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Abstract
We complete the post-Newtonian (PN) prediction at the 3.5PN order for the spin contributions

to the gravitational waveforms emitted by inspiraling compact binaries, in the case of quasi-circular,

equatorial orbits, where both spins are aligned with the orbital angular momentum. Using results

from the multipolar post-Minkowskian wave generation formalism, we extend previous works that

derived the dynamics and gravitational-wave energy flux and phasing, by computing the full wave-

form decomposed in spin-weighted spherical harmonics. This new calculation requires the com-

putation of multipolar moments of higher multipolar order, new quadratic-in-spin contributions

to the hereditary tail terms entering at the 3.5PN order, as well as other non-linear interactions

between moments. When specialized to the test-mass limit, our results are equivalent to those

obtained in the literature for the waveform emitted by a test-mass in equatorial, circular orbits

around a Kerr black hole. We also compute the factorized modes for use in effective-one-body

waveform models, correcting the 2.5PN nonspinning and 3PN quadratic-in-spin terms in the (2,1)

mode used in current models.

I. INTRODUCTION

Since the first gravitational-wave (GW) detection in 2015 [1], the LIGO-Virgo-KAGRA
collaboration has observed over 90 GW signals from stellar-mass compact binary objects [2–
4]. Future GW detectors, such as LISA [5] and the Einstein Telescope [6], will also widen the
range in parameter space of detectable systems, including signals from extreme-mass-ratio
inspirals and supermassive binary black holes, in addition to improving our knowledge of
the deformability of neutron stars.

The use of accurate waveform templates for data analysis is crucial and requires constant
improvement to match the increasing sensitivity of GW detectors. The post-Newtonian
(PN) scheme is well suited to describe the inspiral of compact binaries, but its accuracy
deteriorates in the strong-field regime. The gravitational self-force (GSF) framework [7–
13] is valid in the strong field, but for small-mass ratios. However, by combining different
analytical approximation methods and numerical-relativity results, the effective-one-body
(EOB) formalism [14, 15] produces accurate waveforms over the entire parameter space.

Spin has a significant effect on the binary dynamics; thus, improving the spin description
in waveform models is necessary to obtain accurate parameter estimations, which helps in
improving our understanding of the properties of compact binaries and their astrophysical
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formation channels [16–18]. To model spin effects in general relativity, we use an effective
field theory (EFT) approach, which constructs an effective action defined on the worldline
of the bodies [19–35]. In the conservative sector, many approaches were used to tackle the
problem of the spin contributions in the equations of motion (EOM) which now reaches the
4.5PN accuracy [33–66]. On the other hand, the 3.5PN radiated flux and phase, including all
spin contributions, were derived for quasi-circular orbits and non-precessing spins [35–37, 67–
72]. Recently, this computation has been pushed to 4PN by EFT methods [73]. However,
the polarizations for non-precessing spins are only known to 2.5PN order [58, 74, 75]. In
the case of precessing spins, which complicate the computations, the waveform amplitude is
known to 1.5PN order, and the phase to 2PN order [74].

In the present article, we compute the spin effects in the full waveform up to the 3.5PN
order. The dynamics and phase evolution are already known to that order, and the remain-
ing piece is the computation of the amplitude of the waveform, decomposed as a sum of
spin-weighted spherical harmonics. These harmonics complete our knowledge of the post-
Newtonian waveform, and they are a crucial ingredient of waveform models such as the EOB
approach [14, 76–87].

At the 3.5PN order, three interactions arise: the spin-orbit (SO), the spin-induced
quadrupole and the spin-induced octupole interactions. We use the post-Newtonian-
multipolar-post-Minkowskian (PN-MPM) formalism [88], where the observables of the
system are parametrized in terms of the so-called radiative multipole moments, defined
in the radiative zone. The PN-MPM formalism allows linking these moments to another
set of moments called the source multipole moments, which are defined over the source of
the system and are linked to the metric and stress-energy tensor. The PN approximation
is an expansion in the dimensionless quantity v2/c2 ∼ GM/c2r ≪ 1, where v is the relative
velocity and M is the total mass of the binary. To make PN expansions clear, we write 1/c
explicitly in this paper, and rescale the physical spin variable Sphysical as

S = c Sphysical = Gm2χ , (1.1)

where χ is the dimensionless spin, whose value is one for an extremal Kerr black hole.

The paper is organized as follows. In Sec. II, we give some definitions and conventions, and
recall the relation between the spherical modes and the radiative multipole moments. Sec. III
contains the technical aspects regarding the computation of the radiative multipole moments.
First in Sec. IIIA, we recall some aspects of the effective action describing spinning effects
up to the 3.5PN order. In Sec. III B, we give the expression of the stress-energy tensor as
well as its 3+1 decomposition. Sec. IIIC gives the general definition of the source multipole
moments. In Sec. IIID we give the PN metric and compute the potentials that parametrize
it. Sec. III E is dedicated to the integration of the source multipole moments using the
potentials and the decomposed stress-energy tensor. In Sec. III F, we express the source
moments in the center of mass (CM) in the case of aligned spins and quasi-circular orbits.
Finally, for this technical part, in Sec. IIIG, we derive the radiative multipole moments by
computing the non-linear interactions in the GW field. In Sec. IV, we give the results for the
spinning contributions to the amplitude modes, written in the conventional way in Sec. IVA
and factorized conveniently for EOB usage in Sec. IVB. Appendices A and B contain the
lengthy expressions for the source densities and the factorized modes. We also provide our
results for the waveform modes as Mathematica files in the Supplemental Material [89].
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II. SUMMARY OF THE FORMALISM

A. Definitions and conventions

In this paper, we compute the amplitude modes of the GW emitted by a binary system of
spinning compact objects in the inspiral phase. We restrict ourselves to the non-precessing
case which implies that, as for the non-spinning case, the motion of the system remains
planar. Let us define the radiative coordinate system Xµ = (cT,X), in which R = |X| is
the distance of the observer from the source and N = X/R is the direction of propagation
of the GW. We denote retarded time TR = T −R/c, where c is the speed of light in vacuum.
We define the spatial unitary basis (eX , eY , eZ) such that the orbital plane lies within the
(eX , eY ) plane and N in the (eY , eZ) plane. The two GW polarizations h+ and h×, defined
in Eq. (2.4), propagate in the plane orthogonal to the direction of propagation N . It is con-
venient to introduce the orthonormal triad (P ,Q,N) by choosing P = eX and Q = N×P .

We use the following conventions henceforth: O(n) means O(1/cn), i.e. represents a
contribution of the order (n/2)PN at least. Greek indices denote spacetime coordinates, i.e.
µ = 0, 1, 2, 3, while Latin indices are used for spatial coordinates, i.e. i = 1, 2, 3. We use the
multi-index notation L = i1 . . . iℓ. Symmetrization and anti-symmetrization are represented
by, respectively, parenthesis and brackets around indices while the symmetric trace-free
(STF) projection is denoted by 〈〉. We adopt the signature (−,+,+,+) and keep explicit
both Newton’s constant G and the speed of light c, unless explicitly specified. Finally the
covariant derivative along the worldline is written as D/(cDτ) = uµ∇µ, where u

µ is the
four-velocity of the particle.

The problem is parametrized using the following notations: we use the coordinate-time t
parametrization. The quantities mA, yA, vA = dyA/dt and aA = d2yA/dt

2 refer respectively
to the mass, position, velocity and acceleration of body A = 1, 2. The notation SO refers
to the spin-orbit interaction, SS to the quadratic-in-spin interaction and finally SSS to the
cubic-in-spin terms.

B. Spherical harmonics decomposition

The Einstein field equations can be exactly written, by imposing the harmonic gauge
condition ∂νh

µν = 0, as

�hµν =
16πG

c4
τµν , (2.1)

where � is the flat d’Alembertian operator defined with respect to the inverse Minkowski
metric ηµν , hµν is the deviation to the gothic metric hµν =

√−ggµν − ηµν , g = det(gµν) is
the determinant of the metric. Finally, τµν is the stress-energy pseudo tensor

τµν = |g|T µν + c4

16πG
Λµν , (2.2)

where T µν is the stress-energy tensor and Λµν is a function of derivatives of at least quadratic
terms in the perturbed metric hµν . Its expression is given in Eq. (24) of Ref. [88].

In the coordinate system Xµ = (cT,X), the transverse-traceless (TT) projection hTT
ij of

the gravitational field hµν can be, at leading order in 1/R, uniquely decomposed in terms of
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a set of STF multipole moments UL and VL, called radiative multipole moments, as [90]

hTT
ij =

4G

c2R
Pijkl(N)

+∞
∑

ℓ=2

1

cℓℓ!

{

NL−2 UklL−2(TR)−
2ℓ

c(ℓ+ 1)
NaL−2 εab(k Vl)bL−2(TR)

}

, (2.3)

where we introduced the TT projection operator Pijkl = Pi(kPl)j − 1
2
PijPkl, with Pij =

δij − NiNj the projector orthogonal to the unit direction N . We can define the usual
polarization waveforms in the orthonormal triad (P ,Q,N) as

h+ =
1

2
(PiPj −QiQj)h

TT
ij , (2.4a)

h× =
1

2
(PiQj +QiPj)h

TT
ij . (2.4b)

We can then decompose the quantity h+ − ih× in a spin-weighted spherical harmonics basis
of weight -2 [91]

h ≡ h+ − ih× =

∞
∑

l=0

ℓ
∑

m=−ℓ

hℓmY
ℓm
−2 (Θ,Φ), (2.5)

where the two angles (Θ,Φ) characterize the direction of propagation N in the coordinate
system Xµ. In this paper, we follow the conventions of Ref. [92]. Notably, the explicit
expression of the spin-weighted spherical harmonics are given in Eqs. (2.4) of that reference.
The amplitude modes hℓm are then linked to the radiative moments UL and VL through

hℓm = − G√
2Rcℓ+2

(

U ℓm − i

c
V ℓm

)

. (2.6)

where U ℓm and V ℓm read1

U ℓm =
4

ℓ!

