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Tunneling-induced fractal transmission in valley Hall waveguides
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The valley Hall effect provides a popular route to engineer robust waveguides for bosonic excitations such as
photons and phonons. The almost complete absence of backscattering in many experiments has its theoretical
underpinning in a smooth-envelope approximation that neglects large momentum transfer and is accurate only
for small bulk band gaps and/or smooth domain walls. For larger bulk band gaps and hard domain walls,
backscattering is expected to become significant. Here, we show that in this experimentally relevant regime,
the reflection of a wave at a sharp corner becomes highly sensitive to the orientation of the outgoing waveguide
relative to the underlying lattice. Enhanced backscattering can be understood as being triggered by resonant
tunneling transitions in quasimomentum space. Tracking the resonant tunneling energies as a function of the
waveguide orientation reveals a self-repeating fractal pattern that is also imprinted in the density of states and
the backscattering rate at a sharp corner.
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I. INTRODUCTION

Robust waveguides are an essential component for the
transport of classical and matter waves in on-chip devices.
Ideally, it would be desirable to realize waveguides in which
backscattering is strictly forbidden even after arbitrary (but
weak) disorder is introduced. This is, however, possible only
in topological systems with broken time-reversal symmetry
[1]. For topological fermionic system, Kramers degeneracy
also offers a powerful mechanism to prevent any backscatter-
ing in the presence of arbitrary geometrical disorder (as long
as the disorder does not break the time-reversal symmetry).
On the other hand, topological bosonic systems [2,3] without
broken time-reversal symmetry are never completely immune
to geometrical disorder, see, e.g., Refs. [4,5]. While it is clear
that backscattering is not forbidden in this type of waveguide
it is usually difficult to quantify this phenomenon which re-
mains poorly investigated.

A popular approach to engineer robust waveguides without
the need of breaking the time-reversal symmetry is based
on the valley Hall effect [6,7]. This is a symmetry-based
approach that has found implementation in a range of experi-
mental platforms ranging from electronic [6,7], to plasmonic
[8], photonic [9–16], and mechanical systems [17–27]. In
this setting, the counter-propagating guided modes are valley
polarized, that is, they are localized in nonoverlapping regions
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in the quasimomentum representations. Thus backscattering
requires large quasimomentum transfer and is suppressed as
long as the wave function for the guided modes are smooth
on the scale of the underlying lattice potential. This also im-
plies that there is a trade-off between two desirable features:
transverse localization of the guided modes and resilience of
the transmission against disorder. In is well-known that the
resilience to backscattering depends also on the orientation
of the waveguide relative to the underlying lattice, see, e.g.,
Refs. [8,9,17]. In particular, for implementations based on
crystals with a triangular Bravais lattice, waveguides aligned
with a basis lattice vector are less prone to backscattering
[9]. However, a systematic investigation of the orientation
dependence is still missing.

In a recent work [28], we have provided an interpretation
of the backscattering transitions in valley Hall waveguides
as tunneling transitions in the quasimomentum space. Our
previous investigation focused on smooth domain walls. In
this work, we move our attention to systems with hard domain
walls (i.e., system in which the underlying crystal geometry
changes abruptly at the domain wall) and consider a regime
where the transverse confinement is relatively strong. In par-
ticular, we are interested in experimentally relevant scenarios
in which two or more straight waveguides are connected at
sharp corners, cf Fig. 1(a). We find that the transport and
spectral properties are highly sensitive on the orientation of
the waveguides. Extensive simulations of the density of states
(DOS) of straight waveguides as well as of the transmission
at a sharp corner give hints of an underlying fractal depen-
dence of these observables on the energy and the waveguide
orientation. We provide an explanation of these empirical
observations by analyzing the quasimomentum paths and en-
ergies for resonant tunneling.

The fractal spectrum we analyze is reminiscent of the
Butterfly spectrum of 2D charge particles on a lattice as a
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FIG. 1. Review of valley Hall effect. (a) Schematic transport of
the valley Hall edge channel through a sharp turn. The edge channel
travels at the interface of the two distinct domains (red and blue re-
gions), consisting of opposite onsite potentials on the two sublattices
A and B. (b) Sketch of the bulk Brillouin zone. Also sketched are
the wave functions of two counter-propagating confined modes in
the quasimomentum representation. (c) Mass domain wall defining
a straight waveguide. Corresponding valley band structures in the
smooth-envelope approximation. (d) Sketch of the Dirac cones. Also
shown are the energy and mean quasimomentum of the confined
mode. The reflection of the wave involves a large quasimomen-
tum transfer to reach a different valley, whereas the transmission is
achieved with ease by rotating around the same cone.

function of the magnetic flux originally predicted by Hof-
stadter [29] and later observed in a variety of platforms
including graphene superlattices [30,31], cold atoms in optical
lattices [32], and superconducting qubits [33]. In our work,
the orientation of the waveguide relative to the lattice plays
a similar role as the magnetic flux. Our work is also loosely
connected to the investigation of fractal spectra in quasicrystal
geometries [34–38]. Indeed, the waveguides we investigate
can be viewed as 1D quasicrystals for orientations that are
not commensurate to the lattice. However, we emphasize that,
here, the fractal structure we describe is not a property of the
spectrum for a single orientation but rather of its variation as
a function of the orientation.

II. REVIEW OF THE VALLEY HALL PHYSICS

In order to set the stage for our work, we start giving a
brief introduction to the valley Hall physics. For this purpose
and, more generally, as a case study for our investigation we
introduce the simplest toy model that allows to implement
valley Hall guided modes. This model is a simple extension
of nearest-neighbors graphene tight-binding model as detailed
below.

Excitations on a honeycomb lattice hops with rate J be-
tween nearest-neighbor sites with opposite onsite energies, m
and −m on sublattices A and B, respectively. We allow the
amplitude and sign of the mass parameter m to depend on
the unit cell. In this way, the lattice can be viewed as being
divided into distinct domains according to the sign of the
mass parameter, cf Fig. 1(a). We, thus, arrive to the simple
tight-binding Hamiltonian:

Ĥ =
∑

x

m(x)(|x, A〉〈x, A| − |x, B〉〈x, B|)

− J
∑
〈x,x′〉

|x, A〉〈x′, B| + |x′, B〉〈x, A|. (1)

Here, x indicates the unit cell position and, thus, it is a lattice
vector, x = n1a1 + n2a2 with n1/2 integers and a1/2 unit lattice
vectors, an = a

√
3(

√
3/2, (−1)n+11/2). In addition, 〈x, x′〉

denotes the sum over nearest neighbors.

