PHYSICAL REVIEW D 106, 124018 (2022)
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We complete the post-Newtonian (PN) prediction at the 3.5PN order for the spin contributions to the
gravitational waveforms emitted by inspiraling compact binaries, in the case of quasicircular, equatorial
orbits, where both spins are aligned with the orbital angular momentum. Using results from the multipolar
post-Minkowskian wave generation formalism, we extend previous works that derived the dynamics and
gravitational-wave energy flux and phasing, by computing the full waveform decomposed in spin-weighted
spherical harmonics. This new calculation requires the computation of multipolar moments of higher
multipolar order, new quadratic-in-spin contributions to the hereditary tail terms entering at the 3.5PN
order, as well as other nonlinear interactions between moments. When specialized to the test-mass limit,
our results are equivalent to those obtained in the literature for the waveform emitted by a test-mass in
equatorial, circular orbits around a Kerr black hole. We also compute the factorized modes for use in
effective-one-body waveform models, correcting the 2.5PN nonspinning and 3PN quadratic-in-spin terms

in the (2,1) mode used in current models.
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I. INTRODUCTION

Since the first gravitational-wave (GW) detection in
2015 [1], the LIGO-Virgo-KAGRA collaboration has
observed over 90 GW signals from stellar-mass compact
binary objects [2—4]. Future GW detectors, such as LISA
[5] and the Einstein Telescope [6], will also widen the range
in parameter space of detectable systems, including signals
from extreme-mass-ratio inspirals and supermassive binary
black holes, in addition to improving our knowledge of the
deformability of neutron stars.

The use of accurate waveform templates for data analysis
is crucial and requires constant improvement to match the
increasing sensitivity of GW detectors. The post-Newtonian
(PN) scheme is well suited to describe the inspiral of compact
binaries, but its accuracy deteriorates in the strong-field
regime. The gravitational self-force (GSF) framework [7-13]
is valid in the strong field, but for small-mass ratios.
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However, by combining different analytical approximation
methods and numerical-relativity results, the effective-one-
body (EOB) formalism [14,15] produces accurate waveforms
over the entire parameter space.

Spin has a significant effect on the binary dynamics; thus,
improving the spin description in waveform models is
necessary to obtain accurate parameter estimations, which
helps in improving our understanding of the properties of
compact binaries and their astrophysical formation channels
[16—18]. To model spin effects in general relativity, we use
an effective field theory (EFT) approach, which constructs
an effective action defined on the worldline of the bodies
[19-35]. In the conservative sector, many approaches were
used to tackle the problem of the spin contributions in the
equations of motion (EOM) which now reaches the 4.5PN
accuracy [33-66]. On the other hand, the 3.5PN radiated
flux and phase, including all spin contributions, were
derived for quasicircular orbits and nonprecessing spins
[35-37,67-72]. Recently, this computation has been pushed
to 4PN by EFT methods [73]. However, the polarizations
for nonprecessing spins are only known to 2.5PN order
[58,74,75]. In the case of precessing spins, which complicate
the computations, the waveform amplitude is known to
1.5PN order, and the phase to 2PN order [74].

In the present article, we compute the spin effects in the
full waveform up to the 3.5PN order. The dynamics and
phase evolution are already known to that order, and the
remaining piece is the computation of the amplitude of the
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waveform, decomposed as a sum of spin-weighted spherical
harmonics. These harmonics complete our knowledge of the
post-Newtonian waveform, and they are a crucial ingredient
of waveform models such as the EOB approach [14,76-87].

At the 3.5PN order, three interactions arise: the spin-orbit
(SO), the spin-induced quadrupole and the spin-induced
octupole interactions. We use the post-Newtonian-
multipolar-post-Minkowskian (PN-MPM) formalism [88],
where the observables of the system are parametrized in
terms of the so-called radiative multipole moments, defined
in the radiative zone. The PN-MPM formalism allows linking
these moments to another set of moments called the source
multipole moments, which are defined over the source of the
system and are linked to the metric and stress-energy tensor.
The PN approximation is an expansion in the dimensionless
quantity v?/c? ~GM/c*r < 1, where v is the relative
velocity and M is the total mass of the binary. To make
PN expansions clear, we write 1/c explicitly in this paper,
and rescale the physical spin variable Sppygcal as

(1.1)

where y is the dimensionless spin, whose value is one for an
extremal Kerr black hole.

The paper is organized as follows. In Sec. II, we give some
definitions and conventions, and recall the relation between
the spherical modes and the radiative multipole moments.
Section III contains the technical aspects regarding the
computation of the radiative multipole moments. First in
Sec. Il A, we recall some aspects of the effective action
describing spinning effects up to the 3.5PN order. In Sec. 111
B, we give the expression of the stress-energy tensor as well
as its 3 4+ 1 decomposition. Section III C gives the general
definition of the source multipole moments. In Sec. III D we
give the PN metric and compute the potentials that para-
metrize it. Section III E is dedicated to the integration of the
source multipole moments using the potentials and the
decomposed stress-energy tensor. In Sec. Il F, we express
the source moments in the center of mass (CM) in the case of
aligned spins and quasicircular orbits. Finally, for this
technical part, in Sec. Il G, we derive the radiative multipole
moments by computing the nonlinear interactions in the
GW field. In Sec. IV, we give the results for the spinning
contributions to the amplitude modes, written in the conven-
tional way in Sec. IV A and factorized conveniently for EOB
usage in Sec. [V B. Appendices A and B contain the lengthy
expressions for the source densities and the factorized
modes. We also provide our results for the waveform modes
as Mathematica files in the Supplemental Material [89].