√

(ℓ+ 1)(ℓ+ 2)

2ℓ(ℓ− 1)
αℓmL UL , (2.7a)

V ℓm = − 8

ℓ!

√

ℓ(ℓ+ 2)

2(ℓ+ 1)(ℓ− 1)
αℓmL VL . (2.7b)

The STF tensorial coefficient αℓmL ≡
∫

dΩ N̂L Y
ℓm

is defined from the ordinary spherical

harmonics Y ℓm (or in fact its complex conjugate Y
ℓm
) and its explicit expression is given in

Eq. (4.7) of Ref. [93].
The main result of this paper is the spin contributions in h up to the 3.5PN order for a

non-precessing, quasi-circular motion. In order to derive them, we have to compute the spin
part of the radiative moments to consistent order. Table I shows at which order the different
multipoles need to be computed for each spin interaction. The SO terms in the radiated
flux and GW phase have been derived in the PN-MPM formalism up to 4PN while the SS
contributions are known to 3.5PN [35, 70–72], however the radiative moments are required
to a higher order for the modes than for the flux. This can be understood by comparing the
expression (2.3) of the full waveform, with a 1/c increment for each multipolar order, to the
expression of the energy flux emitted in gravitational waves (e.g. (4.2) in Ref. [72]) as sum
of squares of radiative moments with a 1/c2 increment per multipolar order.

1 Note that the choice of definitions in Ref. [79, 91] on hℓm differs from ours by a global minus sign for each

ℓ and m due to a different definition of the vector basis (P ,Q,N).
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TABLE I. Leading and required (relative to the leading) orders of the spin contributions in the

radiative moments for the full gravitational waveform at 3.5PN. The order corresponds to the

power in 1/c and not the PN order.

Leading order Required relative order

ℓ Moment SO SS SSS SO SS SSS

2 Uij 3 4 7 4 3 0

3 Uijk 3 4 7 3 2 -

4 Uijkl 3 4 7 2 1 -

5 Uijklm 3 4 7 1 0 -

6 Uijklmp 3 4 7 0 - -

2 Vij 1 4 5 5 2 1

3 Vijk 1 4 5 4 1 0

4 Vijkl 1 4 5 3 0 -

5 Vijklm 1 4 5 2 - -

6 Vijklmp 1 4 5 1 - -

7 Vijklmpq 1 4 5 0 - -

III. COMPUTATION OF THE RADIATIVE MULTIPOLE MOMENTS

In this paper, we use the PN-MPM formalism, see Ref. [88] for a review. Within this
approach, the procedure to derive the radiative multipole moments is well-known. For
completeness, we give a summarized version of the method, recalling the different steps: i)
we first compute the stress-energy tensor from the effective skeletonized action modeling
spinning particles in Sec. IIIA; ii) in Sec. III B, we decompose the spatial and temporal
indices of the stress-energy tensor to compute the source densities; iii) in Sec. IIID, we
compute the PN metric parametrized by a set of potentials; iv) in Sec. III E, we derive the
source multipole moments defined in Sec. IIIC; v) we then express the source moments in
the CM frame for aligned spins and quasi-circular orbits in Sec. III F; vi) finally, we compute
the non-linear effects to deduce the radiative multipole moments in Sec. IIIG.

A. Effective skeletonized action of spinning particles

In this section, we start by recalling the method of the effective action approach to the
spin-induced effects. We follow here the presentation of [35, 72], but note that a more general
formalism in the language of effective field theories can be found in Ref. [33]. Here, we drop
the particle’s label A and set c = 1 for more clarity.

The matter action is constructed on the worldline of the individual body zµ. The affine
parameter along this worldline is called τ and will be associated after variation of the action
to the proper time of the body. We define the usual 4-velocity of the particle uµ = dzµ/dτ

such that uµuµ = −1. Attaching an orthonormal tetrad ǫ µ
A to the moving body, we also

introduce antisymmetric rotation coefficients Ωµν = ǫAµDǫ ν
A /dτ representing the rotational
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degrees of freedom. The matter action then reads symbolically

SM =

∫

d4x
√−g

∫

dτ LM[u
µ,Ωµν , gµν , Rµνρσ,∇λRµνρσ]

δ(4)(xµ − zµ(τ))√−g , (3.1)

where the matter Lagrangian includes finite-size effects in the form of couplings to the
Riemann tensor and its derivative, necessary to represent spin-induced effects up to the
cubic order in spin. We also introduce the following quantities

pµ ≡ ∂L

∂uµ
, Sµν ≡ 2

∂L

∂Ωµν
,

Jµνρσ ≡ −6
∂L

∂Rµνρσ
, Jλµνρσ ≡ −12

∂L

∂∇λRµνρσ
, (3.2)

that represent the couplings entering the action. The quantities pµ and Sµν are the linear
momentum and the antisymmetric spin tensor. The moments Jµνρσ and Jλµνρσ are Dixon-
type moments [23, 24, 27] representing the quadrupole and octupole, assumed to be purely
spin-induced in our case (no other finite-size effects such as tidal effects). The general form
of the stress-energy tensor will be expressed in terms of these quantities in the following
section.

Varying the action with respect to the worldine and rotational degrees of freedom (to-
gether with a scalarity condition for the Lagrangian, see (2.8) in Ref. [35]) yields evolution
equations for the 4-momentum as well as the spin tensor:

Dpµ
Dτ

= −1

2
Rµνρσu

νSρσ − 1

6
Jλνρσ∇µRλνρσ −

1

12
Jτλνρσ∇µ∇τRλνρσ +O(S4) , (3.3a)

DSµν

Dτ
= 2p[µuν] +

4

3
R

[µ
λρσJ

ν]λρσ +
2

3
∇λR[µ

τρσJ
ν]τρσ

λ +
1

6
∇[µRλτρσJ

ν]λτρσ +O(S4) . (3.3b)

However, the introduction of the spin tensor adds 3 degrees of freedom to the problem. In
order to close the system of equations describing the dynamics, we impose a spin supplemen-
tary condition (SSC). In particular we choose to impose the Tulczyjew-Dixon SSC [22, 27]
which reads

Sµνpν = 0 . (3.4)

Note that the mass pµp
µ = −m̃2 is not conserved at O(S2). Together with the equations

of motion, the SSC allows us to find a conserved mass, that we use henceforth in this paper,

m ≡ m̃− 1

6
RµνρσJ

µνρσ , (3.5)

and to relate pµ and the 4-velocity as

pµ = muµ +
1

6
uµRρλµνJ

ρλµν − 1

2m
SµνRνλρσu

λSρσ +
4

3
R

[µ
λρσJ

ν]λρσuν

+
2

3
uν∇λR

[µ
τρσJ

ν]τρσ
λ +

1

6
uν∇[µRλτρσJ

ν]λτρσ − 1

6m
SµνJλτρσ∇νRλτρσ +O(S4) . (3.6)

The norm of the spin tensor

s2 ≡ 1

2
SµνS

µν , (3.7)
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is conserved at the spin-cubic order that we consider: ds/dτ = 0.
Imposing that the quadrupole and octupole moments are purely spin-induced with the

appropriate symmetries, we find

Jµνρσ =
3κ

m
u[µSν]λS

[ρ
λ uσ] , (3.8a)

Jλµνρσ =
λ

4m2

[

Θλ[µuν]Sρσ +Θλ[ρuσ]Sµν

−Θλ[µSν][ρuσ] −Θλ[ρSσ][µuν]

−Sλ[µΘν][ρuσ] − Sλ[ρΘσ][µuν]
]

, (3.8b)

where we used the notation Θµν = SµλSνλ, with quadrupolar and octupolar parameters κ,
λ normalized to unity for a Kerr black hole.

With the SSC (3.4), one can construct a spin vector Sµ from the spin tensor Sµν , that
also has a conserved norm by construction. They are linked using the orthogonal unit vector
pµ/m̃ (the mass correction (3.5) is irrelevant at our PN order in spin terms) through the
relations

Sµν = ǫµνρσ
pρ
m̃
Sσ , (3.9a)

Sµ = −1

2
ǫµνρσ

pν
m̃
Sρσ , (3.9b)

where ǫµνρσ is the Levi-Civita tensor. One can further construct a 3-dimensional spin vector
with conserved Euclidean norm S (see Section II. C in Ref. [72]), which we use in our final
results.

For the two-body problem, the equations of motion (EOM) of the individual bodies as
well as the precession evolution of the spins have been derived in harmonic coordinates in
Refs. [33, 35, 51, 60, 72] and known at the considered PN order of the problem so that we
do not need to solve them here. The precession equation in terms of the 3-dimensional spin
vector reads Ṡ = Ω × S where Ω starts at O(2). We recall that in our problem, we have
rescaled the spin variable as in Eq. (1.1) to explicitly write the c factors.

