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ABSTRACT: A significant part of the uncertainty in satellite-based precipitation products stems from differing assump-
tions about drop size distributions (DSDs). Satellite radar-based retrieval algorithms rely on DSD assumptions that may
be overly simplistic, whereas radiometers further struggle to distinguish cloud water from rain. We utilize the Ocean Rain-
fall and Ice-phase Precipitation Measurement Network (OceanRAIN), version 1.0, dataset to examine the impact of DSD
variability on the ability of satellite measurements to accurately estimate rates of warm rainfall. We use the binned dis-
drometer counts and a simple model of the atmosphere to simulate observations for three satellite architectures. Two are
similar to existing instrument combinations on the GPM Core Observatory and CloudSat, and the third is a theoretical
triple-frequency radar–radiometer architecture. Using an optimal estimation framework, we find that the assumed
DSD shape can have a large impact on retrieved rain rate. A three-parameter normalized gamma DSD model is suffi-
cient for describing and retrieving the DSDs observed in the OceanRAIN dataset. Assuming simpler single-moment
DSD models can lead to significant biases in retrieved rain rate, on the order of 100%. Differing DSD assumptions
could thus plausibly explain a large portion of the disagreement in satellite-based precipitation estimates.
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1. Introduction

Warm-rain processes are an important part of the hydro-
logic cycle, especially over the oceans where aerosol concen-
trations tend to be low (Kubar et al. 2009). Observations from
the CloudSat W-band satellite radar (Stephens et al. 2002) in-
dicate that any given oceanic point may be beneath warm
clouds between 10% and 50% of the time, with 20%–40% of
these clouds containing rain or drizzle at the lowest CloudSat
range bin (Nuijens et al. 2017). The probability of precipitation
is lower than this, due to evaporation below cloud base. For
example, Yang et al. (2018) found drizzle in over 80% of ma-
rine stratocumulus cloud profiles at Graciosa Island, but precip-
itation reached the surface in only about 30% of the profiles.
Nuijens et al. (2017) find that the greatest warm cloud fractions
occur on the east side of the ocean basins as well as to a lesser
extent over the Southern Ocean. Uncertainties in how the prev-
alence of low, warm clouds will change as the climate warms is
one of the largest sources of uncertainty in global climate pro-
jections (e.g., Zelinka et al. 2020; Mülmenstädt et al. 2021), and
several studies (Trenberth and Fasullo 2010; Bodas-Salcedo
et al. 2014; Kay et al. 2016; Hyder et al. 2018) have noted that
the Southern Ocean energy balance is poorly represented in
global climate models. In this context, accurate present-day
estimates of precipitation, cloud water, and cloud fraction
from satellites are very important for evaluating and con-
straining weather and climate models.

While the overall uncertainty in the global mean precipita-
tion rate is on the order of 10% (Haynes et al. 2009; Stephens

et al. 2012), the uncertainty is even greater near the poles
(Adler et al. 2003; Andersson et al. 2011; Behrangi et al.
2016). One factor that likely contributes is uncertain and sim-
plistic assumptions about drop size distributions (DSDs) for
rainfall retrieval methods. Many radar-based precipitation re-
trieval algorithms assume a fixed DSD parameterization with
only one free parameter (e.g., Haynes et al. 2009), or else
merely choose between two sets of fixed parameters based on
whether the precipitation is judged to be convective or strati-
form (Lebsock and L’Ecuyer 2011; Duncan et al. 2018). The
Global Precipitation Measurement mission (GPM) combined
algorithm is more flexible, with two free parameters, but still
prescribes a constant shape parameter (Grecu et al. 2016). In
reality, drop sizes do not conform to arbitrary categories but
rather exist on a spectrum. Meanwhile, radiometers are much
more sensitive to the total water mass in the atmospheric
column than the size of the drops, so cloud/rain partitioning is a
major challenge (Elsaesser et al. 2017; Greenwald et al. 2018).

Historically, the relationships prescribed in satellite precipi-
tation algorithms have often been based on precipitation ob-
servations made over continents or in tropical locations.
However, recent field campaigns have provided insightful ob-
servations at more diverse locations, including regions where
warm-rain processes are very important. The Observations of
Aerosols above Clouds and Their Interactions project
(ORACLES; Redemann et al. 2021) involved many aircraft
flights observing cloud structure and precipitation characteris-
tics over the southeast Atlantic Ocean (Dzambo et al. 2019).
Retrievals combining W-band radar reflectivities with polar-
imeter measurements were performed to jointly estimate
cloud water path and rainwater path, with cloud water path
uncertainty on the order of 30% but with rainwater path
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uncertainties frequently over 100% (Dzambo et al. 2021). The
Cloud System and Evolution in the Trades campaign (CSET;
Albrecht et al. 2019) included the deployment of a W-band
airborne radar and a lidar to retrieve shallow cumulus cloud
structures and precipitation. Sarkar et al. (2020) reported that
rain drop distributions in CSET tended to shift toward larger
drops sizes as the boundary layer deepened, and Sarkar et al.
(2021) found that cumulus rain rates retrieved from the com-
bined radar–lidar observations tended to be lower than in situ
cloud probe measurements, in large part because the assumed
raindrop size distribution was too narrow. In the Southern
Ocean, a series of coordinated projects between 2016 and
2018 measured precipitation properties using in situ probes,
radar, lidar, and other instruments (McFarquhar et al. 2021).

There has also been much work to validate and improve
the DSD relationships assumed in satellite precipitation algo-
rithms. The version-06A GPM precipitation algorithms are
documented extensively in Seto et al. (2021). An important
difference relative to earlier algorithm versions is the use of a
DSD constraint that relates the rain rate to the mean drop di-
ameter (R–Dm relation). Liao et al. (2020) examined DSD
data from several NASA field campaigns and arrived at a
slightly different R–Dm relation. They found that deviation
from the R–Dm relation was explained primarily by differ-
ences in the normalized intercept gamma parameter NW.
Shipboard observations from the Ocean Rainfall and Ice-
phase Precipitation Measurement Network (OceanRAIN;
Klepp et al. 2018) demonstrate significant latitudinal variabil-
ity in oceanic rainfall properties, including the R–Dm relation
(Protat et al. 2019a).

