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1 Introduction

Scattering amplitudes in string theories have turned out to be rewarding laboratories to
encounter deep mathematical structures in a physics context. Already at tree level, the
multiple zeta values (MZVs) in the low-energy expansion of string amplitudes furnish elegant
physics applications of motivic MZVs [1], the Drinfeld associator [2–5] and single-valued
MZVs [1, 6–10]. At one loop, the common themes of string amplitudes, number theory, and
algebraic geometry are centered around elliptic polylogarithms [11–14] and non-holomorphic
modular forms. The latter arise from integrating over closed-string insertions on a torus [15–
18] and were dubbed modular graph forms (MGFs) [19, 20]. We refer to [21] for an overview
of MGFs as of fall 2020 and to [22–24] for recent discussions in a broader context.

The remarkable properties of MGFs attracted considerable attention among mathemati-
cians, for instance, their intricate network of algebraic and differential relations [17, 20, 25–28]
or the appearance of (conjecturally single-valued) MZVs in their Fourier expansion [19, 29–
34]. In particular, the advent of MGFs inspired Brown’s construction of non-holomorphic
modular forms from iterated integrals of holomorphic Eisenstein series and their complex
conjugates [35–37]. More specifically, Brown’s infinite families of non-holomorphic modular
forms arise as expansion coefficients of certain generating series dubbed equivariant iterated
Eisenstein integrals (EIEIs) and are conjectured to contain MGFs.

Brown’s EIEIs are built from two implicitly defined ingredients [35, 37]: (i) a generating
series bsv of single-valued MZVs and (ii) a change of alphabet φsv for the bookkeeping
variables of antiholomorphic iterated Eisenstein integrals akin to the construction of single-
valued polylogarithms at genus zero in [38]. This close relation to the theory of single-valued
polylogarithms is just one reason Brown’s non-holomorphic modular forms are of great
interest across several communities. Other reasons include their potential application to
solving arithmetic problems involving periods and their link to the study of universal mixed
motives. Further recent evidence for their arithmetic significance was also provided by [39],
where classical and important number-theoretic objects, such as period polynomials, were
associated with the space of such non-holomorphic modular forms. Despite this interest, the
explicit form of Brown’s EIEIs beyond depth one is essentially uncharted territory, apart
from the simplest contributions of (i) to non-holomorphic Eisenstein series.

An explicit example of how MGFs at depth two relate to Brown’s non-holomorphic
modular forms was given first in [36] and then further investigated in [40], where the
depth-three case was also briefly discussed. However, the equations determining (i) and
(ii) have not yet been solved to the orders that probe the generic properties of Brown’s
non-holomorphic modular forms or their connection to MGFs at depth ≥ 2.

An alternative way of reducing MGFs to iterated Eisenstein integrals and their complex
conjugates was initiated by certain generating series of closed-string genus-one integrals
which contain all convergent MGFs in their low-energy expansion [41]. The explicitly-
known reality properties and first-order differential equations in τ of these closed-string
integrals imply that MGFs can be uniquely expressed in terms of real-analytic iterated
Eisenstein integrals βsv [42]. These representations of MGFs expose both the entirety of
their relations over rational combinations of MZVs and their expansion around the cusp.
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The dictionary between MGFs and βsv at depth two is known from [43, 44], and we will
report on generalizations to depth three in future work [45].

In this work, we relate the organization of iterated Eisenstein integrals via βsv to
Brown’s construction of non-holomorphic modular forms and confirm his conjecture that
EIEIs contain MGFs in a variety of cases. Moreover, we present an all-order proposal for
the explicit form of the aforementioned change of alphabet φsv in terms of commutator
relations between certain derivations {ε2k+2, z2k+1} with k ∈ N which are well known in
the mathematics literature. These derivations originated in pioneering work of Ihara [46],
where deep connections to Grothendieck’s theory of motives (and particularly to Deligne’s
motivic fundamental group of the projective line minus three points [47]) were found. The
link between quadratic relations among these derivations and modular forms was first
described by Ihara-Takao (see the summary in [48]), then studied in detail by Tsunogai [49],
Goncharov [50], Gangl-Kaneko-Zagier [51], Schneps [52], Pollack [53], Baumard-Schneps [54],
Hain-Matsumoto [55] and Brown [56, 57].

Our results close a notorious gap between the recent physics and mathematics literature
and may pave the way for deducing properties of closed-string amplitudes from powerful
theorems in algebraic geometry and number theory.

Outline. This work is organized as follows: we start by reviewing the basics of MGFs
and their iterated-integral building blocks from the string-theory literature in section 2.
Section 3 then introduces new results on these string-theory motivated building blocks with
a focus on the construction of non-holomorphic modular forms. This description of MGFs
is compared with Brown’s EIEIs in section 4: we first make a connection with Brown’s
generating series in terms of Tsunogai’s derivations [37] in subsections 4.1 and 4.2. The role
of Brown’s equivariant double integrals including depth-one integrals of holomorphic cusp
forms [35, 36] is then discussed in section 4.3.

2 Basics

We start by reviewing selected aspects of MGFs and setting up the notation to connect
with Brown’s work in later sections.

2.1 Modular graph forms

The original definition of MGFs as integrals over marked points on a torus can be applied
to any labeled directed graph [19, 20]. In lieu of the full definition, we restrict ourselves to
simple instances that suffice to illustrate our construction. For the case of a dihedral graph,
the definition of MGFs reduces to the following nested sums over discrete torus momenta
p1, . . . , pR [20]

C+[ a1 ... aR
b1 ... bR

]
(τ) =

( R∏
j=1

(Im τ)aj
πbj

) ∑
p1,...,pR∈Λ′

δ(p1+ . . .+pR)
pa1

1 p̄
b1
1 . . . paRR p̄bRR

. (2.1)

MGFs depend non-holomorphically on the modular parameter τ ∈ C of a torus with
Im τ > 0. The sums over lattice momenta

pj ∈ Λ′ , Λ′ = (Zτ+Z) \ {0} (2.2)
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converge absolutely if their exponents aj , bj ∈ Z obey ai+bi+aj+bj ≥ 3 for all 1≤i<j≤R.
The conventions for the normalization factor (Im τ)ajπ−bj in (2.1) ensure that MGFs
transform with purely antiholomorphic modular weight (0,∑R

j=1(bj−aj)) under the modular
group SL(2,Z),

C+[ a1 ... aR
b1 ... bR

](
aτ+b
cτ+d

)
=

 R∏
j=1

(cτ̄+d)bj−aj
 C+[ a1 ... aR

b1 ... bR

]
(τ) ,

(
a b
c d

)
∈ SL(2,Z) . (2.3)

Expressions similar to (2.1) for more general topologies are for instance discussed in [20, 58].
The simplest non-vanishing examples of MGFs are non-holomorphic Eisenstein series

Ek(τ) = C+[ k 0
k 0
]
(τ) =

( Im τ

π

)k ∑
p∈Λ′

1
|p|2k

, k ≥ 2 (2.4)

and their τ, τ̄ -derivatives. Infinitely many instances of (2.1) with R ≥ 3 lattice momenta
obey non-trivial relations such as [17, 25]

C+[ 1 1 1
1 1 1 ](τ) = E3 (τ) + ζ3 , (2.5)

C+[ 1 1 1 1
1 1 1 1 ](τ) = 24C+[ 2 1 1

2 1 1 ](τ)− 18E4 (τ) + 3E2 (τ)2 ,

which are mysterious from the lattice-sum representations of MGFs but are exposed by the
iterated-integral representations below. A datamine of relations can be found within the
Mathematica package [58]. Relations and expansions of MGFs around the cusp τ → i∞
introduce (conjecturally single-valued [17, 29]) MZVs [26, 30–34]

ζn1,n2,...,nr =
∑

0<k1<k2<...<kr

1
kn1

1 kn2
2 . . . knrr

, nr ≥ 2 (2.6)

of weight n1+n2+ . . .+nr and depth r.

2.2 Real-analytic iterated Eisenstein integrals

Non-holomorphic Eisenstein series (2.4) can be written as

Ek(τ) = (2k−1)!
(k−1)!2

{
−βsv

[
k−1
2k ; τ

]
+ 2ζ2k−1

(2k−1)(4y)k−1

}
, (2.7)

involving the real-analytic depth-one integral [42, 43]

βsv
[
j
k

; τ
]

= 1
2πi

{∫ i∞

τ
dτ1

(
τ−τ1

4y

)k−2−j
(τ̄−τ1)jGk(τ1)

−
∫ −i∞
τ̄

dτ̄1

(
τ−τ̄1

4y

)k−2−j
(τ̄−τ̄1)jGk(τ1)

}
, (2.8)

with y = π Im τ , holomorphic Eisenstein series,

Gk(τ) = (Im τ)−k C+[ k 0
0 0
]
(τ) , k ≥ 4 (2.9)

and tangential-basepoint regularization of the endpoint divergence at τ1 → i∞ [35]. Earlier
discussions of iterated-integral representations of non-holomorphic Eisenstein series can for
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instance be found in [17, 59]. We emphasize that the integrals in (2.8) and similar iterated
integrals below are homotopy invariant: in spite of the appearance of τ and τ̄ in both lines,
the integration variable τ1 (τ̄1) only appears holomorphically (antiholomorphically) along
with dτ1 (dτ̄1).

Generic MGFs (2.1) can be uniquely1 represented via higher-depth generalizations of
the real-analytic Eisenstein integral (2.8) which are constructed from kernels

ω+
[
j
k

; τ, τ1
]

= dτ1
2πi

(
τ−τ1

4y

)k−2−j
(τ̄−τ1)jGk(τ1) , (2.10)

ω−
[
j
k

; τ, τ1
]

= −dτ̄1
2πi

(
τ−τ̄1

4y

)k−2−j
(τ̄−τ̄1)jGk(τ1) ,

with k ≥ 4 even and 0 ≤ j ≤ k−2. In terms of these kernels, the depth-one expression (2.8)
simply reads

βsv
[
j
k

; τ
]

=
∫ i∞

τ
ω+
[
j
k

; τ, τ1
]

+
∫ −i∞
τ̄

ω−
[
j
k

; τ, τ1
]
. (2.11)

Starting from the depth-two instance [42, 43]

βsv
[
j1 j2
k1 k2

;τ
]

= (2.12)
i∞∫
τ

ω+
[
j2
k2

;τ,τ2
] i∞∫
τ2

ω+
[
j1
k1

;τ,τ1
]
+

i∞∫
τ

ω+
[
j2
k2

;τ,τ2
] −i∞∫
τ̄

ω−
[
j1
k1

;τ,τ1
]

+
−i∞∫
τ̄

ω−
[
j1
k1

;τ,τ1
] −i∞∫
τ̄1

ω−
[
j2
k2

;τ,τ2
]
+
k1−2−j1∑
p1=0

k2−2−j2∑
p2=0

(k1−2−j1
p1

)(k2−2−j2
p2

)
(4y)p1+p2

α
[
j1+p1 j2+p2
k1 k2

;τ
]
,

the real-analytic βsv involve antiholomorphic building blocks α[ ...... ; τ ] featuring MZVs in
each term which resemble the admixtures of MZVs to single-valued polylogarithms at genus
zero in [38]. Just like the βsv at arbitrary depth, the α[ ...... ; τ ] are invariant under the modular
T -transformation τ → τ+1, see (3.21) below for an all-order formula at depth two. Note
the reversal of the ordering of labels for the ω− kernels in the definition (2.12).

The kernels (2.10) lead to specific linear combinations of Brown’s iterated Eisenstein
integrals over kernels τ j1 Gk(τ1) with k ≥ 4 and 0 ≤ j ≤ k−2 [35]. Their accompanying
polynomials in τ and τ̄ can be understood from their generating function

k−2∑
j=0

ω±
[
j
k

; τ, τ1
]

(X−τY )j(X − τ̄Y )k−j−2
(
k−2
j

)
1

(−4y)j

=


dτ1

(2πi)k−1 (X−τ1Y )k−2 Gk(τ1) : ω+ ,

− dτ̄1
(2πi)k−1 (X−τ̄1Y )k−2 Gk(τ1) : ω− ,

, (2.13)

1Uniqueness follows from the linear-independence results of [60] on holomorphic iterated Eisenstein
integrals.
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which translate into the kernels (X−τ1Y )k−2 Gk(τ1) of Brown’s EIEIs [36]: once the commu-
tative bookkeeping variables X,Y are taken to transform as a vector under

(
a b
c d

)
∈ SL(2,Z)

according to (X,Y )→ (aX+bY, cX+dY ), both cases of (2.13) are modular invariant.

2.3 Higher-depth generalization

With a capital-letter notation P for words in the composite letters j
k
of the kernels (2.10),

we can write the higher-depth generalization of (2.11) and (2.12) as

βsv[P ; τ ] =
∑

P=XY Z
κ[X; τ ]β−[Y t; τ ]β+[Z; τ ] , (2.14)

where Y t is obtained from Y by reversing the order of its composite letters (e.g. ( j1 j2
k1 k2

)t =
( j2 j1
k2 k1

)), and the sum over deconcatenations of P into XY Z includes empty words X,Y, Z
with κ[∅; τ ] = β−[∅; τ ] = β+[∅; τ ] = 1. We use a β±-notation to separate the contributions
from holomorphic and antiholomorphic Eisenstein series

β+
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

=
∫ i∞

τ
ω+
[
j`
k`

; τ, τ`
]
. . .

∫ i∞

τ3
ω+
[
j2
k2

; τ, τ2
] ∫ i∞

τ2
ω+
[
j1
k1

; τ, τ1
]
, (2.15)

β−
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

=
∫ −i∞
τ̄

ω−
[
j`
k`

; τ, τ`
]
. . .

∫ −i∞
τ̄3

ω−
[
j2
k2

; τ, τ2
] ∫ −i∞

τ̄2
ω−
[
j1
k1

; τ, τ1
]
.

Moreover, the composition of antiholomorphic α[ ...... ; τ ] in the last line of (2.12) generalizes
to multiple sums over pi,

κ
[
... ji ...
... ki ...

; τ
]

=
ki−2−ji∑
pi=0

(ki−2−ji
pi

)
(4y)pi α

[
... ji+pi ...
... ki ... ; τ

]
, (2.16)

where one can infer the vanishing of their depth-one instances κ
[
j
k

; τ
]

= α
[
j
k

; τ
]

= 0
from (2.8). Antiholomorphicity of the α[ ...... ; τ ] and the composition rule (2.14) imply a
simple form of the holomorphic differential equations [42]

2πi(τ−τ̄)2∂τβ
sv
[
j1 ... j`
k1 ... k`

; τ
]

=
∑̀
i=1

(ki−ji−2)βsv
[
j1 ... ji+1 ... j`
k1 ... ki ... k`

; τ
]

(2.17)

− δj`,k`−2(τ−τ̄)k`Gk`(τ)βsv
[
j1 ... j`−1
k1 ... k`−1

; τ
]
,

while ∂τ̄ -derivatives are in general more complicated and sensitive to the expressions
for α[ ...... ; τ ].

Note that all the κ[X; τ ] and the combinations ∑Q=Y Z β−[Y t; τ ]β+[Z; τ ] in (2.14) at
fixed Q are separately invariant under T : τ → τ+1. Modular S-transformations τ → − 1

τ

in turn mix βsv of different depths [42, 44] with rational functions of τ, τ̄ , MZVs and more
general multiple modular values [35, 61] in their coefficients. In other words, individual βsv

do not have good modular properties, unlike MGFs, which are specific linear combinations
of βsv of different depths with y-dependent coefficients. One of the main aims of this paper
is to give a more direct characterization of these linear combinations (see section 3) and to
relate them to Brown’s construction in section 4.
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2.4 Generating series of modular graph forms

The entirety of convergent MGFs which do not simplify under holomorphic subgraph
reduction [20, 28] are embedded into generating series of closed-string integrals over n ≥ 2
marked points on a torus [41]. Their KZB-type differential equations in τ have been solved
through a generating series in βsv [42]

Y τ
~η =

∑
P

R~η (ε [P ])βsv [P ; τ ] exp
(
−
R~η(ε0)

4y

)
Ŷ i∞
~η , (2.18)

where we recall y = π Im τ , and the sum over P comprises all words P = j1 ... j`
k1 ... k`

of length
` ≥ 0 with ki ≥ 4 even and 0 ≤ ji ≤ ki−2. The coefficients

ε
[
j1 j2 ... j`
k1 k2 ... k`

]
=
(∏̀
i=1

(−1)ji(ki−1)
(ki−ji−2)!