B. Effective stress-energy tensor and source densities

Equations (2.23)-(2.25) of Ref. [35] give the general form of the stress-energy tensor in
terms of pµ, Sµν , Jµνρσ and Jλµνρσ. One can rewrite this expression as

T µν =
∑

A

[

Uµν
A δA +∇α (U

µνα
A δA) +∇α∇β

(

Uµναβ
A δA

)

+∇α∇β∇γ

(

Uµναβγ
A δA

)]

, (3.10)

where δA ≡ δ(3)[x − yA(t)] is the usual three-dimensional Dirac distribution. In our case,
the expression of the U ’s, up to the octupolar level, are given by

Uµν
A =

1

u0A
√−g

(

p
(µ
A u

ν)
A +

1

3
R

(µ
A λρσJ

ν)λρσ
A +

1

6
∇λR

(µ
A ξρσJ

λν)ξρσ
A +

1

12
∇(µRAξτρσJ

ν)ξτρσ
A

)

,

(3.11a)
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Uµνα
A =

1

3u0A
√−g

(

3u
(µ
A S

ν)α
A − 1

2
R

(µ
A ξλσJ

αν)ξλσ
A −R

(µ
A ξλσJ

ν)αξλσ
A +R α

A ξλσJ
(µν)ξλσ
A

)

,

(3.11b)

Uµναβ
A = − 2

3u0A
√−gJ

α(µν)β
A , (3.11c)

Uµναβγ
A = − 1

3u0A
√−gJ

γβ(µν)α
A , (3.11d)

where u0A = dt/dτA. The goal of this section is to decompose the spatial and temporal indices
of the stress-energy tensor in order to make the factors in c explicit. After reinstoring the c
powers in the expressions, we first express the covariant derivatives in terms of the partial
derivatives and the Christoffel symbols, then separate spatial and temporal indices. The
practical formulas to perform this decomposition are given in Sec. II. B. of Ref. [94]. Then,
the source densities are defined by

σ =
T 00 + T ii

c2
, σi =

T 0i

c
, σij = T ij. (3.12)

These quantities source the PN potentials as well as the source multipole moments. We
provide in Eqs. (A1a) the values of their spin contribution. As we will see later on, σ is
required up to O(7), σi to O(6) and σij to O(4).

C. Source multipole moments

In the PN-MPM approach, a crucial step to compute the radiative moments is the deriva-
tion of the so-called source multipole moments, which are expressed as integrals over the
source. The mass and current source moments are given by [88]

IL(t) = FP
B=0

∫

d3x

(

r

r0

)B ∫ 1

−1

dz

{

δℓ x̂LΣ− 4(2ℓ+ 1)

c2(ℓ+ 1)(2ℓ+ 3)
δℓ+1 x̂iLΣ

(1)
i

+
2(2ℓ+ 1)

c4(ℓ+ 1)(ℓ+ 2)(2ℓ+ 5)
δℓ+2 x̂ijLΣ

(2)
ij

}

(x, t+ z r/c) , (3.13a)

JL(t) = FP
B=0

εab<iℓ

∫

d3x

(

r

r0

)B ∫ 1

−1

dz

{

δℓ x̂L−1>a Σb

− 2ℓ+ 1

c2(ℓ+ 2)(2ℓ+ 3)
δℓ+1 x̂L−1>ac Σ

(1)
bc

}

(x, t+ z r/c) , (3.13b)

where we have δℓ(z) = aℓ(1− z2)ℓ and aℓ = (2ℓ+ 1)!!/2ℓ+1ℓ! and

Σ =
τ 00 + τ ii

c2
, Σi =

τ 0i

c
, Σij = τ ij . (3.14)

The explicit expressions of the source moments in terms of the source densities and the PN
metric are given in Eqs. (4.7) of Ref. [95]. Furthermore, the computation of the general
expressions of the source moments requires the introduction of a regularization. In this
paper, we use the Hadamard partie finie regularization, denoted by FP in which we introduce
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the scale constant r0 [96]. The integral over z can be easily integrated after performing a
PN expansion

∫ 1

−1

dz δℓ(z) Σ(x, t+ z r/c) =
+∞
∑

k=0

(2ℓ+ 1)!!

(2k)!!(2ℓ+ 2k + 1)!!

(r

c

)2k

Σ(2k)(x, t) . (3.15)

For the computation of the radiative moments at the order we aim at, we also need to com-
pute another set of moments called gauge moments (WL, XL, YL, ZL). They are required to
low order and admit similar definitions that can be found, e.g., in Eqs. (125) of Ref. [88].

From Eq. (2.2), we see for example that Σij = |g|σij + c4

16πG
Λij. This means that the

multipoles are sourced by the densities derived in the previous section, as well as the non-
linearities of the gravitational field Λµν through the PN metric. The relation between the
source and radiative moments, given in Sec. IIIG, shows that the source moments are to
be computed at the same orders as the ones displayed in Table I. This implies that, looking
at (3.13), we require Σ up to O(7), Σi to O(6) and Σij to O(4), which is why the source
densities were required to these orders.

D. Post-Newtonian metric and potentials

In the post-Newtonian framework, the metric is parametrized by a set of elementary
retarded-type potentials that satisfy sourced wave equations. In this problem, we need the
3PN metric, which is given by [97]

g00 = −1 +
2

c2
V − 2

c4
V 2 +

8

c6

(

X̂ + VkVk +
V 3

6

)

+
16

c8

(

−V
4

24
− V VkVk − V X̂ + 2R̂kVk + 2T̂

)

+O(10) , (3.16a)

g0i = − 4

c3
Vi −

8

c5
R̂i −

8

c7

(

V 2Vi + VkŴik + 2Ŷi

)

+O(9) , (3.16b)

gij = δij

[

1 +
2

c2
V +

2

c4
V 2 +

8

c6

(

X̂ + VkVk +
V 3

6

)]

+
4

c4
Ŵij

+
8

c6

(

−2ViVj + V Ŵij + 2Ẑij

)

+O(8) , (3.16c)

where the potentials are defined below. Note that an extension of this parametrization is
known at 4PN together with the definition of the potentials required to this order. They
are displayed in Appendix A of Ref. [98].

However, in the present paper, we do not need to use the full metric. Instead, we need
to know the source of the multipole moments to consistent order. It turns out that the
only potentials that have a non-zero contribution to the spin effects in the source multipole
moments are the following

V = �
−1
R [−4πGσ] , (3.17a)

Vi = �
−1
R [−4πGσi] , (3.17b)
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Ŵij = �
−1
R [−4πG (σij − δijσkk)− ∂iV ∂jV ] , (3.17c)

R̂i = �
−1
R

[

− 4πG (V σi − Viσ)− 2∂kV ∂iVk −
3

2
∂tV ∂iV

]

, (3.17d)

X̂ = �
−1
R

[

− 4πGV σii + Ŵij∂ijV + 2Vi∂t∂iV + V ∂2t V +
3

2
(∂tV )

2 − 2∂iVj∂jVi

]

, (3.17e)

Ẑij = �
−1
R

[

− 4πG(σij − δijσkk)V − 2∂(iV ∂tVj) + ∂iVk∂jVk + ∂kVi∂kVj − 2∂(iVk∂kVj)

− δij∂kVl(∂kVl − ∂lVk)−
3

4
δij(∂tV )

2

]

, (3.17f)

where �
−1
R refers to the retarded flat d’Alembertian. More specifically, we are interested in

the spin contributions to these potentials as their point-particle part are already known. As
we can see, the potentials are sourced by the source densities derived in the previous section
as well as other simpler potentials.

To find the specific orders at which we require the potentials, one has to look at the order
at which the potentials enter in Σ, Σi and Σij including also the order of appearance in
the source densities σ, σi and σij . The orders required for each interaction are displayed in
Table II.

TABLE II. Orders at which the potentials are required for the spin contributions in the full grav-

itational waveform at 3.5PN. LO refers to the leading order of the contribution of the interaction

while RO refers to the relative order required.

Potential SO SS

LO RO LO RO

V 3 2 0 0

Vi 1 3 0 0

Ŵij 1 2 - -

R̂i 1 1 - -

X̂ 1 0 - -

Ẑij 1 0 - -

Note that the SSS interaction does not appear in Table II because it will play no role
in the expressions of the source moments. More details regarding this affirmation are given
in the following section. The regularization scheme used to compute the potentials is the
Hadamard regularization [99]. The methods used to compute the spin part of the potentials
to these orders are detailed in, e.g., Sec. IV of Ref. [50]. An interesting feature of the SS
interaction is that, as explained in Ref. [72], the potentials V and Vi contain distributional
terms which are crucial to take into account for the computation of the source multipole
moments.
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E. Integration of the source multipole moments

This step in the overall project is the most technical one. However, no new methods were
required and we used the same computational techniques as, in e.g. Refs. [50, 72, 98, 100].
Thus, we refer to these articles for more details.

As discussed above, the Σ’s are composed of the source densities and the non-linearities of
the gravitational field whose dependency comes through the potentials. Thus, the multipole
moments are integrals sourced by three types of terms: the compact terms, the non-compact
terms and the surface terms. Note that the sources of the moments can be written in different
ways. For example a term of the form

∫

d3x x̂L∂kV ∂kV can be re-written, dropping here the
FP notation, as

∫

d3x x̂L∂kV ∂kV = −4πG

∫

d3x x̂LσV +
1

2

∫

d3x x̂L∆(V 2) +O(2). (3.18)

We see that the left-hand side, which is a non-compact term, can be turned into a sum of
a compact and a so-called surface term2. The multipole moments have been independently
computed and double checked using different formulations for their sources. It is crucial to
take into account the distributional derivatives induced in the left-hand side of (3.18) in
order to recover the value of the right-hand side.

