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Abstract

The feasibility of non-invasive axonal diameter quantification with diffu-
sion MRI is a strongly debated topic due to the neuroscientific potential of
such information and its relevance for the axonal signal transmission speed. It
has been shown that under ideal conditions, the minimal diameter producing
detectable signal decay is bigger than most human axons in the brain, even
using the strongest currently available MRI systems. We show that resolving
the simplest situations including multiple diameters is unfeasible even with
diameters much bigger than the diameter limit. Additionally, the recently
proposed effective diameter resulting from fitting a single value over a distri-
bution is almost exclusively influenced by the biggest axons. We show how
impractical this metric is for comparing different distributions. Overall, axon
diameters currently cannot be quantified by diffusion MRI in any relevant
way.

, 1 Introduction

> In-vivo estimation of axon diameters has been an important goal of many researchers
s since the inception of diffusion MRI. As the diameter of a myelinated axon is one
4+ of the main determiners of its signal transmission velocity [20, 44], the availability
s of this structural information would greatly facilitate the description and functional
s modeling of the brain communication pathways on an individual basis [45]. Detailed
7 knowledge of tract-specific axonal diameters would provide insight into detailed and
s mechanistic relationships between brain structure and important aspects of brain
o function, including development and learning. The capacity of dMRI to nonin-
10 vasively probe cellular and axonal boundaries at the micrometer level seemed a

u promising method to pursue this aim.
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12 The impact of restricted incoherent motion of water molecules on diffusion-
13 weighted NMR signals has already been described in the early days of MR spec-
1 troscopy [39, 51]. However, these models only describe the diffusion process hap-
15 pening in the perpendicular cross-section of the axon. Using them to approximate
16 axonal diameters requires prior knowledge of the tissue orientations, an equal diame-
17 ter of all axons in the probed volume, as well as the absence of extra-axonal signals.
18 A common strategy to bring it to the in-vivo 3D acquisition setting has been to
19 combine one or many cylindrical compartments, describing the intra-axonal diffu-
2 sion, with additional compartments describing the extra-axonal Gaussian diffusion
2 process (3, 6, 7, 16].

2 Despite the overestimation of axonal diameters arising from the use of multi-
23 compartment models [23] compared to electron microscopy ground truth [1, 37],
2 these models are still seen as promising by a part of the community. This dilemma
s can be attributed to the fact that the relative trend of fitted diameters was argued
2 to be somewhat plausible across the different parts of the corpus callosum [3, 5, 23,
2 29, 30] and that multi-compartment models in dMRI are difficult to fit reliably as
s they are essentially weighted sums of exponential functions.

20 Recent work highlighted an unavoidable sensitivity issue for detecting axon di-
s ameters of realistic size in the human brain, even with the latest high-end MRI
n systems [21, 40]. It proposes an “axon diameter limit” (d;,) which corresponds
» to the smallest diameter that can be differentiated from a stick of diameter zero
;3 for given sequence parameters under ideal conditions. This d,;, is computed from
s the most generous setting and is therefore a lower bound on the unbiased smallest
s diameter detectable for data deviating from the idealized case of diffusion signal
3 arising only from parallel cylinders of equal diameter. The diameter limit suggests
;7 that previous “trends” in the estimated diameters are not supported by the mea-
;s sured data. Indeed, not only is the expected signal decay for restricted diffusion in
3 realistically sized human axons very small, but it is also insensitive to changes in
w0 the gradient spacing in time (A), which is typically the parameter varied when the
s “small-big-small diameter trend” of the corpus callosum is observed [5, 10, 29, 30].
22 The large signal decay observed could be caused by noise, errors in the compart-
s ment separation, or by other types of time-dependent diffusion such as diffusion
s signal from the extra-axonal compartment, which is sensitive to A.

a5 In this work, we employ extensive simulations of restricted diffusion MRI mea-
s surements under optimal conditions to concretely showcase the limitations of axon
a7 diameter mapping. We first show the small magnitude of the signal decay that
i results from perpendicular diffusion in axons with realistic diameters. This result
s highlights the sensitivity required to distinguish this additional signal drop from the
so rest of the unrestricted diffusion within a voxel. Secondly, we show the error when
s fitting diameters to noisy data, even in ideal situations. This experiment numerically

> showcases the axon diameter limit [40] which highlights the poor scaling exponents
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53 between controllable parameters and achievable diameter limits. We then extend
s« our simulations from the case of single diameter estimations to that of fitting distri-
ss  butions of axonal diameters. Naturally, the same sensitivity limitations are present
ss and even amplified since each diameter only produces a fraction of the total signal
s decay. Additionally, fitting errors do not concentrate on the ground truth diame-
ss ters. Finally, we highlight the difficulty of interpreting a single diameter value fitted
so over a distribution, the so-called effective diameter [14, 52]. The effective diameter
s formulation adequately captures the averaging mechanisms which mix the signal
&1 decay contribution of a distribution of axon sizes. However, the effective diameter
62 still suffers from the same sensitivity and specificity issues as presented before. The
3 limitations of MR axon diameter estimation discussed in this work affect every dif-
s« fusion model fitting diameters, as they all rely on the capacity of dMRI to detect
s small signal decay from inside a cylinder compartment [3, 7, 16, 24, 25].

s« 2 Methods

« 2.1 Relevant parameters

es 'Throughout this work, we used numerical simulations to showcase the sensitivity
e of dMRI to axon diameters. It is therefore crucial to use realistic values for the
70 various physical parameters. We describe each parameter, their realistic ranges,
7 and our default choices. Particularly, we are concerned with the order of magnitude
22 of the quantities and their scaling behavior (see eq. 1). For completion, we provide
73 scripts to recompute any quantity, figure or experiment, for any choice of parameters
7 (https://github.com/mpaquette/axDiamFig).

s Azon (cylinder) diameter (d): The smaller the diameter, the smaller is the maximal
7 displacement of the water molecules, as we assume impermeable axonal walls. This
77 restricted water diffusion perpendicular to the axon will induce a small signal change
s proportional to the mean squared displacement inside the circular cross-section.
7o Prior results from histological assessments show that human axons in the white
so matter of the brain have diameters in the order of 1 um [1, 37]. Typical distributions
a1 of diameters tend to peak around 0.5-1.0 pm with maximum axon diameters around
22 2.5-5 um (see fig 4). Informally, the minimum sensitivity required to properly qualify
83 such distributions has to be smaller than the peak of the distribution.

sa  Unrestricted diffusivity of the medium (Dy): The lower the diffusivity is, the more
s time it takes for the diffusion process to saturate inside of the restricted compart-
s ment. The value of in-vivo intra-axonal diffusivity is still an actively studied topic.
sz Early models in the literature chose to fix the in-vivo intra-axonal water compart-
s ment diffusivity to 1.7 pm?/ms [2, 55]. Many multi-compartment models have the
s ambiguity of allowing two distinct solutions, depending on if the intra-axonal diffu-
o sivity is higher than the parallel extra-axonal diffusivity [33]. Indeed, recent results
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o seem to indicate that intra-axonal diffusivity is higher [34]. A recent approach, us-
o ing a planar diffusion filter to eliminate extra-axonal signal, reports values around
o3 2.25 pm?/ms [19] which roughly matches with previous animal studies, when ac-
u counting for tissue temperature [12, 49]. In the case of post-mortem measure-
os ments, both the reduced tissue temperature and the fixation process reduce the
o tissue diffusivity [43]. Reported values for post-mortem diffusivities are around 1/3
o - 1/4 of that of in-vivo [22]. In our simulations we assume the following diffusiv-
o ities: Doin—vivo = 2 pm?/ms (2 x 107 m?/s), and Dy post—mortem = 0.66 pym?/ms
99 (()66 x 1079 mQ/S).