)
ε
(k`−2−j`)
k`

· · · ε(k2−2−j2)
k2

ε
(k1−2−j1)
k1

(2.19)

with the shorthand
ε
(j)
k = adjε0(εk) (2.20)

and the exponential in (2.18) involve certain (n−1)! × (n−1)! matrix valued operators
R~η(εk∈2N0) which are conjectured [41, 42] to furnish matrix representations R~η(·) of Tsuno-
gai’s derivation algebra {εk∈2N0} [49] with R~η(ε2) = 0. The notation R~η(ε[P ]) in (2.18)
instructs us to replace all the εk in (2.19) by R~η(εk). The conjecture is supported by a huge
number of checks that the relations of the derivation algebra [49, 53, 62] such as

0 = ε
(k−1)
k , k ≥ 4 even ,

0 = [ε4, ε10]− 3[ε6, ε8] , (2.21)

0 = −462
[
ε4, [ε4, ε8]

]
− 1725

[
ε6, [ε6, ε4]

]
− 280

[
ε8 , ε

(1)
8

]
+ 125

[
ε6 , ε

(1)
10

]
+ 250

[
ε10, ε

(1)
6

]
− 80

[
ε12, ε

(1)
4

]
− 16

[
ε4 , ε

(1)
12

]
are preserved in passing to the matrix-valued operators εk → R~η(εk).

Finally, the quantity Ŷ i∞
~η in (2.18) accounts for the τ → i∞ degenerations of the genus-

one integrals [41, 42]. Its matrix entries are τ -independent Laurent series in the bookkeeping
variables sij , ηj of the reference that the operators R~η(εk) act on, with (conjecturally
single-valued) MZVs in their coefficients (the explicit form at n = 2 can be generated
from (4.2) of [42]).

2.5 Examples

The contributions of exp
(
−R~η(ε0)

4y
)
Ŷ i∞
~η to the generating series (2.18) ensure that βsv of

different depths are combined into modular forms. At depth one, the formula is [42]

C+[ a 0
b 0
]
(τ) = −(2i)b−a(a+b−1)!

(a−1)!(b−1)!

(
βsv
[
a−1
a+b ; τ

]
− 2ζa+b−1

(a+b−1)(4y)b−1

)
, (2.22)

where a, b ≥ 1, and a+b ≥ 4 is an even integer.
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Higher-depth instances of βsv in (2.12) and (2.14) occur in MGFs with three and more
columns, such as [42]

C+[ 2 1 1
2 1 1 ](τ) = −126βsv[ 3

8 ; τ ]− 18βsv[ 2 0
4 4 ; τ ] + 12ζ3β

sv[ 0
4 ; τ ] + 5ζ5

12y −
ζ2

3
4y2 + 9ζ7

16y3 ,

C+[ 3 2 1
1 2 1 ](τ) = 279

2 βsv[ 5
10 ; τ ] + 30βsv[ 3 1

6 4 ; τ ] + 15
2 β

sv[ 4 0
6 4 ; τ ] (2.23)

− 3ζ5β
sv[ 0

4 ; τ ]− 3ζ5
y
βsv[ 1

4 ; τ ]− 7ζ7
48y + 5ζ3ζ5

16y2 −
31ζ9
64y3

as well as [42]

2i ImC+[ 0 1 2 2
1 1 0 3 ](τ) = 60βsv[ 0 3

4 6 ;τ ]−270βsv[ 1 2
4 6 ;τ ]−60βsv[ 1 2

6 4 ;τ ]+390βsv[ 2 1
4 6 ;τ ]

+270βsv[ 2 1
6 4 ;τ ]−390βsv[ 3 0

6 4 ;τ ]−3ζ3β
sv[ 1

4 ;τ ]+ 39ζ5
y

βsv[ 0
4 ;τ ]

− 27ζ5
4y2 β

sv[ 1
4 ;τ ]+ 3ζ5

8y3β
sv[ 2

4 ;τ ]−260ζ3β
sv[ 1

6 ;τ ]+ 45ζ3
y

βsv[ 2
6 ;τ ]

− 5ζ3
2y2β

sv[ 3
6 ;τ ]− 13ζ5

120 . (2.24)

As a common theme of (2.22) to (2.24), βsv[ j1 ... j`
k1 ... k`

; τ
]
are completed to modular forms of

weight (0,∑`
i=1(ki−2−2ji)) by adding lower-depth terms with Q[y−1]-linear combinations

of MZVs in their coefficients. Note that only non-positive powers of y can arise from the
expansion of the exponential in (2.18).

The antiholomorphic α[ ...... ; τ ] in (2.12) and at higher depth are determined by the
reality properties

C+[ a1 ... aR
b1 ... bR

]
(τ) =

(
R∏
r=1

yar−br

)
C+[ b1 ... bR

a1 ... aR

]
(τ) , (2.25)

once a βsv representation of all basis MGFs at given weight ∑R
r=1(ar+br) is available.

Examples and general formulae at depth two will be given in the next section (also see
appendix A).

3 Modular forms from βsv

In this section, we describe the structure of modular forms constructed from βsv in prepa-
ration for the matching with Brown’s EIEIs. These modular versions will be denoted by
βeqv by slight abuse of notation since they are not equivariant but simply standard non-
holomorphic modular forms. Since the βsv and their y-dependent coefficients are invariant
under T -transformations, we only need to ensure that the S-modular transformation law
is correct.

The answer at depth one is straightforward to obtain since the modular S-transformation
of (2.8) involves a depth-zero term which cancels from the combination

βeqv
[
j
k

; τ
]

= βsv
[
j
k

; τ
]
− 2ζk−1

(k−1)(4y)k−j−2 . (3.1)

This illustrates the fact that the βsv have to be completed by lower-depth terms with
non-positive powers of y and (single-valued) MZVs.
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3.1 Construction and properties of βeqv

Modular versions of βsv[P ; τ ] as seen in (2.22) to (2.24) can be parameterized by constants
csv[P ] associated with the same type of words P in composite letters j

k
with k ≥ 4 even

and 0 ≤ j ≤ k−2,

βeqv
[
j
k

; τ
]

= βsv
[
j
k

; τ
]

+
k−j−2∑
p=0

(k−j−2
p

)
(4y)p csv

[
j+p
k

]
,

βeqv
[
j1 j2
k1 k2

; τ
]

= βsv
[
j1 j2
k1 k2

; τ
]

+
k1−j1−2∑
p1=0

(k1−j1−2
p1

)
(4y)p1 csv

[
j1+p1
k1

]
βsv
[
j2
k2

; τ
]

(3.2)

+
k1−j1−2∑
p1=0

k2−j2−2∑
p2=0

(k1−j1−2
p1

)(k2−j2−2
p2

)
(4y)p1+p2

csv
[
j1+p1 j2+p2
k1 k2

]
+ βsv

∆

[
j1 j2
k1 k2

; τ
]
,

and more generally

βeqv[P ; τ ] = βsv
∆ [P ; τ ] +

∑
P=XY

dsv[X; τ ]βsv[Y ; τ ] , (3.3)

where the constants csv have been reassembled into polynomials in y−1,

dsv
[
... ji ...
... ki ...

; τ
]

=
ki−2−ji∑
pi=0

(ki−2−ji
pi

)
(4y)pi csv

[
... ji+pi ...
... ki ...

]
, (3.4)

and we again have one summation of this type per column. The βsv
∆ appearing in (3.2) are

iterated integrals with at least one holomorphic cusp form ∆2s(τ) among its kernels. They
do not contribute to MGFs [20, 28, 41], vanish at depth one, i.e. βsv

∆

[
j
k

; τ
]

= 0, and will be
discussed in section 3.4. Up to these cusp-form contributions, the differential equations

2πi(τ−τ̄)2∂τβ
eqv
[
j1 ... j`
k1 ... k`

; τ
]

=
∑̀
i=1

(ki−ji−2)βeqv
[
j1 ... ji+1 ... j`
k1 ... ki ... k`

; τ
]

(3.5)

− δj`,k`−2(τ−τ̄)k`Gk`(τ)βeqv
[
j1 ... j`−1
k1 ... k`−1

; τ
]

mod βsv
∆

take the same form as those of the βsv in (2.17) [42].
A few comments on the equations above are in order. Firstly, we stress that the

combination of (4y)−1 with constants csv[ ...... ] in (3.3) or α[ ...... ; τ ] in (2.16) both preserve the
form of (3.5). Secondly, we notice that the construction (3.3) of βeqv[P ; τ ] is expressed
in terms of dsv[X; τ ]βsv[Y ; τ ] with deconcatenations P = XY of the word P , such that
βsv[Y ; τ ] is precisely labelled by the second subword Y . This fact ensures that only the
right-most letter j`

k`
of P causes the appearance of holomorphic Eisenstein integration

kernels in (3.5).
Once the constants csv and the T -invariant cusp-form contributions βsv

∆ are tailored to
the multiple modular values in the S-transformations of (2.15), the βeqv in (3.3) transform
as non-holomorphic modular forms

βeqv
[
j1 ... j`
k1 ... k`

; aτ+b
cτ+d

]
=
(∏̀
i=1

(cτ̄+d)ki−2−2ji

)
βeqv

[
j1 ... j`
k1 ... k`

; τ
]
,

(
a b
c d

)
∈ SL(2,Z) . (3.6)
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The constants csv[ j1 ... j`
k1 ... k`

]
are (conjecturally single-valued) MZVs (2.6) of weight∑`

i=1(ji+1).
The earlier expression (3.1) for βeqv

[
j
k

; τ
]
at depth one implies the closed formulae

csv
[
j
k

]
= −2ζk−1

k−1 δj,k−2 , dsv
[
j
k

; τ
]

= − 2ζk−1
(k−1)(4y)k−2−j . (3.7)

At depth two, all the csv[ j1 j2
k1 k2

] with k1+k2 ≤ 28 and 0 ≤ ji ≤ ki−2 are fixed by the βsv-
representations of certain modular invariants F±(s)

m,k and their τ, τ̄ -derivatives at m+k ≤ 14
in the ancillary files of [43, 44]. Double integrals of G4(τ1)G4(τ2) give rise to constants

csv[ 0 0
4 4 ] = 0 , csv[ 0 1

4 4 ] = − ζ3
2160 , csv[ 0 2

4 4 ] = 0 ,
csv[ 1 0

4 4 ] = ζ3
2160 , csv[ 1 1

4 4 ] = 0 , csv[ 1 2
4 4 ] = 5ζ5

108 , (3.8)
csv[ 2 0

4 4 ] = 0 , csv[ 2 1
4 4 ] = − 5ζ5

108 , csv[ 2 2
4 4 ] = 2

9ζ
2
3 ,

and the non-vanishing instances of csv
[
j1 j2
4 6

]
are

csv[ 0 1
4 6 ] = ζ3

907200 , csv[ 1 0
4 6 ] = − ζ3

226800 ,

csv[ 0 3
4 6 ] = − ζ5

7200 , csv[ 1 2
4 6 ] = ζ5

21600 , csv[ 2 1
4 6 ] = − ζ5

21600 , (3.9)

csv[ 0 4
4 6 ] = − ζ2

3
315 , csv[ 1 3

4 6 ] = ζ2
3

1260 , csv[ 2 2
4 6 ] = − ζ2

3
1890 ,

csv[ 1 4
4 6 ] = 7ζ7

360 , csv[ 2 3
4 6 ] = − 7ζ7

720 , csv[ 2 4
4 6 ] = 2ζ3ζ5

15 .

More general examples csv[ j1 j2
k1 k2

] are composed of odd Riemann zeta values and bilinears
thereof. A variety of csv[ j1 j2 j3

k1 k2 k3
] to be extracted from depth-three analogues of F±(s)

m,k in
future work [45] involve indecomposable single-valued MZVs of depth three, such as

csv[ 2 2 4
4 4 6 ] = − 1

450ζ
sv
3,5,3 −

2
45ζ

2
3ζ5 −

221
21600ζ11 ,

csv[ 2 4 4
4 6 6 ] = 1

3750ζ
sv
5,3,5 + 2

375ζ3ζ
2
5 + 1804427

124380000ζ13 , (3.10)

csv[ 2 2 6
4 4 8 ] = − 1

1764ζ
sv
3,7,3 + 1

1470ζ
sv
5,3,5 −

2
63ζ

2
3ζ7 −

137359
24378480ζ13 ,

where [63, 64]

ζsv
3,5,3 = 2ζ3,5,3 − 2ζ3ζ3,5 − 10ζ2

3ζ5 ,

ζsv
5,3,5 = 2ζ5,3,5 − 22ζ3,5ζ5 − 120ζ2

5ζ3 − 10ζ5ζ8 , (3.11)
ζsv

3,7,3 = 2ζ3,7,3 − 2ζ3,7ζ3 − 28ζ2
3ζ7 − 24ζ3,5ζ5 − 144ζ2

5ζ3 − 12ζ5ζ8 .

A list of all csv[ j1 j2
k1 k2

] at k1+k2 ≤ 28 and csv[ j1 j2 j3
k1 k2 k3

] with k1+k2+k3 ≤ 16 can be found in
the supplementary material attached to this paper, and their instances with ji = ki−2 are
revisited in the light of the f -alphabet in section 4.1.4.

As will be detailed in sections 4.1.2 and 4.3.3, some of the csv[ j1 j2 j3
k1 k2 k3

] at j1+j2+j3 =
1
2(k1+k2+k3)− 3 and k1+k2+k3 ≤ 16 admit redefinitions that one may be able to fix from
depth-four computations. We will track the one-parameter freedom ∼ c446ζ7 of csv[ j1 j2 j34 4 6 ]
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and ∼ c466ζ3ζ5 of csv[ j1 j2 j34 6 6 ] (with c446, c466 ∈ Q) in the supplementary material that
amounts to shifting certain combinations of modular invariant βeqv[ j1 j2 j34 4 6 ] and βeqv[ j1 j2 j34 6 6 ]
in an SL(2,R)-singlet by constants.

All of βsv, βeqv and csv are expected to obey shuffle relations inherited from iterated
integrals such as

csv
[
j1
k1

]
csv
[
j2
k2

]
= csv

[
j1 j2
k1 k2

]
+ csv

[
j2 j1
k2 k1

]
(3.12)

and more generally

βsv[X; τ ]βsv[Y ; τ ] =
∑

P∈X�Y
βsv[P ; τ ] ,

βeqv[X; τ ]βeqv[Y ; τ ] =
∑

P∈X�Y
βeqv[P ; τ ] , (3.13)

csv[X]csv[Y ] =
∑

P∈X�Y
csv[P ] ,

with X�Y denoting the shuffle product of the words X and Y . These shuffle relations
are consequences of our central claim in (4.2) below that the modular forms βeqv can be
alternatively generated from Brown’s EIEIs.

3.2 Modular graph forms and beyond in terms of βeqv

As will be illustrated from the examples in this section, the non-holomorphic modular forms
βeqv compactly encode iterated-integral representations of MGFs and more general modular
forms. More specifically, each MGF can be written as a Q[MZV]-linear (conjecturally
Q[single-valuedMZV]-linear) combination of βeqv, though there are βeqv with contributions
from holomorphic cusp forms which cannot be realized via MGFs.