At this stage, after integrating Eqs. (3.13) for required ℓ to consistent order, we obtain
the expressions of the source moments in a general frame for arbitrary orbits. In particular,
we assumed neither the aligned-spin nor the quasi-circular orbits conditions. The lengthy
expressions of the source moments are not displayed in this paper, however we recall here
their leading PN order for the spin contributions [35]

(IL)NS = m1y
<L>
1 + 1 ↔ 2 +O(2) , (3.19a)

(JL)NS = ya1v
b
1ε
ab<iℓyL−1>

1 + 1 ↔ 2 +O(2) , (3.19b)

(IL)SO =
2ℓ

c3(ℓ+ 1)

[

ℓva1S
b
1ε
ab<iℓyL−1>

1 − (ℓ− 1)ya1S
b
1ε
ab<iℓv

iℓ−1

1 yL−2>
1

]

+ 1 ↔ 2 +O(5) ,

(3.19c)

(JL)SO =
ℓ+ 1

2c
S<iℓ1 yL−1>

1 + 1 ↔ 2 +O(3) , (3.19d)

(IL)SS = −ℓ(ℓ− 1)κ1
2m1c4

S<iℓ1 S
iℓ−1

1 yL−2>
1 + 1 ↔ 2 +O(6) , (3.19e)

(JL)SS =
(ℓ− 1)κ1
2m1c4

[

2va1S
b
1ε
ab<iℓS

iℓ−1

1 yL−2>
1 − (ℓ− 2)ya1v

b
1ε
ab<iℓS

iℓ−1

1 S
iℓ−2

1 yL−3>
1

]

+ 1 ↔ 2 +O(6) , (3.19f)

(IL)SSS =
ℓ(ℓ− 1)(ℓ− 2)λ1
3(ℓ+ 1)m2

1c
7

[

−ℓva1Sb1εab<iℓS
iℓ−1

1 S
iℓ−2

1 yL−3>
1

+(ℓ− 3)ya1S
b
1ε
ab<iℓv

iℓ−1

1 S
iℓ−1

1 S
iℓ−2

1 v
iℓ−3

1 yL−4>
1

]

+ 1 ↔ 2 +O(8) , (3.19g)

(JL)SSS = −(ℓ+ 1)(ℓ− 1)(ℓ− 2)λ1
12m2

1c
5

S<iℓ1 S
iℓ−1

1 S
iℓ−2

1 yL−3>
1 + 1 ↔ 2 +O(6) , (3.19h)

2 The second term of the right-hand side is called a surface term because we only need to know the expansion

in r of V 2 when r → ∞ to compute it.
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where NS refers to the non-spinning contributions. As stated in the previous section, the
SSS interaction plays no role at the level of the radiative moments. Indeed, the only mass-
type moment in which the SSS appears is for ℓ = 2 which vanishes due to the ℓ − 2 factor
and similarly for the current quadrupole. The source current octupole has a non-zero con-
tribution. However, to obtain the radiative current octupole, one has to perform a time
derivative which operates on the spin vector. Since ṠA = O(2), the SSS contribution to the
radiative moment is higher order.

F. Reduction to quasi-circular orbits in the CM frame for aligned spins

In this section, we reduce the expressions of the source moments in the CM frame in the
quasi-circular orbits approximation without precession. The first step is to express them
in the CM frame. We define as usual the quantities M = m1 + m2, δ = (m1 − m2)/M ,
ν = m1m2/M

2, r = |y1−y2|, n = (y1−y2)/r, v = v1−v2, κ± = κ1±κ2 and λ± = λ1±λ2.
The CM frame is defined as the frame in which the CM position of the system Gi vanishes.
It allows us to express the positions and velocities of the two compact objects in terms of
the dynamical variables of the system

yCM
1 =

m2

M
rn+ z , (3.20a)

yCM
2 = −m1

M
rn+ z , (3.20b)

and similarly for the velocities. The function z is a higher order quantity known from
previous works [35, 51, 72]. We also introduce the following combinations of the individual
spins

S = S1 + S2 , (3.21a)

Σ =
M

m2

S2 −
M

m1

S1 . (3.21b)

With these relations in hand, we obtain the source multipoles in the CM frame.

The next step is to impose the aligned-spins condition which drastically simplifies the
computations. In particular, this implies that the orbital motion remains planar and that
the two individual spins are aligned with the total angular momentum of the system. We
can define the unitary vector ℓ = n× v/|n× v|. In the absence of precession, ℓ is constant
and coincides with eZ defined in Sec. IIA. The spin combinations S and Σ are also directed
along ℓ such that

S = Sℓℓ , (3.22a)

Σ = Σℓℓ . (3.22b)

The last step is the reduction to quasi-circular orbits. As for the non-spinning case, the
acceleration a = a1 − a2 is directed along n as

a = −rω2n , (3.23)
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which defines the orbital frequency ω. Note that we neglect the radiation reaction force in
the EOM because we are interested in the spin contributions to the acceleration. The spin
contributions to the radiation reaction term is at least of order O(8), which is a higher order
than required. The EOM (3.23) are known from previous works [35, 72]. In this approx-
imation, v = −rωλ where λ completes the time-dependent orthonormal basis (n,λ, ℓ) as
λ = ℓ× n. With this parametrization,

n(t) = cosφ(t) eX + sin φ(t) eY , (3.24a)

λ(t) = − sinφ(t) eX + cosφ(t) eY , (3.24b)

ℓ(t) = eZ , (3.24c)

where φ is the phase and is given by φ =
∫

dt ω. After defining the usual PN quantities

γ =
GM

rc2
, x =

(

GMω

c3

)2/3

, (3.25)

we can read the expression of ω2 in terms of γ. Then, we invert this relation to obtain γ in
terms of ω and thus x which leads to

γ = x
[

1 + xgNS + x3/2
gSO
GM2

+ x2
gSS

G2M4
+ x7/2

gSSS
G3M6

+O(8)
]

, (3.26)

where gNS and gSO are given in Eq. (4.3) of Ref. [51], gSS in Eq. (3.32) of Ref. [72] and gSSS
in Eq. (6.15) of Ref. [35] at consistent order. This allows us to express the source multipoles
in terms of the orbital frequency and thus x.

G. Non-linear contributions to the radiative moments

Once the source multipoles are known in the CM, we follow rigorously the procedure in
Ref. [92] to compute the radiative moments. Without precession, there are no additional
technicalities and the problem is equivalent to point-particle.

To link the radiative to the source moments, one has to introduce the canonical moments
(ML, SL) which are related to the set of source and gauge moments (IL, JL,WL, XL, YL, ZL)
(see [92] for an account of the procedure). The computation of the canonical moments is
detailed in Sec. IIIG 1. Once the canonical moments are known, we can deduce the radiative
moments through the following relations

UL =M
(ℓ)
L + (non-linear terms), (3.27a)

VL = S
(ℓ)
L + (non-linear terms), (3.27b)

where the non-linear terms are at least of order O(3), so for radiative multipoles that are
required at a low order, their contribution vanish. They are composed of three different
types of contributions: the instantaneous terms, the tail terms and the memory terms. The
computation of these different terms are detailed below.

1. Link between source and canonical moments

The relations between the canonical and source moments take the form

ML = IL + δIL , (3.28a)
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SL = JL + δJL , (3.28b)

where δIL and δJL are non-linear corrections made of products of source and gauge moments,
and starting at the 2.5PN order. The full expressions of δIL and δJL up to the 3.5PN order
are displayed in Sec. III. B. of Ref. [101]. Recently, the expression for δIij has been derived
up to the 4PN order [102]. For the spin contributions, we have explicitly

[δIij]S = O(8) , (3.29a)

[δIijk]S =
12G

c5

[

I〈ijY
(1)
k〉

]

S
+O(8) , (3.29b)

[δJij]S =
2G

c5

[

ǫab〈i

(

−I(3)j〉bWa − 2Ij〉bY
(2)
a + I

(1)
j〉bY

(1)
a

)

+ 3J〈iW
(1)
j〉

]

S
+O(8) , (3.29c)

where the spin parts of Wi, Yi and Ji for aligned spins are given by [Ji]S = Sℓℓ
i/c, [Wi]S =

νrΣℓλ
i/4c and [Yi]S = νrωΣℓn

i/4c. With these relations in hand, it is very straightfor-
ward to compute the canonical moments. They have been computed at the same orders
as those displayed in Table I. After obtaining their expression, one has to perform a time
differentiation to obtain the linear part of the radiative moments.

2. Instantaneous terms

At the 3.5PN order, the instantaneous terms are quadratic interactions of the canonical
moments and their complete expressions are displayed in Sec. III.A.1. of Ref. [92]. The
relevant spin contributions of these terms are the following

[

U inst
ij

]

S
=

2G

c5

[

1

3
εab〈iM

(4)
j〉aSb

]

S

+O(8) , (3.30a)

[

U inst
ijk

]

S
=
G

c5

[

1

5
ǫab〈i

(

−12S
(2)
ja M

(3)
k〉b − 8M

(2)
ja S

(3)
k〉b − 3S

(1)
ja M

(4)
k〉b − 27M

(1)
ja S

(4)
k〉b − SjaM

(5)
k〉b

−9MjaS
(5)
k〉b −

9

4
SaM

(5)
jk〉b

)

+
12

5
S〈iS

(4)
jk〉

]

S

+O(7) , (3.30b)

[

V inst
ij

]

S
=

G

7 c5

[

4S
(2)
a〈iM

(3)
j〉a + 8M

(2)
a〈iS

(3)
j〉a + 17S

(1)
a〈iM

(4)
j〉a − 3M

(1)
a〈iS

(4)
j〉a + 9Sa〈iM

(5)
j〉a

−3Ma〈iS
(5)
j〉a −

1

4
SaM

(5)
ija − 7ǫab〈iSaS

(4)
j〉b

]

S

+O(7) , (3.30c)

[

V inst
ijk

]

S
= −2G

c3

[

S〈iM
(4)
jk〉

]

S
+O(6) , (3.30d)

[

V inst
ijkl

]

S
=
G

c3

[

−35

3
S
(2)
〈ijM

(3)
kl〉 −

25

3
M

(2)
〈ij S

(3)
kl〉 −

65

6
S
(1)
〈ijM

(4)
kl〉 −

25

6
M

(1)
〈ij S

(4)
kl〉 −

19

6
S〈ijM

(5)
kl〉

−11

6
M〈ijS

(5)
kl〉 −

11

12
S〈iM

(5)
jkl〉

]