A. Quasimomentum representation

To gain insight on the valley Hall physics and in particular
the phenomenon of backscattering (discussed below), it is
very useful to introduce the quasimomentum representation.
To switch to the quasimomentum representation we project
the valley Hall Hamiltonian (1) into a basis of plane waves
|k〉 = A−1/2

BZ

∑
x eik·x|x〉,
〈k|Ĥ |k〉 = m(i∇k )σ̂z + h(k) · σ̂, (2)

where σ̂i=x,y,z is a set of Pauli matrices acting on the sub-
lattice degree of freedom, 〈A|σ̂z|A〉 = 1, σ̂ = (σ̂x, σ̂y), and
h = (hx, hy) is given by

hx = −J − 2J cos

(√
3kxa

2

)
cos

(
3kya

2

)
,

hy = −2J cos

(√
3kxa

2

)
sin

(
3kya

2

)
. (3)

We note that the quasimomentum k is defined modulus a
reciprocal lattice vector and can be chosen within the Bril-
louin zone of area ABZ = 8π23−3/2/a2, cf Fig. 1(b). Thus the
normal modes ψ̃(k) (in quasimomentum space) are periodic
eigenstates of Eq. (3),

ψ̃(k + n1b1 + n2b2) = ψ̃(k)

with b1 and b2 unit vectors of the reciprocal lattice.

B. Dirac Hamiltonian and valley Chern numbers

For the bulk case, m(x) = mbk, the quasimomentum k is
a constant of motion and 〈k|Ĥ |k〉 reduces to a simple 2 ×
2 matrix. Its spectrum as a function of the quasimomentum
defines the band structure given by

Ebulk (k) = ±
√

m2
bk + |h(k)|2. (4)

In the special case mbk = 0, it features Dirac cones centered
at the Dirac high-symmetry points K = (4π/(3

√
3a), 0) and

K′ = −(4π/(3
√

3a), 0). A finite mass mbk opens a band gap
of width 2|mbk| between the two bands. We note that the band
structure is independent of the sign of the mass parameter
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m. However, this quantity is still very important in that it
determines the symmetry properties of the underlying normal
modes.

Next, we focus our attention on exitations whose wave
function ψ̃(k) is localized in a so-called valley, i.e., the vicin-
ity of a Dirac point. The dynamics of these Valley-polarized
excitations are captured by a Dirac equation obtained by
expanding the Hamiltonian Eq. (3) about the relevant Dirac
point. For the K valley, the Dirac equation reads

〈K + p|Ĥ |K + p〉 ≈ m(i∇k )σ̂z + vp · σ̂. (5)

Here, p = k − K is the quasimomentum counted off from the
high-symmetry point K. We note in passing that the Dirac
equation can also be derived from symmetry consideration in
the framework of a smooth-envelope approximation without
any detailed knowledge of the underlying microscopic model,
see, e.g., Ref. [28]. For the bulk case m = mbk, it is possible
to associate to the Dirac Hamiltonian a topological invari-
ant the so-called valley Chern numbers CV [6]. The valley
Chern number assumes two possible half-integer values 1/2
or −1/2, with opposite signs in the two valleys. For the lowest
band and the K valley, we have CV = sign(mbk )/2. Under the
assumption that the Berry curvature is peaked in the region
of validity of the Dirac equation (which is true as long as
mbk/J � 1), the valley Chern numbers accurately quantifies
the contribution from a valley to the overall band Chern num-
ber.

C. Topological guided modes

When a domain with positive mass is joined to a domain
with negative mass, cf Fig. 1(a), the valley Chern number
across the surface changes by one unit. In this scenario, the
bulk boundary correspondence separately applied to each val-
ley (with the implicit assumption that the two valleys are not
coupled), predicts the appearance of a pair of guided counter-
propagating gapless modes (one mode for each valley). Thus
we can view such a domain wall configuration as a topological
waveguide.

The appearance of guided modes at the interface of two
regions with opposite sign of the mass parameter m can also be
substantiated by directly diagonalizing the Dirac Hamiltonian
(5). Indeed, the existence of a guided mode for the Dirac
equation in the presence of a straight domain wall has been
originally predicted by Jackiw and Rebbi [39]. If we choose
a set of coordinates xr and xs such that m(x) = m(xr ) with
the domain wall on the xr = 0 axis and m(xr ) > 0 in the
lower-half plane, cf Fig. 1(c), the guided mode has energy
dispersion

EK,ps = vps. (6)

Here, v = 3Ja/2 is the Dirac velocity and ps is the compo-
nent of the quasimomentum longitudinal to the domain wall,
ps = p · es, where es is the unit vector in the longitudinal
direction. State of the art experimental realizations normally
feature hard domain walls, m(x) = −|mbk|sign(xr ), where xr

is the coordinate transverse to the domain wall, cf Fig. 1(c). In
this case, the Jackiw and Rebbi solution has the wave function

ψK,ps
(x) = eipsxs eiK·xe−|mbkxr/v|

(
e−iϕ/2

eiϕ/2

)
. (7)

Here, ϕ is the angular coordinate of the mass domain wall,
cf Fig. 1(c). The guided mode for the valley K′ is obtained
by applying the time-reversal operator (in this case, complex
conjugation) to Eq. (7), ψK′,−ps

(x) = ψ∗
K,ps

(x).
It is instructive to rewrite the guided mode wave

function in the quasimomentum representation ψ̃K,ps
(k) =

A−1/2
BZ

∫
dx e−ik·xψK,ps

(x). We find

ψ̃K,ps
(k) = δ(ks − K · es − ps) φps

(kr ),

φps
(kr ) = 2mbk/v

(mbk/v)2 + (kr − K · er )2

(
e−iϕ/2

eiϕ/2

)
. (8)

Here, er is the unit vector in the radial direction, cf Fig. 1(c).
Thus the right propagating guided mode is localized about the
quasimomentum k̄K,ps = K + pses with standard deviation
δkr = 2mbk/v in the transverse direction. On the other hand,
the time-reversed solution in the K’ valley will be localized
about k̄K′,−ps = K′ − pses = −k̄K,ps , see the geometrical il-
lustration in Fig. 1(b). We note that for mbk/J � 1, δkr is
much smaller than the distance between the two valleys.

We now consider a setup where two straight waveguides
have been connected by a sharp corner, cf Fig. 1(a). If the
condition mbk/J � 1 is fulfilled, the quasimomentum transfer
after turning the corner is much smaller than the quasimo-
mentum transfer that would be required for backscattering,
cf Fig. 1(d). This leads to suppression of backscattering and,
thus, robust transport.