wo  Diffusion gradient magnitude (G): The diffusion gradient hardware varies among the
w  different types of MRI scanners. The strength of diffusion gradient directly affects
102 the signal decay in diffusion, i.e. the same total displacement of water molecule
103 produces a bigger signal decay with a stronger gradient. Typical clinical scanners
s tend to have weaker gradients (Gax = 40 mT/m), while gradient coils in preclinical
s small-bore scanners can produce magnetic field gradients as strong as 1500 mT /m.
s For human in-vivo measurements, the Siemens Connectom MRI scanner (Siemens
w7 Healthineers, Erlangen, Germany) is the system that produces by far the strongest
s diffusion gradients (Gpax = 300 mT/m). In our simulations we use G = 300 mT /m,
1o as one of the goals associated with the development of this specific MRI system was
1o to enable in-vivo axon diameter estimation.

wi Diffusion gradient duration (§): In the relevant regimes for human axon diameter
2 estimation, the duration of the diffusion gradient pulse ¢§ is the parameter probing
u3  the time-dependent diffusivity of restricted diffusion. Indeed, with a typical short
us  achievable gradient pulse duration of around 5 ms on a human MRI system, we
us are well into the regime where the gradient duration is comparable or above the
ue saturation time of the restricted compartment. In this regime, longer gradient pulses
u7  increase sensitivity (see sec. A.1). We limit the simulations to dyax = 40 ms as longer
us pulses are impractical, as they increase the echo times of the acquisition, resulting
no in additional signal losses.

o Diffusion gradient separation (A): In the relevant regimes for human axon diameter
121 estimation, the diffusion process is already saturated during the gradient application,
122 and varying the temporal separation of the diffusion gradient pulses A provides
123 1O extra sensitivity to restricted diffusion (see sec. A.1 and fig. 7). Therefore, to
124 maximize the signal, we use A = . In practice, varying A could still be necessary
s for multi-compartment models where it is necessary to disentangle intra- and extra-
126 axonal signal contributions.

v Signal to noise ratio (SNR): Ultimately, the SNR is the key parameter upon which
128 “sensitivity” is defined. Throughout the simulations presented in this study, we cor-
1o rupt signals with Gaussian noise (for simplicity and to produce a best-case scenario),
130 1.€. Spoisy = Onoiseless T € Where € ~ N(0, 02). Since we only look at idealized diffu-

w1 sion effects; our signals have a value of 1 at the b0 (no diffusion gradient applied),
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12 and therefore the SNR is defined as SNR = o~ !. For comparison, the SNR of the b0
133 in the corpus callosum for a single in-vivo volume on the Connectom system with
14 an echo time of 70 ms, repetition time 7500 ms, and resolution 1.8 mm isotropic is
135 around 20. We showcase results for SNR = 30 and some results for SNR = 300,
s which correspond to 100 averages of a high-quality Connectom acquisition. Some
137 diameter estimation approaches use aggregated fitting strategies such as region of in-
s terest (ROI) averaging or averaging along a tractography streamline path [4, 8, 9, 17]
130 to increase the nominal SNR. These aggregated strategies make strong assumptions
1o on tissue composition and orientation homogeneity in a region or along the entire
1w pathway. It is unclear if the SNR gains of such strategies outweigh the bias due
12 to tissue inhomogeneities in neighboring voxels as these methods still suffer from
s diameter overestimation [8].

s Pulse Gradient Spin Echo Sequence (PGSE): The PGSE sequence is maximally
15 sensitive to perpendicular diffusion inside straight cylinders [40]. Therefore, we
s exclusively consider this sequence to showcase the sensitivity in the best-case sce-
17 nario. When we consider axons misaligned with the gradient directions or undu-
s lating axons, other sequences such as oscillating gradient spin-echo (OGSE) can be
1o more sensitive than PGSE [13, 36, 40, 41]. However, the key point is that any se-
150 quence in those scenarios is still less sensitive to the diameter than PGSE is in the
151 non-misaligned and non-undulation case. Therefore, showing sensitivity issues with

12 PGSE in that optimal case bounds all cases.

55 2.2  dMRI signal sensitivity to the diameter

15« Diffusion MRI contrast is related to the bulk displacement of the water molecules
155 during the diffusion encoding, which causes the measured signal decay. Inside re-
156 stricted compartments such as the cross-section of a cylinder, the maximal displace-
157 ment is capped by the boundary, potentially producing much smaller signal decays
1583 than produced by free diffusion. These restricted diffusion processes can be classi-
10 fied into different time regimes. On short time scales, the bulk of water molecules
10 has not yet interacted with the boundary and therefore behaves as in free diffusion.
i1 In the long time regime (wide pulse regime), most molecules have significantly in-
12 teracted with the boundary and their position at any given time does not correlate
13 with their initial position inside the cross-section of the axon; 7.e. the signal has
s reached maximal decay from diffusion effects.

165 The general perpendicular signal decay formula for a cylinder using a Pulsed Gra-
166 dient Spin Echo (PGSE) diffusion sequence [48] was first described by Neuman [39]
167 and then extended by Van Gelderen [51] to account for cases where A # 0 (eq. 3).
s For the parameter ranges described in sec. 2.1, the Neuman long time limit (eq. 4)
160 produces almost indistinguishable results. In this work, we use eq. 3 truncated to

o H0 terms to generate and fit signals arising from restricted diffusion.
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171 For realistic acquisition and biological relevant parameter values (see sec 2.1), the
w2 diffusion process falls into the long time regime (wide pulse regime) and the expected
73 signal decay is small compared to the noise amplitude at typical SNR. Using eq. 3,
74+ we simulated the expected MR signal decay for a multitude of combinations and we
s report the decay percentage values in Table 1. To cover a wide range of biological,
e experimental, and instrumental parameters, we simulated restricted diffusion MRI
w7 signals using (i) both in-vivo and post-mortem diffusivities, (ii) clinical gradient
s systems, and high-end Connectom gradients, and (iii) small to large human axon
o diameters.

180 Our simulations indicate that dMRI is not very sensitive to the axonal diame-
w1 ter in realistic situations. For example, using optimal in-vivo setting (Connectom
12 strength gradients, very long diffusion pulses, and in-vivo diffusivity) for an axon
183 diameter of 1 micrometer the process only produces a “contrast” of 0.12 % signal
1« decay which is equal to one standard deviation of Gaussian noise with SN R ~ 833.
15510 be able to statistically identify this signal decay, we would typically need a decay
16 to be at least bigger than 2 standard deviations of the noise, depending on the choice
17 of the significance level. To reach such a low noise level would require SNR =~ 1667.
188 Hence, for realistic SNRs, small diameters cannot be differentiated from the noise

189 level in the image.

w 2.3 Axon diameter limit

11 To formalize the notion of sensitivity into a workable form using signal decay and
12 SNR, Nilsson et al. [40] introduced the diameter resolution limit (dy;,). It is defined
103 as the smallest diameter such that the MR signal decay can be statistically differ-
e entiated from no decay (in the limiting case d — 0) for a given SNR and choice
105 of significance level for the Z-test (o). The decay limit is given by ¢ = Z;_,/SNR.
16 We use eq. 1 to find d;, corresponding to the decay limit. We use a = 0.05
w1 (Z1-0.05 = 1.645) for the entirety of this work.