The two-column cases (2.22) take the form

C+[ a 0
b 0
]

= −(2i)b−a(a+b−1)!
(a−1)!(b−1)! βeqv

[
a−1
a+b

]
(3.14)

upon inserting the βeqv at depth one into (3.1). The depth-two examples in (2.23) and (2.24)
condense to

C+[ 2 1 1
2 1 1 ] = −126βeqv[ 3

8 ]− 18βeqv[ 2 0
4 4 ] ,

C+[ 3 2 1
1 2 1 ] = 279

2 βeqv[ 5
10 ] + 30βeqv[ 3 1

6 4 ] + 15
2 β

eqv[ 4 0
6 4 ] , (3.15)

2i Im C+[ 0 1 2 2
1 1 0 3 ] = 60(βeqv[ 0 3

4 6 ]−βeqv[ 1 2
6 4 ])− 270(βeqv[ 1 2

4 6 ]−βeqv[ 2 1
6 4 ])

+ 390(βeqv[ 2 1
4 6 ]−βeqv[ 3 0

6 4 ])− 3ζ3β
eqv[ 1

4 ] ,

by virtue of the csv[ j1 j24 6 ] in (3.9) and the csv[ j1 j26 4 ] following from the shuffle relations (3.12).
As a convenient organization of modular double integrals, certain modular invariant

solutions F±(s)
m,k to inhomogeneous Laplace equations have been studied in [43, 44], with

2 ≤ m ≤ k referring to the Em,Ek in the inhomogeneous terms. The real ones F+(s)
m,k are char-

acterized by Laplace eigenvalues s(s−1) with s ∈ {k−m+2, k−m+4, . . . , k+m−4, k+m−2}
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and contain the three-column MGFs C+[ a b c
a b c

]
whose Laplace equations can be found in [17].

The imaginary ones F−(s)
m,k with s ∈ {k−m+1, k−m+3, . . . , k+m−3, k+m−1} contain cus-

pidal MGFs with three or more columns such as Im C+[ 0 1 2 2
1 1 0 3 ] in (3.15).

The collection of βeqv[ j1 j2
2m 2k ] and βeqv[ j2 j1

2k 2m ] with 0 ≤ j1 ≤ 2m−2 and 0 ≤ j2 ≤ 2k−2
can be expressed in terms of F±(s)

m,k , bilinears in Em,Ek, products ζ2m−1Es as well as
respective modular derivatives ∇τ = 2i(Im τ)2∂τ and ∇τ = −2i(Im τ)2∂τ̄ . Conversely, we
have compact identities

F+(2)
2,2 = 18βeqv[ 2 0

4 4 ] ,

F−(2)
2,3 = −90βeqv[ 1 2

4 6 ] + 90βeqv[ 2 1
4 6 ] + 90βeqv[ 2 1

6 4 ]− 90βeqv[ 3 0
6 4 ]− 5

7ζ3β
eqv[ 1

4 ] , (3.16)

F−(6)
2,5 = −1890βeqv[ 1 4

4 10 ]− 1512βeqv[ 2 3
4 10 ] + 1890βeqv[ 4 1

10 4 ] + 1512βeqv[ 5 0
10 4 ] ,

and the analogous βeqv-representations of any F±(s)
m,k with m+k ≤ 12 can be found in

a file in the supplementary material. Modular forms βeqv[ j1 j2
k1 k2

] of non-zero weight
(0, k1+k2−2j1−2j2−4) occur in derivatives such as

π∇τF+(3)
2,3 = −45

2 β
eqv[ 2 2

4 6 ]− 15βeqv[ 3 1
6 4 ]− 15

2 β
eqv[ 4 0

6 4 ] , (3.17)

π∇τF+(3)
2,3

y2 = −240βeqv[ 1 1
4 6 ]− 120βeqv[ 2 0

4 6 ]− 360βeqv[ 2 0
6 4 ] ,

which follow from the βeqv-representations of F±(s)
m,k via (3.5) and their Laplace equations.

As detailed in [44], some of the F±(s)
m,k with m+k ≥ 7 and s ≥ 6 contain iterated integrals

of holomorphic cusp forms and therefore go beyond MGFs. These cases determine the
cusp-form contributions βsv

∆ in (3.2) and will be discussed in section 3.4 below, see in
particular (3.32) below for a simple example.

We conclude this section with depth-three examples of MGFs,

C+[ 2 2 1 1
2 2 1 1 ] = 216βeqv[ 2 1 0

4 4 4 ] + 840βeqv[ 1 3
4 8 ]− 252βeqv[ 2 2

4 8 ] + 840βeqv[ 3 1
8 4 ]− 252βeqv[ 4 0

8 4 ]
+ 3600βeqv[ 2 2

6 6 ]− 3200βeqv[ 3 1
6 6 ] + 2100βeqv[ 4 0

6 6 ] + 3212βeqv[ 5
12 ] ,

C+[ 2 1 1 1 1 1
2 1 1 1 1 1 ] =

(47
72 + 1814400 c446

)
ζ7 − 3ζ5β

eqv[ 1
4 ]− 1260ζ3β

eqv[ 3
8 ]− 180ζ3β

eqv[ 2 0
4 4 ]

+ 360(150βeqv[ 1 2 1
4 4 6 ] + 150βeqv[ 3 0 1

6 4 4 ]− 90βeqv[ 1 1 2
4 4 6 ]− 90βeqv[ 2 1 1

6 4 4 ]
− 90βeqv[ 1 2 1

4 6 4 ] + 150βeqv[ 1 3 0
4 6 4 ] + 150βeqv[ 2 1 1

4 6 4 ] + 195βeqv[ 2 0 2
4 4 6 ]

+ 195βeqv[ 2 2 0
6 4 4 ] + 15βeqv[ 2 2 0

4 6 4 ]− 330βeqv[ 2 1 1
4 4 6 ]− 330βeqv[ 3 1 0

6 4 4 ]
+ 480βeqv[ 2 2 0

4 4 6 ] + 480βeqv[ 4 0 0
6 4 4 ] + 315βeqv[ 2 3

6 8 ] + 315βeqv[ 3 2
8 6 ]

− 1190βeqv[ 3 2
6 8 ]− 1190βeqv[ 4 1

8 6 ] + 2800βeqv[ 4 1
6 8 ] + 2800βeqv[ 5 0

8 6 ]
+ 243βeqv[ 4 1

10 4 ] + 243βeqv[ 1 4
4 10 ] + 432βeqv[ 5 0

10 4 ] + 432βeqv[ 2 3
4 10 ]

+ 3640βeqv[ 6
14 ]) , (3.18)

where the former has been previously expressed in terms of iterated integrals [42, 65].
Moreover, the six-column MGF in (3.18) is sometimes denoted by D5,1,1 in the literature
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and provided the first example of an irreducible single-valued MZV beyond depth one in
the expansion of MGFs around the cusp [29]. In our setting, the depth-three MZV ζ3,5,3
enters C+[ 2 1 1 1 1 1

2 1 1 1 1 1 ] via csv[ 2 2 4
4 4 6 ] in (3.10), and the role of rational free parameter c446 is

explained below (3.11).

3.3 From Tsunogai’s derivation algebra to α

Apart from the constants csv and the cusp-form contributions βsv
∆ in the modular forms (3.3),

we still need to supply the antiholomorphic T -invariants α[ ...... ; τ ] (or their Q[y−1]-linear
combinations κ[ ...... ; τ ]) entering the βsv in (2.14). A variety of depth-two cases has been deter-
mined from the reality properties (2.25) of MGFs (or respective generating functions [42]) and
those of the above solutions to inhomogeneous Laplace equations, F±(s)

m,k = ±F±(s)
m,k [43, 44]:

any α[ j1 j2
k1 k2

; τ ] is a linear combination of

E0(k, 0p; τ) = (2πi)p+1−k

p!

∫ i∞

τ
dτ1 (τ−τ1)p

[
Gk(τ1)− 2ζk

]
= − 2

(k−1)!

∞∑
m,n=1

qmn

mp−k+2np+1 , q = e2πiτ , (3.19)

withQ-multiples of odd Riemann zeta values as coefficients. Modular T -invariance is attained
through the subtraction of the zero mode Gk(τ) = 2ζk +O(q) in the integrand of (3.19) [66]
and manifest from the q-series representation in the second line. The subtraction of the
zero mode also makes the integral well-defined without the use of tangential-basepoint
regularization. We note for future reference that the conjugates of these integrals can be
rewritten as (with Bernoulli numbers Bk)

E0(k, 0p; τ) = −Bk(−2πiτ̄)p+1

k!(p+1)! + 1
p!

k−2−p∑
`=0

(k−2−p
`

)
(−4y)` β−

[
p+`
k

; τ
]
, (3.20)

when using the integrals β− of the antiholomorphic kernels introduced in (2.15).
The examples of the α[ ...... ; τ ] in the ancillary files of [43, 44] can be lined up with the

following general formula at depth two,

α
[
j1 j2
k1 k2

; τ
]

= αeasy
[
j1 j2
k1 k2

; τ
]

+ αhard
[
j1 j2
k1 k2

; τ
]
, (3.21)

αeasy
[
j1 j2
k1 k2

; τ
]

= 2ζk1−1
k1−1 δj1,k1−2j2!E0(k2, 0j2)− 2ζk2−1

k2−1 δj2,k2−2j1!E0(k1, 0j1) .

The second part αhard is the crucial hint to anticipate the connection between MGFs or βsv

and Brown’s EIEIs: the αhard are specified by a generating series

∞∑
k1,k2=4

k1−2∑
j1=0

k2−2∑
j2=0

(k1−1)(k2−1)(−1)j1+j2

(k1−j1−2)!(k2−j2−2)! αhard
[
j1 j2
k1 k2

; τ
]
ε
(k2−j2−2)
k2

ε
(k1−j1−2)
k1

=
∞∑
m=1

2ζ2m+1

∞∑
k=4

k−2∑
j=0

(k−1)(−1)j
(k−j−2)! j!E0(k, 0j)[z2m+1, ε

(k−j−2)
k ]

∣∣
depth 2 (3.22)
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akin to (2.18), where we use the shorthand (2.20), and an explicit closed form of αhard
derived from (3.22) can be found in appendix A.

The brackets in the second line of (3.22) involve derivations z3, z5, z7, . . . dual to odd
zeta values subject to [z2m+1, ε0] = 0 that normalize2 Tsunogai’s derivation algebra: any
[z2m+1, εk 6=0] in (3.22) is expressible in terms of nested commutators of two and more ε(ji)ki

through a procedure described in [53] which relies on expressing the derivations in terms of
elements of a free Lie algebra with two generators.

The “depth-two” contributions from [ε(j1)
k1

, ε
(j2)
k2

] are known in closed form,
see [55, section 25],

[z2m−1, ε2n+2]
∣∣
depth 2 = (2n+2)! B2n+2m

(2n+2m−2)!(2n+2m)! B2n+2

2m−2∑
`=0

(−1)`
`! (2n+`)! [ε(`)2m, ε

(2m−2−`)
2n+2m ] .

(3.23)

The simplest examples of full [z2m+1, εk 6=0]-relations are

[z3, ε4] = 1
504

(
−
[
ε4 , ε

(2)
6

]
+3
[
ε

(1)
4 , ε

(1)
6

]
−6
[
ε

(2)
4 , ε6

])
,

[z3, ε6] = 1
1200

(
−
[
ε4 , ε

(2)
8

]
+5
[
ε

(1)
4 , ε

(1)
8

]
−15

[
ε

(2)
4 , ε8

]
+63

[
ε4 ,
[
ε

(1)
4 , ε4

]])
,

[z5, ε4] = 1
604800

([
ε6 , ε

(4)
8

]
−3
[
ε

(1)
6 , ε

(3)
8

]
+6
[
ε

(2)
6 , ε

(2)
8

]
−10

[
ε

(3)
6 , ε

(1)
8

]
+15

[
ε

(4)
6 , ε8

]
+105

[
ε

(1)
4 ,
[
ε

(1)
4 , ε

(1)
6

]]
−1668

[
ε

(1)
4 ,
[
ε

(2)
4 , ε6

]]
−729

[
ε

(2)
4 ,
[
ε4 , ε

(1)
6

]]
+1458

[
ε

(2)
4 ,
[
ε

(1)
4 , ε6

]]
+35

[
ε4 ,
[
ε4 , ε

(3)
6

]]
−313

[
ε4 ,
[
ε

(1)
4 , ε

(2)
6

]]
+834

[
ε4 ,
[
ε

(2)
4 , ε

(1)
6

]]
+208

[
ε

(1)
4 ,
[
ε4 , ε

(2)
6

]])
,

(3.24)

where the term ∼ [ε4, [ε
(1)
4 , ε4]] in the middle equation is the first instance of the higher-depth

terms that are suppressed in (3.23). Combining (3.24) and (3.22) reproduces contributions
such as [42]

αhard[ 0 2
4 6 ; τ ] = ζ3

630E0(4; τ) ,

αhard[ 2 1
4 6 ; τ ] = ζ3

210E0(4, 0; τ) , (3.25)

αhard[ 0 4
4 6 ; τ ] = 2ζ3

105E0(4, 0, 0; τ) ,

or [43, 67]

αhard[ 1 3
4 8 ; τ ] = − ζ3

140E0(6, 0, 0; τ) , αhard[ 2 3
6 8 ; τ ] = − ζ5

98000E0(4, 0; τ) . (3.26)

Note that (3.23) readily implies that αhard[ j1 j2
k1 k2

; τ ] vanishes whenever k1 = k2. Any contri-
bution of ζ2a−1β

eqv[ jw ] to the βeqv-representation of F±(s)
m,k (such as the term −5

7ζ3β
eqv[ 1

4 ] in
the expression (3.16) for F−(2)

2,3 ) can be traced back to αhard and only occurs for s = k−m+1.
2The normalizer, Ng(S), of a subset S in a Lie algebra g is defined by Ng(S) = {z ∈ g s.t. [z, x] ∈ S, ∀x ∈

S}.
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In principle, one could use the commutator relations among εk in (2.21) to eliminate
some of the terms [ε(j)6 , ε

(4−j)
8 ] in the expression (3.24) for [z5, ε4] in favor of [ε(j)4 , ε

(4−j)
10 ].

The coefficients of ε(j1)
k1

ε
(j2)
k2

in the generating-series identity (3.22) are understood to be
compared after importing the direct outcome of (3.23) for the commutators [z2m+1, εk]
and before inserting any relation among [εk1 , εk2 ] [49, 53, 62].3 With this convention, the
αhard are individually well-defined by (3.22), see the closed formula in appendix A, which
would not be the case when employing relations in Tsunogai’s derivation algebra from the
beginning. Beyond depth two, where we do not present a closed form analogous to (3.23),
this convention will no longer fix all possible shifts of [z2m+1, εk 6=0]-relations by relations in
Tsunogai’s algebra (or adε0-actions thereon). Hence, additional criteria must be imposed to
land on a canonical form for depth ≥ 3 contributions to the commutation relations.

3.4 Projecting out cusp forms

Holomorphic cusp forms ∆2s(τ) do not arise in the differential equations of MGFs [20, 26, 28]
and their generating series [41]. Hence, iterated-integral representations of MGFs can only
involve those combinations of βeqv in (3.3) where the cusp-form contributions βsv

∆ cancel.
These cancellations can be conveniently implemented by dressing with Tsunogai’s derivations

Jeqv({εk};τ)=
∑
P

ε[P ]βeqv[P ;τ ]

= 1+
∞∑
k=4

k−2∑
j=0

(−1)j(k−1)
(k−2−j)! β

eqv[ j
k
;τ
]
ε

(k−j−2)
k (3.27)

+
∞∑
k1=4

∞∑
k2=4

k1−2∑
j1=0

k2−2∑
j2=0

(−1)j1+j2(k1−1)(k2−1)
(k1−2−j1)!(k2−2−j2)! β

eqv
[
j1 j2
k1 k2

;τ
]
ε

(k2−j2−2)
k2

ε
(k1−j1−2)
k1

+. . .

as in the generating series (2.18) of closed-string integrals over the torus. The words ε[P ] in
derivations εk are defined in (2.19) without committing to a matrix representation, and the
ellipsis in the last line of (3.27) refers to βeqv[ j1 ... j`

k1 ... k`
] of depth ` ≥ 3.