We note that there is a trade off between the bandwidth for
the guided modes and how well backscattering is suppressed
(or, equivalently, how strongly the guided modes are localized
in quasimomentum) [28]. In order to boost the bandwidth,
many experiments are realized in a regime of intermediate
values of the dimensionless bulk mass parameter |mbk|/J in
which the coupling between the two valleys can not be safely
neglected, see, e.g., Shaley et al. [14], Zeng et al. [15], Ren
et al. [23], Ma et al. [24], and Arora et al. [16] with |mbk|/J =
0.2, 0.6, 0.6, 0.4, and 0.2, respectively. This has motivated
us to investigate the regime of intermediate masses directly
diagonalizing numerically Eq. (1) and, thus, accounting also
for the coupling between the two valleys. In all simulation
below, we have used the dimensionless bulk mass parameter
|mbk|/J = 0.3. We expect qualitatively similar results for sim-
ilar values of |mbk|/J .

III. TUNNELING INDUCED BAND GAPS IN VALLEY
HALL WAVEGUIDES

The simplest signature of the coupling between the two
valleys (beyond the Dirac equation approach) is the appear-
ance of minigaps in the band structure of a straight waveguide.
These band gaps have been investigated in Ref. [28] with
a special focus on the case of smooth mass domain walls
m(x). This work has also shown that there is a deep connec-
tion between these band gaps and backscattering in a closed
domain wall. For this reason, we also start investigating the
band structure for straight waveguides before switching to the
problem of backscattering at sharp corners in Sec. V. Our
investigation is complementary to Ref. [28] in that we focus
on the case of sharp domain walls and corners.
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FIG. 2. Valley Hall effect for a straight waveguide. (a) Waveguide unit cell with orientation ϕ ≈ 77.0◦ (p = 2, q = 5). (b) Representation of
the waveguide BZ (grey stripes) in the reciprocal space. Within the smooth-envelope approximation, the mean quasimomentum of the confined
mode is located along the line (red) passing through the K or K′ point and parallel to the domain wall. (c) Numerically evaluated band structure
and (d) the density of state (normalized to that for the gapless edge channel). The numbers on the edge-band indicate the waveguide BZ index
in (b).

In the Dirac Hamiltonian approach, the momentum p
counted off from the corresponding high-symmetry point is
formally treated as a continuous variable, p ∈ R2. This leads
to quantized valley Chern numbers and a simple description
with a continuous dependence of energy and wave function
on the angular coordinate ϕ, cf Eqs. (6) and (7). We note,
however, that the longitudinal quasimomentum ps is not a con-
served quantity. A full numerical evaluation (beyond the Dirac
equation) of a waveguide’s band structure can be straightfor-
wardly performed whenever the waveguide is translationally
invariant. This allows to define a waveguide lattice constant
awg, cf Fig. 2(a), and the corresponding conserved waveg-
uide quasimomentum k = (k · es)mod(2π/awg), Fig. 2(b).
In particular, the Jackiew and Rebbi solution in the val-
ley K has waveguide quasimomentum kK,ps = (K · es +
ps)mod(2π/awg) while its time-reversed partner in the
K′ valley has opposite quasimomentum, kK′,ps = (K′ · es −
ps)mod(2π/awg) = −kK,ps . Thus, the two solutions, which
have the same energy, have also the same waveguide quasimo-
mentum at the time-reversal invariant high-symmetry points
k = � = 0 or k = X = π/awg. At these points, they are res-
onantly coupled leading to a gap in the guided mode band
structure. The band gap can be viewed as a tunnel splitting
proportional to the overlap of the two guided modes ψ̃K,ps

(k),

and ψ̃K′,−ps
(k) = ψ̃

∗
K,ps

(−k) which are peaked in different
valleys [28]. In this framework, the peaks quasimomenta k̄K,ps

and k̄K′,−ps (see definition above) can be viewed as the clas-
sical quasimomenta of the two counter-propagating guided
modes (a rigorous WKB approach is possible for smooth do-
main walls [28]). The resulting band structure, for the special
case ϕ ≈ 77.0◦, is shown in Fig. 2(c). An alternative repre-
sentation of the spectrum is provided by the density of states
(DOS) ρ(E ), Fig. 2(d). For an infinite size system, the DOS
in the region of the bulk band gap is flat away from the guided
modes band gaps, vanishes inside the band gaps, and dis-
plays Van Howe singularities at the band edges, cf Fig. 2(d).
Numerically, we suppress finite-size artifacts by simulating
a large system size in the presence of a small homogeneous
broadening of the energy levels, see Appendix A.

Until now we have focused on translationally invariant
waveguides. Thus we have implicitly assumed that the mass

domain wall is aligned with at least one lattice vector x. This
is the case only for angles ϕ fulfilling the rationality condition
[40]

α ≡
√

3 cot ϕ = p/q, (9)

with p and q relative prime integers. The waveguide lattice
constant is then

awg = 3qa

1 + (pqmod2) sin ϕ
. (10)

We note that the lattice constant is a discontinuous function of
ϕ via p and q. Thus the number of bands and band gaps will
also be a discontinuous function of ϕ leading to an overall dis-
continuous spectrum. This is reminiscent of the discontinuous
dependence of the energy spectrum of electrons in an external
magnetic field as a function of the magnetic flux [29]. In the
latter scenario, the appearance of an ever larger number of
band gaps for large denominators q of the magnetic flux leads
to the celebrated Hofstadter butterfly spectrum [29]. This
spectrum has been intriguing for generation of researchers
and even the general public because of its self-similar fractal
nature. This has motivated us to explore numerically the edge
state spectrum as a function of the angular-coordinate ϕ.