Ay = @ oDy 1/4(a =0.05) 4512 Dy 1/4 "
min 7 725G2 o5 725GQSNR
198 Practically, the main implications of this framework are governed by the ex-

109 ponents of the individual parameters. We can see for instance that halving the
20 diameter limit requires a 4-fold increase in gradient strength or a 16-fold increase
20 in SNR (~ 256 repetitions averaged). Table 2 showcases some values of dy,;, for in-
22 vivo and post-mortem diffusivities, a long gradient pulse, various gradient strengths
203 (clinical, Connectom, and small-bore preclinical) for various SNRs. We see that
200 even in the idealized case [40], we obtain dy,;, = 2.56 pm for the in-vivo Connectom
25 case at realistic SNR, falling quite short of our minimum target of around 1 pm.
206 At SNR = 164 (~ 5 times higher than baseline, ~ 25 averages), we have 1.77 um.
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Acquisition parameters In-vivo (Dy = 2.0 um?/ms)

d=A(ms) G (mT/m) |d=05um d=10pum d=2.0pum
10 40 3.2x107° 52x10* 81x1073
40 40 1.3x107% 21x1073 3.3 x1072
10 300 1.8x107% 29x1072 46x107!
40 300 73x107%  1.2x 1071 1.8

Acquisition parameters | Post-mortem (Dy = 0.66 ym?/ms)
d=A(ms) G (mT/m) |d=05um d=10pum d=2.0pum

10 40 9.8x107° 1.6x1073 24 x 1072
40 40 39x 107 63x107% 9.9x1072
10 300 55 x 1072 8.7 x 1072 1.3
40 300 22x1072 35x 107! 5.4

Table 1: MR signal decay (in percent) for various diffusivities, acquisition param-
eters, and axon diameters. We note that if we have SNR = 30, a noise realization
of one standard deviation has a magnitude 3.3% signal decay. This showcases the
difficulty of detecting and differentiating the signal decay caused by different diam-
eters. For the post-mortem case, using the somewhat big d = 1 um and strong
Connectom-like acquisition (G = 300 mT/m), we are expecting a signal decay of
0.35%. To be able to statistically identify this signal decay, we would typically need
a decay to be at least bigger than ~ 2 standard deviations of the noise (depending
on the choice of significance level), which would require SNR = 571.
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27 In this example, we need tissue with low post-mortem diffusivity and ultra-strong
208 gradients of the strongest preclinical scanner (G = 1500 mT/m) to reach the initial
200 goal of dy;, < 1 pum, showcasing the practical limitations arising from the fourth

210 Toot scaling in eq. 1.

Parameters SNR
Dy (pm?/ms) 6 =A (ms) G (mT/m) | 164 65.6 32.8
2.0 40 40 4.69 589 7.01
2.0 40 300 .71 215  2.56
2.0 40 1500 077 096 1.14
0.66 40 40 3.55 447 531
0.66 40 300 1.30 163 1.94
0.66 40 1500 0.58 0.73 087

Table 2: Values of dp, (pm) (eq. 1) for various parameters at significance level
a = 0.05 (i.e. signal decay stronger than 1.645 standard deviations of the noise dis-
tribution). The selected SNRs (164, 65.6, 32.8) correspond to minimum detectable
signal decays of 1%, 2.5% and 5%.

211 To visualize the impact of d;,, we plot the spread of recovered diameters in
a2 fig. 1. For each diameter between 0.1 pm and 5 pum, we generated 10000 noisy
a3 restricted signals and added Gaussian noise with SNR 30 and 300. The signals are
na generated for realistic in-vivo settings (Dy = 2 pm?/ms) with a Connectom-like
25 acquisition (single “direction/average”, G = 300 mT/m, 6 = A = 40 ms). Both
26 SNRs behave identically with a scale difference and we see that the mean recovered
27 diameter is biased for diameters smaller than d,;,. The bias occurs because the
218 average detected diameters become the one corresponding to a signal decay of one
20 standard deviation of the noise. Hence, the result suffers not only from uncertainty
20 but also from systematic bias.

221 It is worthwhile emphasizing what the definition of d,,;, truly implies because it
222 18 often misunderstood as being the diameter above which fitting will be stable. The
23 formalism of this section is a way to calculate the smallest signal decay difference
224 which is statistically differentiable from 0. We can assess if the SNR and acquisition
»s parameters are enough to differentiate two arbitrary diameters, by verifying that
26 their produced signal decay difference is bigger than &. If we set one of those
27 diameters to 0 and we look for the smallest second diameter above the threshold,
28 We get dpin. This minimum diameter only assures us that the distribution formed
20 by repeated noisy signal decay measurements around the true signal decay from a
20 diameter bigger than d;, doesn’t “overlap significantly” with a signal decay of 0
2z (i.e. less than a of the distribution is below 0).


https://doi.org/10.1101/2020.10.01.320507
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.320507; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

5{ === Mean fitted diameter 5{ === Mean fitted diameter /
= 80% Confidence Interval = 80% Confidence Interval

iy = 2.62 pm (5.5 % decay with o = 0.05) dypin = 1.47 pm (0.5 % decay with o = 0.05)

w 'S

Fitted diameters (1m)

Fitted diameters (uum)

SNR = 300

1 2 3 1 5 1 p 3 1 3
True diameters (um) True diameters (um)

Figure 1: Scatter plot of fitted diameters with mean fitted diameter (green line)
and 80% confidence interval (blue lines). For each diameter between 0.1 pum and
5 pm, we generated 10000 noisy restricted signals using eq. 1 and Gaussian noise
of SNR 30 (left) and 300 (right). The signals are generated for realistic in-vivo
setting (Dy = 2 pm?/ms) with a Connectom-like acquisition (single “direction”,
G = 300 mT/m, 6 = A = 40 ms). The orange line corresponds to dp;, using the
framework by [40].
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» 2.4 Axon diameter distributions

213 In previous sections, we focused on the sensitivity of dMRI for axon populations of
24 a single diameter within a voxel. However, the white matter is composed of axons
25 with multiple diameters spanning a large range [1, 37]. Therefore, it is sensible
26 to fit a full distribution of diameters to the measured signal. This strategy can
237 be implemented in multiple ways, such as enforcing a parameterized distribution
23 family such as a gamma distribution over the relative axon counts [7, 11], fitting
20 volume fractions for a binned discretized distribution [16], or by fitting multiple
a0 cylinder compartments with diameters as a free parameter. Intuitively, moving
2 from single diameter estimations to any type of distribution will increase the dy;y,
a2 because adding additional degrees of freedom to a model increases the variance of
23 the fitted parameters [27]. However, the fitting of axonal diameter distributions to
2 AMRI signals is plagued by more than a simple increase to the related dy,,, but
a5 distribution parameters are unresolvable with PGSE data and there will always be
us  a continuum of equivalent solutions spanning the parameter space.