Several studies have explored how DSD assumptions affect
rain rates retrieved from ground-based radars (e.g., Lee and
Zawadzki 2005; Adirosi et al. 2014; van de Beek et al. 2016).
Fewer authors, however, have quantified the uncertainty in

satellite precipitation products resulting from their assump-
tions about DSDs. Lebsock and L’Ecuyer (2011) showed that
the assumption of a Marshall–Palmer DSD as opposed to a
drizzle DSD increased the mean retrieved rain rate in the
CloudSat level-2C rain profile product (2C-RAIN-PROFILE)
algorithm by a factor of 2 but tested no other DSD parame-
terizations. For the Global Precipitation Measurement
Dual-Frequency Precipitation Radar (GPM DPR), Liao
et al. (2014) found that using a dual-wavelength technique
is able to generally keep estimates of retrieved rain rate
within 10% of the true value, but only for rain rates greater
than about 5 mm h21. More recent studies have reported
mixed results. Protat et al. (2019b) speculate that high-
latitude rain-rate retrievals from GPM could be significantly
biased because of erroneous DSD assumptions, while Bringi
et al. (2021) conclude that the current DSD assumptions “are
not a major source of uncertainty” in the GPM combined
algorithm.

Our study is distinct from earlier efforts in that it compre-
hensively and quantitatively estimates the impact of DSD
assumptions in satellite precipitation retrieval algorithms.
In addition, rather than focus on one particular instrument,
we study how the DSD-related retrieval uncertainties
change for different theoretical satellite architectures. This
is important, as future satellite precipitation missions will
have to make choices about what types of instruments to in-
clude. We construct simulated satellite observations based
on surface disdrometer measurements and develop an optimal
estimation retrieval algorithm to retrieve DSD parameters us-
ing various combinations of satellite measurements (section 3).
We then investigate how retrieval errors are affected by sensor
uncertainties and detection limits (section 4a), ancillary assump-
tions about the atmospheric profile (Section 4b), and the limita-
tions of mathematical models to adequately capture the

FIG. 1. Distribution of OceanRAIN DSD observations used in this study: (left) The spatial distribution, gridded on a 38 (longitude) by
1.58 (latitude) grid and colored according to the log10 of the number of 1-min observations within each grid box, and (right) a one-
dimensional histogram with observations summed across each latitude band in 68 increments.
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variability seen in real-world DSDs (section 5). These experi-
ments offer insight into which assumptions made in precipita-
tion retrieval algorithms are most consequential, what types of
observations are the most important for reducing uncertainty,
and how future satellite missions could be constructed to reduce
uncertainties in the estimation of warm rain.

2. Data sources and models

a. OceanRAIN

The OceanRAIN project seeks to mitigate some of the
challenges historically faced by in situ measurements of oce-
anic precipitation with the use of high-quality ODM470 op-
tical disdrometers (Grossklaus et al. 1998) placed on board
research vessels operating in remote areas. The disdrome-
ters are manufactured by Eigenbrodt GmbH & Co. KG in
Königsmoor, Germany, and measure precipitation occur-
rence, intensity, accumulation, phase, DSD, and ancillary
meteorological data at 1-min intervals. The ODM470 is able
to quickly and automatically adjust to changing wind condi-
tions to keep the measuring volume perpendicular to the in-
stantaneous wind direction. A detailed description of the
instrument can be found in Klepp (2015). Disdrometer cali-
bration is performed before and after shipboard operations
and comparisons with a reference rain gauge (ANS410) in
light-wind conditions yield accumulation differences on the
order of 2% (Klepp 2015). The ODM470 has been used in
several studies to evaluate satellite data and reanalysis prod-
ucts (Klepp et al. 2010; Bumke et al. 2016; Burdanowitz et al.
2018; Protat et al. 2019a).

We utilize OceanRAIN-M, version 1.0 (V1.0), data in this
study. Raw drop counts from a 1-min collection period are con-
verted into number concentrations, and particles are grouped
into 128 logarithmically spaced bins ranging in size from 0.0375
to 22 mm. Bins 1–12 (up to 0.36 mm) are set to number concen-
trations of zero in the OceanRAIN-M V1.0 files because these
bins can be contaminated by vibrations from the ship (Klepp
et al. 2018). We found that a significant number of observations
(20%–70%) also had zero values in size bins 13–17 (up to
0.54 mm), suggesting that the data from these bins is not fully re-
liable. Thus, we disregard these bins as well and only rain drops
0.55 mm in size or larger are included. Drizzle drops can be
much smaller than this size (Wood 2005), which is why we also
run experiments on data from a 2DVD disdrometer that is more
sensitive to small drops (see section 2b). For calculating base-
case uncertainties where DSD representation errors are disre-
garded, we assume that the DSD can be perfectly described by a
three-parameter normalized gamma (NG) distribution of the
following form (Testud et al. 2001):

ND 5 Nwf (m)
D
Dm

( )m
exp 2 (4 1 m) D

Dm

[ ]
, (1)

where

f (m) 5 6(4 1 m)41m

44C(4 1 m) , (2)

ND is the number concentration (m23 mm21) for drops of
diameter D, Nw is the normalized intercept parameter, m is
the “shape parameter,” Dm is the mass spectrum mean di-
ameter, and C() is the gamma function. The OceanRAIN-M
V1.0 files contain values for Dm, Nw, and m for each raining
DSD. These parameters are fitted to the binned observa-
tions using the technique outlined in Testud et al. (2001)
and Bringi et al. (2002). To calculate the rain rate from a
given DSD, one must assume a relationship between drop
size and fall speed. The OceanRAIN dataset does this ac-
cording to the parameterization given by Atlas and Ulbrich
(1974). For consistency, we use this same parameterization
to calculate all rain rates considered in this study.

We use only observations marked as rain definite accord-
ing to the OceanRAIN precipitation phase distinction
algorithm (Burdanowitz et al. 2016), a regression method

TABLE 1. Selected radar specifications for the three theoretical satellite architectures that are considered in this study.

