − sin θ23 e
iφ23 cos θ23

 . (14)

The phases φ12 and φ13 are relevant for neutrinoless double beta decay while the combination δCP = φ13 −
φ12 − φ23 is the usual Dirac CP phase measured in neutrino oscillations.

Before going into the numerical results, let us note an interesting analytical property of the matrix (8). The

shape of this mass matrix, due to the Σ(81) flavour symmetry, implies that the neutrino masses satisfy the

relation,

1

2

∑
mi = mheaviest , (15)

where mheaviest is the heaviest neutrino mass. Equation (15) is actually a general prediction for a complex,

symmetric, diagonal-less neutrino mass matrix. If we call such a mass matrix A and define it in general as,

A =

0 a b

a 0 c

b c 0

 , with a, b, c ∈ C , (16)

diagonalised as usual by

UTAU = md = diagonal(m1,m2,m3) , (17)

U†A†AU = m2
d , (18)

where md is real, diagonal and positive. With this definition the traces of the matrices A†A and (A†A)2 can be

computed straightforwardly,

Tr(A†A) = 2(|a|2 + |b|2 + |c|2) = m2
1 +m2

2 +m2
3 , (19)

Tr
[
(A†A)2

]
= 2(|a|2 + |b|2 + |c|2)2 = m4

1 +m4
2 +m4

3 . (20)
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These traces fulfill the general relation,

1

2

[
Tr(A†A)

]2
= Tr

[
(A†A)2

]
, (21)

which translated to the mass eigenvalues reads,

m2
3 = (m1 ±m2)2 . (22)

Since mi are real and positive, only one solution survives after specifying the ordering. In particular,

mNO
3 = mNO

1 +mNO
2 , (23)

mIO
2 = mIO

1 +mIO
3 , (24)

or in general, irrespective of the ordering, the sum rule (15).

Neutrino oscillations measure the mass squared differences of neutrino masses [66–71], which in combination

with the mass sum rules (23) and (24), lead to the prediction of the absolute scale of the neutrino masses:

mNO
lightest ≈ 2.8× 10−2 eV , (25)

mIO
lightest ≈ 7.5× 10−4 eV . (26)

Both values are well below cosmological bounds [72] and direct measurements of neutrino mass [73, 74].

Note, however, that the neutrino mass matrix in equation (8) is more restricted than the matrix in equation

(16). In particular, the strong hierarchy in the masses of the charged leptons implies a strong hierarchy between

the VEVs of the Higgs doublets, further restricting the neutrino mass matrix. We have performed a numerical

scan and found the following results and predictions for both orderings.

A. Inverted ordering

In the Inverted Ordering case, a strong correlation appears between θ12 and δCP when the charged lepton

and neutrino masses, as well as the angles θ13 and θ23, are fitted to the experimental values. As can be seen in

figure 2, the model can accommodate all oscillation observables inside their 3σ ranges, with a slight tension in

the θ12 vs δCP plane. However, it is worth noting that the best fit point of δCP in the global fit of is very sensible

to new data sets and new data from the Nova collaboration [69] may change the picture in 2022. Moreover,

we are using the global fit [75] to produce the plots, although the other two global fits [76, 77] yield slightly

lower values for δCP , thus reducing the tension of the model. Taking θ12 alone, we can see that the model can

accommodate θ12 ≈ θbest fit
12 if δCP ≈ π. In other words, this model prediction may be tested in the following

data releases of neutrino oscillation experiments. Furthermore, the Majorana phases φ12 and φ13, relevant for

neutrinoless beta decay experiments, also obtain a strong correlation, as seen in figure 3.

The striking similarities between these correlations and the ones in [78, 79] may indicate that our setup leads

to the partial conservation of some of the TBM symmetries of the neutrino mass matrix.

For neutrinoless double beta decay, if the Majorana neutrino mass mechanism is the dominant contribution

to 0νββ, its rate will be proportional to the quantity |mee|, given by,

|mee| =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ = |c212c
2
13m1 + s2

12c
2
13e

2iφ12m2 + s2
13e

2iφ13m3| . (27)
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FIG. 2. Correlation between θ12 and δCP in the IO case when the other observables are fitted inside their 3σ experimental

ranges: charged lepton masses, neutrino squared mass differences, θ13 and θ23. The 3σ tension in the combined θ12−δCP
plane may be relieved if δCP is measured to be around CP conserving values. In that case, θ12 would lie in its 1σ

experimental region. χ2 profiles extracted from the global fit [75].

In our model the Majorana phases are approximately fixed as φ12 ≈ 0.45π and φ13 ≈ 0.12π, while the neutrino

masses are also predicted to be around m3 ≈ 7.51×10−4 eV, m1 ≈ 4.95×10−2 eV, m2 ≈ 5.02×10−2 eV. Small

deviations from these values are possible due to the experimental uncertainty on ∆m2
ij and the variance in φij .