27 In this chapter, we show that even the simplest model with multiple diameters
28 has infinitely many completely different solutions for realistic parameters (sec. 2.1).
29 These simulations suggest that any “trend” of different diameters seen in images
0 using such models is not supported by theory and is likely driven by either the
1 regularization terms in the fit or by an effect unrelated to diameter, like noise,
2 errors in the compartment separation or by other types of time-dependent diffusion
3 such as a diffusion signal from the extra-axonal compartment.

254 When we describe distributions of axon diameters, Pyon(d), we refer to distri-
255 butions over the number of axons (azon count) for each diameters inside a voxel.
6 Under the assumption that axons of different diameter have the same proton density,
7 the spin count distribution becomes a cylinder volume-weighting of the axon count

258 distribution, Pipin(d) = Paxon(d)M Since the different axons are implicitly

TVol(d)dd'*
0 assumed to be of the same length inside the voxel, the volume-weighting becomes
20 a cross-section area-weighting (Pupin(d) = Paxon(d)fdfl—jdd,). The normalized spin

261 counts are also often referred to as the volume fractions of each axon diameter,
x%2 representing the relative volume of water inside the axons of a given diameter. When
%3 the water molecules inside the axons of different diameters have the same magnetic
264 properties (i.e. identical To, Ty, etc), the signal fractions are equivalent to the
25 volume-normalized azon count distribution. In this study, the conversion between
26 volume and signal fraction only depends on cross-sectional area re-weighting.

267 In this experiment, we define the simplest distribution, a signal generated from
x%s a population of two parallel very big axon diameters in roughly equal proportion
%0 (with signal fractions: 30% d; = 4.5 pm and 70% dy = 3.5 pum, equivalent to
20 volume fractions of 41.5% and 58.5%) (fig. 2). We then plot the mean absolute

on difference between this (noiseless) signal and the signals generated for all the other

10
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a2 possible configurations.

213 Similarly to how we only used a single “acquisition” (with maximally sensitive
2 Connectom-like parameters) for the single parameter estimation in fig. 1, here we use
a5 Connectom-like acquisition parameters with three different gradient pulse durations
26 to mimic the minimal requirements of uniquely fitting a three-parameter model (two
o diameters and one signal fraction). The acquisition parameters were selected such
2s that they provide sensitivity (long ) and that the biggest individual dy,;, is com-
20 fortably below the smallest diameter in the ground truth (G = 300 mT/m, A = 50
20 ms, § = [30, 40, 50] ms). This two-cylinder model has a three-dimensional space of
21 possible parameter configurations: the first diameter, the second diameter, and the
22 signal fraction (of the first cylinder). In fig. 2, the parameter space is sliced in the
23 signal fraction direction every 5% and shown as a sequence of 2D plots spanning
s all pairs of diameters. Regions of solid colors across all slices correspond to regions
s of the parameter space producing similar signal decay in this noiseless setting. For
26 instance, the blue region corresponds to configurations producing a signal with less
7 than 1% signal decay difference from the ground truth, making them indistinguish-
23 able at regular SNR (for example, 1% signal decay corresponds to SNR = 164 for
280 significance level o = 0.05). The blue region spans a surface across many unrelated
200 pairs of diameters and signal fractions, showcasing the unresolvability of the sim-
21 plistic two-diameter distribution under optimal conditions (ground truth perfectly
22 matching the model and no other compartments to disentangle). The axon popu-
203 lation diameters were chosen to be very big to highlight the fundamental problem
204 of distribution fitting, for similar figures with smaller diameters, see Sec. A.4 where
205 the effect is amplified.

206 In fig. 3, we repeat the previous experiment with gamma-distributed axon diam-
207 eter counts instead of the two-diameter distribution. We generated a signal using
28 a population of cylinders where the count for each diameter follows a gamma dis-
200 tribution (shape = 2.25 and scale = 0.4 with peak at 0.5 um) using the same
s0  diffusivities and acquisition parameters as in fig. 2. We show the mean absolute
s difference between our (noiseless) signal and a signal generated from gamma distri-
;2 butions spanning shapes up to 9 and peak location up to 3 um. We note that a
53 gamma distribution I'(k, #) of shape k£ and scale 0 has its peak at (k— 1)6 for k > 1
3¢ (0 otherwise). Regions of solid colors correspond to regions of the parameter space
ss  producing a similar signal decay in this noiseless setting. The colored dots in the
s central parameter space correspond to the signal generated with the corresponding
s colored distribution (ground truth is red). As was the case with our previous two-
w8 cylinder example, we have a wide area of the parameter space generating roughly
50 indistinguishable signals. The four distributions pictured on the sides all produce
a0 essentially identical signals for a wide range of distribution shapes.
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Figure 2: Example of the unresolvability of distribution fitting. The ground truth
signal was generated from a combination of 2 parallel cylinders; 30% signal fraction
with diameter d; = 4.5 pm and 70% dy = 3.5 pm (shown as white dot in the center
plot) with in-vivo diffusivity (Dy = 2 pum?/ms) and a Connectom-like acquisition
with three gradient pulse durations (G = 300 mT/m, A = 50 ms, § = [30, 40, 50] ms).
The parameters were selected so that the smallest diameter was comfortably above
the “typical” diameter limit for § = 30 (compared to the limit for SNR = 30, this
experiment is noiseless). The 9 subplots represent all combinations of diameters be-
tween 0.1 and 6 pm, sliced uniformly at signal fractions between 10% and 50%. The
blue “path” corresponds to parameter combinations yielding a signal less than 1%
signal decay different than the noiseless ground truth. It forms a surface spanning
most of the 3D parameter space, rendering any distribution fitting impossible for
non-absurd SNR. Section A.4 showcases the same experiment for diameters closer

to human axons.
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Figure 3: Example of the unresolvability of distribution fitting. The ground truth
signal was generated using a gamma distribution of diameter count (shown as a red
dot in the center plot) with in-vivo diffusivity (Dy = 2 pum?/ms) and a Connectom-
like acquisition with three different gradient pulse durations (G = 300 mT/m,
A = 50 ms, 6 = [30, 40, 50] ms). The center plot represents all combinations
of shape and peak location characterizing different gamma distributions. The dark
blue “path” corresponds to parameter combinations yielding a signal less than 0.1%
signal decay different than the noiseless ground truth. It forms a path spanning
across most of the 2D parameter space, rendering distribution fitting unreliable for
non-absurd SNR. The 4 side plots show examples of various gamma distributions
from the center plot of wildly different shapes generating roughly indistinguishable
signals.

13


https://doi.org/10.1101/2020.10.01.320507
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.320507; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

. 2.5 Effective MR diameter

sz We have shown in the previous section (sec. 2.4) that it seems unfeasible to fit even
a3 the simplest distributions. Therefore, we might resort to fitting a single “effective”
s diameter. When fitting a single parameter over a quantity following a distribution,
a5 it is natural that this fitted value will take the form of a central tendency measure
a6 of that distribution (a “weighted average”).

317 In the case of MR axon diameters, two main effects are providing the “weighting”.
sis First, even though we are interested in the distribution of the axon count, the signal
si0 fractions are weighted by the spin count. Under the assumption of uniform intra-
20 axonal proton density, Ty, same length cylinder for each diameter and no exchange,
21 this manifests itself as a cross-section area weighting, proportional to the 2* power of
2 the diameter. Secondly, the MR signal is sensitive to the 4" power of the diameter
23 (as seen in eq. 4), adding up an extra heavy tail-weighting effect. Putting it all
324 together, we can define the effective MR axon diameter d.g over an arbitrary count
»s distribution of density P(d) as a function of its moments (eq. 2) [14, 52].