While all βsv
∆ [ j

k
; τ ] at depth one and βsv

∆ [ j1 j2
k1 k2

; τ ] in (3.3) at k1+k2 < 14 vanish, their
simplest non-trivial instances occur in the Laplace eigenfunctions F±(s)

m,k with m+k ≥ 7 and
s ≥ 6 [43, 44] as well as their τ, τ̄ derivatives. The results in the references translate into

βsv
∆

[
j1 j2
k1 k2

; τ
]

=
∑

∆2s at
2s≤k1+k2−2

ξ∆2s
k1,k2

Aj1,j2k1,k2,N
βsv
[
j1+j2−N

∆±2s
; τ
]
, (3.28)

where N = 1
2(k1+k2)−s−1, and the rational numbers Aj1,j2k1,k2,N

are given by

Aj1,j2k1,k2,N
= 1
k1!k2!

N∑
`=0

(−1)`
(
N

`

)
j1!(k1−2−j1)!j2!(k2−2−j2)!

(j1−N+`)!(k1−j1−2−`)!(k2−2−j2−N+`)!(j2−`)!
.

(3.29)
3It appears unnatural to rewrite the expressions (3.23) for the commutators [z2m+1, εk] via relations in

Tsunogai’s derivation algebra: the relative factors [ε6, ε
(4)
8 ]−3[ε(1)

6 , ε
(3)
8 ]+. . . in the expression (3.24) for [z5, ε4]

are not reproduced by the binomials in the corollary 0 = ad4
ε0

(
[ε4, ε10]− 3[ε6, ε8]

)
=
∑4

j=0

(4
j

)(
[ε(j)4 , ε

(4−j)
10 ]−

3[ε(j)6 , ε
(4−j)
8 ]

)
of (2.21). The representation of [z5, ε4] in (3.24) is singled out by having no contribution of

[ε(j)4 , ε
(4−j)
10 ], but it is not possible to eliminate all the [ε(j)6 , ε

(4−j)
8 ] with j = 0, 1, 2, 3, 4.
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Moreover, we introduce the following delta-variant of the βsv in (2.8) with j = 0, 1, . . . , k−2,

βsv
[

j

∆±
k

; τ
]

= (2πi)k−1
{∫ i∞

τ
dτ1

(
τ−τ1

4y

)k−2−j
(τ̄−τ1)j ∆k(τ1)

∓
∫ −i∞
τ̄

dτ̄1

(
τ−τ̄1

4y

)k−2−j
(τ̄−τ̄1)j ∆k(τ1)

}
. (3.30)

The constants ξ∆2s
k1,k2

in (3.28) do not depend on j1, j2 and are expected to be transcendental,
for instance [44]

(
ξ∆12

4,10, ξ
∆12
6,8

)
=
(
−32

45 ,
96
175

)Λ(∆12, 12)
Λ(∆12, 10) ,(

ξ∆12
4,12, ξ

∆12
6,10, ξ

∆12
8,8

)
=
(
− 576

3455 ,
75
691 , −

64
691

)Λ(∆12, 13)
Λ(∆12, 11) , (3.31)

(
ξ∆16

4,14, ξ
∆16
6,12, ξ

∆16
8,10

)
=
(
−96

35 ,
432
385 , −

32
49

)Λ(∆16, 16)
Λ(∆16, 14) ,(

ξ∆12
4,14, ξ

∆12
6,12, ξ

∆12
8,10

)
=
(
− 672

44915 ,
8

975 , −
8

1365

)Λ(∆12, 14)
Λ(∆12, 10) .

As explained in the reference, the ξ∆2s
k1,k2

are ratios of L-values Λ(∆2s, t) outside and inside
the critical strip t ∈ (0, 2s) (with critical denominators Λ(∆2s, 2s−2) and Λ(∆2s, 2s−1) if
s+1

2(k1+k2) is odd and even, respectively). The complete list of ξ∆2s
k1,k2

with k1+k2 ≤ 24
can be found in the supplementary material attached to this paper.

The simplest instance of integrals (3.30) over holomorphic cusp forms occurs in the
modular invariant F−(6)

2,5 (τ), where the βeqv-representation in (3.17) gives rise to

F−(6)
2,5 (τ)

∣∣
∆ = 1890βsv

∆ [ 4 1
10 4 ; τ ]− 1890βsv

∆ [ 1 4
4 10 ; τ ] + 1512βsv

∆ [ 5 0
10 4 ; τ ]− 1512βsv

∆ [ 2 3
4 10 ; τ ]

= Λ(∆12, 12)
18000Λ(∆12, 10)β

sv
[ 5

∆−12
; τ
]
, (3.32)

and the notation |∆ on the left-hand side instructs us to suppress all Eisenstein integrals and
depth-zero terms. More generally, the sign in the superscript of F±(s)

m,k matches that of the
βsv[ j

∆±2s
; τ
]
in the iterated-integral representations of F±(s)

m,k and their modular derivatives.

In particular, the βsv[ j

∆±2s
; τ
]
with the middle value j = s−1 correspond to the solutions

H±∆2s
of homogeneous Laplace equations4 [44],

βsv
[
s−1
∆±2s

; τ
]

= −2(s−1)! H±∆2s
(τ) , (3.33)

4Larger (smaller) values of j correspond to the (j−s+1)th τ -derivative and (s−1−j)th τ̄ -derivative of
H±∆2s

, respectively, where ∇τ = 2i(Im τ)2∂τ :

βsv
[
s−1+m

∆±
2s

; τ
]

= −2(−4)m(s−1−m)!(π∇τ )mH±∆2s
(τ) ,

βsv
[
s−1−m

∆±
2s

; τ
]

=
−2(s−1−m)!(π∇τ )mH±∆2s

(τ)
(−4)my2m .
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whose appearance in the F±(s)
m,k is discussed in the reference. Note that the shuffles (3.13)

relate βsv
∆
[ j2 j1
k2 k1

; τ
]

= −βsv
∆
[ j1 j2
k1 k2

; τ
]
which together with the parity property Aj2,j1k2,k1,N

=
(−1)NAj1,j2k1,k2,N

of (3.29) implies that

ξ∆2s
k2,k1

= (−1)s+
1
2 (k1+k2)ξ∆2s

k1,k2
. (3.34)

Starting from depth three, the βsv
∆ will generically involve both (3.30) and double integrals

that combine kernels Gk and ∆2s and will be investigated in [45].
All the βsv[ j

∆±
k

; τ
]
and their higher-depth generalizations cancel from the generating

series (3.27) since their coefficients vanish by the relations in the derivation algebra [49, 53,
62]: the overall coefficient in (3.27) of Λ(∆12,12)

Λ(∆12,10)β
sv[ j

∆−12
; τ
]
is, for instance, proportional to

ad10−j
ε0

(
[ε4, ε10]− 3[ε6, ε8]

)
= 0 , (3.35)

and more general coefficients of H±∆2s
in the series (3.27) are described in section 4 of [44].

By the depth-three terms [ε4, [ε4, ε8]] and [ε6, [ε6, ε4]] in the last relation of (2.21), the
cancellation of Λ(∆12,13)

Λ(∆12,11)β
sv[ j

∆+
12

; τ
]
also hinges on contributions from βsv

∆ [ j1 j2 j34 4 8 ; τ ] and
βsv

∆ [ j1 j2 j36 6 4 ; τ ], see [45] for details.
Given the cancellation of cusp-form contributions, the differential equation of the gener-

ating series (3.27) is determined by the terms in the τ -derivatives of βeqv displayed in (3.5):

−2πi(τ−τ̄)2∂τJ
eqv({εk};τ)= adε0Jeqv({εk};τ)+ ∞∑

m=4
(m−1)(τ−τ̄)mGm(τ)εmJeqv({εk};τ) .

(3.36)

Up to convention-dependent powers of τ−τ̄ and normalization factors of the holomorphic
Eisenstein series, this matches the holomorphic derivative of Brown’s generating series Jeqv

in section 8.2 of [37]. In comparison to the differential equation of the generating series Y τ
~η

in section 2.4 of [42], left-action of the operator R~η(ε0) is replaced by the adjoint action
adε0 in (3.36) since ∂τ no longer acts on the exponential in (2.18).

4 Connection with equivariant iterated Eisenstein integrals

In this section, we relate the modular forms βeqv introduced in the preceding section to
Brown’s EIEIs by equating certain generating series.

4.1 Matching βeqv with Brown’s construction

We begin by describing an alternative way to assemble the generating series (3.27) of
the modular forms βeqv: instead of combining the holomorphic and anti-holomorphic
iterated Eisenstein integrals β± into the βsv as in (2.14), we organize them into separate
generating series

J±
(
{εk}; τ

)
=
∑
P

ε[P ]β±[P ; τ ] , (4.1)

see (2.15) for β± and (2.19) for the words ε[P ] in εk. The sums in (4.1) and below over P
are again over all words P = j1 ... j`

k1 ... k`
of length ` ≥ 0 with ki ≥ 4 even and 0 ≤ ji ≤ ki−2.
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The central result of this work is that the modular forms βeqv constructed in (3.3) can
be alternatively generated via

Jeqv({εk}; τ) = J+
(
{εk}; τ

)
Bsv({εk}; τ)φsv(J̃−({εk}; τ)

)
. (4.2)

The ingredients Bsv and φsv follow Brown’s construction in [37], see section 4.1.1 for the
series Bsv in MZVs, and the change of alphabet φsv will be made fully explicit in section 4.1.2
below. The tilde of J̃−({εk}; τ) instructs us to reverse the words ε(j1)

k1
. . . ε

(j`)
k`
→ ε

(j`)
k`

. . . ε
(j1)
k1

without additional ji-dependent minus-signs that one may have expected from the adε0-
action. Note that the change of alphabet φsv is performed after reversal of the word in ε(ji)ki

,
and it would lead to an incorrect expression if the reversal is applied to the image of φsv.

The series Jeqv with the modular transformation εk → (cτ̄+d)k−2εk of its bookkeeping
variables under

(
a b
c d

)
∈ SL(2,Z) [36, 37] is modular invariant and referred to as generating

EIEIs. As emphasized before, by slight abuse of notation, we allude to equivariance in
the superscript of the component integrals βeqv in (3.27) even though they transform as
modular forms according to (3.6).

4.1.1 The generating series Bsv in single-valued MZVs
The series Bsv of single-valued MZVs in (4.2) is claimed to be constructed from the constants
csv in the conversion (3.3) from βsv to βeqv. However, the rational dependence of the dsv

on y = π Im τ in (3.4) needs to be augmented by additional powers of τ̄ in the numerator

bsv
[
... ji ...
... ki ...

; τ
]

=
ki−2−ji∑
pi=0

ji+pi∑
`i=0

(
ki−2−ji

pi

)(
ji+pi
`i

)
(−2πiτ̄)`i

(4y)pi csv
[
... ji−`i+pi ...
... ki ...

]
, (4.3)

where we have one double-sum over pi, `i per column. The rational dependence on τ and τ̄ can
be understood from the transformation between the coefficient csv of Y ji

i X
ki−ji−2
i and bsv of

(Xi−τYi)ji(Xi−τ̄Yi)ki−ji−2, similar to the transformation of integration
kernels in (2.13).

At depth one, the additional τ̄ -dependence still cancels by the simple form of
csv
[
j
k

]
in (3.7),

bsv
[
j
k

; τ
]

= − 2ζk−1
(k−1)(4y)k−2−j , (4.4)

but already the simplest depth-two examples depend non-trivially on τ̄ and therefore vary
under the modular T -transformation,

bsv[ 1 0
4 4 ; τ ] = ζ3

2160 −
iτ̄πζ3
2160y −

τ̄2π2ζ3
8640y2 + ζ2

3
288y3 −

5ζ5
1728y2 ,

bsv[ 2 0
4 4 ; τ ] = − iτ̄πζ3

540 −
τ̄2π2ζ3
1080y + ζ2

3
72y2 −

5ζ5
216y , (4.5)

bsv[ 2 1
4 4 ; τ ] = τ̄2π2ζ3

540 + ζ2
3

18y + 5ζ5
108 .

The alternative expression (4.2) for Jeqv is then built from the following generating
series of bsv:

Bsv({εk}; τ) =
∑
P

ε[P ]bsv[P ; τ ] . (4.6)
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4.1.2 The change of alphabet

The change of alphabet εk → φsv(εk) in (4.2) acts on the series J̃− of antiholomorphic
iterated Eisenstein integrals in (4.1) and maps each derivation to an infinite series in single-
valued MZVs and nested commutators of ε(j)k [37]. Theorem 7.2 in [37] implicitly determines
Bsv and φsv in terms of multiple modular values. The map φsv is an automorphism of the
universal enveloping algebra of Tsunogai’s derivations, and we find its explicit form on
single derivations to be given by

φsv(ε0) = ε0 , φsv(εk) = Msvεk(Msv)−1 , k ≥ 4 (4.7)

with the following group-like element:

Msv =
∞∑
`=0

∑
i1,i2,...,i`
∈2N+1

zi1zi2 . . . zi` ρ
−1
(
sv(fi1fi2 . . . fi`)

)
(4.8)

= 1 +
∑

i1∈2N+1
zi1 ρ

−1(sv(fi1)
)

+
∑

i1,i2∈2N+1
zi1zi2 ρ

−1(sv(fi1fi2)
)

+ . . . .

The dependence on the derivations z3, z5, . . . discussed around (3.22) and (3.23) will not be
displayed in the notation for Msv. Moreover, we use the f -alphabet description of (motivic)
MZVs [68]5 with one non-commutative generator fi for each i ∈ 2N+1. The isomorphism ρ

mapping MZVs to the f -alphabet

ρ(ζi) = fi , ρ(ζiζj) = fi�fj = fifj + fjfi , i, j ∈ 2N+1 ,

ρ(ζ3,5) = −5f3f5 , ρ(ζ3,5,3) = −5f3f5f3 + 299
2 f11 , (4.9)

ρ(ζsv
3,5,3) = −20(f3f5f3 + f5f3f3) + 299f11 = sv

(
−5f3f5f3 + 299

2 f11

)
is invertible and often denoted by φ instead of ρ in the mathematics and physics literature
(see [1, 68] for examples beyond depth one).

In (4.9), we have given an example of the single-valued map in the f -alphabet. It takes
the following simple form in the general case [63, 64]

sv(fN2 fi1fi2 . . . fi`) = δN,0
∑̀
j=0

fij . . . fi2fi1�fij+1fij+2 . . . fi` , (4.10)

such that the depth-one and depth-two contributions to the change of alphabet (4.7) reduce
to odd Riemann zeta values by sv(fi) = 2fi and sv(fifj) = 2fi�fj = 2(fifj + fjfi),

φsv(εk) = εk + 2
∑

i1∈2N+1
ζi1 [zi1 , εk] + 2

∑
i1,i2∈2N+1

ζi1ζi2
[
zi1 , [zi2 , εk]

]
+ . . . . (4.11)

Also, at higher depth, each term boils down to nested brackets of ε(ji)ki
since the z3, z5, . . .

normalize the derivation algebra, see e.g. (3.24). The all-depth expression for the adjoint
5Both the f -alphabet and the single-valued map are only well-defined in the context of motivic MZVs

whose elaborate definition can for instance be found in [69, 70].
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action in (4.7) yields an infinite series of nested commutators

φsv(εk) =
∞∑
`=0

∑
i1,i2,...,i`
∈2N+1

[zi1 , [zi2 , . . . , [zi`−1 , [zi` , εk]] . . .]] ρ−1
(
sv(fi1fi2 . . . fi`)

)
, (4.12)

which is implicit in Brown’s work [35, 37]. The action of φsv on higher-depth expressions in
the εk derivations can be deduced from (4.12) via φsv(ε(j1)

k1
ε
(j2)
k2

. . .) = (adj1ε0φ
sv(εk1))(adj2ε0φ

sv(εk2)) . . .
as can be seen from the conjugation action in (4.7). In the context of the series Jeqv in (3.27),
conjugation (4.7) of the individual εk can be converted to the overall adjoint action

φsv(J̃−({εk}; τ)
)

= MsvJ̃−
(
{εk}; τ

)
(Msv)−1 . (4.13)

Based on the ideas of [53], we have determined the commutators [z3, εk≤14] and [z5, εk≤10]
and appended them in a file in the supplementary material attached to this paper. In this
way, one can extract the contributions of φsv to all the βeqv[ j1 j2 j3

k1 k2 k3
] with k1+k2+k3 ≤ 16

from (4.2).
Note that the analogue of Bsv, φsv described in Theorem 7.2 of [37]6 is only well-defined

up to Bsv → Bsva−1 and φsv(J̃−)→ aφsv(J̃−)a−1 for some series a in ε(j)k whose coefficients
are Q-linear combinations of single-valued MZVs. Such redefinitions amount to right-
multiplication of the series Jeqv in (4.2) by a−1. One can view our realization (4.7) or (4.12) of
φsv as fixing a particular “gauge-choice” of the series a, and it would be interesting to compare
it with alternative choices. The one-parameter freedom of shifting certain csv[ j1 j2 j34 4 6 ] and
csv[ j1 j2 j34 6 6 ] by ζ7 and ζ3ζ5 — see the discussion below (3.11) — corresponds to leading-depth
contributions of schematic form a = 1 + ζ7[ε(j1)

4 , [ε(j2)
4 , ε

(j3)
6 ]] + ζ3ζ5[ε(j

′
1)

6 , [ε(j
′
2)

6 , ε
(j′3)
4 ]] + . . .

with j1+j2+j3 = 4 and j′1+j′2+j′3 = 5, respectively. This freedom should get fixed once we
impose all βeqv at depth four to arise from the change of alphabet φsv in the form (4.12): it
requires at least one unit of depth from J̃− to distinguish φsv(J̃−) from aφsv(J̃−)a−1, so
the departure of aφsv(J̃−)a−1 from (4.12) with the above depth-three contribution to a is
at least fourth order in ε(j)k . The reason why the discussion of a becomes more pressing at
depth three is discussed in section 4.3.3.