Radar frequency
(GHz)

PIA uncertainty
(dBZ)

Z baseline
uncertaintya (dBZ) Z threshold (dBZ)

Radar integration
time (ms)

Satellite A (similar
to CloudSat)

94.0 1.25 1.0 230.0 160.0

Satellite B (similar
to GPM)

13.6 1.25 1.0 12.0 29.0
35.5 1.25 1.0 12.0 42.0

Satellite C (triple
frequency)

13.6 1.25 1.0 0.0 29.0
35.5 1.25 1.0 0.0 42.0
94.0 1.25 1.0 250.0 160.0

a The reflectivity uncertainty is just a minimum value because the true value also depends on the difference between the measured Z and
the Z threshold T, the radar integration time I, and the radar pulse repetition frequency F (4.3 m s21 for all three satellites). The equation
for the reflectivity uncertaintyU is then given byU 5 (N2 1 {(4:343/ ����

IF
√ )[1:01 100:1(T2Z)]}2)1/2.

TABLE 2. Passive microwave frequencies and measurement
uncertainties for the three theoretical satellite architectures that
are considered in this study.

TB frequencies
(GHz) NEDT (K)

Satellite A 94.0 4.0
Satellite B 10.6, 18.7, 23, 37,

89, 166, 183 6 3,
and 183 6 7

0.77, 0.6, 0.51, 0.41,
0.31, 0.65, 0.56,

and 0.47
Satellite C 13.6, 35.5, and 94.0 1.0, 1.0, and 1.0
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based on Koistinen and Saltikoff (1998) with the predictors of
temperature, relative humidity, and 99th percentile of particle
size distribution. We also screen to only include observations
with 50 or more drops spread across at least 10 size bins. This
results in a total of 69677 raining minutes of data. Figure 1
shows the spatial distribution of the observations, indicating

that many of the observations occurred in previously under
sampled areas including the Southern and Arctic Oceans.

b. ARM eastern North Atlantic disdrometer data

Because of the unreliable OceanRAIN data for drops
smaller than 0.55 mm, we also make use of DSDs observed at
the Atmospheric Radiation Measurement (ARM) Eastern
North Atlantic (ENA) atmospheric observatory located on
Graciosa Island in the Azores. Because the ENA site is located
far from continental landmasses, we expect the observed
DSDs to be characteristic of the oceanic DSDs that are of
interest to this study. In addition, this region of the world is
characterized by marine stratocumulus clouds, which are
significant producers of warm rain (Mülmenstädt et al. 2015;
Nuijens et al. 2017; Nelson and L’Ecuyer 2018). We use 1 year
(1 January–31 December 2019) of data from the two-dimensional
video disdrometer (2DVD) located at the site, covering drop
sizes ranging from 0.1 to 10 mm in diameter (Bartholomew
2020). Giangrande et al. (2019) examined data from the same
site and found that the 2DVD was better than the collocated
PARS disdrometer for measuring light rain. As with the
OceanRAIN data, the DSDs are averaged over a 1-min

FIG. 2. Schematic of the cloud and rain profiles used in our ex-
periments. The axes of the left qualitatively show the vertical pro-
files of relevant cloud DSD parameters (top; green) and rain DSD
parameters (bottom; blue).

FIG. 3. Density plots of retrieved error in (top left) CLWP, (top right) RWP, (bottom left) column-averaged RR,
and (bottom right) column-averaged Dm compared with the true value that was used to make the underlying
simulated satellite observations for satellite architecture A. This experiment considers only sensor noise and de-
tection limits as a source of uncertainty. The red dashed line shows the error in Dm that would be incurred if the
a priori assumption were used.
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observation window and we only use rain definite observa-
tions with more than 50 individual drops measured.

c. Radiative transfer models

In our experiments, we simulate passive microwave (PMW)
brightness temperatures TB, radar reflectivities Z, and radar
two-way path-integrated attenuation (PIA). Simulated TB are
computed using the monochromatic radiative transfer
model (MonoRTM; Clough et al. 2005) in combination with
the FASTEM6 sea surface emissivity model (Kazumori and
English 2015). For calculating the absorption and scattering
of upwelling microwave radiation due to hydrometeors, spheri-
cal cloud and rain drops are assumed and Mie theory (Mie
1908) is used. Simulated Z and PIA come from the Quick-
Beam radar simulator (Haynes et al. 2007). For simplicity, and
because of our focus on light rain rates, multiple scattering is
ignored. Another important source of error in satellite retriev-
als is partial beamfilling (e.g., Graves 1993). This potential
source of retrieval bias is ignored in our experiments but has
been studied by several other authors (e.g., Durden et al. 1998;
Zhang et al. 2004; Hilburn and Wentz 2008; Tokay and Bashor
2010). An additional real-world complication that is not ad-
dressed in this study is radar surface clutter. GPM radar re-
turns below about 1000–1500 m (depending on swath position)
have too much noise to accurately detect precipitation (Kidd
et al. 2021), while CloudSat is blind to precipitation below

about 750 m above the surface (Tanelli et al. 2008). We have
ignored these important sources of retrieval error in order to
focus on DSD-related uncertainties. However, many of them
will be addressed in Schulte et al. (2022, hereinafter Part II,
manuscript submitted to J. Appl. Meteor. Climatol.).

d. Ancillary assumptions

It is necessary to make many assumptions about the atmo-
spheric column when simulating observations from the various
satellite architectures. The atmospheric profiles of tempera-
ture, water vapor, and pressure are interpolated from the U.S.
Standard Atmosphere 1976 (Minzner 1977). We nominally
choose a wind speed of 10.0 m s21, a sea surface salinity of
35 parts per thousand, and a sea surface temperature (SST)
of 285 K. Our experiments are not especially sensitive to the
choice of these profiles and surface values (assuming that cor-
responding changes are made to the assumptions in the re-
trieval algorithm). In real life, surface wind speeds and profiles
of temperature and water vapor can be obtained from nearby
or even coincident satellite soundings. We chose to use the
same atmospheric profiles for each disdrometer observation in
order to simplify the experimental methods and data sourcing
required. We do, however, estimate the impact that uncer-
tainties in these ancillary assumptions will have on final re-
trieved rain rates (see section 4b). We do this by perturbing
the variables of temperature, water vapor mixing ratio,

FIG. 4. As in Fig. 3, but for satellite B.
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SST, surface wind speed, and cloud droplet column-aver-
aged effective radius when simulating satellite observations.
In creating the perturbations, we sample from a normal dis-
tribution centered at zero with a standard deviation of 1.0
K for temperature (including SST), 3.0 m s21 for surface
wind speed, 2.0 mm for cloud droplet effective radius, and
10% of the U.S. Standard Atmosphere 1976 value at each
vertical level for water vapor mixing ratio.