S= CSphysical = GmZZ’

II. SUMMARY OF THE FORMALISM

A. Definitions and conventions

In this paper, we compute the amplitude modes of the
GW emitted by a binary system of spinning compact

objects in the inspiral phase. We restrict ourselves to the
nonprecessing case which implies that, as for the non-
spinning case, the motion of the system remains planar. Let
us define the radiative coordinate system X* = (¢T,X), in
which R = |X| is the distance of the observer from the
source and N = X/R is the direction of propagation of the
GW. We denote retarded time T = T — R/c, where c is
the speed of light in vacuum. We define the spatial unitary
basis (ey, ey, e,) such that the orbital plane lies within the
(ex,ey) plane and N in the (ey,e;) plane. The two GW
polarizations /4, and h,, defined in Eq. (2.4), propagate in
the plane orthogonal to the direction of propagation N. It is
convenient to introduce the orthonormal triad (P, Q,N) by
choosing P = ey and Q = N x P.

We use the following conventions henceforth: O(n)
means O(1/c"), i.e., represents a contribution of the order
(n/2)PN at least. Greek indices denote spacetime coor-
dinates, i.e., u = 0, 1, 2, 3, while Latin indices are used for
spatial coordinates, i.e., i = 1, 2, 3. We use the multi-index
notation L = ij...i,. Symmetrization and antisymmetriza-
tion are represented by, respectively, parenthesis and
brackets around indices while the symmetric trace-free
(STF) projection is denoted by (). We adopt the signature
(=, +,+,+) and keep explicit both Newton’s constant G
and the speed of light ¢, unless explicitly specified. Finally
the covariant derivative along the worldline is written as
D/(cDz) = u*V,, where u* is the four-velocity of the
particle.

The problem is parametrized using the following nota-
tions: we use the coordinate-time ¢ parametrization. The
quantities my, y4, v4 = dy,/dt and a, = d’y,/dt* refer
respectively to the mass, position, velocity and acceleration
of body A = 1, 2. The notation SO refers to the spin-orbit
interaction, SS to the quadratic-in-spin interaction and
finally SSS to the cubic-in-spin terms.

B. Spherical harmonics decomposition
The Einstein field equations can be exactly written, by

imposing the harmonic gauge condition d,#** = 0, as

Ohw =

162G
=, (2.1)

where [ is the flat d’Alembertian operator defined with
respect to the inverse Minkowski metric #*, h** is the
deviation to the gothic metric " = |/—gg" —n", g =
det(g,,) is the determinant of the metric. Finally, 7** is the
stress-energy pseudo tensor

C4

162G

™= |g|T" + A (2.2)
where T is the stress-energy tensor and A*¥ is a function
of derivatives of at least quadratic terms in the perturbed
metric A*¥. Its expression is given in Eq. (24) of Ref. [88].
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In the coordinate system X* = (c¢T,X), the transverse-
traceless (TT) projection Aj;" of the gravitational field A**
can be, at leading order in 1/R, uniquely decomposed in
terms of a set of STF multipole moments U; and V, called
radiative multipole moments, as [90]

o+ 4G S|
hi; :ﬁpijkl(N);W Ny U o(Tg)
27
———— N, Viwr—2(Tg) ¢, 23
c(Z+1) aL-2€ab(kV 1)bL 2( R)} (2.3)
where we introduced the TT projection operator

Pijkl = Pi(kpl)j - %Pijpkl’ with Pij = 51']' - NiNj the pro-
jector orthogonal to the unit direction N. We can define the
usual polarization waveforms in the orthonormal triad
(P,Q,N) as

h, =(PP;—Q;0)hi (2.4a)

N[ =

N[ =

We can then decompose the quantity &, — ik, in a spin-
weighted spherical harmonics basis of weight -2 [91]

co 4
h=hy —ihe =Y h,Y5(0.0), (2.5)
=0 m=-¢

where the two angles (©, ®) characterize the direction of
propagation N in the coordinate system X*. In this paper,
we follow the conventions of Ref. [92]. Notably, the
explicit expression of the spin-weighted spherical harmon-
ics are given in Egs. (2.4) of that reference. The amplitude
modes h,,, are then linked to the radiative moments U; and
V through

G ‘m i ‘m
hfm_—W<U _ZV > (2.6)
where U?™ and V¢™ read!
4 [(£+1)(¢+2)
‘m __ m

U = z WGL UL’ (273.)
8 £(C+2)

m——— | ————————a™V,. (2.7b
A\ - e (27)

'Note that the choice of definitions in Refs. [79,91] on N
differs from ours by a global minus sign for each # and m due to a
different definition of the vector basis (P, Q,N).