Moreover, derivations zi at i ≥ 11 are only well defined up to nested commutators of
zi1zi2 . . . with i1+i2+ . . . = i, which, for instance, leaves an ambiguity of adding [z3, [z5, z3]]
to z11. This reflects the fact that the isomorphism ρ to the f -alphabet is non-canonical, e.g.
the choice in (4.9) sets the coefficient of f11 in ρ(ζ3,3,5) to zero by convention. For a given
choice of setting up the f -alphabet, there is a preferred scheme of fixing the ambiguity of
zi≥11, e.g. a specific representative of z11 adapted to having vanishing coefficient of f11 in
ρ(ζ3,3,5).7 One then arrives at the same change of alphabet φsv for any choice of f -alphabet
upon mapping back to (motivic) MZVs via ρ−1 in (4.12).

6The series bsv in Brown’s work [37] corresponds to the inverse of Bsv defined in (4.6).
7More generally, the ρ-images of MZVs at weights w ≤ 16 in [1] are taken to have a vanishing coefficients

of fw for each element of the bases in the datamine [71] (where f2k = ζ2k

(ζ2)k f
k
2 for even weight). As a result,

the ρ-images of the weight-thirteen csv in (3.10) are computed from

ρ(ζ5,3,5) = −60f3f5f5 − 5f5f3f5 + 24
35f

4
2 f5 + 1003

2 f13 ,

ρ(ζ3,7,3) = −66f3f5f5 − 6f5f3f5 − 6f5f5f3 − 14f3f7f3 + 144
175f

4
2 f5 + 716f13 ,

which follow from the absence of f13 in the basis elements ρ(ζ3,5,5) and ρ(ζ3,3,7) [1, 71].
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As will be detailed in future work, a conjugation formula similar to (4.7) applies to
the letters in the generating series of antiholomorphic genus-zero polylogarithms that enter
Brown’s construction of single-valued polylogarithms in one variable [38].

4.1.3 Extracting components

By extracting the coefficients of ε[P ] in (4.2), one can read off components

βeqv[P ; τ ] = βsv
∆ [P ; τ ] +

∑
P=XY Z

βφ−[Xt; τ ]bsv[Y ; τ ]β+[Z; τ ] , (4.14)

where the cusp-form contributions βsv
∆ [P ; τ ] are projected out from Jeqv by the relations

among the εk, see section 3.4. We employ the shorthand

βφ−[P t; τ ] = φsv(J̃−({εk}; τ)
) ∣∣
ε[P ] (4.15)

for the iterated integrals of antiholomorphic Eisenstein series deformed by the change of
alphabet in (4.12). Since any term in [zm, εk] involves at least two letters ε(ji)ki

and no
instance of ε(j1)

k1
ε
(j2)
k2

with k1 = k2, we have

βφ−

[
j
k

; τ
]

= β−
[
j
k

; τ
]
, βφ−

[
j1 j2
k k

; τ
]

= β−
[
j1 j2
k k

; τ
]
. (4.16)

Hence, the simplest non-trivial corrections

δφβ−
[
j1 ... j`
k1 ... k`

; τ
]

= βφ−

[
j1 ... j`
k1 ... k`

; τ
]
− β−

[
j1 ... j`
k1 ... k`

; τ
]

(4.17)

via φsv occur at depth two with k1 6= k2, where the structure of (3.23) implies that
δφβ−

[ j1 j2
k1 k2

]
= −δφβ−

[ j2 j1
k2 k1

]
are products of odd zeta values with β−

[ j
k

]
of depth one. As

one can anticipate from the examples

δφβ−[ 0 2
6 4 ; τ ] = ζ3

105β−[ 0
4 ; τ ] ,

δφβ−[ 3 2
8 4 ; τ ] = ζ3

420β−[ 3
6 ; τ ] , (4.18)

δφβ−[ 3 2
8 6 ; τ ] = − ζ5

98000β−[ 1
4 ; τ ] ,

as well as

δφβ−[ 1 2 2
4 4 4 ; τ ] = 7ζ3

360β−[ 4
6 ; τ ] ,

δφβ−[ 2 0 1
6 4 4 ; τ ] = 13ζ5

141750β−[ 0
4 ; τ ]− ζ3

40β−[ 2
8 ; τ ] + ζ3

630β−[ 0 1
4 4 ; τ ] , (4.19)

δφβ−[ 3 1 0
8 4 4 ; τ ] = − ζ2

3
352800β−[ 0

4 ; τ ]− ζ5
6048β−[ 1

6 ; τ ] + 33ζ3
1750β−[ 3

10 ; τ ]− ζ3
280β−[ 2 0

6 4 ; τ ] ,

the φsv-corrections (4.17) to β− of depth ` comprise iterated Eisenstein integrals of depth
≤ `−1, and their coefficients are single-valued MZVs with one to `−1 letters in the f -
alphabet. The simplest MGF that receives φsv-corrections is the non-holomorphic cusp
form Im C+[ 0 1 2 2

1 1 0 3 ] in (3.15). The real MGFs C+[ a b c
a b c

]
at a+b+c ≤ 6 and C+[ 2 2 1 1

2 2 1 1 ] with
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iterated-integral representations in [42, 65] and (3.18) are unaffected by φsv, that is why
cuspidal MGFs pioneered in [72] and further investigated in [42, 58] are essential case studies
of the change of alphabet.

Note that the depth-two examples in (4.18) can be lined up with a closed formula

δφβ−
[
j1 j2
k1 k2

]
=


2(−1)j1ζk1−1(k2−k1+1)!(k2−k1+2)!j2!(k2−j2−2)!Bk2

(k1−1)k2!(k2−1)!(k2−j1−j2−2)!(j1+j2−k1+2)!Bk2−k1+2
β−
[
j1+j2−k1+2
k2−k1+2

]
: k1 <k2 ,

− 2(−1)j2ζk2−1(k1−k2+1)!(k1−k2+2)!j1!(k1−j1−2)!Bk1
(k2−1)k1!(k1−1)!(k1−j1−j2−2)!(j1+j2−k2+2)!Bk1−k2+2

β−
[
j1+j2−k2+2
k1−k2+2

]
: k1 >k2 ,

0 : k1 = k2 ,

,

(4.20)

which is equivalent to (4.49) below and the results of appendix A.
Since φsv does not contribute at depth one, the simplest examples of the βeqv in the

new description (4.14) read

βeqv
[
j1
k1

]
= β−

[
j1
k1

]
+ bsv

[
j1
k1

]
+ β+

[
j1
k1

]
,

βeqv
[
j1 j2
k1 k2

]
= βsv

∆

[
j1 j2
k1 k2

]
+ β+

[
j1 j2
k1 k2

]
+ bsv

[
j1 j2
k1 k2

]
+ β−

[
j2 j1
k2 k1

]
+ δφβ−

[
j2 j1
k2 k1

]
(4.21)

+ bsv
[
j1
k1

]
β+
[
j2
k2

]
+ β−

[
j1
k1

]
bsv
[
j2
k2

]
+ β−

[
j1
k1

]
β+
[
j2
k2

]
,

see (3.2) for the earlier description in terms of βsv. We have checked up to k1+k2 = 24 at
depth two and k1+k2+k3 = 16 at depth three that the expansions of (4.2) and (3.27) in
terms of ε(ji)ki

match after iteratively using the commutation relations [zm, εk] in (3.24) and
the supplementary material.

The main conjecture of this work is that the two constructions (4.2) and (3.27) of the
generating series Jeqv agree to all orders in ε(ji)ki

. This conjecture implies that all MGFs
— i.e. modular combinations of βsv — are contained in the components of Brown’s EIEIs
generated by (4.2). Further corollaries of this conjecture include the shuffle relations (3.13)
of the building blocks βsv, csv of MGFs and the exclusive appearance of single-valued MZVs
in the expansion of MGFs around the cusp as firstly proposed in [17, 29].

4.1.4 csv in the f-alphabet

The f -alphabet also reveals all-order properties of the single-valued MZVs in csv[ j1 ... j`
k1 ... k`

]
that determine the components (4.3) of the series Bsv in (4.2): the results at depth ≤ 3 in
section 3.1 and the supplementary material suggest that their instances at ji = ki−2 obey
a simple formula

ρ
(
csv
[
k1−2 k2−2 ... k`−2
k1 k2 ... k`

] )
=
(∏̀
i=1

1
1−ki

)
sv(fk1−1fk2−1 . . . fk`−1) mod lower depth ,

(4.22)
for their highest-depth terms, where words of length < ` in the f -alphabet have been
dropped. This is confirmed by (see (3.7) to (3.9))

ρ
(
csv
[
k−2
k

] )
= 1

1−k sv(fk−1) , ρ
(
csv[ 2 2

4 4 ]
)

= 1
9 sv(f3f3) , ρ

(
csv[ 2 4

4 6 ]
)

= 1
15 sv(f3f5)

(4.23)
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as well as the irreducible depth-three MZVs in (3.10)

ρ
(
csv[ 2 2 4

4 4 6 ]
)

= − 1
45 sv(f3f3f5)− 14573

43200 f11 ,

ρ
(
csv[ 2 4 4

4 6 6 ]
)

= − 1
75 sv(f3f5f5) + 35071931

124380000 f13 , (4.24)

ρ
(
csv[ 2 2 6

4 4 8 ]
)

= − 1
63 sv(f3f3f7)− 365983

2708720 f13 .

This resonates with the results of Saad in Lemma 12.3 of [73], where motivic iterated Eisen-
stein integrals over Gk1(τ1)Gk2(τ2) . . .Gk`(τ`) are related toQ-multiples of fk`−1 . . . fk2−1fk1−1

upon translating MZVs into the f -alphabet and discarding lower-depth terms. These iter-
ated Eisenstein integrals arise as multiple modular values in the S-cocycle of βsv[ j1 ... j`

k1 ... k`

]
and need to be cancelled by the corresponding csv in the modular completions βeqv. The
single-valued map of the fi encountered in (4.22) can be traced back to the combination of
holomorphic and antiholomorphic iterated Eisenstein integrals and the associated multiple
modular values in the expression (2.14) for βsv.

It would be interesting if all-order formulae similar to (4.24) could be found for csv

with subleading entries ji < ki−2 which still feature irreducible single-valued MZVs beyond
depth one. The simplest depth-three examples of this type are csv[ j1 j2 j3

4 6 6
]
at j1+j2+j3 = 8

(rather than 10), where for instance

csv[ 0 4 4
4 6 6

]
= −

ζsv
3,5,3

31500 + ζ2
3ζ5

1575 −
31ζ11
94500 , (4.25)

ρ
(
csv[ 0 4 4

4 6 6
])

= 1
3150 sv(f3f3f5 + f3f5f3)− 232

23625 f11 .

4.2 Comparison with the construction via βsv

In order to compare the new generating function (4.2) of the modular forms βeqv with
their earlier construction in terms of βsv, we also cast (3.3) and (2.14) into generating-
function form,

Jeqv({εk}; τ) = J+
(
{εk}; τ

)
J̃−
(
{εk}; τ

)
K
(
{εk}; τ

)
Dsv({εk}; τ) . (4.26)

The cancellation of cusp-form contributions is again incorporated through the relations
among the derivations εk. The combinations dsv and κ of constants csv and antiholomorphic
T -invariants α in (3.4) and (2.16) are generated by

Dsv({εk}; τ) =
∑
P

ε[P ]dsv[P ; τ ] , K
(
{εk}; τ

)
=
∑
P

ε[P ]κ[P ; τ ] . (4.27)

In fact, all of Dsv, K and the product J+J̃− in (4.26) are individually T invariant. This is
different from (4.2), where the series Bsv of single-valued MZVs in (4.6) depends on both
Re τ and Im τ with a non-trivial T -variation.

The goal of this section is to compare the two presentations (4.26) and (4.2) of the
generating series of modular forms βeqv. In particular, we will describe the antiholomorphic
T -invariants α[ ...... ; τ ] in the earlier construction of βsv from the perspective of Brown’s work
by equating (4.26) with (4.2)

J̃−
(
{εk}; τ

)
K
(
{εk}; τ

)
Dsv({εk}; τ) = Bsv({εk}; τ)φsv(J̃−({εk}; τ)

)
(4.28)
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and solving for the generating series K
(
{εk}; τ

)
of the α[ ...... ; τ ] in (2.16)

K ({εk} ; τ) = J̃− ({εk} ; τ)−1Bsv ({εk} ; τ)φsv
(
J̃− ({εk} ; τ)

)
Dsv ({εk} ; τ)−1 . (4.29)

The inversion of the series J̃− and Dsv can be readily implemented by reversing the entries
P of their coefficients and inserting minus signs for the |P | number of letters j

k
in P , i.e.

by employing (∑
P

ε [P ]C [P ]
)−1

=
∑
P

(−1)|P | ε [P ]C
[
P t
]

(4.30)

for arbitrary coefficients C[P ] subject to shuffle relations C[X]C[Y ] = ∑
P∈X�Y C[P ].

Hence, the components of (4.29) yield

κ[P ; τ ] =
∑

P=WXY Z

(−1)|W |+|Z|dsv[W t; τ ]βφ−[Xt; τ ]bsv[Y ; τ ]β−[Z; τ ] , (4.31)

which determine the antiholomorphic T -invariants α[ ...... ; τ ] through the inverse

α
[
... ji ...
... ki ...

; τ
]

=
ki−2−ji∑
pi=0

(ki−2−ji
pi

)
(−4y)pi κ

[
... ji+pi ...
... ki ... ; τ

]
(4.32)

of the transformation (2.16) with one summation over pi per column. The depth-one version
of the deconcatenation formula (4.31) is not sensitive to the reversals of W and X, and one
can easily verify the vanishing of

κ
[
j
k

]
= βφ−

[
j
k

]
− β−

[
j
k

]
+ bsv

[
j
k

]
− dsv

[
j
k

]
= 0 (4.33)

since both bsv
[
j
k

]
− dsv

[
j
k

]
and βφ−

[
j
k

]
− β−

[
j
k

]
cancel in view of (3.7), (4.4) and (4.16).

In the following, we shall express κ[ ...... ; τ ] at depths two and three in terms of the objects
dsv, βφ−, b

sv, β− related to Brown’s construction. Together with the all-order results for the
α[ ...... ; τ ] in (3.21) and appendix B, the subsequent depth-two and depth-three expressions
were the central piece of evidence for the equivalence of the two constructions (3.3) and (4.14)
of modular forms βeqv.