3. Methods

a. Simulation of satellite measurements

We consider three different theoretical satellite architec-
tures in our experiments. The first (satellite A) is similar to
CloudSat, with a 94-GHz nadir-viewing radar that directly
gives Z at each range gate and from which a PIA and a
(noisy) TB can be derived (Lebsock and Suzuki 2016; Mace
et al. 2016). The second (satellite B) is similar to the GPM
core satellite, with a dual-frequency radar operating at 13.6
and 35.5 GHz (Ku and Ka band, respectively) and a PMW
radiometer operating at the same frequencies as the GPM
Microwave Imager (GMI; Hou et al. 2014). We consider the
radar and the radiometer to have the same footprint and to
make simultaneous observations of the same spot, to compare
the architectures on the basis of the information content that
each type of measurement can provide, without introducing

footprint differences. The third satellite, satellite C, has a
triple-frequency radar that combines the W-band frequency
of satellite A with the Ka- and Ku-band frequencies of sat-
ellite C. We assume that TB can also be estimated at each of
these frequencies at the same footprint of the radar, with re-
duced noise relative to satellite A. We also assume a height-
ened detection sensitivity of the radar relative to satellites
A and B. Satellite C is meant to represent what might be
possible with the next generation of precipitation satellites,
such as that proposed by NASA’s Aerosol, Cloud, Convec-
tion, and Precipitation (ACCP) study (National Academies
of Science Engineering and Medicine 2018). See Tables 1
and 2 for a breakdown of the type of measurements simu-
lated for each theoretical satellite architecture along with
the assumed measurement uncertainties and sensitivities.
For all radars, we assume a vertical resolution of 250 m, be-
cause this is the same vertical resolution obtained from
GPM for matched Ku- and Ka-band footprints and is very
close to the CloudSat vertical resolution of 240 m.

Since the DSD measurements contain information only at
the surface it is necessary to artificially create vertical structure
above. We assume that the raining column extends uniformly
from the surface to a height of 1 km, and that cloud water is
present from 500 to 2000 m. The amount of cloud water in
each vertical level is assumed to increase linearly, as would be
expected if the cloud droplets were growing adiabatically as

FIG. 5. As in Fig. 3, but for satellite C.
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they ascended through a layer of saturated air (e.g., Miller et al.
2016). For the size of the cloud droplets, we assume an inverse
exponential size distribution at each level:

n(d) 5 n0e
2kd: (3)

Here n0 is the intercept parameter and k is the slope parame-
ter, which can be related to the effective radius re by

k 5 3/(2re): (4)

We construct the cloud water distribution such that n0 stays
the same throughout the cloud but re increases toward cloud
top, with the additional constraint that the average re for the
whole cloud is 11 mm. A coordinated intercomparison of sat-
ellite cloud data records (Stubenrauch et al. 2013) found a
consistent peak in cloud droplet effective radius at this value,
and it is also broadly in line with other studies such as Witte
et al. (2018) and Sinclair et al. (2021). Figure 2 shows qualita-
tively what the vertical profile of cloud and rain looks like.
The scenario is highly idealized but serves our purposes of
evaluating DSD-related retrieval uncertainties.

b. Optimal estimation retrieval algorithm

From the simulated satellite observations, we use an opti-
mal estimation (OE) retrieval algorithm to try to retrieve the
cloud liquid water path and the DSD parameters necessary to

calculate the cloud-base rain rate (RR). The method is based
on Bayes’s theorem,

P(x|y) 5 P(y|x)P(x)
P(y) , (5)

where y is the measurement vector containing all of the obser-
vations being considered and x is the state vector consisting of
the hydrometeor properties being retrieved.

According to Eq. (5), to find the value of x for which the
posterior probability P(x|y) is maximized, one should search
for the state vector that maximizes the product of the a priori
probability of that state, P(x), with the probability of measur-
ing the set of observations y if x was indeed the proper state
vector, P(y|x). As demonstrated by Rodgers (2000), if one as-
sumes Gaussian errors, maximizing P(x|y) is equivalent to
minimizing the following cost function F:

F 5 (x 2 xa)TS21
a (x 2 xa) 1 [y 2 f (x, b)]TS21

y [y 2 f (x, b)]:
(6)

Here, f is a forward model based on radiative transfer theory
that is able to simulate all of the observations that make up
the observation vector. The vector b contains additional ancillary

FIG. 6. Each bar shows the IQR, i.e., the 25th, 50th, and 75th percentile of retrieval errors,
in (top) CLWP, (middle) RWP, or (bottom) column-averaged RR, for a given experiment
and satellite architecture. The satellite is indicated by the letter on the x axis. The experiment being
considered is indicated by the color of the bars. The blue bars are for fundamental nonlinearities
only, the red bars add sensor uncertainties and detection limits, and the yellow bars add uncertain-
ties in the ancillary assumptions. The purple bars are for the experiments with binned OceanRAIN
DSDs, and the green bars are the experiments with binned ARMDSDs.
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information, besides those parameters that make up x and for
which one directly solves, that is required by the forward model
to simulate the full observation vector.

The first term of the cost function weights departures of a
potential state vector x from the a priori state vector xa by the
assumed errors in the a priori state, as described by the a priori
covariance matrix Sa. Similarly, the second term weights the
difference between observations y and forward-model output
f(x, b) by a second error covariance matrix, the Sy matrix,
which describes the uncertainties in both the observations and
the forward model. Using the Gauss–Newton method, we iter-
atively solve for the value of x at which the gradient of the cost
function, =xF, is equal to zero. For more background on the
OE algorithm, see Schulte and Kummerow (2019) and Schulte
et al. (2020), because the algorithm is based on the same math-
ematical and radiative transfer backbone as the PMW inver-
sion algorithm [Colorado State University (CSU) 1DVAR]
used in those studies. This algorithm differs from the CSU
1DVAR in that in retrieves a different set of parameters and is
built to incorporate radar observations (both Z and PIA) into
the observation vector in addition to TB.