IV. FRACTAL ORIENTATION DEPENDENCE OF THE
BAND STRUCTURE

The DOS of the waveguide as a function of energy and
orientation ϕ is shown in Fig. 3(a). We focus on the inter-
val 60◦ � ϕ < 120◦ as the DOS for angles outside of this
interval can be recovered by applying the following sym-
metry considerations: (i) A rotation by 120◦ of the domain
wall is equivalent to a rotation of the whole Hamiltonian
and, thus, does not change the spectrum, {E}ϕ = {E}ϕ+120◦

(ii) A rotation by 180◦ of the domain wall just changes the
sign of all onsite energies. Since the lattice is bipartite each
energy level has a corresponding level with opposite energy
in the rotated structure, {E}ϕ = {−E}ϕ+180◦ = {−E}ϕ+60◦ . As
it should be expected given the discontinuous ϕ-dependence
of the number of band gaps, the density of states displays
an intricate structure. A multitude of band gaps (dark blue
strips) of varying width merge at the intersection of the E = 0
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FIG. 3. Orientation dependence of the waveguide DOS. (a) Nu-
merically evaluated density of states of the waveguide as a function
of energy (in the region of the bulk band gap) and the waveguide
orientation (in the interval 60◦ � ϕ < 120◦). [(b) and (c)] Zoom-ins
of the regions inside the white boxes in (a). The same pattern appears
at two different scales.

and ϕ = 90◦ axes with the two main band gaps forming an
x-shaped pattern, cf also the zoom in Fig. 3(b). In the next
section, we explain the reason behind this x-shaped pattern,
with one of the legs being wider than the other one, cf
Eqs. (12) and (13). Surprisingly further magnification about
the intersection of the E = 0 axis and ϕ ≈ 66.5◦ reveals that
the same remarkable pattern is repeated for smaller energy
and angle variations, cf Fig. 3(c). This raises the question
whether further magnification would reveal a self-repeating
fractal pattern, analogous to the celebrated Hofstadter’s But-
terfly spectrum but now with the angle ϕ playing the role of
the magnetic flux. We investigate this question in the next
section.

We note in passing that for any fixed irrational α the waveg-
uide can be viewed as a quasicrystal [34,41,42]. Quasicrystals
have been shown to support fractal band structures [34,38].
In our setting such noncommensurate orientations supports an
infinite number of band gaps [28]. So it is at least conceivable
that the band structure for a fixed irrational angle could also be
a fractal. Here, we leave this as an interesting open question
and rather focus on the orientation dependence of the spec-
trum.

A. Resonant tunneling for arbitrary waveguide orientation

From Fig. 3(a) it is clear that even though the number of
band gaps is a discontinuous function of the orientation ϕ,
each given band gap can be viewed as defining a continuous
function. In this section, we give a theoretical underpinning to
this observation by following the approach of Ref. [28].

In the quasimomentum representation, the wave function
of the guided mode for an arbitrary (possibly irrational) α can

be found using the ansatz

ψ̃k̄s
(k) = δ(ks − k̄s) φ̃k̄s

(kr ). (11)

Here, ks (kr) is the quasimomentum in the direction longi-
tudinal (transverse) to the domain wall, cf Figs. 2(a) and
2(b). For rational α [corresponding to translationally invari-
ant waveguides, cf Eq. (9)], this is just a Bloch-wave ansatz
with waveguide quasimomentum k = k̄smod(2π/awg). More
in general, k̄s can be viewed as a label for the support man-
ifold of the function ψ̃k̄s

(k). This is a submanifold of the
BZ parameterized by the radial quasimomentum kr . When
the quasimomentum k is taken inside the hexagonal Brillouin
zone such submanifold transverse the BZ multiple times (for
irrational α infinitely many times) defining a series of par-
allel lines, cf blue lines in the BZs depicted in Figs. 4(b)
and 4(c). For rational α, it is a closed manifold of length
Tr = ABZawg/2π . We note that the Jackiw and Rebbi so-
lution Eq. (8) represents a special example of the ansatz
Eq. (11) with the additional assumption that the wave func-
tion is peaked close to the K point. We mention in passing
that a more general guided solution ψ̃k̄s

(k) localized about a
quasimomentum k̄k̄s

that is not necessarily close to any high-
symmetry point has been derived in Ref. [28]. Interestingly,
this guided solution is unique (up to a reparametrization of
k̄s) and can be viewed as defining a single band comprising
a right and a left propagating branch. As for the Jackiw
and Rebbi solution, both the energy dispersion Ek̄s

and the
classical quasimomentum k̄k̄s

depend only on sign(m(xr )) but
not on |m(xr )|. For Ek̄s

close to the middle of the bulk band
gap, the classical quasimomentum k̄k̄s

is close to a Dirac point
recovering the Jackiw and Rebbi solution.

The emergence of the minigaps, forming the intricate
pattern in Fig. 3 is the consequence of the tunneling
induced hybridization of time-reversal-partner solutions local-
ized about two opposite and possibly distant quasimomenta,
cf Figs. 4(b) and 4(c). In Sec. III, we have explained that for
translationally invariant waveguides, the tunneling is resonant
at the time-reversal-symmetric (waveguide) quasimomenta
k = � and k = X . For arbitrary waveguides, Ref. [28] identi-
fied a more general condition: the two time-reversed solutions
should have support on the same submanifold (but will
be peaked at different kr). This submanifold is itself time-
reversal invariant. For irrational (rational) α, the time-reversal
invariant manifolds pass through one (two) time-reversal in-
variant honeycomb lattice quasimomentum (quasimomenta),
k = Mi=1,2,3 or �, cf Fig. 4(d). In either scenario (rational
or irrational α) one can identify a dominant tunneling path,
on which the overlap of the localized solutions is largest.
This path [indicated by the thick blue line in Figs. 4(b) and
4(d)] connects the two classical quasimomenta via a single
time-reversal invariant quasimomentum. Two key intuitions
allow to shed light on the intricate DOS pattern in Fig. 3.
First, each continuous minigap is associated to a specific
continuous (as a function of ϕ) tunneling path. Each such
path (and the corresponding minigap) can be labeled with a
time-reversal-invariant high-symmetry point (one of the M or
� points) and the number of times it traverses each valley
[28], cf Figs. 4(a)–4(c). Second, the different minigaps are
of very different magnitudes. Quantifying these magnitudes
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FIG. 4. Waveguide band gaps induced by resonant tunneling. (a) Waveguide band structure featuring the two most dominant waveguide
band gaps (the two legs of the most dominant x-shaped pattern in Fig. 3). [(b) and (c)] (Left) Brillouin zone. Also sketched is the closed-loop
support manifold (blue line) and the tunneling path (between the blue arrows) for the wave function ψ̃k̄s