4.2.1 Depth two

The expression (4.31) for κ[P ; τ ] at depth |P | = 2 simplifies to

κ
[
j1 j2
k1 k2

]
=β−

[
j1 j2
k1 k2

]
−β−

[
j2
k2

]
βφ−

[
j1
k1

]
+βφ−

[
j2 j1
k2 k1

]
+bsv

[
j1 j2
k1 k2

]
−bsv

[
j2
k2

]
dsv
[
j1
k1

]
+dsv

[
j2 j1
k2 k1

]
+βφ−

[
j1
k1

]
bsv
[
j2
k2

]
−bsv

[
j1
k1

]
β−
[
j2
k2

]
+dsv

[
j1
k1

](
β−
[
j2
k2

]
−βφ−

[
j2
k2

])
(4.34)

= δφβ−
[
j2 j1
k2 k1

]
+β−

[
j1
k1

]
dsv
[
j2
k2

]
−dsv

[
j1
k1

]
β−
[
j2
k2

]
+bsv

[
j1 j2
k1 k2

]
−dsv

[
j1 j2
k1 k2

]
,

with dsv
[
j
k

]
given by (3.7). In passing to the last line, we have used the agreement of βφ−, β−

and bsv, dsv at depth one as well as the shuffle property of β− and dsv.
The various terms in (4.34) have different interpretations and combine in such a way

as to make this expression T -invariant even though this invariance is not manifest term by
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term. More precisely, the first three terms involving δφβ− and β− yield antiholomorphic
iterated Eisenstein integrals at depth one with odd zeta values in their coefficients due to
φsv or the accompanying dsv. The difference bsv

[ j1 j2
k1 k2

]
− dsv[ j1 j2

k1 k2

]
at the end of (4.34) has

depth zero from the viewpoint of Eisenstein integrals and introduces ratios τ̄ `/yp as in (4.3)
with at least one power ` ≥ 1 of τ̄ . The relative factors and MZV coefficients of depth-one
and depth-zero contributions play out to recombine every term into the T -invariant integrals
E0(. . . ; τ) in (3.19), multiplied by non-positive powers of y.

When extracting α
[ j1 j2
k1 k2

]
from (4.34) via (4.32), we can clearly identify the sources of

the two contributions αeasy and αhard in the all-order formula (3.21):

• The simple expression for αeasy in (3.21) can be traced back to the second and third
term β−

[ j1
k1

]
dsv[ j2

k2

]
− dsv[ j1

k1

]
β−
[ j2
k2

]
in the last line of (4.34).

• The generating function (3.22) of αhard stems from the δφβ−
[ j2 j1
k2 k1

]
in (4.34) which

are already fixed by the contributions ∼ ζi1 [zi1 , εk] to φsv(εk) in (4.11) and obey the
closed formula (4.20).

In both cases, the depth-zero terms bsv
[ j1 j2
k1 k2

]
− dsv[ j1 j2

k1 k2

]
in (4.34) ensure that the anti-

holomorphic Eisenstein integrals in β−
[ j
k

]
and δφβ−

[ j2 j1
k2 k1

]
conspire to reconstruct E0.

Conversely, the generating function (3.22) of αhard inferred from inspecting the variety
of examples in [43] was crucial in the early stages of this work to anticipate the significance
of the derivations z3, z5, . . . in the closed-form expression (4.12) for φsv. While the matching
of αhard with δφβ−

[ j2 j1
k2 k1

]
guided the identification of ζi1 [zi1 , εk]-contributions to φsv(εk),

the second order ζi1ζi2 [zi1 , [zi2 , εk]] firstly became accessible from the depth-three analysis
in the next section.

4.2.2 Depth three

By suitably assembling the κ[P ; τ ] at depth |P | = 3 from (4.31), we have

κ
[
j1 j2 j3
k1 k2 k3

]
= β−

[
j2 j1
k2 k1

]
dsv
[
j3
k3

]
+ β−

[
j2 j3
k2 k3

]
dsv
[
j1
k1

]
− β−

[
j1
k1

]
β−
[
j3
k3

]
dsv
[
j2
k2

]
− β−

[
j2
k2

]
dsv
[
j1
k1

]
dsv
[
j3
k3

]
+
(
dsv
[
j1
k1

]
dsv
[
j2
k2

]
− bsv

[
j1 j2
k1 k2

] )
β−
[
j3
k3

]
+ β−

[
j1
k1

]
bsv
[
j2 j3
k2 k3

]
+ δφβ−

[
j2 j1
k2 k1

]
dsv
[
j3
k3

]
− dsv

[
j1
k1

]
δφβ−

[
j3 j2
k3 k2

]
(4.35)

+ δφβ−
[
j3 j2 j1
k3 k2 k1

] ∣∣
depth 1 + δφβ−

[
j3 j2 j1
k3 k2 k1

] ∣∣
depth 2 − δφβ−

[
j2 j1
k2 k1

]
β−
[
j3
k3

]
+ bsv

[
j1 j2 j3
k1 k2 k3

]
− dsv

[
j1
k1

]
bsv
[
j2 j3
k2 k3

]
+ dsv

[
j2 j1
k2 k1

]
dsv
[
j3
k3

]
− dsv

[
j3 j2 j1
k3 k2 k1

]
.

As will be explained in appendix B, the detailed structure of (4.35) harmonizes with an
all-weight formula for α[ ...... ; τ ] of depth three. The right-hand side features β− of depth
0 ≤ ` ≤ 2, for instance, depth-two integrals in the first line and in the contributions
δφβ−

[ j3 j2 j1
k3 k2 k1

] ∣∣
depth 2− δφβ−

[ j2 j1
k2 k1

]
β−
[ j3
k3

]
to the fourth line. The last line of (4.35) in turn

has depth zero and again features at least one power of τ̄ in each term.
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4.2.3 Comparison with Brown’s single-valued iterated Eisenstein integrals

According to section 8.1 of [37], right-multiplication of the series Jeqv of EIEIs with (Bsv)−1

yields Brown’s single-valued iterated Eisenstein integrals,

J sv({εk}; τ) = Jeqv({εk}; τ)Bsv({εk}; τ)−1 (4.36)

= J+
(
{εk}; τ

)
Bsv({εk}; τ)φsv

(
J̃−({εk}; τ)

)
Bsv ({εk} ; τ)−1 ,

that, using (4.13), can also be written as

J sv ({εk}; τ) = J+
(
{εk}; τ

)
NsvJ̃−

(
{εk}; τ

)
(Nsv)−1 , (4.37)

where Nsv = Bsv({εk}; τ)Msv depends on both the εk and zm. The freedom to redefine
Bsv → Bsva−1 and φsv(J̃−) → aφsv(J̃−)a−1 discussed below (4.13) amounts to the left-
multiplication Msv → aMsv and therefore drops out from the product Nsv = BsvMsv. That is
why J sv is canonically defined and does admit redefinitions analogous to Jeqv → Jeqva−1 [37].

The form (4.37) is reminiscent of known constructions of single-valued functions and
periods (e.g. [38, 64, 74, 75]), which are made up of a combination of holomorphic and
anti-holomorphic parts where the anti-holomorphic parts are transformed using for example
— in the case of generating functions — a conjugation.

The expansion of J sv is to be contrasted with the generating series of the βsv in the
physics literature∑

P

βsv[P ; τ ]ε[P ] = Jeqv({εk}; τ)Dsv({εk}; τ)−1 (4.38)

= J+
(
{εk}; τ

)
Bsv({εk}; τ)φsv(J̃−({εk}; τ)

)
Dsv({εk}; τ)−1

,

which follows from (2.14) and (4.28) and features a right-multiplicative inverse Dsv({εk}; τ)−1

instead of the Bsv({εk}; τ)−1 in (4.36). Thus it follows that

J sv({εk}; τ) =
(∑

P

βsv[P ; τ ]ε[P ]
)
Dsv({εk}; τ)Bsv({εk}; τ)−1

. (4.39)

The depth-one components bsv
[
j
k

]
= dsv

[
j
k

]
still happen to agree, and βsv

[
j
k

]
coincide with

Brown’s single-valued iterated Eisenstein integrals at depth one. At depth ` ≥ 2, however,
the bsv generically depart from dsv by the polynomial dependence on τ̄ in (4.3). Hence,
by the mismatch between (4.36) and (4.38), the βsv[ j1 ... j`

k1 ... k`

]
at ` ≥ 2 differ from Brown’s

single-valued iterated Eisenstein integrals by terms involving at least one non-trivial MZV
and one power of τ̄ in the numerator. One may view the βsv as T -invariantized versions
of Brown’s single-valued iterated Eisenstein integrals since, in contrast to the inverse Bsv

in (4.36), the series Dsv in (4.38) is invariant under τ → τ+1.

4.3 Relation to Brown’s equivariant double iterated integrals

So far, we have only matched the subspace of the modular forms βeqv with Brown’s
work, where iterated integrals involving holomorphic cusp forms are projected out by the

– 25 –



J
H
E
P
1
2
(
2
0
2
2
)
1
6
2

accompanying εk. In this section, we go beyond this subspace and connect the cusp-form
contributions βsv

∆ to βeqv of depth two in (3.2) and (3.28) with Brown’s equivariant double
iterated integrals of [36].

Following the normalization conventions in the reference, Brown’s double integrals are
constructed from holomorphic (1, 0)-forms8

Gk[X,Y ; τ ] = (k−1)!
2(2πi)k−1 (X−τY )k−2 Gk(τ) dτ (4.40)

involving commutative bookkeeping variables X,Y . These one-forms are in fact, multiples
of the generating functions (2.13) of the earlier forms ω±

[
j
k

; τ, τ1
]
in (2.10). Accordingly,

iterated integrals of Gk1 [X1, Y1; τ1]Gk2 [X2, Y2; τ2] . . . generate the constituents β± of MGFs
in (2.15) upon expansion in the combinations (Xi−τYi)ji(Xi−τ̄Yi)ki−ji−2 [36].

At depth one, the real-analytic combinations

Mk[X,Y ; τ ] = −1
2

∫ i∞

τ
Gk[X,Y ; τ1]− 1

2

∫ −i∞
τ̄

Gk[X,Y ; τ1]+ (k−2)!ζk−1
2(2πi)k−2 Y k−2 (4.41)

with k ≥ 4 as well as X = X and Y = Y generate non-holomorphic Eisenstein se-
ries (3.14) via

Mk[X,Y ; τ ] = −1
4(k−1)!

k−2∑
j=0

(k−2
j

)
(−4y)j β

eqv
[
j
k

; τ
]

(X−τY )j(X−τ̄Y )k−2−j , (4.42)

where the additive constant ∼ Y k−2 in (4.41) (not to be confused with y = π Im τ) introduces
the odd zeta value into the modular forms βeqv of depth one in (3.1) [36]. The object (4.42)
is referred to as an equivariant Eisenstein integral since the action on the bookkeeping
variables (X,Y ) leads to the SL(2,Z) invariance

Mk

[
aX+bY, cX+dY ; aτ+b

cτ+d

]
= Mk[X,Y ; τ ] . (4.43)

4.3.1 The non-modular primitives at depth two

At depth two, Brown’s construction [36] of equivariant double iterated integrals starts from
closed one-forms ∼ Gk1 [X1, Y1; τ ]Mk2 [X2, Y2; τ ]+Mk1 [X1, Y1; τ ]Gk2 [X2, Y2; τ ] and considers
their real-analytic primitive

Kk1,k2 [X1,Y1,X2,Y2;τ ] = (4.44)

1
4

∫ i∞

τ
Gk1 [X1,Y1;τ1]

∫ i∞

τ1
Gk2 [X2,Y2;τ2]

+ 1
4

∫ i∞

τ
Gk1 [X1,Y1;τ1]

∫ −i∞
τ̄

Gk2 [X2,Y2;τ2]+ 1
4

∫ −i∞
τ̄

Gk2 [X2,Y2;τ2]
∫ −i∞
τ̄2

Gk1 [X1,Y1;τ1]

− (k2−2)!ζk2−1
4(2πi)k2−2 Y k2−2

2

∫ i∞

τ
Gk1 [X1,Y1;τ1]− (k1−2)!ζk1−1

4(2πi)k1−2 Y k1−2
1

∫ −i∞
τ̄

Gk2 [X2,Y2;τ2] ,

8The expressions (4.40) for Gk[X,Y ; τ ] and (4.41) below for Mk[X,Y ; τ ] are denoted by Ek and Ek−2

in [36].
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where we have rewritten the integrals of the reference in a manifestly homotopy-invariant
way. In order to avoid cluttering, we shall no longer spell out the dependence of Kk1,k2

and related objects on the commutative bookkeeping variables Xi, Yi. By decomposing the
integration kernels Xi−τiYi and Xi−τ̄iYi as in (2.13), one can rewrite (4.44) as

Kk1,k2 = (k1−1)!(k2−1)!
16

k1−2∑
j1=0

k2−2∑
j2=0

(k1−2
j1

)(k2−2
j2

)
(−4y)j1+j2

(
β+

[
j2 j1
k2 k1

]
−β+

[
j1
k1

]
β−
[
j2
k2

]
+β−

[
j1 j2
k1 k2

])
×(X1−τY1)j1(X1−τ̄Y1)k1−2−j1(X2−τY2)j2(X2−τ̄Y2)k2−2−j2 (4.45)

− (k2−2)!(k1−1)!ζk2−1

8(2πi)k2−2

k1−2∑
j=0

(
k1−2
j

)
(−1)j
(4y)j β+

[
j
k1

]
(X1−τY1)j(X1−τ̄Y1)k1−2−jY k2−2

2

− (k1−2)!(k2−1)!ζk1−1

8(2πi)k1−2

k2−2∑
j=0

(
k2−2
j

)
(−1)j
(4y)j β−

[
j
k2

]
Y k1−2

1 (X2−τY2)j(X2−τ̄Y2)k2−2−j ,

where the round bracket in the first line features βsv[ j2 j1
k2 k1

]
up to the lower-depth contribu-

tions from α[ ...... ; τ ] in (2.12). One can anticipate from the variety of lower-depth terms in the
constructions (3.2) or (4.21) of modular forms βeqv[ j1 j2

k1 k2

]
that (4.45) is not yet equivariant

in the sense of (4.43).

4.3.2 The modular completion at depth two

In the same way as the additive constant ζk−1Y
k−2 in (4.41) ensures equivariance of Mk at

depth one, there is a systematic modular completion Mk1,k2 of Kk1,k2 in (4.44) and (4.45):
on top of a polynomial cγk1,k2

in Xi, Yi independent on τ , the additional complexity at
depth two generically requires the addition of holomorphic and antiholomorphic depth-
one integrals [36],

Mk1,k2 = Kk1,k2 − c
γ
k1,k2

− 1
2

{∫ i∞

τ
f 0
k1,k2(τ1) +

∫ −i∞
τ̄

g 0
k1,k2

(τ1) +
∫ −i∞
τ̄

gE
k1,k2

(τ1)
}
.

(4.46)
As detailed in the reference, f 0

k1,k2(τ1) is an equivariant (1, 0)-form in τ1 while g 0
k1,k2

(τ1) and
gE
k1,k2

(τ1) are equivariant (0, 1)-forms in τ1 composed of9

• a holomorphic cusp form ∆2s(τ1) in the case of f 0
k1,k2

(τ1)

• an antiholomorphic cusp form ∆2s(τ1) in the case of g 0
k1,k2

(τ1) and an antiholomorphic
Eisenstein series Gk(τ1) in the case of g E

k1,k2
(τ1)

• a polynomial in the bookkeeping variables Xi, Yi as well as τ1 in the case of f 0
k1,k2(τ1)

or τ̄1 in the case of g 0
k1,k2

(τ1) or gE
k1,k2

(τ1)

All of cγk1,k2
, f 0
k1,k2(τ1), g 0

k1,k2
(τ1) and gE

k1,k2
(τ1) are understood to have homogeneity degrees

k1−2 inX1, Y1 and k2−2 inX2, Y2 compatible withKk1,k2 in (4.44). As detailed in section 9.2
9In [36], the antiholomorphic forms g 0

k1,k2
(τ1) and gE

k1,k2
(τ1) are combined into a single object, but we

find it useful to separate their contributions. We have also introduced a superscript 0 for the cuspidal parts
compared to the notation in [36].
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of [36], the existence of modular completions Mk1,k2 in (4.46) for any k1, k2 ∈ 2N+2 follows
from the Eichler-Shimura theorem [76, 77]. At depth one, in turn, the contribution ζk−1Y

k−2

to (4.41) already suffices to compensate the SL(2,Z)-transformation (or “cocycle”) of the
Gk[. . .]- and Gk[. . .] integrals: the cocycle of the real-analytic combination of Eisenstein
integrals in (4.41) is a coboundary [35].