The state vector contains four parameters: the vertically inte-
grated cloud liquid water path (CLWP), the rainwater content
(RWC) of the DSD, the mass-weighted mean diameter Dm of
the DSD, and the normalized gamma shape parameter m of the
DSD. CLWP, RWC, and Dm are retrieved in logarithmic space
because their underlying distributions are not normally distrib-
uted but are much closer to a lognormal distribution. RWC,Dm,
and m are all functions of height in reality, but we assume that

they are constant throughout the raining column and so can be
thought of as column averages. The size of the observation vec-
tor depends on the satellite architecture used as well as the at-
mospheric profile being considered. It is equal to the number of
PMW channels in the architecture, plus the number of PIA fre-
quencies, plus the number of valid radar observations. A valid
radar observation, for these purposes, is one for which the re-
flectivity exceeds the minimum detectable signal for that satellite
and radar frequency.

The forward model f(x, b) uses the same radiative transfer
models (i.e., QuickBeam andMonoRTM, introduced in section 2c)
that are used for creating simulated satellite observations. Be-
cause the OE forward model is based on the same code (i.e.,
we are assuming no radiative transfer model error), the for-
ward-model errors are underestimated relative to what would
be expected in real-world retrievals. Eliminating this forward-
model error allows us to isolate other sources of error, such as
DSD representation error, that are the focus of our study.

c. Error covariance matrices

The Sa and Sy matrices are constructed based on the statis-
tics of the related error distributions. For example, when us-
ing the OceanRAIN disdrometer data, the Sa matrix contains
the variance of log10(LWP), log10(RWC), log10(Dm), and m

found in the OceanRAIN dataset on the diagonal, and the co-
variances between the OceanRAIN parameters make up the
off-diagonal elements. The Sy matrix is meant to account for
both forward-model and sensor uncertainties, although in most
cases the forward-model uncertainty dominates. The forward-

FIG. 7. Histograms showing the (left) RWC, (center) RR, and (right) Dm distributions for the OceanRAIN and ARM ENA
disdrometer datasets.
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model uncertainties are estimated by comparing the simulated
observations produced by the simplified forward model with
simulations in which the various assumptions of the forward
model are relaxed (in the real world, one could compare with
true observations). Then the sensor uncertainties are added to
create the full Sy matrix. See Schulte and Kummerow (2019) for
more details about the construction of covariance matrices.

One disadvantage of an OE algorithm is that, even if there
were no observation or forward-model uncertainties, the algo-
rithm would only be guaranteed to converge to the proper solu-
tion if the problem were linear. Precipitation retrievals are
known to be not entirely linear (e.g., Stephens and Kummerow
2007). Other retrieval techniques exist that are less subject to
nonlinearities, such as neural network based algorithms (Beusch
et al. 2018; Tang et al. 2018; Chen et al. 2019) or Markov chain
Monte Carlo (MCMC) approaches (Posselt et al. 2017; Xu et al.
2019). Still, the OE approach provides several benefits. The al-
gorithm is based on physical radiative transfer models rather
than statistical correlations, retrieval performance can be com-
pared across different satellite architectures in a consistent and
simple fashion, and the method provides a posteriori error esti-
mates that can be traced directly to the underlying uncertainties
and the physics of the problem. In most cases, as explored fur-
ther in section 4, the fundamental uncertainties due to the

nonlinearities of rainfall retrieval are much smaller than the re-
trieval errors that result from the other sources of uncertainty
that we consider.

4. Base-case uncertainties

a. Uncertainties due to sensor noise, detection limits, and
nonlinearities

In this first experiment, we quantify how sensor limita-
tions affect retrieval errors and uncertainties. We use the
OceanRAIN NG-fitted DSDs to create simulated satellite
observations. Because the disdrometer observations do not tell
us anything about how much cloud water is in the column, we
nominally set the column-integrated CLWP so that it is equal to
twice the column-integrated rainwater path [note that the OE
algorithm is unaware of this assumed relationship and is free to
converge to any CLWP value regardless of rainwater path
(RWP)]. Random Gaussian noise is added to the synthetic ob-
servations to simulate the physical limitations of the satellite in-
struments, using the measurement uncertainty values given in
Tables 1 and 2. Then, after adding the measurement noise, if a
certain radar measurement has a value below the detection lim-
its given in Table 1, the measurement is set to have no radar

FIG. 8. IQR of retrieval errors for a given satellite architecture, using a forward model in the
OE algorithm that assumes a three-parameter NG DSD (blue), a two-parameter NG distribu-
tion (red), an MP distribution (yellow), or an AB distribution (purple).
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echo. This has the effect of getting rid of about 6% of cloud-
only radar observations for satellite A and all of the cloud-only
and about 8% of the rain observations for satellite B and reduc-
ing satellite C to only a single (W band) frequency for cloud-
only observations. The algorithm then retrieves the four ele-
ments of the state vector, from which the RR is calculated.

Figures 3–5 show the results of this experiment. Starting with
satellite A, we see that, even with only W-band observations,
the CLWP is well constrained. The retrieval error is very close
to 0% throughout the whole range of CLWP, with an overall re-
trieval bias (defined as the median retrieval error) of 1.2% and
an interquartile range (IQR) of errors of 18.2%. The IQR is the
difference between the 25th-percentile and 75th-percentile er-
rors. On the other hand, the RWP is negatively (low) biased
(211.0%) and the column-averaged RR also slightly negatively
(low) biased (21.6%), although the RR bias mostly comes from
the higher rain-rate cases. Both parameters show considerable
spread. Unsurprisingly, given that it has only a single radar fre-
quency, satellite A shows little skill in retrieving Dm. The re-
trieved Dm values are clustered very closely around the a priori
value (represented by the red dotted line), resulting in overesti-
mation at lowDm and underestimation at highDm.