S

+O(5) . (3.30e)

They are treated as δIL and δJL. In these equations, Si and Sij correspond to the current
canonical moments and not the spin vector or tensor of the individual bodies. Note that
these interactions are to be evaluated at the retarded time TR = T − R/c.
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3. Tail terms

The tails correspond to time integrals over the past of the source. Their expressions are
known for each ℓ. For the spin effects at the order considered, we only need to compute the
following ones

[

U tail
ij

]

S
=

2GM
c3

∫ +∞

0

dτ

[

ln
( τ

2b

)

+
11

12

]

[

M
(4)
ij (TR − τ)

]

S
, (3.31a)

[

U tail
ijk

]

S
=

2GM
c3

∫ +∞

0

dτ

[

ln
( τ

2b

)

+
97

60

]

[

M
(5)
ijk(TR − τ)

]

S
, (3.31b)

[

V tail
ij

]

S
=

2GM
c3

∫ +∞

0

dτ

[

ln
( τ

2b

)

+
7

6

]

[

S
(4)
ij (TR − τ)

]

S
, (3.31c)

[

V tail
ijk

]

S
=

2GM
c3

∫ +∞

0

dτ

[

ln
( τ

2b

)

+
5

3

]

[

S
(5)
ijk(TR − τ)

]

S
, (3.31d)

[

V tail
ijkl

]

S
=

2GM
c3

∫ +∞

0

dτ

[

ln
( τ

2b

)

+
119

60

]

[

S
(6)
ijkl(TR − τ)

]

S
, (3.31e)

where we introduced an arbitrary time-scale constant b. The mass monopole M, or ADM
mass, differs from the total constant mass M through the relation M =M + Ē/c2 where Ē
is the conservative binding energy of the system. This implies that the spin contributions
in M start at O(5) and thus do not need to be taken into account in the computation of
the tail terms as they are of higher order.

To compute the tail integrals, we consider the aligned-spin case. There are no precession
effects to consider here and the evolution of the dynamics of the binary is qualitatively the
same as for the usual quasi-circular orbits, with the aligned conserved norm spins acting
simply as constant vectors. This is to be contrasted with the more general case of binaries
on quasi-circular but precessing orbits (as defined for instance in Ref. [74]), where one must
solve analytically the dynamics consistently with the order at which the analysis is carried, to
be able to compute these integrals. The idea to compute these integrals in the non-precessing
case is to project the moments in the spatial basis (eX , eY , eZ) defined in Sec. IIA using the
relations (3.24) and assuming that the separation r is constant over time3. By doing so, we
find one-dimensional integrals of the type

∫∞

0
dy ln(y)eiαy that are computable analytically

[105].

4. Memory terms

The memory terms, as well as the tail terms, are called hereditary effects in the sense that
they are integrals over the past of the source. They are integrals of quadratic interactions
of canonical moments and only appear in the mass-type multipoles [106]. In our case, only
the mass octupole moment contains a spin contribution to the memory terms according to

[

Umem
ijk

]

S
= −4G

5c5

∫ +∞

0

dτ
[

ǫab〈iM
(3)
ja (TR − τ)S

(3)
k〉b(TR − τ)

]

S
+O(7) . (3.32)

3 It has been shown [103, 104] that for the tail integrals, such an approximation is valid because the remote

past of the source is negligible when compared to its recent past. On this time scale, r does not have the

time to vary significantly and can be assumed constant.
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For the mass quadrupole, the spin contribution to the memory effects are of order O(8) and
thus do not need to be considered.

The computation of the memory terms differ from the one of the tails because one cannot
assume that the separation r is constant. We have to take into account the radiation reaction.
As for the tails, we project the values of the moments on the basis (eX , eY , eZ). By doing
so, we encounter integrals of the type

∫ TR

−∞

dτ
einφ(τ)

rp(τ)
, (3.33)

where n is a non-zero integer, p is a half-integer, and φ is the phase variable defined in
Sec. III F, which satisfies φ̇ = ω. As we can see, if we assumed the separation to be con-
stant over time, this integral would diverge. At leading order, the separation scales as
r(τ) ∼ (−τ)1/4 and the phase as φ(τ) ∼ (−τ)5/8, which allows to compute this integral, as
detailed in Refs. [92, 104].

After combining all the previous intermediate results, we derived the radiative multipole
moments in the quasi-circular, spin-aligned approximations at the orders displayed in Table
I. To obtain the amplitude spherical modes, we insert the obtained expressions in Eq. (2.7)
and then in Eq. (2.6).

IV. RESULTS

We now present the waveform modes. In Sec. IVA, we express them in a PN expansion
following, e.g. [92, 101], whereas in Sec. IVB, we factorize them in a way that is suitable
for the EOB approach and notably template building.

A. Spin-weighted spherical modes

The amplitude modes defined in Eq. (2.6) can be written in terms of the phase variable
φ defined in Sec. III F. However it is convenient to introduce a new phase variable ψ that
allows factoring out the logarithm dependency on the orbital frequency induced by the tail
terms in the radiative moments. The new phase variable reads

ψ ≡ φ− 2GMω

c3
ln

(

ω

ω0

)

, (4.1)

where the constant ω0 is linked to the time scale constant b introduced in Eqs. (3.31) through
ω0 = 1

4b
exp[11

12
− γE] and we recall that M is the ADM mass. The amplitude modes then

read

hℓm =
2GM ν x

R c2

√

16π

5
Ĥℓm e

−imψ , (4.2)

where we recall that

x =

(

GMω

c3

)2/3

. (4.3)
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The spin part of the Ĥℓm are given by

ĤS
22 =

x3/2

GM2

[

−2Sℓ − 2
3
Σℓδ +

(

Sℓ(−163
63

− 92
63
ν) + Σℓδ(− 1

21
+ 20

63
ν)
)

x

+
(

(−4
3
i− 4π)Sℓ − 4

3
πΣℓδ

)

x3/2

+
(

Sℓ(
1061
84

+ 4043
84
ν + 499

84
ν2) + Σℓδ(

3931
756

+ 7813
378

ν + 1025
252

ν2)
)

x2
]

+
x2

G2M4

[

S2
ℓ (2 + κ+) + SℓΣℓ(2δ − κ− + δκ+) + Σ2

ℓ(−1
2
δκ− + 1

2
κ+ − 2ν − κ+ν)

+
(

S2
ℓ (−404

63
+ 55

42
δκ− − 31

42
κ+ + 68

21
ν + 34

21
κ+ν)

+SℓΣℓ(−481
63
δ + 43

21
κ− − 43

21
δκ+ + 68

21
δν − 48

7
κ−ν +

34
21
δκ+ν)

+Σ2
ℓ(−5

3
+ 43

42
δκ− − 43

42
κ+ + 172

21
ν − 89

42
δκ−ν +

25
6
κ+ν − 68

21
ν2 − 34

21
κ+ν

2)
)

x

+π
(

S2
ℓ (4 + 2κ+) + SℓΣℓ(4δ − 2κ− + 2δκ+)

+Σ2
ℓ(−δκ− + κ+ − 4ν − 2κ+ν)

)

x3/2
]

+
x7/2

G3M6

[

S3
ℓ (

32
3
− 2

3
κ+ − 2λ+) + S2

ℓΣℓ(
52
3
δ − 7

3
κ− − 1

3
δκ+ + 3λ− − 3δλ+)

+SℓΣ
2
ℓ(

20
3
− 3δκ− + 3κ+ + 3δλ− − 3λ+ − 112

3
ν − 2

3
κ+ν + 6λ+ν) (4.4a)

+Σ3
ℓ(−5

3
κ− + 5

3
δκ+ + λ− − δλ+ − 20

3
δν + 11

3
κ−ν − 1

3
δκ+ν − 3λ−ν + δλ+ν)

]

,

ĤS
21 =

ix

2GM2

[

Σℓ +
(

−86
21
Sℓδ + Σℓ(−79

21
+ 139

21
ν)
)

x+ Σℓ
(

− i
2
+ π − 2i ln(2)

)

x3/2

+
(

Sℓδ(−331
378

+ 772
189
ν) + Σℓ(

293
378

− 2615
756

ν − 1723
189

ν2)
)

x2

+
(

Sℓδ
(

181
105

i− 86
21
π + 172

21
i ln(2)

)

+ Σℓ
(

79
42
i− 79

21
π − 1951

140
iν

+257
42
πν + 158

21
i ln(2)− 257

21
iν ln(2)

)

)

x5/2
]

+
ix5/2

G2M4

[

S2
ℓ (δ − 1

3
κ− + 1

2
δκ+) + SℓΣℓ(−1

3
− 5

6
δκ− + 5

6
κ+ − 4ν − 2κ+ν)

+Σ2
ℓ(−1

2
δ − 5

12
κ− + 5

12
δκ+ − δν + 4

3
κ−ν − 1

2
δκ+ν)

+
(

S2
ℓ (

41
42
δ + 23

48
κ− + 47

336
δκ+ − 1

7
δν − 191

72
κ−ν − 1

14
δκ+ν)

+SℓΣℓ(−29
21

+ 19
56
δκ− − 19

56
κ+ + 100

21
ν − 1301

504
δκ−ν +

1019
504

κ+ν +
4
7
ν2 + 2

7
κ+ν

2)

+Σ2
ℓ(−6

7
δ + 19

112
κ− − 19

112
δκ+ + 59

21
δν − 751

504
κ−ν +

145
126
δκ+ν +

1
7
δν2

+1265
504

κ−ν
2 + 1

14
δκ+ν

2)
)

x
]

(4.4b)