(k) for the lower-energy mode at
the avoided crossing. The insets indicate that the positive velocity component is displaced from the K point according to Eq. (8). (Right)
Radial component of the wave function φ̃ks (kr ) as a function of the coordinate kr parametrizing the support manifold. (d) Sketch of a tunneling
path giving rise to a band gap centered exactly at zero energy (orange), also indicated is the corresponding waveguide orientation ϕ0. After
rotating the orientation by an angle 
ϕ, the average quasimomenta (pink and green) and tunneling path (blue) are displaced. (e) Lattice in
reciprocal space formed by the K and K′ momenta. Each tunneling paths leading to a band gap centered at zero energy can be identified
with an endpoint K′ momentum once the other endpoint (red) has been fixed on the K sublattice. The K′ momenta leading to the first few
shortest tunneling paths for orientations in the interval 60◦ � ϕ < 120◦ (shaded region) are marked as green dots (darker markers indicate
shorter paths). [(f)–(h)] Resonant tunneling energy E (tun) (band gap center) as a function of the waveguide orientation ϕ. Each line crossing
zero energy and the corresponding zero-energy tunneling path is marked in (e). Sweeping the waveguide orientation ϕ leads to a variation of
the longitudinal quasimomentum ps, and hence of the tunneling energy E (tun), see sketch in (d) and Eq. (12). Zoom-ins about ϕ0 = 90◦ and
ϕ0 ≈ 66.6◦ are shown in (g) and (h). About all orientations ϕ0 supporting zero-energy band gaps and after an appropriate rescaling, the same
pattern appears. The analytical results shown in (f)–(h) should be compared and partially explain the numerical results in Figs. 3(a)–3(c).

is technically difficult as it requires to calculate the tail of
the Jackiw and Rebbi solutions in quasimomentum space,
going beyond the Dirac equation treatment [28]. However,
for a qualitative understanding of the DOS patterns observed
in Fig. 3, it is enough to observe that there is a correlation
between the size of a band gap and the length |Lt | of the
tunneling path, with longer tunneling paths leading to smaller
band gaps, cf Figs. 4(a)–4(c). Thus only a finite number of
the infinitely many band gaps appears in a smeared out DOS,
cf Fig. 3. Moreover, the two legs of the x-shaped pattern in
Fig. 3 corresponds to different lengths of the tunneling paths,
cf Figs. 4(a)–4(c). Hence, their widths are different.

B. Explanation of the fractal pattern

Next, we focus on the guided modes spectrum in the region
centered about E = 0 where the interesting multiscale pattern
is observed, cf Fig. 3. Our approach is centered on special
tunneling paths that are associated to tunneling transitions
that are resonant for exactly zero energy. In other words, they
give rise to a minigap with center energy E (tun) = 0 for an
appropriate waveguide orientation ϕ = ϕ0. We refer to these
tunneling paths as zero-energy tunneling paths. By analyzing
their properties we will be able to show that the same x-shaped
pattern for the center energies E (tun) of the minigaps as a
function of the angles repeats infinitely many times about
the axis E = 0 for ever smaller energy and angle variations,
overall, forming a self-similar fractal pattern.

About zero-energy we can determine the resonant tunnel-
ing energy E (tun) using the Jackiw and Rebbi solution Eqs. (6)
and (8). We preliminary note that for any arbitrary ϕ the
guided mode energy E = 0 always has as classical quasimo-
mentum k̄ a Dirac point, k̄ = K or K′. The two solutions at
k̄ = K and K′ are time-reversal partners and the tunneling
between them becomes resonant whenever a tunneling paths
orthogonal to the waveguide orientation connects these two
high-symmetry points. Geometrically, we can represent these
zero-energy tunneling paths as described below. As a pre-
liminary step, we draw the lattice that contains all momenta
corresponding to the K or the K′ points, cf Fig. 4(e). This
is a honeycomb lattice in reciprocal space which has as lat-
tice vectors the reciprocal lattice vectors b. Each zero-energy
tunneling paths (once unfolded into the R2 plane) can be
represented as a straight line connecting a fixed momentum
on the K sublattice [e.g., the red point in Fig. 4(e)] with one
of the infinite many momenta on the K′ lattice. In Fig. 4(e),
we highlight the region of reciprocal space that hosts the
zero-energy tunneling path for the waveguides orientations
ϕ in the interval 60◦ � ϕ < 120◦. In this region, we also
highlight the momenta on the K′ lattice with different shades
of green, encoding the length of the tunneling path connecting
these sites to the red dot on the K lattice. (As discussed
above shorter paths correspond to larger band gaps.) Since
the corresponding waveguide orientation is orthogonal to the
zero-energy tunneling path and, at the same time, the recipro-
cal lattice is rotated by 90◦ compared to the real space lattice,
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we conclude that a waveguide supports a zero-energy band
gap if and only if moving in the longitudinal direction from
a point on the A sublattice one eventually crosses a point on
the B sublattice. While these particular set of orientations are
a dense subset of the angles corresponding to translationally
invariant waveguides (and hence a dense subset of all orien-
tations), in practice, only a finite and well spaced subset of
orientations (those supporting the shortest zero-energy tunnel-
ing paths) will give rise to zero-energy band gaps in a smeared
out density of states, as shown in Fig. 3.

After having identified the waveguide orientations giving
rise to large band gaps centered around zero energy, we want
to understand the structure of the density of states in the
vicinity of these special orientations. We denote one such
orientation as ϕ0. We also introduce the vectors es,0 and er,0

longitudinal and transverse to the domain wall [with the same
conventions as in Fig. 1(c)], and the momentum K′

ϕ0
on the

K′ lattice such that the vector K′
ϕ0

− K is orthogonal to es,0.
Simple geometrical considerations, cf Fig. 4(d), show that the
linear dispersion of the Jackiew and Rebbi solution Eq. (6)
gives rise to a linear dependence of the resonant tunnel-
ing energy E (tun) on the waveguide orientation 
ϕ = ϕ − ϕ0

counted off from ϕ0,

E (tun)(
ϕ) = vps(
ϕ) = vL0

2
sin(
ϕ) ≈ vL0

2

ϕ. (12)

Here, L0 is the projection of the zero-energy tunneling path
along the r axis, L0 = (K′

ϕ0 − K) · er,0 (equivalently, this is
the length of the zero-energy tunneling path multiplied by the
appropriate sign). This formula allows to predict the slope of
the band gap center E (tun)(ϕ) for each band gap that crosses
zero energy in terms of the zero-energy tunneling path or,
equivalently, the corresponding K′ and K end momenta. As
explained above the width of the band gap is proportional
to the tunneling length and, in practice, only the shortest
tunneling paths will give rise to appreciable band gaps. The
band gap centers for the shortest zero-energy tunneling paths
[those corresponding to the K′ momenta highlighted as green
dots in Fig. 4(e)] calculated using Eq. (12) are shown in
Fig. 4(f). We note that several band gaps merge at the same
origin on the zero-energy axis as previously observed for the
density of states in Fig. 3. This simply reflects that there are
(infinitely) many K′ momenta on every line that also crosses a
K momentum, cf Fig. 4(e). Geometrical considerations shows
that if we label these K′ momenta with an integer label n ∈ Z
choosing n = 0 for the shortest zero-energy tunneling path
(for a fixed ϕ0) the other labels can be chosen such that