The modular completion Kk1,k2 → Mk1,k2 in (4.46) assembles exactly the kinds of
constituents needed to convert the β± in (4.45) to the modular forms βeqv[ j1 j2

k1 k2

]
:

• The Q[(2πi)−1]-linear combinations of MZVs in the coefficients of cγk1,k2
generate the

depth-zero terms bsv
[ j1 j2
k1 k2

]
in (4.21).

• The Eisenstein part gE
k1,k2

(τ1) yields the contribution δφβ−
[ j2 j1
k2 k1

]
to (4.21) from the

change of alphabet φsv in section 4.1.2. We therefore find non-zero gE
k1,k2

(τ1) for any
pair k1, k2 ∈ 2N+2 subject to k1 6= k2.

• Finally, f 0
k1,k2(τ1) and g 0

k1,k2
(τ1) combine to the contributions βsv

∆
[ j2 j1
k2 k1

]
to (4.21) and

vanish for k1+k2 < 14. More precisely, the holomorphic and antiholomorphic integrals
in (3.30) are captured by f 0

k1,k2(τ1) and g 0
k1,k2

(τ1), respectively.

On these grounds, it is not surprising that the transition from Kk1,k2 to Mk1,k2 promotes
the depth-two terms in the first line of (4.45) to βeqv[ j1 j2

k1 k2

]
,

Mk1,k2 = 1
16(k1−1)!(k2−1)!

k1−2∑
j1=0

k2−2∑
j2=0

(k1−2
j1

)(k2−2
j2

)
(−4y)j1+j2 β

eqv
[
j2 j1
k2 k1

]
(4.47)

× (X1−τY1)j1(X1−τ̄Y1)k1−2−j1(X2−τY2)j2(X2−τ̄Y2)k2−2−j2 .

Moreover, since the relation between bsv and csv in (4.3) implements the change of alphabet
between (Xi−τYi), (Xi−τ̄Yi) and Xi, Yi, we can express the constant cγk1,k2

in (4.46) as

cγk1,k2
= − 1

16(k1−1)!(k2−1)!
k1−2∑
j1=0

k2−2∑
j2=0

(
k1−2
j1

)(
k2−2
j2

)
csv
[
j2 j1
k2 k1

]

×
(
iY1
2π

)j1
Xk1−2−j1

1

(
iY2
2π

)j2
Xk2−2−j2

2 . (4.48)

Finally, the Eisenstein part gE
k1,k2

(τ) can be given in the closed form

gE
k1,k2

(τ) =



−ζk1−1(k1−2)!(k2−k1+1)(k2−k1+2) Bk2

2(2πi)k1−2k2(k2−1) Bk2−k1+2

×(X1Y2−X2Y1)k1−2Gk2−k1+2[X2, Y2; τ ] : k1 < k2 ,

ζk2−1(k2−2)!(k1−k2+1)(k1−k2+2) Bk1

2(2πi)k2−2k1(k1−1) Bk1−k2+2

×(X1Y2−X2Y1)k2−2 Gk1−k2+2[X1, Y1; τ ] : k2 < k1 ,

0 : k1 = k2 ,

, (4.49)

– 28 –



J
H
E
P
1
2
(
2
0
2
2
)
1
6
2

see (4.40) for the definition of Gk[X,Y ; τ ]. As can be anticipated from the powers of the
modular invariant X1Y2−X2Y1, the Eisenstein integrals Gk2−k1+2[. . .] only contribute to a
single SL(2,R) multiplet of MGFs that can be extracted from Mk1,k2 through the projectors
δk in section 7 of [36]. The SL(2,R) representation theory of MGFs of depths two and three
will be discussed in [45]. We have checked (4.47), (4.48) and (4.49) for all depth-two cases
up to and including k1+k2 = 28.

4.3.3 On uniqueness of Mk1,k2 and choices in Jeqv

As noted in section 9.2 of [36], the SL(2,R)-singlet component of Mk1,k2 may be shifted
by a constant c ∈ C without altering the modular properties. Such singlets only occur
in the case of k1 =k2 =k and are then proportional to (X1Y2−X2Y1)k−2. Since k is even,
the singlet will be symmetric under exchange of X1, Y1 ↔ X2, Y2 and therefore involve
combinations βeqv[ j1 j2

k k

]
+βeqv[ j2 j1

k k

]
in (4.47). These combinations conspire to the shuffles

βeqv[ j1
k

]
βeqv[ j2

k

]
which would no longer be the case when adding c(X1Y2−X2Y1)k−2 to

Mk,k and thereby redefining βeqv[ j1 j2
k k

]
+ βeqv[ j2 j1

k k

]
. Hence, the ambiguity of adding a

constant to the SL(2,R)-singlet components at depth two is fixed by imposing shuffle
relations between the components βeqv of Mk and Mk,k.

Using this imposition, the modular completion given by equation (4.46) now uniquely
determines the cγk1,k2

, f 0
k1,k2(τ1), g 0

k1,k2
(τ1) and gE

k1,k2
(τ1). We note, however, that in this

equation we have chosen the Eisenstein addition to appear in the form of gE
k1,k2

(τ1). We can,
in fact, modify Mk1,k2 by a suitable multiple of Mk to remove gE

k1,k2
(τ1) whilst retaining

modular completion, but this will cause a function fE
k1,k2(τ1) composed of a holomorphic

Eisenstein series to appear instead. The equation defining cγk1,k2
would also be affected by

this modification.
The uniqueness argument for Mk1,k2 also explains why the redefinitions Bsv → Bsva−1

and φsv(J̃−) → aφsv(J̃−)a−1 by some series a in ε
(j)
k (with MZV coefficients) mentioned

below (4.13) can be ruled out below depth three: only an SL(2,R) singlet of modular forms
βeqv admits a redefinition of modular invariants by a constant from the series a without
spoiling the differential equations (3.5) or (3.36). The absence of singlets at depth one rules
out any components with a single factor of ε(j)k in a. Since the series a is imposed to be
group like [37] (one would otherwise give up shuffle properties), the only viable depth-two
contributions are commutators [ε(j1)

k1
, ε

(j2)
k2

]. However, the latter do not contribute to the
SL(2,R)-singlet combination of βeqv entering Mk,k with (X1Y2−Y1X2)k−2 which rules out
depth-two components in a.

At depth three, in turn, generic (k1, k2, k3) admit SL(2,R)-singlet combinations of
modular forms βeqv[ j1 j2 j3

k1 k2 k3
] that are independent under shuffle relations. That is why

contributions [ε(j1)
k1

, [ε(j2)
k2

, ε
(j3)
k3

]] to a compatible with the shuffle properties of βeqv are con-
ceivable such as the examples ζ7[ε(j1)

4 , [ε(j2)
4 , ε

(j3)
6 ]] and ζ3ζ5[ε(j

′
1)

6 , [ε(j
′
2)

6 , ε
(j′3)
4 ]] in the discussion

below (4.13). This freedom of modifying depth-three contributions to Jeqv translates into
depth-four modifications φsv(J̃−)→ aφsv(J̃−)a−1 and can be fixed by imposing the change
of alphabet φsv to take the form (4.12). Since we have not yet constructed the relevant βeqv

at depth four, we can only determine the preferred csv[ j1 j2 j34 4 6 ] and csv[ j1 j2 j34 6 6 ] up to one free
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parameter each (see the supplementary material and the undetermined c446 ∈ Q in (3.18))
and relegate their fixing via (4.12) to the future. We stress that these free parameters
merely concern canonical choices in shifting modular invariants by constants and do not
reflect any shortcomings in the construction of modular forms at depth three or beyond.

4.3.4 Examples

The general discussion of Brown’s equivariant double iterated integrals Mk1,k2 calls for
examples of the building blocks cγk1,k2

, f 0
k1,k2(τ), g 0

k1,k2
(τ) and gE

k1,k2
(τ) of the modular

completion in (4.46).
Based on the examples of single-valued MZVs csv[ j1 j2

k1 k2

]
of weight (j1+j2+2) in (3.8)

and (3.9), the constants in (4.48) specialize to

cγ4,4 = − iζ3
960πX1X2(X1Y2−X2Y1)− 5iζ5

192π3Y1Y2(X1Y2−X2Y1)− ζ2
3

32π4Y
2

1 Y
2

2 ,

cγ6,4 = iζ3
10080πX

3
1X2(2X1Y2−X2Y1)− iζ5

960π3X1Y1
(
3X2

2Y
2

1 −3X1X2Y1Y2+X2
1Y

2
2

)
(4.50)

+ ζ2
3

112π4Y
2

1 (X1Y2−X2Y1)2 + 7iζ7
128π5Y

3
1 Y2(X1Y2−X2Y1) + 3ζ3ζ5

32π6 Y
4

1 Y
2

2

in case of double integrals over G4G4 and G4G6. Examples at higher weights can be
generated from the list of all csv[ j1 j2

k1 k2

]
at k1+k2 ≤ 28 given in the supplementary material

attached to this paper. We reiterate that the csv at depth two only involve odd zeta
values and bilinears thereof, whereas irreducible single-valued MZVs beyond depth one are
relegated to the modular completion of triple Eisenstein integrals and higher depth [73], see
section 4.1.4.

The closed formula (4.49) for the Eisenstein part gE
k1,k2

(τ) specializes as follows in the
simplest non-vanishing examples

gE
4,6(τ) = − ζ3

14π2 (X1Y2−X2Y1)2 G4[X2, Y2; τ ] ,

gE
4,8(τ) = − 3ζ3

16π2 (X1Y2−X2Y1)2 G6[X2, Y2; τ ] , (4.51)

gE
6,8(τ) = − 9ζ5

56π4 (X1Y2−X2Y1)4 G4[X2, Y2; τ ] .

Finally, the cusp-form contributions f 0
k1,k2(τ), g 0

k1,k2
(τ) to (4.46) always arise in pairs by the

structure of the βsv[ j

∆±
k

; τ
]
in (3.28), (3.30) and are most conveniently expressed in terms of

∆k

[
X1 X2
Y1 Y2
r1 r2

; τ
]

= iπ (k−1)! (X1−τY1)r1(X2−τY2)r2 ∆k(τ) dτ , r1+r2 = k−2 . (4.52)

This equivariant (1, 0)-form may be viewed as the cuspidal analogue of Gk[X,Y ; τ ] in (4.40),
where (X,Y ) is split into two pairs (Xi, Yi) with partial homogeneity degrees ri. The
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simplest non-vanishing examples of f 0
k1,k2(τ) and g 0

k1,k2
(τ) are

(
f0
4,10 (τ) , g0

4,10 (τ)
)

=− 1
2700·11!

Λ(∆12,12)
Λ(∆12,10)

(
∆12

[X1 X2
Y1 Y2
2 8

;τ
]
,−∆12

[X1 X2
Y1 Y2
2 8

;τ
])

,(
f0
6,8 (τ) , g0

6,8 (τ)
)

= 1
4200·11!

Λ(∆12,12)
Λ(∆12,10)

(
∆12

[X1 X2
Y1 Y2
4 6

;τ
]
,−∆12

[X1 X2
Y1 Y2
4 6

;τ
])

, (4.53)(
f0
4,12 (τ) , g0

4,12 (τ)
)

=− 1
1382·11!

Λ(∆12,13)
Λ(∆12,11)

(X1Y2−X2Y1)
(iπ)

(
∆12

[X1 X2
Y1 Y2
1 9

;τ
]
,∆12

[X1 X2
Y1 Y2
1 9

;τ
])

,(
f0
6,10 (τ) , g0

6,10 (τ)
)

= 5
8292·11!

Λ(∆12,13)
Λ(∆12,11)

(X1Y2−X2Y1)
(iπ)

(
∆12

[X1 X2
Y1 Y2
3 7

;τ
]
,∆12

[X1 X2
Y1 Y2
3 7

;τ
])

,(
f0
8,8 (τ) , g0

8,8 (τ)
)

=− 3
5528·11!

Λ(∆12,13)
Λ(∆12,11)

(X1Y2−X2Y1)
(iπ)

(
∆12

[X1 X2
Y1 Y2
5 5

;τ
]
,∆12

[X1 X2
Y1 Y2
5 5

;τ
])

.

Starting from k1+k2 = 18, generic f 0
k1,k2(τ) and g 0

k1,k2
(τ) comprise several cusp forms,

(
f0
8,10 (τ) , g0

8,10 (τ)
)

=− 1
7840·15!

Λ(∆16,16)
Λ(∆16,14)

(
∆16

[
X1 X2
Y1 Y2
6 8

;τ
]
,−∆16

[
X1 X2
Y1 Y2
6 8

;τ
])

(4.54)

− 1
1560·11!

Λ(∆12,14)
Λ(∆12,10)

(X1Y2−X2Y1)2

(iπ)2

(
∆12

[
X1 X2
Y1 Y2
4 6

;τ
]
,−∆12

[
X1 X2
Y1 Y2
4 6

;τ
])

,

and the relative sign between ∆k and ∆k in Mk1,k2 is +1 (−1) if 1
2(k1+k2+k) is even

(odd). Similar to the Eisenstein case in (4.49), the cuspidal contributions with k1 ↔ k2
interchanged can be obtained from

f 0
k1,k2 [X1, Y1, X2, Y2; τ ] = −f 0

k2,k1 [X2, Y2, X1, Y1; τ ] ,

g 0
k1,k2

[X1, Y1, X2, Y2; τ ] = −g 0
k2,k1

[X2, Y2, X1, Y1; τ ] . (4.55)

The coefficients of ∆k and ∆k are always Q[(X1Y2−X2Y1)/(iπ)]-linear combinations of
ξ∆k
k1,k2

in (3.28) and (3.31), with 1
2(k1+k2−k)− 1 powers of (X1Y2−X2Y1)/(iπ).

The integrals over f 0
k1,k2(τ) and g 0

k1,k2
(τ) exemplified in this section generate the cusp-

form contributions (3.28) to depth-two βeqv in (4.47). In contrast to the derivation-valued
generating series Jeqv of modular forms βeqv in (3.27), the equivariant double integrals
Mk1,k2 in (4.46) retain the integrals of holomorphic cusp forms. One can equivalently
generalize Jeqv by re-interpreting the ε(j)k at k ≥ 4 and 0 ≤ j ≤ k−2 as generators of a free
algebra rather than brackets of Tsunogai’s derivations and thereby preventing the dropouts
of modular forms due to relations among commutators of ε(j)k . This viewpoint is taken in
intermediate steps to motivate (3.22) as a generating series of all the αhard[ j1 j2

k1 k2
; τ ], without

any dropouts. Based on the combinations Mk1,k2,k3 of βeqv at depth three in upcoming
work [45], the same logic applies to the generating series (B.10) of αhard[ j1 j2 j3

k1 k2 k3
; τ ].

5 Conclusions and further directions
In this work, we have established a dictionary between Brown’s non-holomorphic modular
forms obtained from equivariant iterated Eisenstein integrals (EIEIs) and the modular graph
forms (MGFs) in the low-energy expansion of one-loop closed-string amplitudes. In spite of
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rapid progress in representing MGFs via iterated Eisenstein integrals and their complex
conjugates [42, 43, 65, 67], it was a long-standing problem to pinpoint their connection to
Brown’s EIEIs [35–37]. Based on new structural results on the building blocks of MGFs
with detailed studies at depths two and three, see section 3, we spell out their explicit
relations with the key quantities of Brown’s construction in section 4.