+
ix3

2G3M6

[

S2
ℓΣℓ(1 +

1
2
κ+) + SℓΣ

2
ℓ(δ − 1

2
κ− + 1

2
δκ+) + Σ3

ℓ(−1
4
δκ− + 1

4
κ+ − ν − 1

2
κ+ν)

]

,

ĤS
33 =

3i
√
15x2

8
√
14GM2

[

7Sℓδ + Σℓ(3− 9ν) +
(

Sℓδ(−139
15

+ 83
15
ν) + Σℓ(−43

5
+ 24ν + 5ν2)

)

x

+
(

Sℓδ
(

−213
10
i + 21π − 42i ln(2) + 42i ln(3)

)

+Σℓ
(

−63
5
i + 9π + 8797

270
iν − 27πν − 18i ln(2) + 54iν ln(2)

+18i ln(3)− 54iν ln(3)
)

)

x3/2
]

+
3i
√
15x5/2

8
√
14G2M4

[

S2
ℓ δ(−6 − 3κ+) + SℓΣℓ(−6 + 3δκ− − 3κ+ + 24ν + 12κ+ν)
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+Σ2
ℓ(

3
2
κ− − 3

2
δκ+ + 6δν − 6κ−ν + 3δκ+ν)

+
(

S2
ℓ (23δ − 7

2
κ− + 15

2
δκ+ − 12δν + 16κ−ν − 6δκ+ν)

+SℓΣℓ(26− 11δκ− + 11κ+ − 128ν + 22δκ−ν − 52κ+ν + 48ν2 + 24κ+ν
2)

+Σ2
ℓ(3δ − 11

2
κ− + 11

2
δκ+ − 32δν + 59

2
κ−ν − 37

2
δκ+ν + 12δν2

−28κ−ν
2 + 6δκ+ν

2)
)

x
]

, (4.4c)

ĤS
32 =

2
√
5x3/2

3
√
7GM2

[

Sℓ + Σℓδ +
(

Sℓ(−13
2
+ 73

6
ν) + Σℓδ(−31

6
+ 5ν)

)

x

+
(

Sℓ(−i + 2π) + Σℓδ(−3i + 2π)
)

x3/2

+
(

Sℓ(
4859
1320

− 15413
792

ν − 419
88
ν2) + Σℓδ(

19241
3960

− 808
55
ν − 16153

3960
ν2)

)

x2
]

+
8
√
5x3

9
√
7G2M4

[

S2
ℓ (−1− 3

8
δκ− + 9

8
κ+ − 9

2
ν − 9

4
κ+ν)

+SℓΣℓ(−5
2
δ − 3

2
κ− + 3

2
δκ+ − 9

2
δν + 15

4
κ−ν − 9

4
δκ+ν)

+Σ2
ℓ(−3

2
− 3

4
δκ− + 3

4
κ+ + 3ν + 3

2
δκ−ν − 3κ+ν +

9
2
ν2 + 9

4
κ+ν

2)
]

+
4
√
5x7/2

3
√
7G3M6

[

S3
ℓ (1 +

1
2
κ+) + S2

ℓΣℓ(2δ − 1
2
κ− + δκ+)

+SℓΣ
2
ℓ(1− 3

4
δκ− + 3

4
κ+ − 5ν − 5

2
κ+ν)

+Σ3
ℓ(−1

4
κ− + 1

4
δκ+ − δν + κ−ν − 1

2
δκ+ν)

]

, (4.4d)

ĤS
31 =

ix2

24
√
14GM2

[

Sℓδ + Σℓ(5− 15ν) +
(

Sℓδ(−79
9
+ 443

9
ν) + Σℓ(−149

9
+ 700

9
ν − 841

9
ν2)

)

x

+
(

Sℓδ
(

47
10
i + π − 2i ln(2)

)

+ Σℓ
(

−7i + 5π + 11
10
iν − 15πν

−10i ln(2) + 30iν ln(2)
)

)

x3/2
]

+
ix5/2

4
√
14G2M4

[

S2
ℓ (δ − 4

3
κ− + 1

2
δκ+) + SℓΣℓ(1− 11

6
δκ− + 11

6
κ+ − 4ν − 2κ+ν)

+Σ2
ℓ(−11

12
κ− + 11

12
δκ+ − δν + 7

3
κ−ν − 1

2
δκ+ν)

+
(

S2
ℓ (−149

18
δ + 13

4
κ− − 53

36
δκ+ − 22

9
δν − 16

9
κ−ν − 11

9
δκ+ν)

+SℓΣℓ(−115
9

+ 85
18
δκ− − 85

18
κ+ + 40ν − 5

9
δκ−ν +

58
9
κ+ν +

88
9
ν2 + 44

9
κ+ν

2)

+Σ2
ℓ(−9

2
δ + 85

36
κ− − 85

36
δκ+ + 100

9
δν − 233

36
κ−ν +

7
4
δκ+ν +

22
9
δν2

−2
3
κ−ν

2 + 11
9
δκ+ν

2)
)

x
]

, (4.4e)

ĤS
44 =

32x5/2

9
√
35GM2

[

Sℓ(
19
3
− 19ν) + Σℓδ(3− 6ν)

+
(

Sℓ(−437
22

+ 10063
132

ν − 971
44
ν2) + Σℓδ(−153

11
+ 2165

66
ν + 67

44
ν2)

)

x
]

+
8
√
5x3

9
√
7G2M4

[

S2
ℓ (−4− 2κ+ + 12ν + 6κ+ν)

+SℓΣℓ(−4δ + 2κ− − 2δκ+ + 12δν − 6κ−ν + 6δκ+ν)

+Σ2
ℓ(δκ− − κ+ + 4ν − 3δκ−ν + 5κ+ν − 12ν2 − 6κ+ν

2)
]

, (4.4f)

ĤS
43 =

9i
√
5x2

8
√
14GM2

[

−Sℓδ + Σℓ(−1 + 3ν) +
(

Sℓδ(
1303
165

− 1451
165

ν) + Σℓ(
361
55

− 284
11
ν + 163

11
ν2)

)

x
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+
(

Sℓδ
(

53
10
i− 3π + 6i ln(2)− 6i ln(3)

)

+Σℓ
(

32
5
i− 3π − 6007

270
iν + 9πν + 6i ln(2)− 18iν ln(2)

−6i ln(3) + 18iν ln(3)
)

)

x3/2
]

+
9i
√
5x7/2

8
√
14G2M4

[

S2
ℓ (3δ +

3
5
κ− − 8

5
δκ+ + 4δν − 6

5
κ−ν + 2δκ+ν)

+SℓΣℓ(6 +
11
5
δκ− − 11

5
κ+ − 12ν − 16

5
δκ−ν +

48
5
κ+ν − 16ν2 − 8κ+ν

2)

+Σ2
ℓ(3δ +

11
10
κ− − 11

10
δκ+ − 4δν − 27

5
κ−ν +

16
5
δκ+ν − 4δν2

+26
5
κ−ν

2 − 2δκ+ν
2)
]

, (4.4g)

ĤS
42 =

4x5/2

21
√
5GM2

[

Sℓ(−1
9
+ 1

3
ν) + Σℓδ(1− 2ν)

+
(

Sℓ(−43
22

+ 6653
396

ν − 1387
44
ν2) + Σℓδ(−313

66
+ 3349

198
ν − 725

44
ν2)

)

x
]

+
4x3

21
√
5G2M4

[

S2
ℓ (

5
3
− 5

4
δκ− + 25

12
κ+ − 5ν − 5

2
κ+ν)

+SℓΣℓ(
5
3
δ − 10

3
κ− + 10

3
δκ+ − 5δν + 15

2
κ−ν − 5

2
δκ+ν)

+Σ2
ℓ(−5

3
δκ− + 5

3
κ+ − 5

3
ν + 5

2
δκ−ν − 35

6
κ+ν + 5ν2 + 5

2
κ+ν

2)
]

, (4.4h)

ĤS
41 =

i
√
5x2

168
√
2GM2

[

Sℓδ + Σℓ(1− 3ν) +
(

Sℓδ(−1147
165

+ 1139
165

ν) + Σℓ(−309
55

+ 232
11
ν − 111

11
ν2)

)

x

+
(

Sℓδ
(

−53
30
i + π − 2i ln(2)

)

+Σℓ
(

−32
15
i + π + 181

30
iν − 3πν − 2i ln(2) + 6iν ln(2)

)

)

x3/2
]

+
i
√
5x7/2

168
√
2G2M4

[

S2
ℓ (−3δ − 7

5
κ− + 12

5
δκ+ − 4δν + 14

5
κ−ν − 2δκ+ν)

+SℓΣℓ(−6 − 19
5
δκ− + 19

5
κ+ + 12ν + 24

5
δκ−ν − 72

5
κ+ν + 16ν2 + 8κ+ν

2)

+Σ2
ℓ(−3δ − 19

10
κ− + 19

10
δκ+ + 4δν + 43

5
κ−ν − 24

5
δκ+ν + 4δν2

−34
5
κ−ν

2 + 2δκ+ν
2)
]

, (4.4i)

ĤS
55 =

3125ix3

36
√
66GM2

[

Sℓδ(−1
2
+ ν) + Σℓ(−1

4
+ 5

4
ν − 5

4
ν2)

]

+
3125ix7/2

96
√
66G2M4

[

S2
ℓ δ(1 +

1
2
κ+ − 2ν − κ+ν)

+SℓΣℓ(1− 1
2
δκ− + 1

2
κ+ − 6ν + δκ−ν − 3κ+ν + 8ν2 + 4κ+ν

2)

+Σ2
ℓ(−1

4
κ− + 1

4
δκ+ − δν + 3

2
κ−ν − δκ+ν + 2δν2 − 2κ−ν

2 + δκ+ν
2)
]