This automatically leads to a definite prediction of |mee| in our model:

|mmodel
ee | ≈ 0.018 eV , (28)

Note that the term with φ13 in (27) interferes constructively to |mee| but is strongly suppressed by s2
13m3, while

the term with φ12 interferes destructively. This is why the allowed points in the model are in the lower region of

|mee| as seen in figure 4. The nEXO experiment is expected to test this model prediction in the future [80, 81].

B. Normal ordering

In the Normal Ordering case, after imposing the correct charged lepton and neutrino masses at 3σ, a strong

correlation appears between the mixing angles θ23 and θ13 in the neutrino sector. This correlation is not

compatible with experimental constraints by more than 7σ, as can be seen in figure 5. Therefore, Normal

Ordering of neutrino masses cannot be realised in this model.
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FIG. 3. Correlations between physical phases in the IO case. Left up: Correlation between φ12 and δCP . Right up:

Correlation between φ12 and δCP . Down: Correlation between the Majorana phases φ13 and φ13. In all the plots blue

dots arise when the other observables are fitted inside their 3σ experimental ranges except for θ12 and δCP , which are free.

In addition, purple dots fit θ12 and red dots also fit δCP at the 3σ level. By imposing all the experimental constraints,

the model predicts δCP ≈ 1.2π, φ12 ≈ 0.45π and φ13 ≈ 0.12π plus a small variance.

IV. DARK MATTER STABILITY

The Σ(81) flavour symmetry has the additional property of stabilizing the lightest of the dark sector fields.

In order to see how this mechanism works, we must first note that the singlets 1(i,j) and the 3D, 3̄D triplets

form a closed subset under the tensor products, i.e.

1(i,j) × 1(k,l) = 1(i+k, j+l), 1(i,j) × 3(3̄)D = 3(3̄)D, (29)

3(3̄)D × 3(3̄)D = 3̄(3)D, 3D × 3̄D = 1(i,j) . (30)

We start by imposing the condition that all of the visible sector fields, i.e. the Standard Model fermions and

Higgs, transform as either 1(i,j), 3D or 3̄D. This automatically implies that any effective operator formed by

any arbitrary combination of SM particles, Ovisible, will still transform under the same subgroup, i.e. as 1(i,j),

3D or 3̄D.
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FIG. 4. |mee| is restricted to a small region in this model. The reason is that mlight and the Majorana phases are

predicted, as well as the ordering. The deviation from a single point comes from the experimental uncertainties in ∆m2
ij

and a small variance in φij . The current experimental constraints are given by KamLAND [48] and Planck [72]. In the

future, nEXO is expected to have enough sensitivity to completely rule out the inverted ordering region [81].

FIG. 5. Model prediction in the NO case. The correlation between θ13 and θ23 is incompatible with current experimental

constraints at more than 7σ. χ2 profiles extracted from the global fit [75].

Consider now a field η belonging to the dark sector and transforming as, for example, 3A. It is clear that the

effective operator η .Ovisible cannot be invariant under Σ(81), because no operator of the type Ovisible transforms

as 3̄A.

In conclusion, any symmetry invariant decay operator of a particle belonging to the dark sector must involve,

at least, one dark sector particle in the final state and, thus, the lightest of them will necessarily be stable (see
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FIG. 6. Stability diagrams of the dark matter sector in the model. The lightest particle charged as 3(3̄)A,B,C cannot

decay into only Standard Model fields. Left: allowed decay channels for a dark sector particle will necessarily include at

least one dark sector particle in the final state (if kinematically allowed). Right: the lightest dark sector particle cannot

decay into Standard Model particles due to the flavour symmetry, thus ensuring its stability.

figure 6). In our model the dark matter could be either the lightest neutral mass eigenstate of the scalars η, φ

or the vector-like fermion N , if lighter than the scalars.

Note that this is a generalised, non-Abelian version of the original scotogenic mechanism of [23], where the

stability of the dark matter candidate is enforced by a Z2 symmetry. This mechanism was extended to Abelian

symmetries in [20, 21].

V. CONCLUSIONS

We have presented a simple but extremely predictive variant of the scotogenic model. We promoted the

scotogenic Z2 symmetry of the original work to a non-Abelian Σ(81) symmetry, which will satisfy the same

role of stabilizing the dark matter candidates running in the neutrino mass loop. We considered that leptons,

as well as the Higgs doublet H, transform as triplets under the flavour symmetry, thus, resembling a 3HDM.

These three scalar doublets are responsible for all the spontaneous symmetry breaking, which implies that the

model does not need extra flavons in order to fit the experimental data. We found that such a model can, not

only satisfy the current experimental constraints, but also lead to very strong and testable predictions in the

close future. Fitting the charged lepton masses, θ13 and θ23 inside their 3σ allowed ranges, we automatically

obtained the following predictions:

• Neutrino mass sum rule: 1
2

∑
mi = mheaviest.