Satellite B demonstrates more skill at retrieving Dm and, to a
lesser extent, RWP and RR. However, CLWP is not well con-
strained, with a bias of 24.8% and an IQR of 53.2%. Since
cloud drops as well as small rain drops fall below the radar de-
tection limits, the architecture struggles to differentiate cloud

drops from drizzle drops. This underscores the importance of
the W-band radar for cloud/rain partitioning. Satellite C, on the
other hand, does a remarkably good job of constraining all of
the retrieved quantities of interest. There is less bias in the re-
trieved CLWC, RWP, and RR, and the IQRs are relatively
small at 13.2%, 16.6%, and 11.2%, respectively.

We also ran an experiment in which we input simulated satel-
lite observations directly into the retrieval algorithm, without
adding sensor noise or detection limits. Thus, the only limita-
tions faced by the retrieval in this case were the fundamental
nonlinearities of the inversion problem. Nonlinearities can
potentially create challenges for an OE retrieval by causing the
algorithm to converge to a local, rather than absolute, minimum
of the cost function. The IQRs from these experiments can be
seen in Fig. 6. From these results it is clear that the nonlinearities
of the problem should not be a major concern, except perhaps
for the case of retrieving RR and RWP from satellite A, for
which there is a slight negative bias in the retrieved values.

b. Ancillary assumption uncertainties

In another experiment, we add random noise (see section 2d
for details) to the atmospheric profiles before simulating satellite
observations, in order to estimate the uncertainty that is intro-
duced into real-world satellite precipitation retrievals by ancil-
lary assumptions. Once the satellite observations have been
simulated, we add measurement noise, eliminate observations
below detection limits, and run the OE algorithm with our

FIG. 9. As in Fig. 5, but using OceanRAIN binned DSDs to simulate observations and assuming a three-parameter
NG DSD model in the OE.
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original assumptions about the atmospheric profile intact. The
main effect of introducing these uncertainties is, as expected, an
increase in the IQR of retrieval errors for all satellite architec-
tures. This increase is perhaps most pronounced for the retrieval
of CLWP from satellite B, for which the IQR increases from
53.2% to 80.2%. Most of this architecture’s CLWP information
comes from TB, so errors in the assumed temperature and water
vapor profiles cause TB differences that translate into increased
retrieved CLWP errors. Otherwise, the error biases in this ex-
periment stay close to zero but with a modestly larger spread for
most parameters of interest.

5. DSD-related uncertainties

a. Experiments with binned DSDs

In these next series of experiments, we explore how DSD
assumptions affect retrieval uncertainties and biases. First, we
simulate satellite observations using the raw drop concentra-
tions for each size bin, instead of using the fitted NG DSD pa-
rameters from OceanRAIN. As discussed in section 2, we use
only rain drops larger than 0.55 mm in diameter. As in the
base case, we add sensor noise and eliminate observations be-
low detection limits, and then use these simulated satellite ob-
servations to retrieve the cloud and rain parameters,
assuming a three-parameter NG rain DSD. To be consistent,
we adjust the forward model in the OE algorithm so that it

also ignores rain drops smaller than 0.55 mm in size. The re-
sulting spread of retrieval errors can be seen in Fig. 6. Rela-
tive to the base case, the spread is slightly larger but not by
much. This indicates that the NG model can capture the real-
world variability of drop spectra (at least on the larger end of
the size range) and is appropriate for use in retrieval algo-
rithms, confirming the findings of previous studies (e.g., Tes-
tud et al. 2001; Bringi et al. 2002; Adirosi et al. 2014). Most of
the biases are near zero, with the exception being a slight un-
derestimation of RWP and RR for satellite A, which is also
present in the base-case experiment. Since satellite A only has
W-band observations, and W-band Z tend to saturate at mod-
erate rain rates, it would make sense that this architecture
could underestimate rain in heavier precipitation.

To investigate the effect of including smaller drops from
0.1 to 0.55 mm, we repeat the same experiment but use
binned DSDs from the ARM ENA site instead of Ocean-
RAIN observations. These observations differ from the
OceanRAIN observations not only because of their inclusion
of small drops but also because the frequency of occurrence
of very light rain and drizzle is much larger in this dataset
than in the OceanRAIN dataset, as can be seen in Fig. 7. This
is consistent with the findings of Giangrande et al. (2019) that
the ENA site receives a significant portion of its precipitation
from marine low clouds and that median raindrop sizes at the
site are smaller than what is typically seen at other locations

FIG. 10. As in Fig. 5, but using OceanRAIN binned DSDs to simulate observations and assuming the single-parameter
normalized DSD model of Abel and Boutle (2012) in the OE.
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around the globe. The resulting retrieval errors are larger us-
ing the ARM DSDs than the OceanRAIN DSDs, especially
for RWP and RR (refer again to Fig. 6). There is also a bit of
a retrieval bias. While the retrieved RWP is biased only mod-
erately high, the retrieved RR is biased 11.6% to 36.3% high,
depending on the satellite. Thus, while the assumption of a
NG DSD works well for the retrieval of light to moderate
rain from OceanRAIN, it might not be as appropriate for the
retrieval of drizzle rates. Others have found that the general-
ized gamma model (Thurai and Bringi 2018), which includes a
second shape parameter, can more accurately represent the
drizzle mode of the DSD, although retrieval gains would only
be realized if satellite measurements were able to accurately
detect changes to this parameter.

b. Impacts of assuming alternative DSD models

The three free parameters of the normalized gamma DSD
model allow for most realistic DSDs to be reasonably fit by a
NG distribution. Most precipitation retrieval algorithms, how-
ever, do not retrieve three DSD parameters. If only one or
two radar frequencies are employed, there is a reasonable ar-
gument to be made that one should only retrieve one or two
DSD parameters, as otherwise the inversion could be under
constrained. Still, using a DSD with fewer free parameters will
make it harder for the forward model used in the retrieval to
mimic the true underlying DSD, leading to greater uncertainty

in retrieved rain rates. In this section we attempt to quantify
the uncertainties and biases resulting from assuming three
alternative DSD models in our OE algorithm instead of a
three-parameter NG.

