Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Sequence-dependent surface condensation of a pioneer transcription factor on DNA.

MPG-Autoren
/persons/resource/persons269748

Morin,  Jose A.
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons232169

Wittmann,  Sina
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

Choubey,  Sandeep
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons222337

Klosin,  Adam
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219191

Golfier,  Stefan
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219253

Hyman,  Anthony A.
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons145744

Jülicher,  Frank
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons145692

Grill,  Stephan W.
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Morin, J. A., Wittmann, S., Choubey, S., Klosin, A., Golfier, S., Hyman, A. A., et al. (2022). Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nature physics, 18(3), 271-276. doi:10.1038/s41567-021-01462-2.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-0381-F
Zusammenfassung
Biomolecular condensates are dense assemblies of proteins that form distinct biochemical compartments without being surrounded by a membrane. Some, such as P granules and stress granules, behave as droplets and contain many millions of molecules. Others, such as transcriptional condensates that form on the surface of DNA, are small and contain thousands of molecules. The physics behind the formation of small condensates on DNA surfaces is still under discussion. Here we investigate the nature of transcription factor condensates using the pioneer transcription factor Kruppel-like factor 4 (Klf4). We show that Klf4 can phase separate on its own at high concentrations, but at low concentrations, Klf4 only forms condensates on DNA. Using optical tweezers, we demonstrate that these Klf4 condensates form on DNA as a type of surface condensation. This surface condensation involves a switch-like transition from a thin adsorbed layer to a thick condensed layer, which shows hallmarks of a prewetting transition. The localization of condensates on DNA correlates with sequence, suggesting that the condensate formation of Klf4 on DNA is a sequence-dependent form of surface condensation. Prewetting together with sequence specificity can explain the size and position control of surface condensates. We speculate that a prewetting transition of pioneer transcription factors on DNA underlies the formation and positioning of transcriptional condensates and provides robustness to transcriptional regulation. A DNA-binding protein condenses on DNA via a switch-like transition. Surface condensation occurs at preferential DNA locations suggesting collective sequence readout and enabling sequence-specificity robustness with respect to protein concentration.