• Only Inverted Ordering is realised.

• These two conditions together lead to mlightest ≈ 7.5 × 10−4 eV, with some small deviations due to

experimental uncertainty in ∆m2
ij .

• Strong correlation between θ12 and δCP as shown in figure 2, testable in the near future [82, 83].

• Majorana phases predicted to be around φ12 ≈ 0.45π and φ13 ≈ 0.12π, when all the other observables are

in their experimental allowed ranges (see figure 3).
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• The prediction of the Majorana phases and mlightest lead to |mee| ≈ 0.018 eV, testable in future neutri-

noless double beta decay experiments [81] (see figure 4).

• The flavour symmetry Σ(81) ensures the stability of the dark matter candidate, which could be either

fermionic or scalar. No other symmetries are required apart from the Standard Model gauge symmetries

and the spontaneous symmetry breaking comes solely from the three Higgs gauge doublets arranged into

a flavour triplet.

Appendix A: Σ(81) Group

The group Σ(81) is a discrete, non-Abelian subgroup of SU(3) and belongs to the family of groups Σ(3N3).

It has four generators denoted by a, a′, a′′, and b, which fulfill the relations,

a3 = a′
3

= a′′
3

= 1, aa′ = a′a, aa′′ = a′′a, a′a′′ = a′′a′, (A1)

b3 = 1, b2ab = a′′, b2a′′b = a′, b2a′b = a. (A2)

All the elements of Σ(81) can be written in terms of the four generators as,

∀g ∈ Σ(81), g = bkana′
n
a′′
l
, with k, n, n, l = 0, 1, 2. (A3)

The representations of Σ(81) used for the fields multiplets in this model are 3A, 3̄A, 3D, and 3̄D. We choose

the following basis for these representations: in the 3̄A,

b =

0 1 0

0 0 1

1 0 0

 , a =

ω 0 0

0 1 0

0 0 1

 , a′ =

1 0 0

0 1 0

0 0 ω

 , a′′ =

1 0 0

0 ω 0

0 0 1

 , (A4)

where ω = ei
2π/3. In the 3̄D representation,

b =

0 1 0

0 0 1

1 0 0

 , a =

ω2 0 0

0 1 0

0 0 ω

 , a′ =

1 0 0

0 ω 0

0 0 ω2

 , a′′ =

ω 0 0

0 ω2 0

0 0 1

 . (A5)

Notice that the generators in the 3A representation are the complex conjugate of the generators in the 3̄A, and

similarly between the 3D, and 3̄D.

It is worth showing explicitly one of the key properties of Σ(81) that give rise to dark matter stability in the

model presented, i.e. the singlet irreps together with 3D and 3̄D form a close subgroup. This can be seen by

looking at the products (A7)-(A11).

1(k,l) × 3D(3̄D) = 3D(3̄D) , 3D × 3D = 3̄D + 3̄D + 3̄D , 3D × 3̄D = 1(k,l) , (A6)

with k, l = 0, 1, 2.

Expanding in components in the basis defined by (A4) and (A5), we have the tensor products,x1

x2

x3


3D

⊗

y1

y2

y3


3̄D

=
∑

k=0,1,2

[(x1y1 + ω2kx2y2 + ωkx3y3)1(k,0)
⊕ (x2y3 + ω2kx3y1 + ωkx1y2)1(k,2)

⊕ (x3y2 + ω2kx1y3 + ωkx2y1)1(k,1)
]. (A7)
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x1

x2

x3


3D

⊗

y1

y2

y3


3D

=

x1y1

x2y2

x3y3


3̄D

⊕

x2y3

x3y1

x1y2


3̄D

⊕

x3y2

x1y3

x2y1


3̄D

, (A8)

(x)1(k,0)
⊗

y1

y2

y3


3(3̄)D

=

 xy1

ωkxy2

ω2kxy3


3(3̄)D

(A9)

(x)1(k,1)
⊗

y1

y2

y3


3(3̄)D

=

 xy3

ωkxy1

ω2kxy2


3(3̄)D

(A10)

(x)1(k,2)
⊗

y1

y2

y3


3(3̄)D

=

 xy2

ωkxy3

ω2kxy1


3(3̄)D

(A11)

The label 1(k,l), with k, l = 0, 1, 2, represent the nine different one dimensional irreps of Σ(81), being 1(0,0) the

invariant singlet.

For further details of the properties of the Σ(81) group and the explicit expressions of the tensor products

of dark sector fields we refer the reader to the second edition of the book “An Introduction to Non-Abelian

Discrete Symmetries for Particle Physicists” [62], since the first edition had inconsistencies in the representations

used in the tensor products.
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