L(n)
ϕ0

≡ (K′(n)
ϕ0

− K) · er,0 = (3n + 1)L(0)
ϕ0

, (13)

with n ∈ Z see Appendix B. Note that the two legs of the
x-shaped pattern (for a fixed ϕ0) corresponds to n = 0 and n =
1, respectively. In other words the ratio L(n)

ϕ0
/L(0)

ϕ0
= 3n + 1

is independent on ϕ0. This relation can be rephrased more
generally as a constraint on the coordinates of the sites of
a honeycomb lattice, see Appendix B. In our setting, the
parameters L(n)

ϕ0
set the slope of the tunneling energies Etun,

given by Eq. (12) with L0 = L(n)
ϕ0

. Thus the local pattern of the
resonant tunneling energies Etun about a zero-energy tunneling
orientation ϕ0 is always the same, with the angle ϕ0 only fixing
the scale via L(0)

ϕ0
, cf Figs. 4(g)–4(h). Overall, in the ideal

limit of an infinite system without dissipation, this induce
a self-similar fractal pattern for the tunneling energies as a
function of the waveguide orientation ϕ.

Until now we have analysed the fractal pattern for the
tunneling energies as a function of the waveguide orientation.
Next, we discuss how a similar pattern is imprinted in the
DOS. We note that our analysis so far only partially explains
the empirical observation that exactly the same pattern is
observed in the DOS at two different scales, cf Figs. 3(b) and
3(c). In particular, it accounts for the slopes of the band gaps
but not for their widths. While we expect that the widths (set
by the underlying tunneling rate) will be proportional to the
length of the zero-energy tunneling path, the dependence will
in general be nonlinear. For this reason, zoom-ins of the DOS
about different ϕ0 may look substantially different even after
accounting for the different scale factors. Nevertheless, they
will all display a series of band gaps of varying width merging
at zero energy. Thus the overall global dependence of the DOS
on the waveguide orientation inherits the self-repeating fractal
nature of the resonant tunneling energies.

V. FRACTAL TRANSMISSION AT A SHARP CORNER

Next, we analyze a transport scenario that would allow
to directly observe the fractal features analyzed so far. We
consider a setup formed by connecting two waveguides of dif-
ferent orientations via a sharp corner, see Figs. 1 and 5(a). We
are mainly interested in the dependence of the transmission on
the waveguide orientations. We mention in passing that in the
hard domain-wall scenario considered here, the exact location
of the domain wall relative to the lattice can also influence
the transmission quantitatively (see Appendix C). However,
no qualitative change is observed indicating that the smooth
envelope approximation is sufficient to capture the essential
physics of the problem.

The simulation setup is shown in Fig. 5(a). We drive two
sites on the initial waveguide with the same amplitude and
frequency (energy), but a suitable phase difference, to unidi-
rectionally excite the edge channel towards the corner (see
Appendix D). At the corner, the wave is partially backscat-
tered. Eventually, the transmitted and the reflected waves
are absorbed in two different drains. To prevent any unde-
sirable backscattering at the drain-waveguide interface, the
dissipation rate is increased very slowly in the drains, see
Appendix D for more details. Therefore we need large drains,
which results in a tight-binding model of 5 × 105 lattice sites.
We use sparse matrices to store and perform linear algebra
operations on such large dimensional matrices. We derive
the steady state backscattering rate |r|2 from the ratio of the
absorbed intensities in the transmission and absorption drains,
see Appendix D. We choose the first waveguide to support a
zigzag domain wall (ϕ = 0◦) because this configuration does
not feature a band gap for the parameters considered here. In
this way, an excitations of frequency inside the bulk band gap
can always be injected in the first waveguide and will only
be backscattered if its frequency is in the band gap of the
second waveguide. A more complex scenario with a differ-
ent initial waveguide orientation is described in Appendix E.
The backscattering rate |r|2 as a function of the energy E
and the final waveguide orientation ϕt is shown Fig. 5(b).
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FIG. 5. Fractal signatures in the backscattering at a corner. (a) Simulation setup to determine the backscattering rate |r|2. The steady state
distribution (see color bar) has decaying tails at the incident and transmission drains. (b) Backscattering rate as a function of energy and the
final waveguide orientation ϕt ∈ [0◦, 165◦] for the setup in (a). [(c) and (d)] Magnified image of (b) near ϕ = 90◦ and 66.6◦ featuring the fractal
pattern in analogy to the Figs. 3(b) and 3(c). (e) Reflection spectra for ϕt ≈ 97.05◦ (p = −3, q = 14) for increasing values of the disorder σ .
The dashed vertical lines indicate the central energy of the edge-band gaps.

As expected, the backscattering rate spikes up whenever the
final waveguide band structure has a band gap at that energy.
Moreover, Figs. 5(c) and 5(d) features a similar fractal pattern
as that in Fig. 3. To mimic a realistic experimental systems,
we introduce disorder in the onsite potentials of the lattice
sites. We observe that the fractal pattern is roughly intact up
to disorder levels an order of magnitude smaller than the bulk
band gap 2m, see Fig. 5(e).

VI. DISCUSSION AND OUTLOOK

Our investigation of the orientation dependence of the
density of state and transmission in valley Hall waveguides
has focused on a specific case study, a simple extension of
the graphene tight-binding model. Nevertheless, the physics
described here is robust and extends beyond the validity of this
specific model. Importantly, we have relied on it only for our
numerical calculations. On the other hand, we have explained
the repeating pattern featuring multiple waveguide’s band
gaps merging in the middle of the bulk band gap solely based
on the effective Dirac Hamiltonian (5) and the position of the
Dirac cones in the crystal BZ (which is fixed by the underlying
space group). We can conclude that a qualitatively similar
pattern will be observed in any valley Hall waveguide with
the suitable space group symmetries of the bulk crystal struc-
ture (at least p6 or p31m before introducing the gap-opening
perturbation, see, e.g., Ref. [5]). More precisely, the centers
of the band gaps are captured by Eq. (5) while the widths
depend on the tails of the guided modes and, thus, on the
microscopic wave equations. Reconfigurable implementations
of topological waveguides [20,22,43–46] are ideally suited to
verify our predictions.