TABLE I. Leading and required (relative to the leading) orders
of the spin contributions in the radiative moments for the full
gravitational waveform at 3.5PN. The order corresponds to the
power in 1/c and not the PN order.

Leading order Required relative order

£ Moment SO SS SSS SO SS SSS
2 U, 3 4 7 4 3 0

3 U 3 4 7 3 2
4 Uy 3 4 7 2 1

5 Usjtim 3 4 7 1 0

2V, 1 4 5 5 2 1

3 Vi 1 4 5 4 1

4V 1 4 5 3 0

5 Viikim 1 4 5 2

6 Viikimp 1 4 5 1

T Vikmpg 1 4 5 0

The STF tensorial coefficient of” = [dQN, V7" is
defined from the ordinary spherical harmonics Y*™ (or
in fact its complex conjugate ¥*™) and its explicit expres-
sion is given in Eq. (4.7) of Ref. [93].

The main result of this paper is the spin contributions in
h up to the 3.5PN order for a nonprecessing, quasicircular
motion. In order to derive them, we have to compute the
spin part of the radiative moments to consistent order.
Table I shows at which order the different multipoles need
to be computed for each spin interaction. The SO terms in
the radiated flux and GW phase have been derived in the
PN-MPM formalism up to 4PN while the SS contributions
are known to 3.5PN [35,70-72], however the radiative
moments are required to a higher order for the modes than
for the flux. This can be understood by comparing the
expression (2.3) of the full waveform, with a 1/¢ increment
for each multipolar order, to the expression of the energy
flux emitted in gravitational waves (e.g., (4.2) in Ref. [72])
as sum of squares of radiative moments with a 1/c?
increment per multipolar order.

III. COMPUTATION OF THE RADIATIVE
MULTIPOLE MOMENTS

In this paper, we use the PN-MPM formalism, see
Ref. [88] for a review. Within this approach, the procedure
to derive the radiative multipole moments is well known.
For completeness, we give a summarized version of the
method, recalling the different steps: (i) we first compute
the stress-energy tensor from the effective skeletonized
action modeling spinning particles in Sec. III A; (ii) in
Sec. III B, we decompose the spatial and temporal indices
of the stress-energy tensor to compute the source densities;
(iii) in Sec. Il D, we compute the PN metric parametrized
by a set of potentials; (iv) in Sec. III E, we derive the source
multipole moments defined in Sec. IIIC; (v) we then
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express the source moments in the CM frame for aligned
spins and quasicircular orbits in Sec. III F; (vi) finally, we
compute the nonlinear effects to deduce the radiative
multipole moments in Sec. III G.

A. Effective skeletonized action of spinning particles

In this section, we start by recalling the method of the
effective action approach to the spin-induced effects. We
follow here the presentation of [35,72], but note that a more
general formalism in the language of effective field theories
can be found in Ref. [33]. Here, we drop the particle’s label
A and set ¢ = 1 for more clarity.

The matter action is constructed on the worldline of the
individual body z*. The affine parameter along this world-
line is called 7 and will be associated after variation of the
action to the proper time of the body. We define the usual
4-velocity of the particle u* = dz*/dr such that w'u, =
—1. Attaching an orthonormal tetrad e, to the moving
body, we also introduce antisymmetric rotation coefficients
Q" = ¢ De ¥ /dr representing the rotational degrees of
freedom. The matter action then reads symbolically

Sm = / d*x Vamr') / dr LM[M”’ Y, Guv- R;wpm V/IR;wpo]

O — 2(2)
s (3.1)

where the matter Lagrangian includes finite-size effects in
the form of couplings to the Riemann tensor and its
derivative, necessary to represent spin-induced effects up
to the cubic order in spin. We also introduce the following
quantities

oL _, 0L
Py = W’ w = W’
e =6 O gupe— _p L (3.2)
OR,y po ViR, po

that represent the couplings entering the action. The
quantities p* and S* are the linear momentum and the
antisymmetric spin tensor. The moments J#*#° and J*#“»°
are Dixon-type moments [23,24,27] representing the quad-
rupole and octupole, assumed to be purely spin-induced in
our case (no other finite-size effects such as tidal effects).
The general form of the stress-energy tensor will be
expressed in terms of these quantities in the following
section.