,
(4.4j)

ĤS
54 =

32x5/2

3
√
165GM2

[Sℓ(−1 + 3ν) + Σℓδ(−1 + 2ν)

+
(

Sℓ(
241
26

− 2939
78
ν + 633

26
ν2) + Σℓδ(

619
78

− 300
13
ν + 817

78
ν2)

)

x
]

, (4.4k)

ĤS
53 =

3i
√
3x3

4
√
110GM2

[

Sℓδ(
1
2
− ν) + Σℓ(−3

4
+ 15

4
ν − 15

4
ν2)

]
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+
9i
√
15x7/2

32
√
22G2M4

[

S2
ℓ (−δ + 4

5
κ− − 13

10
δκ+ + 2δν − 8

5
κ−ν + δκ+ν)

+SℓΣℓ(−1 + 21
10
δκ− − 21

10
κ+ + 6ν − 13

5
δκ−ν +

39
5
κ+ν − 8ν2 − 4κ+ν

2)

+Σ2
ℓ(

21
20
κ− − 21

20
δκ+ + δν − 47

10
κ−ν +

13
5
δκ+ν − 2δν2 + 18

5
κ−ν

2 − δκ+ν
2)
]

,

(4.4l)

ĤS
52 =

2x5/2

9
√
55GM2

[Sℓ(1− 3ν) + Σℓδ(1− 2ν)

+(Sℓ(−213
26

+ 2519
78
ν − 493

26
ν2) + Σℓδ(−535

78
+ 244

13
ν − 565

78
ν2)

)

x
]

, (4.4m)

ĤS
51 =

ix3

216
√
385GM2

[

Sℓδ(1− 2ν) + Σℓ(
7
2
− 35

2
ν + 35

2
ν2)

]

+
i
√
5x7/2

288
√
77G2M4

[

S2
ℓ (δ − 6

5
κ− + 17

10
δκ+ − 2δν + 12

5
κ−ν − δκ+ν)

+SℓΣℓ(1− 29
10
δκ− + 29

10
κ+ − 6ν + 17

5
δκ−ν − 51

5
κ+ν + 8ν2 + 4κ+ν

2)

+Σ2
ℓ(−29

20
κ− + 29

20
δκ+ − δν + 63

10
κ−ν − 17

5
δκ+ν + 2δν2

−22
5
κ−ν

2 + δκ+ν
2)
]

, (4.4n)

ĤS
66 = − 3132x7/2

35
√
143GM2

[

Sℓ(1− 5ν + 5ν2) + Σℓδ(
15
29

− 60
29
ν + 45

29
ν2)

]

, (4.4o)

Ĥ65 =
3125ix3

144
√
429GM2

[

Sℓδ(1− 2ν) + Σℓ(1− 5ν + 5ν2)
]

, (4.4p)

ĤS
64 =

256
√
2x7/2

385
√
39GM2

[

Sℓ(1− 5ν + 5ν2) + Σℓδ(−5
9
+ 20

9
ν − 5

3
ν2)

]

, (4.4q)

ĤS
63 = − 81ix3

176
√
65GM2

[

Sℓδ(1− 2ν) + Σℓ(1− 5ν + 5ν2)
]

, (4.4r)

ĤS
62 =

4x7/2

693
√
65GM2

[

Sℓ(1− 5ν + 5ν2) + Σℓδ
(

17
3
− 68

3
ν + 17ν2

)]

, (4.4s)

ĤS
61 =

ix3

2376
√
26GM2

[

Sℓδ(1− 2ν) + Σℓ(1− 5ν + 5ν2)
]

, (4.4t)

ĤS
77 = 0 , (4.4u)

ĤS
76 =

324
√
3x7/2

35
√
143GM2

[

Sℓ(1− 5ν + 5ν2) + Σℓδ(1− 4ν + 3ν2)
]

, (4.4v)

ĤS
75 = 0 , (4.4w)

ĤS
74 = − 512

√
2x7/2

1365
√
33GM2

[

Sℓ(1− 5ν + 5ν2) + Σℓδ(1− 4ν + 3ν2)
]

, (4.4x)

ĤS
73 = 0 , (4.4y)

ĤS
72 =

4x7/2

3003
√
3GM2

[

Sℓ(1− 5ν + 5ν2) + Σℓδ(1− 4ν + 3ν2)
]

, (4.4z)

ĤS
71 = 0 . (4.4aa)
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Furthermore, for all ℓ, we have ĤS
ℓ0 = 0. The modes are in agreement with the literature,

and notably with the modes derived for a test particle around a Kerr black hole [79, 107].

B. Effective-One-Body factorized modes

Conveniently for EOB waveform models, we write the PN-expanded waveform given by
Eqs. (4.2)–(4.4) in a factorized, resummed form as [77–80]

hFℓm = h
(N,ǫp)
ℓm Ŝ

(ǫp)
eff Tℓme

iδℓmfℓm , (4.5)

where ǫp is the parity of ℓ + m: ǫp = 0 if ℓ + m is even, and ǫp = 1 if ℓ + m is odd.

The first term h
(N,ǫp)
ℓm is the leading (Newtonian) order waveform, which is known for any

(ℓ,m) [90, 91], and its explicit expression is given in, e.g., Eq. (3) of Ref. [79]. Note that the
convention for the definition of the waveform modes differs by a global minus sign between

this paper and Ref. [79]. However this difference only affects h
(N,ǫp)
ℓm , while the other factors

in Eq. (4.5) are not altered.

The (dimensionless) effective source term Ŝeff is given by either the effective energy Eeff

or the orbital angular momentum pφ, both expressed as functions of v ≡ (Mω)1/3 =
√
x,

such that4

Ŝeff =

{

Eeff(v)
µ

, ℓ+m even

v
pφ(v)

µM
, ℓ+m odd

, (4.6)

where µ ≡ m1m2/M is the reduced mass, and Eeff is related to the total energy E via

the EOB energy map E = M
√

1 + 2ν (Eeff/µ− 1). This source term is motivated by the
Regge-Wheeler-Zerilli equation [108, 109], whose source depends on the stress-energy tensor
for a test body in a Schwarzschild background

The factor Tℓm resums the infinite number of “leading logarithms” entering the tail ef-
fects [110–112], and is given by

Tℓm =
Γ
(

ℓ+ 1− 2ik̂
)

Γ(ℓ+ 1)
eπk̂e2ik̂ ln(2mωr0), (4.7)

where Γ(...) is the Euler gamma function, k̂ ≡ mωE, ω is the orbital frequency, and the
constant r0 takes the value 2M/

√
e to give agreement with waveforms computed in the

test-body limit [79].
The remaining part of the factorized modes is expressed as an amplitude fℓm and a phase

δℓm, which are computed such that the expansion of hFℓm agrees with the PN-expanded
modes in Eq. (4.2). To improve the agreement with numerical-relativity waveforms, fℓm is
further resummed as [79, 80] fℓm = (ρℓm)

ℓ to reduce the magnitude of the 1PN non-spinning
coefficient, which grows linearly with ℓ. For spinning binaries, the non-spinning and spin
contributions are separated for the odd m modes, such that

fℓm =

{

ρℓℓm, m even
(ρNS
ℓm)

ℓ + fS
ℓm, m odd

, (4.8)

4 In this section, we use units in which c = G = 1 to simplify the notation.
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where ρNS
ℓm is the non-spinning part of ρℓm, while f

S
ℓm is the spin part of fℓm.

To simplify the expressions for the factorized modes, and to be consistent with the no-
tation used in the literature, we introduce the dimensionless symmetric and antisymmetric
spin parameters

χS ≡ 1

2
(χ1 + χ2) =

Sℓ + δΣℓ
2νGM2

, (4.9a)

χA ≡ 1

2
(χ1 − χ2) = −δSℓ + (1− 2ν)Σℓ

2νGM2
, (4.9b)

and define the following combinations of the spin-multipole constants and spins:

κ̃S ≡ 1

2

[

χ2
1(κ1 − 1) + χ2

2(κ2 − 1)
]

, (4.10a)

κ̃A ≡ 1

2

[

χ2
1(κ1 − 1)− χ2

2(κ2 − 1)
]

, (4.10b)

λ̃S ≡ 1

2

[

χ3
1(λ1 − 1) + χ3

2(λ2 − 1)
]

, (4.10c)

λ̃A ≡ 1

2

[

χ3
1(λ1 − 1)− χ3

2(λ2 − 1)
]

, (4.10d)

which equal zero for black holes.
For the (2, 2) mode, we obtain

ρ22 = 1 + v2
(

55
84
ν − 43

42

)

+ v3
[(

2
3
ν − 2

3

)

χS − 2
3
δχA

]

+ v4
[

19583
42336

ν2 − 33025
21168

ν − 20555
10584

+
(

1
2
− 2ν

)

χ2
A + δχAχS +

1
2
χ2
S +

1
2
δκA + κS

(

1
2
− ν

)

]

+ v5
[

δ
(

−19
42
ν − 34

21

)

χA +
(

209
126
ν2 + 49

18
ν − 34

21

)

χS
]

+ v6
[

δ
(

89
126

− 781
252
ν
)

χAχS +
(

−27
14
ν2 − 457

504
ν + 89

252

)

χ2
A +

(

10
9
ν2 − 1817

504
ν + 89

252

)

χ2
S

+
(

67
84

− 139
168
ν
)

δκ̃A +
(

−27
28
ν2 − 407

168
ν + 67

84

)

κ̃S

]

+ v7
[

δ
(

97865
63504

ν2 + 50140
3969

ν + 18733
15876

)

χA +
(

50803
63504

ν3 − 245717
63504

ν2 + 74749
5292

ν + 18733
15876

)

χS

+ δχ3
A

(

1
3
− 4

3
ν
)

+ δ(2ν + 1)χAχ
2
S +

(

−4ν2 − 3ν + 1
)

χ2
AχS +

(

ν + 1
3

)

χ3
S

+ κ̃S
[(

1
3
ν + 4

3

)

δχA +
(

−2ν2 − 14
3
ν + 4

3

)

χS
]

+ κ̃A
[(

4
3
− 7

3
ν
)

χA +
(

4
3
− 2ν

)

δχS
]

+ (ν − 1)δλ̃A + (3ν − 1)λ̃S

]

, (4.11a)

δ22 =
7
3
ωE +

(

ωE
)2 [(8

3
ν − 4

3

)

χS − 4
3
δχA

]

, (4.11b)

where we only write the non-spinning part to the order needed for the 3.5PN spin contribu-
tions. The energy E in δℓm is replaced by the Hamiltonian in EOB waveform models.