The first model we test is a two-parameter NG model, where
we retrieve column-averaged RWC and Dm as before but the
shape parameter m is constrained to always be equal to 3, as in
the GPM dual-frequency radar precipitation retrieval (Seto and
Iguchi 2015). We also test two single-parameter models, where
we only retrieve column-averaged RWC. The assumptions
made in the models are then enough to uniquely determine the
full drop size spectrum. The first model is that of Marshall and
Palmer (1948), which was based on raindrop records on dyed
filter papers from Ottawa, Canada. We use this model as a ref-
erence because it is well-known and was used in early formula-
tions of the CloudSat 2C-RAIN-PROFILE algorithm (Lebsock
and L’Ecuyer 2011). We also test the model of Abel and Boutle
(2012), which is currently used by the 2C-RAIN-PROFILE
algorithm (Lebsock 2018). Both the Marshall–Palmer (MP)
and Abel and Boutle (AB) models are based on inverse expo-
nential distributions but differ in how the shape of the distribu-
tion is related to the overall RWC of the DSD. In the AB
model, the intercept parameter is related to the slope parameter
by the equation

N0 5 x1k
x2 , (7)

FIG. 11. As in Fig. 8, but using ARM ENA disdrometer data for the underlying rain drop distri-
butions instead of OceanRAIN.
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where x1 is set to 0.22 and x2 5 2.2. The slope parameter k is
determined from the rain mass mixing ratio qR by the equation

k 5
prwx1
rairqR

( )1/(42x2)
, (8)

where rw and rair are the densities of water and the air parcels,
respectively. In the AB model, DSDs with a high RWC have a
lower intercept parameter (fewer very small drops) than those
with low RWCs, making up this difference with even more large
drops. Under MP assumptions, all DSDs have the same inter-
cept parameter (i.e., similar numbers of very small drops), but
those with a larger RWC have more large drops.

We repeat the OceanRAIN binned DSD experiment, but
this time assuming these different DSDs models in the OE
forward model. Figure 8 shows the effect that assuming
each of these simplified DSDs has on retrieval errors. Rela-
tive to the control run assuming a three-parameter NG,
holding m fixed does not increase the retrieval uncertainties
very much. There is, however, a slight tendency to substi-
tute cloud water for rainwater, with a high bias in retrieved
CLWP and a low bias in retrieved RWP (for satellites A
and B). The retrieved rain rate, on the other hand, does not
show much of a bias for any of the satellite architectures.

Both single-parameter DSD models (in the yellow and
purple) yield considerably more retrieval uncertainty than
the two- or three-parameter NG models. In addition, they
also lead to a positive bias in retrieved RWP and RR, no mat-
ter which satellite architecture is considered. This is especially
true for the AB model, for which the retrieved RWP is posi-
tively (high) biased by between 42% and 94% (depending on
satellite architecture), and the retrieved RR is positively
(high) biased by between 5% and 55%. Figures 9 and 10
show the full retrieval error densities for satellite C assuming
either the three-parameter NG model (Fig. 9) or the AB
model (Fig. 10). In comparing the two figures, it is even more
evident that the AB model assumption results in an overesti-
mation of retrieved RWP and RR, especially at rain rates less
than about 5 mm h21. Meanwhile, the CLWP is consistently
positively (high) biased and Dm is consistently negatively
(low) biased.

To test the robustness of these results, we performed the
same set of experiments using the ENA binned DSDs to sim-
ulate satellite observations. In this case the errors seen in the
OceanRAIN experiment are magnified even more, as shown
in Fig. 11. The RR biases range from 49% to 110% for the
AB experiment. From these results, it is clear that the DSD
assumed in a retrieval algorithm can have a very large impact
on retrieved RR. Notably, the AB DSD does not seem very
appropriate for cases of light rain, which dominate the ARM
ENA dataset. This could partially explain why CloudSat
tends to retrieve more rain over the high latitudes than
GPM (Behrangi and Song 2020). In both the OceanRAIN
and ENA experiments, we find that assuming the AB
(CloudSat) DSD instead of the two-parameter NG (GPM)
DSD leads to retrieved RRs that are about 25%–50%
higher.

We believe this overestimation from the AB and MP models
stems in part from the fact that the MP and AB models assume
size spectrums that are too heavily concentrated toward small
drops. Figure 12 plots the relationship between RR and Dm in
the OceanRAIN and ARM datasets, along with the curves that
result from the AB and MP models. For reference, we also
include RR–Dm curves reported by Protat et al. (2019a), Liao
et al. (2020), and Seto et al. (2021). Both the AB and MP models
predict a much higher RR for a given Dm than what is observed
in either disdrometer dataset or predicted by the other models,
indicating a higher overall RWC. The Z values are most strongly
affected by the largest drops in a given rain volume, because in
the Rayleigh regime reflectivity scales asD6. If the OE algorithm
is assuming one of these models, the implication is that to
create forward-modeled reflectivities that match what has
been observed (i.e., have a similar Dm) the OE must assume a
much higher overall RWC. This effect is so large that it trans-
lates into a higher RR, despite the partially compensating effect
that small drops fall more slowly than large ones.

c. Latitudinal differences

As seen in Fig. 1, the OceanRAIN dataset contains obser-
vations from a wide variety of locations. The highest con-
centration of observations come from the Southern Ocean,

FIG. 12. Frequency distributions of (top) OceanRAIN and (bottom)
ARM DSD observations according to their rain rate (y axis) and
mass-weighted mean drop diameter (x axis). The dotted curves
show the R–Dm relationships reported by several different studies
(cited in the text).
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but a secondary maximum occurs in the tropics. Figure 13
shows comparison of OceanRAIN DSD statistics between
“low latitude” observations (those taken between 208S and
208N) and “high latitude” observations (those south of 408S
or north of 408N). The high-latitude DSDs tend to have
lower RWCs and RRs but also have a slightly larger mean
Dm; that is, the high-latitude DSDs have significantly fewer
drops overall but the drops that do exist are slightly larger.
This could be due to the low concentration of cloud conden-
sation nuclei in these regions (Gras 1995; Ayers et al. 1997;
Humphries et al. 2021).