Varying the action with respect to the worldline and
rotational degrees of freedom (together with a scalarity
condition for the Lagrangian, see (2.8) in Ref. [35]) yields
evolution equations for the 4-momentum as well as the spin
tensor:

Dpu_ 1 vspo _ L piup
D—Tﬂ = _ERI“’PGM SP —g.]}L P V,,R,lyp,,
1
5T,V Ry + O(S*). (3.3a)
DS# 4 2 Jipo
o — 2p[uub] + gRg;mJDM/m + gvﬂR‘[f:’ﬁ‘l/l] P
1
+ EVD‘RM,,;JDWG + O(8%). (3.3b)

However, the introduction of the spin tensor adds 3 degrees
of freedom to the problem. In order to close the system of
equations describing the dynamics, we impose a spin
supplementary condition (SSC). In particular we choose
to impose the Tulczyjew-Dixon SSC [22,27] which reads

S%p, = 0. (3.4)

Note that the mass p,p* = —m? is not conserved at
O(S?). Together with the equations of motion, the SSC
allows us to find a conserved mass, that we use henceforth

in this paper,

(3.5)

1
—_— vpo
m=m —ER”W,,,J” ro.

and to relate p* and the 4-velocity as

ui Spo

1 1
= mu' + —u” RMWJMW ~ 5 S* Ry jpo

6

4 2
+ 3 R, JVeoy, + 3 u, V'RV, J 0

1 1
+e u, VIUR, ,, V7 — e STV R

+O(8%). (3.6)

The norm of the spin tensor

I
2

52 S

Hv

s (3.7)

is conserved at the spin-cubic order that we con-
sider: ds/dz = 0.

Imposing that the quadrupole and octupole moments are
purely spin-induced with the appropriate symmetries, we
find

Jupo — 3% ult $MAS, Pyl (3.8a)
m
%) Ao
Jwe — 1@ ke yrlsre 1 @Al 0l Suv
4m?
— @ svllpyol — @l Solluyl — gAlk@Mllpyol
— SHr@allyM], (3.8b)
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where we used the notation @ = S$#4S¥,, with quadrupolar
and octupolar parameters «, A normalized to unity for a Kerr
black hole.

With the SSC (3.4), one can construct a spin vector S¥
from the spin tensor S#*, that also has a conserved norm by
construction. They are linked using the orthogonal unit
vector p*/m (the mass correction (3.5) is irrelevant at our
PN order in spin terms) through the relations

Py

s = g Lo g (3.92)
§ = — L Prg (3.9b)
26 e

where €"7? is the Levi-Civita tensor. One can further
construct a 3-dimensional spin vector with conserved
Euclidean norm S (see Sec. II C in Ref. [72]), which we
use in our final results.

For the two-body problem, the equations of motion
(EOM) of the individual bodies as well as the precession
evolution of the spins have been derived in harmonic
|

coordinates in Refs. [33,35,51,60,72] and known at the
considered PN order of the problem so that we do not need
to solve them here. The precession equation in terms of the
3-dimensional spin vector reads § = Q x § where Q starts
at O(2). We recall that in our problem, we have rescaled the
spin variable as in Eq. (1.1) to explicitly write the ¢ factors.

B. Effective stress-energy tensor and source densities

Equations (2.23)—(2.25) of Ref. [35] give the general
form of the stress-energy tensor in terms of p#, S#, JHre
and J#*P°_ One can rewrite this expression as

T = (U84 + Vo (UY“8,) + V V(U 5,)
A

+ VYV, (UR5,)], (3.10)
where 8, = 6@)[x —y,(¢)] is the usual three-dimensional
Dirac distribution. In our case, the expression of the U’s, up
to the octupolar level, are given by

W= 7 \1/__9 (pﬁ;” uy + %RA Uo7 + évﬂRA Uo7 + 1—12 V<”RA&,MJZ)§’”") : (3.11a)
v 73@{1\/——9 (3@;‘552” - %RA O i U RAa&,,Jg’”)&") : (3.11b)
yret — ——3u9i/__g s, (3.11c)
U = = 1/__9]2/3(”")“, (3.11d)

where 4} = dt/dz,. The goal of this section is to decom-
pose the spatial and temporal indices of the stress-energy
tensor in order to make the factors in ¢ explicit. After
restoring the ¢ powers in the expressions, we first express
the covariant derivatives in terms of the partial derivatives
and the Christoffel symbols, then separate spatial and
temporal indices. The practical formulas to perform this
decomposition are given in Sec. II B. of Ref. [94]. Then, the
source densities are defined by

- TOO + Tii

T()i
o = =

6,’ —_—,

Gij = le
C C

(3.12)

[

These quantities source the PN potentials as well as the
source multipole moments. We provide in Egs. (Ala) the
values of their spin contribution. As we will see later on, ¢
is required up to O(7), o; to O(6) and o;; to O(4).