More generally, we expect that the physics investigated,
here, to be relevant for other topological waveguides obtained
using a variety of schemes based on the geometric engineer-

ing of crystal structures supporting Dirac cones [5]. In this
more general setting, the counter-propagating guided modes
are usually described within a smooth-envelope approxima-
tion that does not capture their coupling via their tails. This
coupling becomes significant in the regime of tight transverse
confinement/large band gaps, m/va � 1. In this regime, we
expect that tunneling induced band gaps can be observed.
As for the valley Hall waveguides investigated in this work,
the number of band gaps will depend discontinuously on the
waveguide orientation leading to qualitatively different but
similarly intricated patterns with merging band gaps for the
band structure/transmission vs waveguide orientation.

We are confident that our investigation provides a sig-
nificant contribution toward the general goal of achieving
efficient routing of photons or phonons along arbitrary paths
in densely packed integrated circuits.
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APPENDIX A: CALCULATION OF DENSITY OF STATES

In this section, we describe how to evaluate the density of
states of the edge mode, which is presented in the Fig. 3 of the
main text. In addition, we point out that the fractal structure of
the density of states is more discernible for large system sizes
and low dissipation.
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FIG. 6. (a) Numerically evaluated waveguide band structure with
the orientation ϕ ≈ 97.05◦ (p = −3, q = 14), and the corresponding
edge mode density of states for two different sets of system size
L and dissipation rate �. (right) For a smaller system size and
higher dissipation rate, the edge-band gaps with smaller width are
unresolved. (b) Density of state pattern with smaller system size and
larger dissipation rate. Only the two most dominant edge-band gaps
can be resolved (compare with Fig. 3 of the main text).

Consider a topological waveguide of longitudinal length L
and orientation ϕ. It can fit Nwg ∼ L/|awg(ϕ)| waveguide unit
cells. Hence, the waveguide edge modes can be represented
with a set of discrete quasi momenta ks with separation 
ks =
2π/L. For a system with dissipation rate �, the density of
states is defined as

ρ(E ) = 2

2π

∑
n,ks

�

(E − En,ks )2 + (�/2)2
, (A1)

where En,ks is the energy of the nth folded band (n =
{0, 1, . . . , N − 1}) in the waveguide band structure, and the
numerator 2 represents the two counter-propagating edge
modes in the bulk band gap. Mathematically, Eq. (A1) rep-
resents the sum of multiple Lorentzian distributions of width
� and separation 
E ≈ vn,ks
ks (vn,ks = dEn,ks/dks). Hence,
only those edge-band gaps can be resolved via ρ(E ), whose
width 
 is larger than the dissipation (
 > �) and the sepa-
ration between Lorentzians (
 > 
E ), cf. Fig. 6.

For a large system size v
ks � �, we can approximate the
summation over ks in Eq. (A1) with an integral to obtain

ρ(E ) = 2

2π
ks

∑
n

∫
dEn,ks

�/vn,ks

(E − En,ks )2 + (�/2)2
. (A2)

Therefore, for the ideal scenario of no edge-band gaps and a
linear band dispersion vn,ks = v, the density of states is given
by ρ0 = L/(πv). Note that the group velocity vn,ks is close
to zero at the boundaries of the edge-band gap, hence ρ(E )
spikes up at these energy values with decaying tails inside the
gap.

APPENDIX B: PROOF OF THE FRACTAL PROPERTY OF
THE TRIANGULAR LATTICE

In this section, we prove the geometrical property of the tri-
angular lattice, that led to the fractal structure of the tunneling
energy as a function of the waveguide orientation, cf Eq. (13)
of the main text. More specifically, we prove the following
property:

Consider a straight line on the lattice in reciprocal space
(perpendicular to the waveguide orientation ϕ0) passing
through the two points K and K′. Then, the ratio of the

FIG. 7. Geometrical proof of the fractal property of the triangular
lattice. (a) For a horizontal line (black) (ϕ0 = 90◦) passing through
the K (red) and K′ (green) points, the zero-energy tunneling paths
are given by L(n)

ϕ0
= (3n + 1)L(0)

ϕ0
. (b) For an arbitrary line with ori-

entation ϕ0, the proof is identical to the case of ϕ0 = 90◦. This is
because the line passes through the corners of the larger unit cell
(blue hexagons) of the reciprocal space similar as in (a).

lengths of all the zero-energy tunneling paths Lϕ0 directed
from a fixed K point to an arbitrary K′ point along this line
is independent of the waveguide orientation ϕ0, and is given
by L(n)

ϕ0
= (3n + 1)L(0)

ϕ0
. Here, n is an integer and L(0)

ϕ0
is the

shortest length from K to K′.
It is intuitive to look at the proof geometrically, see Fig. 7.

For a horizontal line ϕ0 = 90◦, the above property is obvious,
cf Fig. 7(a). For an arbitrary ϕ0, consider a hexagon with
the shortest zero-energy tunneling path L(0)

ϕ0
as its side, see

Fig. 7(b). Due to the 60◦ rotational symmetry of the lattice,
this hexagon must be a (larger) unit cell of the lattice in the
reciprocal space. By observing the lattice from the point of
view of the larger unit cell, the proof is identical to the simpler
case for ϕ0 = 90◦. Note that there cannot be a pair of K and
K′ points on the line inside the larger unit cell. If that would
be the case, it would contradict our premise that the hexagon
is created with the shortest zero-energy tunneling path L(0)

ϕ0
as

its side.

APPENDIX C: DEVIATIONS FROM
SMOOTH-ENVELOPE APPROXIMATION

The smooth-envelope approximation assumes that the ex-
citation varies over a much longer length scale than the lattice
spacing. Hence, any sudden modification of the geometry,
e.g., a sharp domain wall interface in the waveguide unit cell
or a sharp turn between two dissimilar waveguides, is not
taken into account by this approximation. Below, we highlight
two such scenarios where the observations deviate from those
predicted within the smooth-envelope approximation.

According to the smooth-envelope approximation, the
edge-band gaps corresponding to a shorter tunneling path
should have a larger width. However, a detailed comparison
between the Figs. 4(f) and 3(a) features deviations from this
expectation. In Fig. 8, we show that the deviation arises indeed
due to a sharp interface between the two distinct domains. We
consider the two different edge-band gaps corresponding to
different tunneling paths, and show that the edge-band gap
with longer tunneling path has a smaller width for increased
smoothness of the domain wall interface, see Fig. 8(c). In
addition, the Fourier transforms for the case of a sharper inter-
face features kinks, which disappears for a smoother interface,
cf Figs. 8(b) and 8(d).
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FIG. 8. A shorter tunneling path corresponds to a larger edge-band gap in the smooth-envelope regime. (a) Waveguide band structures for
two different orientations. (b) Fourier transform for the lower energy mode at the avoided crossing for the two cases in (a). For a sharp transition
between the two domains, the case with the shorter tunneling path has a smaller edge-band gap (contrary to the expectation). (c) Edge-band
gap width 
 as a function of the smoothness parameter λ−1 of the domain transition. The mass parameter m varies across the domain wall
according to the relation m(xr ) = −mbk tanh(λxr/a). For a smoother transition, the case with the shorter tunneling path has a larger edge-band
gap (as expected). (d) Same as (b) for the smooth domain transition λ−1 = 2.