6
der = | % (2)
2 where (d") = [, P(d')d"™ dd’ is the n™® moment of the distribution of density P(d)
w2 (See sec A.2 for a simple proof-of-concept derivation). Fig. 4 shows a high match
128 between the effective axon diameter computed from fitting a single diameter over
29 the signal simulated from the distribution (dg in red) and the effective axon diam-
a0 eter derived from direct computation using the moments of the distribution (deg in
s green) for an example of a human axon diameter distribution from the left and right
s uncinate/inferior occipitofrontal fascicle taken from [37]. Preliminary post-mortem
;3 results [52] indicated a good correspondence between deg estimated from microscopy
s and dMRI in a rat brain using a complex imaging strategy that properly suppresses
135 non-intra-axonal signals and effects from axon orientations and dispersion.
336 Evidence points toward deg from eq. 2 being an accurate description of the “av-
s eraging” process of a typical dMRI sequence over a distribution of axons in the
s presence of no other signal [47, 52] and a recent in-vivo study [53] assessed the test-
130 retest variability of the metric estimation. However, it is important to keep in mind
a0 the limitations of deg as a metric. By the nature of dMRI, d.g is extremely weighted
s toward the tail of the distribution. An Illustration of this phenomenon is shown in
s figure 4. The two shown axon diameter distributions are fairly similar in terms of
13 mean, peak location (mode) and shape. However, the distribution of the left hemi-
s sphere (top plot) comprises an additional ~ 2.5% of large axons, effectively doubling
us  the deg compared to the distribution of the right hemisphere (bottom plot). This
us difference in the distribution might be due to the small sample size inherent to histol-

a7 0ogy. Such big axon outliers should not be an issue for AMRI where d.g is estimated
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Figure 4: Human axon diameter normalized count distribution taken from Liewald
et al.[37] (fig. 9, human brain 1, left and right hemisphere shown as top and bottom
respectively). The peak diameter for both distributions is 0.5 pm while the mean
diameter dyean is around 0.6 um. The bottom distribution maxes out below 2 pym
while the top distribution has a few extra axons in the 2-4 ym range (~ 2.5% of
axons by count). This small tail difference heavily affects the effective diameter deg
(eq. 2) (doubles it in this case). The fitted MR diameter dg; corresponds nicely with
deg estimated from the moments of the distribution.
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us  from voxels containing millions of axons. However, when comparing the d.g metric
us  between different ROIs or subjects, it becomes impossible to distinguish between
30 situations such as a small global shift toward larger axons or a thicker distribution
1 tail. This is expected when summarizing a complex distribution with only a single
32 metric, instead of the two or three degrees of freedom it requires [46]. Neverthe-
33 less, the interpretability of deg is additionally impaired by the heavy tail weighting
s Of its calculation, compared to other single metric distribution summaries, such as
35 the mean. Fig. 5 shows the same axonal diameter distribution taken from Liewald
36 et al. [37] overlapped with densities of multiple families of distributions (gamma,
57 normal, uniform, exponential) with parameters tailored to produce the same theo-
38 retical deg. The goal is to highlight the large (infinite) number of strikingly different
;50 distribution shapes that can produce the same dqg. The interpretation of deg in its
w0 current state will require a very strong hypothesis on the type of distributions or

s1  differences that can exist, which is not available in general.

w« 3 Discussion and conclusion

3 The goal of this work is to showcase the sensitivity limits and the unresolvability
s of MR axon diameter models from PGSE diffusion-weighted sequences. Those sen-
s sitivity limitations affect all AMRI diameter estimation models or techniques, as
6 they are built upon cylindrical compartments and use the same restricted diffusion
7 formulas. In sections 2.2 and 2.3, we have shown how simple computations using
w8 realistic in-vivo parameters even with high-end Connectom MR gradient systems
0 generate only very small signal decay with extremely limited sensitivity to relevant
s axonal diameters. Even the more favorable combination of post-mortem tissue and
sn  ultra-strong preclinical gradients does not result in sufficient signal decay to measure
sz realistic axon diameters using diffusion MRI. The problem can be reframed statis-
sz tically by comparing the signal decay to the noise level with a Z-test and defining
s a diameter limit. Computing d,,;, results in values that are very big compared to
a5 relevant axon diameters in the human brain. The effect of this limit was shown
srs with an explicit simulation in fig. 1. In section 2.4, we have shown that fitting a
sr7 - distribution of diameters to the signal results in a multitude of widely different so-
srs lutions even in the simplest settings. Finally, in section 2.5, we have shown how a
so - distribution of diameters projects itself onto a single fitted effective diameter. The
w0 effective diameter can be estimated reliably using advanced hardware and dedicated
s sequences [52, 53] but still display the same insensitivity to small and medium ax-
;2 ons and unresolvability of distribution shape. Nevertheless, the effective diameter
83 1is correlated with the biggest axons and differences in these biggest axons might be
s« relevant in some cases such as pathology [53].

385 We want to emphasize that every result in this work was computed utilizing
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Figure 5: Different families of distributions tuned to produce the same d.g. The
target d.g values were computed from the human axons diameter count distribution
from Liewald et al.[37] (in black, the discrete counts were converted into a density
for visualization). For both hemispheres, we used various families of distribution

(restricted to be univariate) to show potential shape variance with identical deg.
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sss  idealized simulations that were arranged such that any presented limits correspond
37 to a bound on the actual limit on real data. Notably, it has been shown [21, 40]
s that PGSE is the most sensitive sequence to axon diameters under the assumption
;0 of parallel cylinders and perpendicular diffusion gradient. In general, simulations
;0 are seen as insufficient to prove or disprove the effectiveness of a method. However,
s we work on data generated to perfectly follow the general assumptions of the fitted
32 models and we observe that the model fits are still insensitive to the relevant un-
503 derlying tissue properties. This implies serious doubts that any outputs from those
3¢ models [7, 3, 25, 16, 24] applied to real data represent the underlying axonal diame-
55 ter information, no matter how visually appealing they might seem. We suspect that
36 previous, apparently plausible results arise from some combination of effects outside
307 of the model assumptions that are projecting themselves onto the model parameters
38 In a complex way. Admittedly, some parameters can be reliably fitted to the data,
30 such as the effective diameter [52, 53], if an appropriate sequence and method are
wo used to suppress the extra-axonal signal contribution. As we have demonstrated,
w1 such indices are insensitive to small and medium axons, and to the shape of the
w2 axon diameter distribution but they might still provide useful information to study
w03 cases principally influenced by big axons.