C. Source multipole moments

In the PN-MPM approach, a crucial step to compute the
radiative moments is the derivation of the so-called source
multipole moments, which are expressed as integrals over
the source. The mass and current source moments are given
by [88]

402¢ 4+1) |

r\& [1
1,()=FP | dx(— dzd 6,5, % — 5,01 %, =W
L() BO/ X<r0) /_1 Z{ 299 C2(f+ 1)(2{4»3) 41 XiL &

212 +1)
A+ +2)20+5

)5f+2)?ijL25]2'>}(X’ t+zr/c),

(3.13a)
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20 +1

2 (1)
- Cz(f + 2)(2{ + 3) 6f+1'xL—1>aczbc }(Xv t+ Zr/c)’

where we have 6,(z) = a,(1 —z*)" and a, = (2¢ +
1)!!/2f+]f! and

00 ii 0i
0+ T
Y =

C C

The explicit expressions of the source moments in terms of
the source densities and the PN metric are given in
Eqgs. (4.7) of Ref. [95]. Furthermore, the computation of
the general expressions of the source moments requires the
introduction of a regularization. In this paper, we use the
Hadamard partie finie regularization, denoted by FP in
which we introduce the scale constant r [96]. The integral
over z can be easily integrated after performing a PN
expansion

/1 dz6,(2)Z(x,t+ zr/c)

1

= e+ AN
= b e e) 2o 613

For the computation of the radiative moments at the order
we aim at, we also need to compute another set of moments
called gauge moments (W, X, Y, Z; ). They are required
to low order and admit similar definitions that can be found,
e.g., in Egs. (125) of Ref. [88].

From Eq. (2.2), we see for example that
Z; = |glo;; + &Ai j- This means that the multipoles
are sourced by the densities derived in the previous section,
as well as the nonlinearities of the gravitational field A*
through the PN metric. The relation between the source and
radiative moments, given in Sec. III G, shows that the
source moments are to be computed at the same orders as
the ones displayed in Table I. This implies that, looking at
(3.13), we require Zup to O(7), Z; to O(6) and Z;; to O(4),
which is why the source densities were required to these
orders.

D. Post-Newtonian metric and potentials

In the post-Newtonian framework, the metric is para-
metrized by a set of elementary retarded-type potentials that
satisfy sourced wave equations. In this problem, we need
the 3PN metric, which is given by [97]

r\B [1
) / d2{5f5€L—1>aZb
-1

JL(t) _£%€ab<if/d3x(70

(3.13b)
|
2 2 8 [+ V3
goo——1+?V—FV2+F<X+V]<V]{+€>
16 / v* A .
+3 <—ﬁ —VV, Vi = VR 2RV, + 2T>
+ 0(10), (3.16a)
4 8. 8 S
90i = —gvi —ERI' —?(V Vi+ ViWy +2Y;) + 0(9),
(3.16b)

2 02 . 8 (, Vv?

4 . 8 . .
+ g Wi+ 5 (22ViV; + VW +22;) + O(8),

(3.16¢)

where the potentials are defined below. Note that an
extension of this parametrization is known at 4PN together
with the definition of the potentials required to this order.
They are displayed in Appendix A of Ref. [98].

However, in the present paper, we do not need to use the
full metric. Instead, we need to know the source of
the multipole moments to consistent order. It turns out that
the only potentials that have a nonzero contribution to the
spin effects in the source multipole moments are the
following

V = OF [-44Go), (3.172)
V; = Og![-47Ga. (3.17b)
Wi = O [-42G(0y; = 6ij01) — ;V 9, V], (3.17c¢)

N I 3
Ri = |:17_21 —477.'G(V0i — ViG) — 26kV6in - ZO,VOIV] s
(3.17d)
X =0z |-42G Vo, + W,;0,;V 4 2V,0,0,V
2 3 2
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TABLE II. Orders at which the potentials are required for the
spin contributions in the full gravitational waveform at 3.5PN.
LO refers to the leading order of the contribution of the
interaction while RO refers to the relative order required.

SO SO

Potential LO RO LO RO
\% 3 2 0 0
V; 1 3 0 0
Wi 1 2 . e
R, 1 1

X 1 0

Z 1 0

Z:

Zij = D'/_gl _471'G(O','j - 5,~/~0kk)V - 2()(,V6,Vj) + a[Vkaij
+OV,0V = 20,V,0,V

3
—=0;;0(Vi(0V, =0, V) — 151']'(5:‘/)2 , (3.17f)

where D;QI refers to the retarded flat d’ Alembertian. More
specifically, we are interested in the spin contributions to
these potentials as their point-particle part are already
known. As we can see, the potentials are sourced by the
source densities derived in the previous section as well as
other simpler potentials.

To find the specific orders at which we require the
potentials, one has to look at the order at which the
potentials enter in X, ¥;, and %;; including also the order
of appearance in the source densities o, 6;, and o;;. The
orders required for each interaction are displayed in
Table II.

Note that the SSS interaction does not appear in Table 11
because it will play no role in the expressions of the source
moments. More details regarding this affirmation are given
in the following section. The regularization scheme used to
compute the potentials is the Hadamard regularization [99].
The methods used to compute the spin part of the potentials
to these orders are detailed in, e.g., Sec. IV of Ref. [50]. An
interesting feature of the SS interaction is that, as explained
in Ref. [72], the potentials V and V; contain distributional
terms which are crucial to take into account for the
computation of the source multipole moments.

E. Computation of the source multipole moments

This step in the overall project is the most technical
one. However, no new methods were required and we
used the same computational techniques as in, e.g.,
Refs. [50,72,98,100]. Thus, we refer to these articles for
more details.