To test whether tropical DSDs have different retrieval
error characteristics than high-latitude DSDs, we repeated
the simulated retrieval experiments using either the high-
or low-latitude subset of OceanRAIN DSDs. For most of
the experiments, there were only small differences be-
tween retrieval performance on each subset. An example
is shown in the bottom half of Fig. 14. However, when the
AB model was assumed in the retrieval algorithm, higher
biases in retrieved RWP and RR were found using the
high-latitude DSDs. For example, the RR bias for satellite
C was only 20.7% when tropical DSDs were used but in-
creased to 64.4% for high-latitude DSDs. This result sug-
gests that the Abel and Boutle (2012) DSD model might
be especially inappropriate for high-latitude DSDs, but
that the normalized gamma model is flexible enough to handle
the variability in DSD shapes observed by OceanRAIN.

6. Conclusions

There are clearly many challenges and uncertainties to ad-
dress in retrieving precipitation from a satellite platform, in-
cluding important ones that we have not dealt with in this

study, such as surface clutter, frozen hydrometeors, field of
view heterogeneities, and vertical structures that can differ
substantially from the idealized scenario assumed in this
study. Many of these uncertainties will be quantified in Part II
(manuscript submitted to J. Appl. Meteor. Climatol.) of this
study. It is also likely that our use of a priori data biases the
retrieval results toward the correct answer, so the uncertain-
ties we calculate should be thought of as very much best-case
values. Our results nevertheless offer important insight into
the significance of DSD uncertainty when it comes to retriev-
ing rain.

One common thread running through all of our experi-
ments is the importance of W-band observations for differen-
tiating cloud water from rainwater. For satellite architectures
A and C, both of which include 94 GHz radars, CLWP is gen-
erally the easiest of the retrieved variables to constrain, but
CLWP uncertainties increase greatly for satellite B, which has
a tendency to substitute rainwater for cloud water and vice
versa. This is because both cloud droplets and drizzle drops
tend to have reflectivities below the Ka/Ku detection limit of
12 dBZ. It is thus very important that future satellite missions
include W-band radar observations. Of the other retrieved
variables, the DSD shape parameter m is the hardest to re-
trieve accurately, followed by the volume-weighted mean di-
ameter Dm. For the purposes of deriving rain rate, Dm is
much more consequential.

Fundamental nonlinearities set a lower limit on the retrieval
uncertainties one can expect from an optimal estimation based
retrieval. For satellites B and C, these pale in comparison with
the other uncertainties considered in this study, while for satel-
lite A, which only has one radar frequency, the nonlinear nature
of the inversion problem presents more of a challenge. Adding

FIG. 13. Histograms comparing the (left) RWC, (center) RR, and (right)Dm distributions for the OceanRAIN disdrometer observations
taken at latitudes between 208S and 208N (red) or at latitudes north of 408N or south of 408S (blue).
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sensor noise and detection limits increases the retrieval uncer-
tainty but does not lead to a retrieval bias. We see a similar ef-
fect when we consider uncertainties in the ancillary assumptions
about the surface and atmospheric profile that the retrieval
must make in order to simulate satellite observations.

Our assumption of a three-parameter NG DSD works well
for the OceanRAIN disdrometer data. However, DSDs from
the ARM ENA disdrometer are not as well represented, and
the NG assumption leads to a positive bias in retrieved rain
rate as the retrieval algorithm tends to assume the drops are
larger than they actually are. Even larger biases result when
single-moment DSD parameterizations are assumed in the
retrieval algorithm, including positive biases near 100% for re-
trieving rain rate from the ENA disdrometer data. Relative to
the two-parameter NG DSD (used by some GPM algorithms),

the single-parameter AB model (used by the CloudSat
2C-RAIN-PROFILE algorithm) retrieves rain rates that are
25%–50% higher, depending on satellite architecture. The
differences are especially large for high-latitude DSDs and
for light rain. These experiments clearly show that DSD as-
sumptions have a large impact on satellite precipitation
retrievals.

Our results are focused on warm-rain uncertainties, in that
our simulated satellite observations include only liquid hydro-
meteors. We would expect retrieval uncertainties for more com-
plicated precipitation types to be larger because of additional
nonlinearities and the difficulty in accurately modeling ice parti-
cle shapes in a forward model. An important caveat is that we
cannot guarantee that the OceanRAIN and ARM surface ob-
servations used in this study resulted from warm-rain-only

FIG. 14. IQR of retrieval errors for (left) RWP and (right) RR for each satellite architecture,
assuming either the (top) single-parameter AB DSD model or (bottom) three-parameter NG DSD
model in the retrieval algorithm. Blue bars correspond to “high latitude” cases (latitudes . 408N
or S), and red bars correspond to “low latitude” cases (latitudes between 208S and 208N).
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precipitation processes. While ARM ENA observations come
predominantly from low marine clouds (Giangrande et al. 2019),
we have not attempted to exclude DSDs from deep clouds in our
analysis. We also caution that we have used surface DSD obser-
vations, when in reality satellite radars cannot sense below 750 m
above the surface (at best) because of surface clutter. Given
these limitations, we would stop short of saying that any of the
DSD models considered in this study are definitively “best” for
retrieving warm rain. It is possible, for instance, that if one were
looking at only warm-rain processes at 1000 m above the surface
(where less evaporation of small drops has taken place), the AB
model would be more appropriate. In this hypothetical, DSD as-
sumptions would still be an important source of retrieval bias,
since the operational CloudSat and GPM algorithms assume
very different R–Dm relationships (see Fig. 12). Regardless of
which one is more correct, the fact that they are so different
likely explains part of why rain rates retrieved from GPM are
lower than those from CloudSat in light rain regimes (Behrangi
and Song 2020).

Our findings offer a cautionary tale for all satellite retrieval al-
gorithms. Careful attention needs to be paid to DSD assump-
tions when interpreting and comparing retrieved rain rates.
Simple DSD parameterizations may not be appropriate, espe-
cially for remote, high-latitude oceanic regimes. Our work shows
that, when multiple radar frequencies are available (such as for
architecture C in this study), retrieving two or three moments of
the DSD can be greatly helpful in narrowing retrieval uncertain-
ties because a greater variety of DSD shapes can be described
by such a model. This should be an important consideration
when designing the next generation of satellite precipitation mis-
sions and algorithms. For missions such as CloudSat, where the
limited information content of a single-frequency radar makes
it harder for multiple DSD moments to be retrieved, more
research is needed into how DSD shapes are regime dependent
and whether these dependencies could be usefully incorporated
into a retrieval algorithm.
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