An alternative consequence of the sharp domain wall in-
terface (sharp turn) is that the width of the edge-band gap
(backscattering rate) depends on the exact position of the
domain wall interface (corner) with respect to the underlying

lattice, see Fig. 9. For the case of a sharp domain wall interface
in the waveguide unit cell, the Hamiltonian is dependent on
the configuration of the A and B sublattices at the immediate
vicinity of the domain wall interface, cf Fig. 9(a). Therefore

FIG. 9. Dependence of the [(a)–(d)] edge-band gap width 
 and [(e)–(h)] the backscattering rate |r|2 on the position of the domain wall
and the corner, respectively. (a) and (e) The Hamiltonian depends on the configuration of the sublattices A and B in the immediate vicinity
of the domain wall. [(b)–(d) and (f)–(h)] The quantities 
 and |r|2 are constant within the different stripes in the hexagon bulk unit cell. The
number of stripes increases with the waveguide lattice constant awg.
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FIG. 10. Tight-binding simulation setup to evaluate the backscattering rate |r|2. (a) Geometry of the setup featuring two distinct domains
(red and blue), two drains (length Ld), a translationally invariant region around the driven sites (length Lexc), and the disordered region
containing the two waveguides of different orientations (each of length Lw) and the transmitted drain. (b) (left) Waveguide band structure
for the zigzag orientation. For a fixed drive energy, we obtain the quasimomentum k(E ) (dashed line) of the mode that is traveling away from
the corner. (right) The unidirectional driving of the incident wave towards the corner is achieved by driving two translationally invariant sites
with the phase difference that depends on k(E ). (c) Variation of the dissipation rate � in the drain regions. Parameter values considered in the
simulation: Ld = 1000a

√
3, Lexc = 200a

√
3, Lw = 300a

√
3, �max = 10|J|, and λd = 5 × 10−4.

one can investigate the width of the edge-band gap as a
function of the distance d of the interface from the center of
the hexagon unit cell, see Figs. 9(b)–9(d). We observe that
the hexagon can be divided into many constant-width stripes
oriented parallel to the waveguide. The stripes correspond to
the same waveguide Hamiltonian, and the number of stripes
increases with the waveguide lattice constant awg. Similar
stripes can also be observed for the backscattering rate as
a function of the corner position within the hexagon, see
Figs. 9(e)–9(h). However, for this case, the location of the
stripes depend on the orientation of both the incident and
transmission waveguides.

APPENDIX D: SIMULATION SETUP TO EVALUATE THE
BACKSCATTERING RATE

In this section, we present the details about the simulation
setup, that is used to evaluate the backscattering rate |r|2 in
Fig. 5 of the main text.

The Hamiltonian Ĥ of the setup, see Fig. 10(a), is given
by Eq. (1) of the main text with opposite signs of the mass
term m in the two domains. A setup containing N lattice sites
is represented by a N × N dimensional Hamiltonian matrix
Ĥ . For the general case of a site-dependent drive Fne−iEt

(n = {0, 1, . . . , N − 1} is the site index) at frequency (energy)
E , and a site-dependent dissipation rate �̂ (N × N diagonal
matrix), the steady state solution cn at the nth site can be
written as

cn =
∑

m

χnmFme−iEt , where χ̂ [E ] =
[

i(Ĥ − E Î) + �̂

2

]−1

.

(D1)

Here, χ̂ [E ] is the susceptibility matrix, and Î is the identity
matrix. Below, we describe the details of the drive Fn, the
dissipation rate �n, and the relation between the steady state
solution cn and the backscattering rate |r|2.

We want the harmonic drive to excite the edge channel
unidirectionally towards the corner. At the fixed drive energy

E , there are two possible counter-propagating edge modes in
the band structure of the initial waveguide, cf Fig. 10(b). The
excited wave can be made to travel only towards the corner if
the overlap of the drive with the waveguide mode ψn traveling
away from the corner is zero, i.e.,∑

n

F ∗
n ψn = 0. (D2)

At the two translationally invariant sites (indicated by the
indices m = {0, 1}) in the initial waveguide at positions x +
m awg, the waveguide mode that is travelling away from the
corner is proportional to ψm ∝ eimk(E )awg . Here, k(E ) is the
invariant quasimomentum at the energy E , see Fig. 10(b).
Thus Eq. (D2) is satisfied if we drive two sites with the
phase Fm = (−1)mψm. Note that the above reasoning behind
the unidirectional excitation is relied on the assumption of
the translational invariance of the initial waveguide. Thus the
driven sites are located sufficiently far from the beginning of
the initial drain and the disordered onsite potential region, cf
Fig. 10(a).

The dissipation rate �n is nonzero only at the drains.
Within each drain, the dissipation rate is given by �(d ) =
�max tanh(λdd/a), where d is the distance of the site from
the waveguide-drain interface, cf Fig. 10(c). The smooth-

FIG. 11. Backscattering rate |r|2 with initial waveguide at the
armchair orientation ϕi = −30◦. (a) Waveguide band structure for
the armchair orientation featuring an edge-band gap near zero energy.
(b) Backscattering rate |r|2 as a function of the energy E and the
final waveguide orientation ϕ f for the fixed initial waveguide at the
armchair orientation.
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ness parameter λ is chosen to be sufficiently small to
prevent undesirable backscattering at the drain-waveguide
interface.

The backscattering rate |r|2 is given by the ratio of the ab-
sorbed intensity in the transmission drain to the total absorbed
intensity in both the drains, i.e.,

|r|2 =
∑

n∈trans. drain �n|cn|2∑
n∈both drains �n|cn|2 . (D3)

APPENDIX E: BACKSCATTERING RATE WITH INITIAL
WAVEGUIDE AT ARMCHAIR ORIENTATION

In this section, we present the backscattering rate |r|2 as
a function of the energy E and the transmission waveguide
orientation ϕt for the fixed initial waveguide at the armchair
orientation ϕi = −30◦, see Fig. 11(b). We notice that the
pattern is identical to Fig. 5 of the main text, except that there
is an additional edge-band gap near zero energy due to the
fixed initial waveguide, cf Fig. 11(a).
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