As discussed above, the X’s are composed of the source
densities and the nonlinearities of the gravitational field
whose dependency comes through the potentials. Thus, the

multipole moments are integrals sourced by three types of
terms: the compact terms, the noncompact terms and the
surface terms. Note that the sources of the moments can be
written in different ways. For example a term of the form
f d®x %,0,V0,V can be rewritten, dropping here the FP
notation, as

/ #Bx%,0,Vo,V = —47G / Bxi oV

+%/d3x5cLA(v2)+O(2)- (3.18)

We see that the left-hand side, which is a noncompact term,
can be turned into a sum of a compact and a so-called
surface term.” The multipole moments have been inde-
pendently computed and double checked using different
formulations for their sources. It is crucial to take into
account the distributional derivatives induced in the left-
hand side of (3.18) in order to recover the value of the right-
hand side.

At this stage, after integrating Eqgs. (3.13) for required £
to consistent order, we obtain the expressions of the source
moments in a general frame for arbitrary orbits. In
particular, we assumed neither the aligned-spin nor the
quasicircular orbits conditions. The lengthy expressions of
the source moments are not displayed in this paper,
however we recall here their leading PN order for the spin
contributions [35]

(I)ns = myl” +1 4 2+0(2), (3.19a)
(To)ns = yiobe?lioyl™) 41 & 24 0(2), (3.19b)
20 a ab (i, L=1
(I1)so = m[fvlSlfe Plic !
— (€= )Mty 1
< 2+0(5), (3.19¢)
C+1 i -
(Jr)so = TSi V41 e 2400), (3.194)
A
(Ip)ss = _7(2m1c2 1 SYS{"yf Tile2+ 0(6),

(3.19)

*The second term of the right-hand side is called a surface term
because we only need to know the expansion in r of V> when
r — oo to compute it.
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(f_ ])K a abli, Qle- -2
(JL)ss = W[Zvlsife b( ¢Sy ]yf )
— (f _ 2)_)711] 8uh<l/>Slf |Sl/ » L— 3>]
+102+00), (3.19¢)
(—-1)(¢-2)2 b bl it i X
(IL)sss = 3(f+1)m2c7 l[ v Sh h(/S/ sz L )
1
+ (f - 3)y‘115?g“b<ifv’if’—lS’it’—lsif—z ,U’if—j&yf—‘l')]
+1<24+0(8), (3.19¢g)
l == i i I
(‘]L)SSS = ( + )( )g ) IS§ fSlt’—ISl/_zy]L 3)

(3.19h)

where NS refers to the nonspinning contributions. As stated
in the previous section, the SSS interaction plays no role at
the level of the radiative moments. Indeed, the only mass-
type moment in which the SSS appears is for £ = 2 which
vanishes due to the ¢ —2 factor and similarly for the
current quadrupole. The source current octupole has a
nonzero contribution. However, to obtain the radiative
current octupole, one has to perform a time derivative
which operates on the spin vector. Since S 1= 0O(2), the
SSS contribution to the radiative moment is higher order.

F. Reduction to quasicircular orbits in the CM frame
for aligned spins

In this section, we reduce the expressions of the source
moments in the CM frame in the quasicircular orbits
approximation without precession. The first step is to express
them in the CM frame. We define as usual the quantities
M = m +m2, 0= (ml - mz)/M, UV = mlmz/Mz, r =
i =yl m=(y1 —y2)/r. v =v; =¥y, k. =K £k, and
Ay = A1 £ 4,. The CM frame is defined as the frame in which
the CM position of the system G’ vanishes. It allows us to
express the positions and velocities of the two compact
objects in terms of the dynamical variables of the system

yM = %m +z . (3.20a)
ywz—%m+a (3.20b)

and similarly for the velocities. The function z is a higher
order quantity known from previous works [35,51,72]. We
also introduce the following combinations of the individual
spins

S=8 +8,, (3.21a)
M M

2=—85-—5 (3.21b)
nmy nmy

With these relations in hand, we obtain the source
multipoles in the CM frame.

The next step is to impose the aligned-spins condition
which drastically simplifies the computations. In particular,
this implies that the orbital motion remains planar and that
the two individual spins are aligned with the total angular
momentum of the system. We can define the unitary vector
¢ =nxv/lnxv|. In the absence of precession, ¢ is
constant and coincides with e, defined in Sec. I A. The
spin combinations S and X are also directed along # such
that

S=5,¢ (3.22a)

=27 (3.22b)

The last step is the reduction to quasicircular orbits. As
for the nonspinning case, the acceleration @ = a; — a, is
directed along n as

a=—ro’n, (3.23)

which defines the orbital frequency w. Note that we neglect
the radiation reaction force in the EOM because we are
interested in the spin contributions to the acceleration. The
spin contributions to the radiation reaction term is at least of
order O(8), which is a higher order than required. The
EOM (3.23) are known from previous works [35,72]. In
this approximation, v = —rwA where A completes the time-
dependent orthonormal basis (n,4, 7€) as A = € x n. With
this parametrization,

n(t) = cos ¢p(t)ex + sin ¢(r) ey, (3.24a)
A(t) = —sin ¢(t) ex + cos ¢p(t) ey,  (3.24b)
(1) = ey, (3.24c¢)

where ¢ is the phase and is given by ¢ = [drw. After
defining the usual PN quantities