404 Hence, any claim of the infeasibility of axon diameter measurement based on the
ws employed simulations automatically translates to the infeasibility of axon diameter
ws Mmeasurements based on real data acquired with similar parameters. Our simulated
w7 data were generated (I) purely from intra-axonal signals and (IT) perpendicular to
we the main orientation. In a multi-compartment model where the extra-axonal signal
w0 has to be fitted, (III) there will be residual fitting errors from the extra-axonal
s compartment contaminating the already tiny intra-axonal signal decay, increasing
m the effective d,,;,. For example, a typical extra-axonal tensor compartment in the
a2 WM with a perpendicular diffusivity of 0.3 pm?/ms produces a signal decay of
m =~ 72.3% for acquisitions parameters 6 = A = 10 ms and G = 300 mT/m. If
ae only 1% of this signal decay (i.e. 0.723% total signal decay) is instead erroneously
as considered as restricted compartment decay fitted with Dy = 2 ym?/ms, it would
sne be equivalent to a cylinder with a diameter 2.25 ym

a7 In the simulations, we considered that the typical white matter SNR from an
sns MR acquisition using Connectom gradients was driven only by the intra-axonal
a0 compartment. (IV) However, in reality, the intra-axonal volume fraction comprises
20 less than 50% of the total volume in dense parallel fiber regions such as the corpus
a1 callosum and less in deep white matter [15]. This discrepancy (at least) halves
122 the measured intra-axonal signal decay, thereby additionally increasing the effective
23 dyin. (V) Moreover, uncertainties in the estimation of the fiber orientation will
24 additionally bias the apparent diameter because the restricted diffusion model will
25 be fitted to the elongated elliptical cross-section. (VI) Unaccounted orientation

26 dispersion for multi-compartment models will make estimation essentially impossible
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27 as shown in Nilsson et al. [40]. Considering all those sources of bias, it is clear that
28 the already small signal decay caused by the restricted diffusion inside axons is
20 essentially unattainable with such multi-compartment models.

430 An important message from eq. 1 and tables 1-2 are the scaling powers of the
s parameters. They are such that the sensitivity problem cannot be fixed using
12 more powerful gradient systems. Even extreme cases such as going from in-vivo
a3 Connectom-like (G = 300 mT/m) acquisitions at normal SNR, to post-mortem
s measurements with ultra-strong preclinical gradients (G = 1500 mT/m) and 5 times
a5 better SNR (25 averages) only decreases the dpy, from 2.56 to 0.58 pm (around 4.4
16 times better). This new value is barely enough to be sensitive to the peak of the
a7 diameter distribution in the best case. If we consider all the idealized assumptions
ss from the diameter limit formula, it is likely not sufficient.

439 There are many misconceptions in the literature about the difficulty of going
a0 from single diameter fitting to multiple diameters or a distribution. The “intuition”
s that errors in the fitted distribution will be distributed around the true solution
w2 fails spectacularly, even in the absolute simplest case of a signal from two axonal
w3 compartments with big diameters and no source of possible confounds as seen in
wma fig. 2 and section A.4. A commonly seen argument is to limit the distribution fit
us  at some dp,;, best-case value and claim that the resulting distribution must be valid
us because we are sensitive to these bigger diameters. Ignoring the value of d;,, we
w7 can focus on what it fundamentally attempts to do, putting a limit on the minimal
us  signal decay that can be statistically seen above the noise. To highlight this previous
s point, fig. 2 shows where configurations such as (35% 4.95 ym + 65% 2.9 pm),
w0 (30% 4.5 um + 70% 3.5 pm), (100% 3.85 pm) and (45% 0.1 um + 55% 4.6 pm)
i1 produced signal with [0.1, 0.5]% signal decay difference. Such a small decay requires
2 SNR € [329,1645] for detection at optimal in-vivo Connectom-like settings, which
w53 correspond to a dy, € [0.96,1.44] pm, showing the disconnection between the limits
s of distribution fitting and direct d,,;, computation.

455 With the complexity of real axonal diameter distributions and the apparent
6 impossibility of reliably fitting a distribution, working with the effective diameter
ss7  degr Seems to be the most promising avenue. When using an advanced acquisitions
i3 strategy to negate the non-intra-axonal signal [52], we can accurately estimate deg.
0 However, deg is not a well “behaved” metric for comparisons involving different
w0 shapes of axonal diameter distributions, such as between subjects or different brain
w1 areas. For a complete analysis, we would potentially need to develop a new non-
w2 Stejskal-Tanner diffusion sequence producing a slightly different weighting of the
w3 distribution to allow some shape disentangling. In its current state, the metric
ws  dog cannot differentiate fundamentally different situations such as a small diameter
w5 increase of all axons versus a large diameter increase from a small proportion of
s the axon population. In pathological cases where the very few extra-large axons

w7 (or possibly glial cells) are affected, the effective diameter might provide additional
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ws information [53]. However, for many other purposes that require the full distribution,
w9 in particular for neuronal modeling, it is unsuitable.

470 The conduction velocity of myelinated axons is strongly impacted by axon di-
m ameter [54, 20]. The results presented in this work seem to indicate that direct
a2 conduction velocity estimations from dMRI are unfeasible since they rely entirely
a3 on axon diameter results suffering from sensitivity limitations. The missing sen-
aa sitivity of small to medium axon diameters translates into the overestimation of
a5 conduction velocities [28, 32]. Similarly, any error in compartment separation or
w6 Main orientation estimation is likely to a cause large bias in the diameter estima-
a7 tion. Under the most simplistic model, the conduction velocity of myelinated axons
s is a linear function of the outer axon diameter (i.e. including myelin sheath) [31],
a0 as well as the inner axon diameter under equal g-ratio. Under this relation, the
s0  conduction velocity estimated using d.g is heavily weighted toward the conduction
@ velocity of the largest axons, following the same pattern as Eq. 2 (V/(v%)/(v?) for
w2 conduction velocities v) and suffering from all the same limitations.

483 An apparent oversimplification throughout this work concerns how SNR and
ss the number of samples are chosen. For example, in fig. 1, our 1D approach is
s equivalent to generating the signal for a single gradient direction perpendicular to
s the cylinder. Similarly, we chose three ¢ for fig. 2 i.e. equal to the number of free
w7 parameters for the two-cylinder model. If one has a real sample containing only
w8 identical parallel cylinders, the knowledge of the orientation would not be present
s and hundreds of directions would be sampled across multiple values of § and G. It
w0 is hard to define a single value representing the SNR gain going from one data point
w1 with perfect alignment and with maximal sensitivity to hundreds of data points with
w2 varying sensitivity, extra parameters to fit, etc. If we take instead 100 repetitions
03 of the optimal measurement and ignore the unknown orientations, we get an upper
ws bound of /100 = 10 times better SNR which corresponds to a V10 = 1.78 times
w5 smaller d;,. A more realistic upper bound is to include the estimation of the
w6 direction as two extra free parameters and frame the data as % repetitions of three
w7 optimal measurements; v/100/3 ~ 5.77 times better SNR which corresponds to a
ws V/5.77 ~ 1.52 times smaller dy;,. This view becomes increasingly complex as we
w0 add more parameters and start taking into account how different measurements have
s0 non-equal sensitivity to each of the estimated parameters. Since there is a 8" root
son - scaling of dp, versus additional averaging (functional form of diameter versus signal
s decay is 4" power and SNR versus averages is 2°¢ power in the best case), we feel
s that results on a minimal number of data points are sufficiently relevant.