For the (2, 1) mode, we obtain

ρNS
21 = 1 +

(

23
84
ν − 59

56

)

v2 +
(

617
4704

ν2 − 10993
14112

ν − 47009
56448

)

v4, (4.12a)

fS
21 = v

(

−3
2
χA

δ
− 3

2
χS

)

+ v3
[

(

131
84
ν + 61

12

)

χA

δ
+
(

79
84
ν + 61

12

)

χS

]

+ v4
[

(−2ν − 3)χ2
A +

(

21
2
ν − 6

) χAχS
δ

+
(

1
2
ν − 3

)

χ2
S +

(

−ν − 1
2

)

κ̃S −
κ̃A
2δ

]
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+ v5
[

(

−703
112
ν2 + 8797

1008
ν − 81

16

) χA
δ

+
(

613
1008

ν2 + 1709
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) χA
δ
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(

−41
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35

)

χS
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We note that the O(v6χ2ν2) terms in the (2, 1) mode disagree with those used in the
SEOBNRv4HM model [87].5 Those terms were used in SEOBNRv4HM based on unpublished
results by one of the authors of this paper. However, we checked that the SS contributions
to the (2,1) mode should be given by Eq. (4.12).

Interestingly, we also find a discrepancy with literature [80, 113] in the NS part of δ21,
which was required to derive the spin terms in the factorized waveform. The difference is in
the radiation reaction term O(νv5) which, in these papers, has a coefficient −493/42. After
investigation, we found out that this value came from a wrong expression for the (2,1) mode
in Ref. [92], which was later corrected in an erratum, but the factorized mode was never
corrected. The coefficient -493/42 should read -25/2 as we see in Eq. (4.12c).

Explicit expressions for the other modes are given in Appendix B. We also provide all
expressions as a Mathematica file in the Supplemental Materials [89].

V. SUMMARY

We computed the spin contributions to the spherical-harmonics modes of the GW polar-
izations to the 3.5PN order, for non-precessing spins in quasi-circular orbits. We used the
PN-MPM formalism to tackle the computation of the radiative multipole moments, which
were required to a higher multipolar order than what was known in the literature. We
also derived the spin contributions to the hereditary tail terms, as well as other non-linear
interactions between the moments.

Our results include all spin terms, i.e., all SO, SS and SSS terms to that order. We
wrote the waveform modes in two forms: in the conventional PN-expanded form, as well
as a factorized form convenient for the EOB approach. The factorized modes we obtained
are in agreement with Refs. [79, 87] except for the three terms O(v6χ2ν2) in the (2,1) mode
used in SEOBNRv4HM. As stated in Ref. [87], these terms came from private communications
and are now corrected. We also corrected a NS term in the quantity δ21.

The results derived in this paper can be useful in improving analytical waveform models.
Interestingly, preliminary implementation of some of our results in an EOB waveform model
showed a good improvement when compared to numerical relativity [114].

5 The difference, for black holes, is given by

f
S,(this paper)
21 − f

S,(SEOBNRv4HM)
21 = v6ν2

(

165
112χ

2
A + 87

56

χAχS

δ
+ 165

112χ
2
S

)

. (4.13)
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Future work will focus on relaxing the non-precessing approximation as well as the quasi-
circular-orbits condition, which is important to improve waveform models for eccentric orbits
and precessing spins.
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Appendix A: Source densities

The explicit expressions of the spin part of source densities are given by
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Appendix B: Explicit quantities of the factorized modes

In this Appendix, we write the explicit expressions for the factorized modes (see
Sec. IVB). The (2, 2) mode is given by Eq. (4.11), the (2, 1) mode by Eq. (4.12), while
the other subdominant modes read
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(1690430ν5 − 1436855ν4 − 174699ν3 + 239045ν2 + 426ν − 9100)χS

68250 (5ν2 − 5ν + 1)2

− 162ν3

125 (5ν2 − 5ν + 1)3

[

(1− 4ν)δχ3
A + 3(1− 2ν)2δχAχ

2
S

+ (−24ν2 + 18ν − 3)χSχ
2
A − (1− 2ν)3χ3

S

]

}

, (B9)

ρNS
53 = 1, (B10a)

fS
53 =

v3

1− 2ν

[

(

−62
3
ν2 + 18ν − 10

3

) χA
δ

+
(

−46
3
ν2 + 46

3
ν − 10

3

)

χS

]

+
v4

1− 2ν

[

(

20ν2 − 15ν + 5
2

)

χ2
A +

(

8ν2 − 30ν + 5
) χAχS

δ
+
(

5
2
− 5ν

)

χ2
S

+
(

4ν2 − 15ν + 5
2

) κ̃A
δ

+
(

10ν2 − 10ν + 5
2

)

κ̃S

]

, (B10b)

ρ52 = 1 +
3νv (−δχA − 2νχS + χS)

5 (5ν2 − 5ν + 1)

+ v2
{

21980ν3 − 104930ν2 + 84679ν − 15828

13650 (5ν2 − 5ν + 1)

− 18ν2 [(1− 4ν)χ2
A + 2δ(2ν − 1)χAχS + (1− 2ν)2χ2

S]

25 (5ν2 − 5ν + 1)2

}
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+ v3
{

(−963865ν4 + 1907465ν3 − 1213877ν2 + 243364ν − 9100) δχA

68250 (5ν2 − 5ν + 1)2

+
(1859270ν5 − 2079455ν4 + 471681ν3 + 17105ν2 + 25086ν − 9100)χS

68250 (5ν2 − 5ν + 1)2

− 162ν3

125 (5ν2 − 5ν + 1)3

[

(1− 4ν)δχ3
A + 3(1− 2ν)2δχAχ

2
S

+ (−24ν2 + 18ν − 3)χSχ
2
A − (1− 2ν)3χ3

S

]

}

, (B11)

ρNS
51 = 1, (B12a)

fS
51 =

v3

1− 2ν

[

(

−38
3
ν2 + 46

3
ν − 10

3

) χA
δ

+
(

−18ν2 + 18ν − 10
3

)

χS

]

+
v4

1− 2ν

[

(

20ν2 − 15ν + 5
2

)

χ2
A +

(

−8ν2 − 30ν + 5
) χAχS

δ
+
(

5
2
− 5ν

)

χ2
S

+
(

−4ν2 − 15ν + 5
2

) κ̃A
δ

+
(

10ν2 − 10ν + 5
2

)

κ̃S

]

, (B12b)

ρ66 = 1 + v3
δ (−100ν2 + 85ν − 14)χA + (110ν3 − 150ν2 + 83ν − 14)χS

21 (5ν2 − 5ν + 1)
, (B13)

ρNS
65 = 1, (B14a)

fS
65 = −7νv [(1− 3ν)χA + δ(ν − 1)χS]

2δ(ν − 1)(3ν − 1)
, (B14b)

ρ64 = 1 + v3
δ (−60ν2 + 65ν − 14)χA + (150ν3 − 230ν2 + 103ν − 14)χS

21 (5ν2 − 5ν + 1)
, (B15)

ρNS
63 = 1, (B16a)

fS
63 = −7νv [(1− 3ν)χA + δ(ν − 1)χS]

2δ(ν − 1)(3ν − 1)
, (B16b)

ρ62 = 1 + v3
δ (−36ν2 + 53ν − 14)χA + (174ν3 − 278ν2 + 115ν − 14)χS

21 (5ν2 − 5ν + 1)
, (B17)

ρNS
61 = 1, (B18a)

fS
61 = −7νv [(1− 3ν)χA + δ(ν − 1)χS]

2δ(ν − 1)(3ν − 1)
, (B18b)
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ρ76 = 1− 4νv [δ(2ν − 1)χA + (2ν2 − 4ν + 1)χS]

7 (7ν3 − 14ν2 + 7ν − 1)
, (B19)

ρ74 = 1− 4νv [δ(2ν − 1)χA + (2ν2 − 4ν + 1)χS]

7 (7ν3 − 14ν2 + 7ν − 1)
, (B20)

ρ72 = 1− 4νv [δ(2ν − 1)χA + (2ν2 − 4ν + 1)χS]

7 (7ν3 − 14ν2 + 7ν − 1)
. (B21)
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[67] B. Mikóczi, M. Vasúth, and L. Gergely, Self-interaction spin effects in inspiralling compact

binaries, Phys. Rev. D 71, 124043 (2005), astro-ph/0504538.

[68] L. Blanchet, A. Buonanno, and G. Faye, Higher-order spin effects in the dynamics of compact

binaries ii. radiation field, Phys. Rev. D 74, 104034 (2006), erratum Phys. Rev. D, 75:049903,

2007, gr-qc/0605140.

[69] L. Blanchet, A. Buonanno, and G. Faye, Tail-induced spin-orbit effect in the gravitational

radiation of compact binaries, Phys. Rev. D 84, 064041 (2011), arXiv:1104.5659 [gr-qc].
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