- (3.25)

GM <GM w> 2/3

X = ,
we can read the expression of @? in terms of y. Then, we
invert this relation to obtain y in terms of w and thus x
which leads to

gso Jss Jsss
y=x|1+xgns +x°2 GM2 +x 2G2M4 Jr)C7/2G3Me +O(8)] ;

(3.26)

where gng and ggq are given in Eq. (4.3) of Ref. [51], ggg in
Eq. (3.32) of Ref. [72] and gggg in Eq. (6.15) of Ref. [35] at
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consistent order. This allows us to express the source
multipoles in terms of the orbital frequency and thus x.

G. Nonlinear contributions to the radiative moments

Once the source multipoles are known in the CM, we
follow rigorously the procedure in Ref. [92] to compute the
radiative moments. Without precession, there are no addi-
tional technicalities and the problem is equivalent to point-
particle.

To link the radiative to the source moments, one has to
introduce the canonical moments (M;,S;) which are
related to the set of source and gauge moments
(Ip,Jp, Wi, X1, Y1, Z;) (see [92] for an account of the
procedure). The computation of the canonical moments is
detailed in Sec. III G 1. Once the canonical moments are
known, we can deduce the radiative moments through the
following relations

U, = M(Lf) + (nonlinear terms), (3.27a)
V= Sf) + (nonlinear terms), (3.27Db)

where the nonlinear terms are at least of order O(3), so for
radiative multipoles that are required at a low order, their
contribution vanish. They are composed of three different
types of contributions: the instantaneous terms, the tail
terms and the memory terms. The computation of these
different terms are detailed below.

1. Link between source and canonical moments

The relations between the canonical and source moments
take the form

S, =J,+d6J;, (3.28b)
where 6/; and 0J; are nonlinear corrections made of
products of source and gauge moments, and starting at the
2.5PN order. The full expressions of 61; and 6J;, up to the
3.5PN order are displayed in Sec. III. B. of Ref. [101].
Recently, the expression for 61;; has been derived up to the
4PN order [102]. For the spln contributions, we have
explicitly

[61;;]s = O(8), (3.29a)
12G
(6L i) = R [1<in,(€;)]5 + O(8), (3.29b)
2G o) @, 1)y
[6J:]g = = [eah<i(_lj>bwa —2UppYa + 1Y)
1
+ 3J<iW§>)} S HOB), (3.29¢)

where the spin parts of W, Y; and J; for aligned spins are
given by [J]lg=S,/c, [W]s=vrEA/4c and
[Yi]g = vrwZ,n' /4c. With these relations in hand, it is
very straightforward to compute the canonical moments.
They have been computed at the same orders as those
displayed in Table I. After obtaining their expression, one
has to perform a time differentiation to obtain the linear part
of the radiative moments.

2. Instantaneous terms

At the 3.5PN order, the instantaneous terms are quadratic
interactions of the canonical moments and their complete
expressions are displayed in Sec. III. A. 1. of Ref. [92]. The

My =1 +6lp, (3.282)  relevant spin contributions of these terms are the following
|
. 2G 1
U = = [g Eab(i )Sb:| + O(8), (3.30a)
iy _ O] 2)3,0) 2)g0) _ 36(1)3,) (1))
[U’/k] S §€“b<( 1254 Mg - 3M; S> _3Sngk>b_27Mjg Sk)b
— 8, M,—9M S}, s M8+ 25| Lo 3.30b
4°¢ jk)b)+? (i jk>S+ ()’ ( )
vin) = O 14s@y0) 4 gy@g0) | 17500 — 33 s
[ ij ]S Te 7.5 a(i™ j)a + a(i®;j ali - )
) ) ®) Q)
+98,iM ), =3M ;S = ZS M, — 7eab<,~SgSj>b} . +O(7), (3.30c)
ins 26 4
ViRls=-= [SaM +0(6), (3.30d)
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They are treated as 6/; and 6J;. In these equations, S;
and §;; correspond to the current canonical moments and
not the spin vector or tensor of the individual bodies. Note
that these interactions are to be evaluated at the retarded
time T, =T — R/c.