504 An interesting topic we did not mention so far is the time-dependence of the
ss extra-axonal space diffusion [14, 18, 26, 35, 42]. Previous attempts to model axonal
sos diameters assumed that all the time-dependent diffusivity portions of the signal
sor were due to intra-axonal restricted diffusion. Recent work has highlighted a mecha-

s nism by which the extra-axonal space can also produce signals with time-dependent
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so0 diffusivity. Indeed, the spacing of the restricting barrier in the extra-axonal compart-
sio ment tends to be larger than typical axon diameters at relevant time-scales. This
s has the effect of producing a larger signal decay than the intra-axonal restricted
s compartment for a given acquisition scheme and producing a time-dependent dif-
si3 fusivity when varying A. We briefly show in section A.3 how this extra-axonal
s time-dependence could contribute to the axon diameter overestimation seen in lit-
sis erature [3, 5, 23, 29, 30].

516 In summary, our results show that the MR-based assessment of axonal diameters
si7 is methodologically infeasible. Our simulations under ideal conditions demonstrate
sis that diffusion-weighted MRI with current and foreseeable future hardware is not
s19  capable of performing axonal diameter measurements in biologically relevant dimen-
s20 sions. The inability to measure axonal diameters is not a matter of the biophysical
s model choice but rather stems from the missing contrast of the intra-axonal tissue
s22 fraction. Under realistic, less ideal measurement conditions, the feasibility of such
s23 measurements is even further reduced. We show that frequently shown “known”
s2«  variations of axonal diameter across structures such as the corpus callosum might
s25 also be explained with time-dependent diffusion of the extra-axonal tissue frac-
so6  tion. Therefore, previous measurements and model fitting results rather represent a
so7  characterization of the extra-axonal space than a measure or representation of the
sis  axonal diameter. Our manuscript further investigates recent descriptions of axonal
s20 diameters using a projection on an “effective diameter”. Our simulations show this
s representation can be strongly affected by small changes in the distribution tail and
s does not allow to draw any unambiguous conclusions about the actual distribution
s of diameters.

533 Given the immense methodological difficulties of MR axonal diameter measure-
s ments, we suggest including the time dependence of extra-axonal diffusion in the
s33 quantitative description of the microstructure of white matter in future studies (as
s in [18]). In connection with an independent measure of tissue myelination, this time
s37 dependency may provide an indirect approach to estimate the outer axonal diameter.
s33  Multidimensional dMRI measurements [50] may help to describe the extra-axonal
s space due to a reduced degeneracy of associated microstructural models. This may

ss0  open a doorway to a quantitative study of brain microstructure using diffusion MRI.
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= A Appendices

«» A.1 Insensitivity of A to axon diameter

sis ' There is some misunderstanding in the literature concerning the impact of varying
ss9 A to probe axon diameter. Intuitively, the AMRI signal is created by the dephasing
sso  of spins due to their displacement. For A to play a role in the measured restricted
ss1 signal, we need to be in a short enough ¢ time regime. In the long time regime (wide
2 pulse regime), by the end of the gradient application, most spins have interacted
ss3 strongly with the axonal wall and their positions are mostly de-correlated from
s« their initial position; the maximal signal decay has been reached and changing the
55 gradient spacing A will not change anything. In the range of relevant parameter
ss6  values (see sec. 2.1), it is simple to numerically show this phenomenon. Fig. 7 shows
7 the signal decay computed from eq. 3 for all physically plausible (A, ) pairs in A €
sss [10,50] ms and 0 € [10, 50] ms for various axon diameters for in-vivo Connectom-like
ss0  settings. The respective signal decay depends strongly on the diameters, however,
ss0 there is no perceptible difference for different A at the same 0. The same results
s can be achieved by Monte-Carlo spin diffusion simulation (see Fig. 6).

144
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d=5um
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0 r , . . : : : : :
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Figure 6: Mean squared displacement (MSD) for one direction from 2D Monte-Carlo
simulation for free diffusion and restricted diffusion inside circles of different radii
using Dy = 2 pm?/ms. The horizontal lines show the long time limit MSD for each
diameter. The center plot is a zoom on the first millisecond where we see that even
the relatively large 2 pum diameter circle reaches long time regime quicker than any
sufficiently strong diffusion gradient can be applied (0, > 5 ms).

562 Another way to demonstrate this result is to derive the rough form of the signal
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ses  equation from spin dephasing [35]. We have applied gradient g and pulse width
s« 0. In the long time regime (wide pulse regime), we have & > t., t. being the
ses characteristic correlation time of the cylinder (t. ~ d?/Dy). We will first calculate
sss the phase ¢ accumulated by spins within a time window of ¢, (where the Gaussian
se7  phase approximation applies [39]) and then compute the total phase ¢ accumulated
ses as a sum of N ~ §/t. uncorrelated contributions. Within one short step, phase is
se0 accumulated linearly proportional to the applied gradient and spin displacement,
s0 ¢y ~ gdt.. We now compute the signal using In(S) ~ —¢? ~ —¢26 /t. = —g*d*t.6 =

571 —925;5. The recovered equation form corresponds to the Neuman long-time limit up

s2 to a constant and is independent of A and the initial position (it implicitly vanished
s3 by considering a displacement of d for a time-step of ¢. in ¢, ).

d=0.5pum d=1.0 um
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Figure 7: Noiseless MR signals from eq 3 for various (A, §) and axon diameter (d).
The signals were simulated for G = 300 mT/m and Dy = 2.0 um?/ms. We note
that different A (y-axis) doesn’t modify the signal in any appreciable way.

574 The Van Gelderen formula (Eq. 3) for restricted diffusion is derived using the
s5 Gaussian phase approximation (GPA), which assumes a Gaussian distribution for
st spin dephasing. The GPA is guaranteed to hold for very short or very long diffusion
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s7 time [39] and is empirically accurate for simple shapes of boundaries such as circles.
s It is a fast converging series, typically reaching precision errors smaller than 10~7
sto - with only 10 terms. Often, instead of truncating Eq. 3, we use the Neuman long-time
se0  limit formula (Eq. 4) for simplicity. It is typically numerically indistinguishable from
ss1 Fq. 3 for the relevant parameter range. The Neuman formula is defined assuming
ss2 A = ¢, but it can nonetheless be used in the case of the relevant parameter range
ss3 where the restricted diffusion signal is insensitive to A

2\ [2Dg0a2,0 — 2 + 2e~ oo
In(E) = —2v°G? e
2 | Dot ran -1 "
26_D0a$"A _ e—Doagn(A—(S) _ e—Doafn(A-‘rﬁ)
Dga8,((5)%a3, — 1)

ssa . where E is the normalized diffusion signal, 7 is the proton gyromagnetic ratio, G is
sss  the diffusion gradient amplitude, Dy is the unrestricted diffusivity in the cylinder,
sss A is the diffusion gradient separation, ¢ is the diffusion gradient duration, d is the
7 diameter of the cylinder, o, is the m*™® root of the equation J] (a : é) = 0, where

2
s J1(+) is the derivative of the Bessel function of the first kind.