One central ingredient of Brown’s EIEIs is a change of alphabet φsv for Tsunogai’s
derivations εk that appear as non-commutative bookkeeping variables in the integration
kernels. We extract an all-order expression for φsv(εk) as an infinite series of derivations with
single-valued MZVs in their coefficients from the implicit characterization of φsv in [35, 37].
This series-representation of φsv(εk) involves nested commutators of εk with additional
derivations z3, z5, . . . studied in the mathematics literature. While the depth-two parts of
[zm, εk] are known from Hain and Matsumoto [55], we provide the higher-depth completions
for a variety of such commutators beyond the examples in [53].

Our new results on the derivation algebra, as well as a variety of examples for other
quantities of interest in this work, can be found in the supplementary material attached to
this paper. A longer follow-up paper [45] will elaborate on intermediate steps and extensions
of our results, including

• depth-three analogues of the solutions F±(s)
m,k to Laplace eigenvalue equations at depth

two [43] that were used in the derivation of some of our results

• double integrals mixing holomorphic Eisenstein series and cusp forms that were studied
from a Poincaré-series perspective in [78] and enter our modular integrals at depth
three

• depth-three analogues of Brown’s equivariant double iterated integrals (4.46) as well
as their cocycles and SL(2,R) multiplet structure

Apart from building a bridge between the mathematics and physics literature on non-
holomorphic modular forms, this work stimulates numerous research lines for the future:

First, Brown’s construction of purely τ -dependent non-holomorphic modular forms
calls for an extension to so-called elliptic modular graph forms [79, 80] which additionally
depend on marked points z on a torus. Elliptic modular graph forms extend Zagier’s
single-valued elliptic polylogarithms [81] to higher depth and were recently translated into
z-dependent analogues of the real-analytic iterated integrals βsv for conventional modular
graph forms [82]. The dictionary between βsv and EIEIs established in this work should
guide the construction of similar generating functions of elliptic modular graph forms that
manifest their (anti-)meromorphic iterated-integral constituents.

Second, it would be interesting to revisit the proposal [67] of MGFs being single-valued
versions of elliptic MZVs in the light of this work: by relating MGFs with Brown’s single-
valued iterated Eisenstein integrals, our results pave the way to compare the proposal in the
reference with the general frameworks of single-valued integration [63, 83] and single-valued
periods [64, 84]. This kind of follow-up study aims to extract information on loop amplitudes
of closed strings from single-valued open-string data.
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Third, the variety of perspectives obtained on MGFs at genus one is expected to
inspire the study of higher-genus modular graph forms [79, 85] and tensors [86]. The quest
for the algebraic [86, 87] and differential [88–90] relations of higher-genus modular graph
forms might greatly benefit from an organizing principle based on iterated primitives of
meromorphic modular tensors. The description of genus-one MGFs via iterated Eisenstein
integrals in this work is hoped to find an echo at higher genus.
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A Explicit formula for αhard at depth two

In this appendix, we reformulate the all-order solution for the αhard at depth two in (3.21)
as an explicit formula instead of a generating-series identity (3.22). By inserting the
commutators (3.23) into the generating series and treating all the ε(j1)

k1
ε
(j2)
k2

as independent,
one can solve for

αhard
[
j1 j2
k1 k2

; τ
]

= θ(k1 > k2)θ(k2−2 ≤ j1+j2 ≤ k1−2)σ
[
j1 j2
k1 k2

; τ
]

(A.1)

− θ(k2 > k1)θ(k1−2 ≤ j1+j2 ≤ k2−2)σ
[
j2 j1
k2 k1

; τ
]
,
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where the θ(. . .) are taken to be 1 if the inequalities in the bracket hold and zero otherwise.
Moreover, we have introduced the shorthand

σ
[
j1 j2
k1 k2

;τ
]

= (A.2)

2ζk2−1(k1−k2+1)(k1−k2+2)!(k2−j2−2)!(k1−j1−2)!Bk1

(k2−1)k1!(k1−1)!Bk1−k2+2

×(j1+j2−k2+2)!E0(k1−k2+2,0j1+j2−k2+2;τ)
k2−j2−2∑

`=max(0,j1−k1+k2)

(−1)`(k1−k2+`)!
`!(k2−j2−2−`)!(`−j1+k1−k2)!

for the antiholomorphic T -invariants E0 defined in (3.19).

B Antiholomorphic T -invariants α at depth three

This appendix provides a conjectural all-order expression for the α[ j1 j2 j3
k1 k2 k3

; τ ] at depth
three that resembles (3.21) for α[ j1 j2

k1 k2
; τ ] at depth two. The subsequent depth-three results

were crucial to guide us towards a matching of the two generating series (4.2) and (4.26) of
modular forms βeqv. It will be convenient to represent the T -invariants (3.19) entering the
α[ j1 j2

k1 k2
; τ ] via

E0
[
j1
k1

; τ
]

= j1!E0(k1, 0j1 ; τ) . (B.1)

Moreover, the expressions in this appendix involve their generalization

E0
[
j1 j2
k1 k2

; τ
]

= j2!
j2∑
r=0

(j1+r)!
r! E0(k2, 0j2−r, k1, 0j1+r; τ) (B.2)

+ (j1+j2+1)! Bk1

k1!(j1+1) E0(k2, 0j1+j2+1; τ)− (j1+j2+1)! Bk2

k2!(j2+1) E0(k1, 0j1+j2+1; τ) ,

where the first line of the right-hand side features double integrals of the T -invariant kernels
G0
k(τ) = Gk(τ)− 2ζk = O(q) [66]:

E0(k1,0p1 ,k2,0p2 ;τ) = (2πi)p1+p2−k1−k2+2

p1!p2!

∫ i∞

τ
dτ2 (τ−τ2)p2G0

k2
(τ2)

∫ i∞

τ2

dτ1 (τ2−τ1)p1G0
k1

(τ1)

= 4
(k1−1)!(k2−1)!

∞∑
m1,n1,m2,n2=1

mk1−1
1 mk2−1

2 qm1n1+m2n2

(m1n1)p1+1(m1n1+m2n2)p2+1 . (B.3)

As will be detailed in section B.3 below, the antiholomorphic T -invariants in (B.1) and (B.2)
are related via shuffle relations

E0
[
j1
k1

; τ
]
E0
[
j2
k2

; τ
]

= E0
[
j1 j2
k1 k2

; τ
]

+ E0
[
j2 j1
k2 k1

; τ
]

(B.4)

and can be rewritten in terms of Brown’s iterated Eisenstein integrals over kernels τ̄ jGk(τ)
with 0 ≤ j ≤ k−2 and powers of 2πiτ̄ as coefficients. More specifically, the results of
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section B.3 imply the following alternative formula for E0
[ j1 j2
k1 k2

; τ
]
which generalizes (3.20)

for E0
[ j1
k1

; τ
]

E0
[
j1 j2
k1 k2

; τ
]

=
k1−2−j1∑
`1=0

k2−2−j2∑
`2=0

(k1−2−j1
`1

)(k2−2−j2
`2

)
(−4y)`1+`2 β−

[
j2+`2 j1+`1
k2 k1

; τ
]

(B.5)

− Bk2 (−2πiτ̄)j2+1

(j2+1)k2!

k1−2−j1∑
`1=0

(k1−2−j1
`1

)
(−4y)`1 β−

[
j1+`1
k1

; τ
]

+ Bk1 Bk2 (−2πiτ̄)j1+j2+2

(j2+1)(j1+j2+2)k1!k2! .

Similar to (3.21), we shall split the desired T -invariants into two parts

α
[
j1 j2 j3
k1 k2 k3

; τ
]

= αeasy
[
j1 j2 j3
k1 k2 k3

; τ
]

+ αhard
[
j1 j2 j3
k1 k2 k3

; τ
]
, (B.6)

and discuss the construction of αeasy and αhard separately in the next two subsections. We
have checked that all the α[ ...... ; τ ] with k1+k2+k3 ≤ 20 and 0 ≤ ji ≤ ki−2 obtained from a
depth-three generalization of F±(s)

m,k [45] are reproduced by (B.6) with the αeasy and αhard
below. Our results are consistent with the necessary condition

α
[
j1 j2 j3
k1 k2 k3

; τ
]

+ α
[
j2 j1 j3
k2 k1 k3

; τ
]

+ α
[
j2 j3 j1
k2 k3 k1

; τ
]

= 0 (B.7)

for the shuffle relations (3.13) of the βsv at depth three.

B.1 αeasy at depth three

The first part of (B.6) dubbed αeasy is determined by the csv at depth ≤ 2 multiplied by
the above E0 as well as the αhard

[ j1 j2
k1 k2

; τ
]
of appendix A,

αeasy
[
j1 j2 j3
k1 k2 k3

; τ
]

= E0
[
j1 j2
k1 k2

; τ
]
csv
[
j3
k3

]
+ E0

[
j3 j2
k3 k2

; τ
]
csv
[
j1
k1

]
− E0

[
j1
k1

; τ
]
E0
[
j3
k3

; τ
]
csv
[
j2
k2

]
+ E0

[
j1
k1

; τ
]
csv
[
j2 j3
k2 k3

]
+ E0

[
j3
k3

; τ
]
csv
[
j2 j1
k2 k1

]
− E0

[
j2
k2

; τ
]
csv
[
j1
k1

]
csv
[
j3
k3

]
+ csv

[
j3
k3

]
αhard

[
j1 j2
k1 k2

; τ
]
− csv

[
j1
k1

]
αhard

[
j2 j3
k2 k3

; τ
]
. (B.8)

At leading depth of the respective β− in (3.20) and (B.5), the conversion of (B.8) to κ[ ...... ; τ ]
via (2.16) reproduces the first three lines of (4.35). In particular, the contributions of αhard
to (B.8) line up with the terms δφβ−

[ j2 j1
k2 k1

]
dsv[ j3

k3

]
− dsv[ j1

k1

]
δφβ−

[ j3 j2
k3 k2

]
in the third line

of (4.35). Note that the first two lines of (B.8) intuitively generalize the rewriting

αeasy
[
j1 j2
k1 k2

; τ
]

= E0
[
j1
k1

; τ
]
csv
[
j2
k2

]
− E0

[
j2
k2

; τ
]
csv
[
j1
k1

]
(B.9)

of the αeasy at depth two in (3.21).
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B.2 αhard at depth three

Similar to (3.22), the αhard at depth three are most conveniently encoded in generating
series (see the supplementary material for the [z2m+1, εk] on the right-hand side),

∞∑
k1,k2,k3=4

k1−2∑
j1=0

k2−2∑
j2=0

k3−2∑
j3=0

(k1−1)(k2−1)(k3−1)(−1)j1+j2+j3

(k1−j1−2)!(k2−j2−2)!(k3−j3−2)!

× αhard
[
j1 j2 j3
k1 k2 k3

; τ
]
ε
(k3−j3−2)
k3

ε
(k2−j2−2)
k2

ε
(k1−j1−2)
k1

=
∞∑
m=1

2ζ2m+1

∞∑
k=4

k−2∑
j=0

(k−1)(−1)j
(k−j−2)! E0

[
j
k

; τ
]

[z2m+1, ε
(k−j−2)
k ]

∣∣
depth 3

+
∞∑

m1,m2=1
2ζ2m1+1ζ2m2+1

∞∑
k=4

k−2∑
j=0

(k−1)(−1)j
(k−j−2)! (B.10)

× E0
[
j
k

; τ
] [
z2m1+1, [z2m2+1, ε

(k−j−2)
k ]

] ∣∣
depth 3

+
∞∑
m=1

2ζ2m+1

∞∑
k1,k2=4

k1−2∑
j1=0

k2−2∑
j2=0

(k1−1)(k2−1)(−1)j1+j2

(k1−j1−2)!(k2−j2−2)!

× E0
[
j1 j2
k1 k2

; τ
] [

[z2m+1, ε
(k2−j2−2)
k2

]
∣∣
depth 2, ε

(k1−j1−2)
k1

]
.

The E0
[ j
k

; τ
]
on the right-hand side contribute β− of depth one via (3.20) which match

the δφβ−
[ j3 j2 j1
k3 k2 k1

] ∣∣
depth 1 in the fourth line of (4.35) (again after conversion (2.16) to

κ[ ...... ; τ ]). The nested brackets in the last two lines of (B.10) reproduce the contributions
δφβ−

[ j3 j2 j1
k3 k2 k1

] ∣∣
depth 2 −δφβ−

[ j2 j1
k2 k1

]
β−
[ j3
k3

]
in the fourth line of (4.35) when the E0

[ j1 j2
k1 k2

; τ
]

are restricted to the β− of depth two in (B.5). Finally, the last line of (4.35) has depth zero
as well as at least one power of τ̄ in each term and should account for the contributions
to (3.20) and (B.5) without any factor of β−.

Similar to the comments before section 3.4, the coefficients of ε(j1)
k1

ε
(j2)
k2

ε
(j3)
k3

in the
generating-series identity (B.10) are understood to be equated before employing any commu-
tator relation in Tsunogai’s derivation algebra. The αhard

[ j1 j2 j3
k1 k2 k3

; τ
]
are defined individually

from (B.10) when the commutators among zm and εk are evaluated through (3.23) and the
expressions in the supplementary meterial.

B.3 E0 at depth two from iterated integrals

We conclude this appendix by elaborating on the origin of the antiholomorphic T -invariants
at depth two in (B.2) from iterated integrals over kernels G0

k(τ) = Gk(τ)− 2ζk = O(q). The
first line of (B.2) can be traced back to

(2πi)2+j1+j2−k1−k2

∫ −i∞
τ̄

dτ̄1 (τ̄1−τ̄)j1G0
k1

(τ1)
∫ −i∞
τ̄1

dτ̄2 (τ̄2−τ̄)j2G0
k2

(τ2)

= (2πi)2+j1+j2−k1−k2
j2∑
r=0

(
j2
r

)∫ −i∞
τ̄

dτ̄1 (τ̄1−τ̄)j1+rG0
k1

(τ1)
∫ −i∞
τ̄1

dτ̄2 (τ̄2−τ̄1)j2−rG0
k2

(τ2)

= j2!
j2∑
r=0

(j1+r)!
r! E0(k2, 0j2−r, k1, 0j1+r; τ) , (B.11)
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where we have rewritten (τ̄2−τ̄)j2 = ∑j2
r=0

(j2
r

)
(τ̄1−τ̄)r(τ̄2−τ̄1)j2−r and identified the E0

through their iterated-integral representation in (B.3). By comparing with the integral
representation (3.19) of E0

[ j
k

; τ
]
, already the restriction of E0

[ j1 j2
k1 k2

; τ
]
to the double in-

tegrals (B.11) is easily seen to obey the shuffle relation (B.4). The second line of (B.2)
involving depth-one integrals over G0

ki
in turn is antisymmetric under (j1, k1) ↔ (j2, k2)

and therefore drops out from the symmetrized combination on the right-hand side of the
shuffle relation (B.4). Hence, the shuffle property of the E0[. . . ; τ ] is a consequence of the
integral representation (B.11).

We shall now state an alternative integral representation of the E0
[ j1 j2
k1 k2

; τ
]
which

manifests their relation with Brown’s kernels τ̄ jGk(τ) with 0 ≤ j ≤ k−2: following the
tangential-basepoint regularization of [35], one can retrieve (B.2) from

E0
[
j1 j2
k1 k2

; τ
]

= (2πi)2+j1+j2−k1−k2

∫ −i∞
τ̄

dτ̄1 (τ̄1−τ̄)j1Gk1(τ1)
∫ −i∞
τ̄1

dτ̄2 (τ̄2−τ̄)j2Gk2(τ2)

− Bk2 (−2πiτ̄)j2+1

(j2+1)k2! E0
[
j1
k1

; τ
]
− Bk1 Bk2 (−2πiτ̄)j1+j2+2

(j1+1)(j1+j2+2)k1!k2! . (B.12)

Each term on the right-hand side is an (iterated) integral of kernels τ̄ jii Gki(τi) with 0 ≤
ji ≤ ki−2 with Q[2πiτ̄ ]-coefficients: this is evidently the case for the first line of (B.12)
upon binomial expansion of both factors of (τ̄i−τ̄)ji , and the depth-one term E0

[ j1
k1

; τ
]
in

the second line can be checked to have the same property via binomial expansion in (3.19).
The alternative form (B.5) in terms of β− follows from rearranging the integral in the first
line of (B.12) and applying (3.20) to its second line.
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