7T %G, 99 2
E = L S N ) 4
eXp< 1536 Dy 448 D, (4)

0 A.2 FEffective diameter derivation

We give a simple derivation of the effective diameter (similar derivation can be found
in [14, 52]). The normalized MR signal as a function of d with all other parameters

fixed is - s
i 4\ _ 4
E{d) = —— d* | = cd
(d) = exp < 768 Dy ) b ( )

so0  for some fixed constant C'. We compute the volume fraction normalized signal Ep for

s diameter counts following a distribution of density P(d). We use the approximation
o F(d) ~ 1+ Cd* from the truncated Taylor series of exp(-).
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s A.3 Extra-axonal time-dependent diffusivity

=14+C-

4

s It has been shown that the extra-axonal compartment can exhibit time-dependent
sos diffusivity [14, 26, 35, 42]. It arises from the disorder created by the irregular
so6  packing of axons of varying diameters. The “disorder strength” is characterized by
s7 the parameter A and has been empirically estimated in [14] to be A ~ 0.2(I})?
ss where [ is the fiber packing correlation length at which diffusion is restricted in
s0 extra-axonal space. Two models of perpendicular diffusivity as a function of (A, )
s are described in [35]; Da(A ) assuming that all the time dependence in the
so1  diffusivity arises from intra-axonal space, D{"#(A,0) assuming that all the time
s2 dependence in the diffusivity arises from the extra-axonal space.

, c T fi d?
Dmtra A.§) ~ e:cDem n eff 5
In(A/8) + 2
Dextra A ~ Dex / 2 — A
iR ( 76) fez OO+C A—5/3 ’ c fex (6)
603 with extra-axonal volume fraction f.,, intra-axonal volume fraction f;, = 1— f.,,

o0¢ long time (A — o00) extra-axonal diffusivity D<*, bulk diffusivity Dy, and disorder
s strength parameter A.

606 Evidence on a few subjects suggests that the extra-axonal time-dependence dom-
7 inates the intra-axonal time-dependence [18, 35]. This was shown by fitting both
o8 eq. b and 6 to data acquired with fixed 6 = 20 ms and multiple A € [26, 100] ms
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s0 to comparable goodness-of-fit. The fitted parameters were then used to predict the
s signal values of a second acquisition using A = 75 ms and multiple § € [4,45] ms,
s where the extra-axonal model obtained good predictions and the intra-axonal model
sz failed. Since most axon diameter estimation methods assume static values for the
s13  extra-axonal diffusivity, if the time-dependence in the signal is dominated by extra-
s1a  axonal effects, the estimated diameters will be large and mostly unrelated to the
ais  effective diameter dog. To showcase this effect, we equated eq. 5 and 6 (D' (A, §) =
ss DT(A ) and isolated deg. We used the typical value of Dy = 2 pm?/ms and
a7 fixed D = 0.5 pm?/ms (fitted values in [35] inside [0.38,0.6] pm?/ms). We use
o5 fer € [0.25,0.75] and A € [0.25,2], giving us f.,A € [0.0625,1.5] compared to the
0 reported values in [35] inside [0.24,0.56]. We generated the “fake” deg for all phys-
o0 ically plausible combinations of A € [5,100] ms and 6 € [5,50] ms. We observe
1 effective diameter between 2 pym and 9.5 pm, with most diameters above 6 pm in
22 the configurations (f., = 0.5 and A = [0.5, 1]) closest to results from [35].
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Figure 8: Signal generated using the extra-axonal time-dependence formula eq 6
and effective diameters fitted using eq 5.

623 The well-known “small-big-small diameter pattern” observed in the corpus cal-
e« losum with histology and “reproduced” with big overestimation by axon diameter
625 estimation methods ([3, 16, 23, 38]) can potentially be explained by this presented
o6 effect [18]. A brain area with a higher mean diameter is likely to also have an
&7 increased [} for random circle packing; if the diameter distribution is uniformly
e shifted up, the packing keeps the same relative efficiency and the individual inter
e20 Space grows, alternatively, if a few more big axons are present, it increases the di-
s0 ameter heterogeneity and the packing efficiency tend to go down, creating more
ea1  extra-axonal space. In any case, f., A increases, and the “fake” d.g follows in the
sz setting of fig. 8. However, the extra-axonal model parameters still contain some

33 information about the outer diameter distribution, but it is complexly tangled with

26


https://doi.org/10.1101/2020.10.01.320507
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.320507; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

63+ axon packing.

s A.4 Two-diameter distributions

s3s  We show more examples of fitting a two-diameter model with smaller, more realistic
w7 diameters. In fig. 2, we used a combination of enormous diameters (signal frac-
e tion, 30% d; = 4.5 pm and 70% ds = 3.5 um) to highlight the effect of having a
630 distribution over the lack of sensitivity of the realistic state-of-the-art acquisition
o0 scheme. We now show results for (30% d; = 3.5 pm and 70% dy = 2.5 pm) and
s (30% dy = 2.5 pm and 70% dy = 1.5 pum), where the ambiguity over the diameters
2 is amplified for the same sampling scheme.
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Figure 9: Example of the unresolvability of distribution fitting. The ground truth
signal was generated from a combination of 2 parallel cylinders; 30% signal frac-
tion with diameter d; = 3.5 pm and 70% dy = 2.5 pm (shown as white dot in the
center plot) with in-vivo diffusivity (Dy = 2 pm?/ms) and a Connectom-like acqui-
sition with three different gradient pulse durations (G = 300 mT/m, A = 50 ms,
d = [30, 40, 50] ms). The parameters were selected so that the smallest diameter was
comfortably above the “typical” diameter limit for 6 = 30 (compared to the limit for
SNR = 30, this experiment is noiseless). The 9 subplots represent all combinations
of diameters between 0.1 and 6 pm, sliced uniformly at signal fractions between 10%
and 50%. The blue “path” corresponds to parameter combinations yielding a signal
less than 1% signal decay different than the noiseless ground truth. It forms a
surface spanning most of the 3D parameter space, rendering any distribution fitting
impossible for non-absurd SNR.

28


https://doi.org/10.1101/2020.10.01.320507
http://creativecommons.org/licenses/by-nc/4.0/

10% d; + 90% d»

made available under aCC-BY-NC 4.0 International license.

15% d; + 85% ds

20% d; + 80% da

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.320507; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

6 6 5.0%
5 5
4 —4
€ £
=3 33
= =
1 1
1_ 0,
1 2 3 4 5 6 1 2 3 4 5 5 6 0%
da (um) dy (pm) dy (pm)
6 25% dy + 75% ds 6 30% dy + 70% d» 35% di + 65% dy
0.5 %
5 6 1 2 3 4 5 5 6
d (pm) dy (um) d (pm)
0, 0, 0, 0, 0, 0,
40% d; + 60% do 6 45% dy + 55% d» 6 50% d; + 50% ds 0.1 %
5 5 5
4
£
=3
<,
1
0,
5 6 2 3 4 5 5 6 0.0 %

dy (pim) dy (um) dy (p1m)

Figure 10: Example of the unresolvability of distribution fitting. The ground truth
signal was generated from a combination of 2 parallel cylinders; 30% signal frac-
tion with diameter d; = 2.5 pm and 70% dy = 1.5 pm (shown as white dot in the
center plot) with in-vivo diffusivity (Dy = 2 pm?/ms) and a Connectom-like acqui-
sition with three different gradient pulse durations (G = 300 mT/m, A = 50 ms,
d = [30, 40, 50] ms). The parameters were selected so that the smallest diameter was
comfortably above the “typical” diameter limit for 6 = 30 (compared to the limit for
SNR = 30, this experiment is noiseless). The 9 subplots represent all combinations
of diameters between 0.1 and 6 pm, sliced uniformly at signal fractions between 10%
and 50%. The blue “path” corresponds to parameter combinations yielding a signal
less than 1% signal decay different than the noiseless ground truth. It forms a
surface spanning most of the 3D parameter space, rendering any distribution fitting
impossible for non-absurd SNR.
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