3. Tail terms

The tails correspond to time integrals over the past of the
source. Their expressions are known for each . For the
spin effects at the order considered, we only need to
compute the following ones

. 2GM [+ T T 11]
ail] 4)
oyl =250 [ a5 ) + 33 s - 0,
(3.31a)
2GM [+ T 97]
il (5
[Uids == @ _111 <%> +@_ M(Tg — 7)),
(3.31b)
2GM +oo T 7 4
ail )
Vil =20 [ aen(55) + |-
(3.31¢)
2GM [+ T 5]
ail (5)
vatl, =20 [ arn(55) + 3]s -
(3.31d)
2GM [+ T 119
ail (6)
[ngkl]s 3 0 d [1 <2b> + 60][ ijkl(TR T)]S’
(3.31¢)

where we introduced an arbitrary timescale constant b. The
mass monopole M, or ADM mass, differs from the total
constant mass M through the relation M = M + E/c?
where E is the conservative binding energy of the system.
This implies that the spin contributions in M start at O(5)
and thus do not need to be taken into account in the
computation of the tail terms as they are of higher order.

To compute the tail integrals, we consider the aligned-
spin case. There are no precession effects to consider here
and the evolution of the dynamics of the binary is quali-
tatively the same as for the usual quasicircular orbits, with
the aligned conserved norm spins acting simply as constant

1
—SSaMy | +00).
S

—SoSeIMy) - Mlsy) - s M) - = M) st

(ij " kl) 6 (ij = ki)

D P (3.30e)

vectors. This is to be contrasted with the more general case
of binaries on quasicircular but precessing orbits (as defined
for instance in Ref. [74]), where one must solve analytically
the dynamics consistently with the order at which the
analysis is carried, to be able to compute these integrals.
The idea to compute these integrals in the nonprecessing
case is to project the moments in the spatial basis (ey, ey, ;)
defined in Sec. IT A using the relations (3.24) and assuming
that the separation r is constant over time.? By doing so, we
find one-dimensional integrals of the type [$°dy In(y)el®
that are computable analytically [105].

4. Memory terms

The memory terms, as well as the tail terms, are called
hereditary effects in the sense that they are integrals over
the past of the source. They are integrals of quadratic
interactions of canonical moments and only appear in the
mass-type multipoles [106]. In our case, only the mass
octupole moment contains a spin contribution to the
memory terms according to

mem 4G [+eo 3 3
[ ijk ]s = —5? A dT[eab(iMﬁ‘g)(TR - T)S](<>Z(TR - T)]S
+O(7). (3.32)

For the mass quadrupole, the spin contribution to the
memory effects are of order O(8) and thus do not need
to be considered.

The computation of the memory terms differ from the
one of the tails because one cannot assume that the
separation r is constant. We have to take into account
the radiation reaction. As for the tails, we project the values
of the moments on the basis (ey, ey, e;). By doing so, we
encounter integrals of the type

einb(?)

Tr d
/_m ()

where n is a nonzero integer, p is a half-integer, and ¢ is the
phase variable defined in Sec. III F, which satisfies ¢p = w.
As we can see, if we assumed the separation to be constant
over time, this integral would diverge. At leading order, the

(3.33)

3It has been shown [103,104] that for the tail integrals, such an
approximation is valid because the remote past of the source is
negligible when compared to its recent past. On this timescale, r
does not have the time to vary significantly and can be assumed
constant.
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separation scales as r(7) ~(—7)!/* and the phase as

¢(7) ~ (—=7)*%, which allows us to compute this integral,
as detailed in Refs. [92,104].

One can also encounter integrals of this type with n = 0,
which can be computed analytically as well. However, the
main difference from the case n # 0 is that they induce a
factor ¢3. This means that their contribution is of order
2.5PN lower than the initial order of the memory inter-
action. Thus, when using the PN-MPM formalism, we
cannot be consistent to the 3.5PN order for these terms
since it requires the knowledge of the general memory
interactions at higher orders. Fortunately, these integrals
only contribute to the modes for m = 0, which we do not
derive in this paper. More details about these peculiar
modes are given in Sec. [VA.

After combining all the previous intermediate results, we
derived the radiative multipole moments in the quasicircular,

A. Spin-weighted spherical modes

The amplitude modes defined in Eq. (2.6) can be written
in terms of the phase variable ¢ defined in Sec. IIIF.
However it is convenient to introduce a new phase variable
y that allows factoring out the logarithm dependency on the
orbital frequency induced by the tail terms in the radiative
moments. The new phase variable reads

2GMw W
V= ¢ - C3 In <_> ’

@

(4.1)

where the constant wy is linked to the timescale constant b
introduced in Eqs. (3.31) through wy = 7zexp[{} — 7g] and
we recall that M is the ADM mass. The amplitude modes
then read

spin-aligned approximations at the orders displayed in 2GMvuvx |[l16x . iy
Table 1. To obtain the amplitude spherical modes, we insert hem = R 2 ?H ¢m€ ’ (4.2)
the obtained expressions in Eq. (2.7) and then in Eq. (2.6).
where we recall that
IV. RESULTS
We now present the waveform modes. In Sec. IVA, we = GMw)\ 2?3 (4.3)
express them in a PN expansion following, e.g., [92,101], 3 ’ '
whereas in Sec. IV B, we factorize them in a way that is A
suitable for the EOB approach and notably template building. ~ The spin part of the H,,, are given by
|
. x3/2 2 163 92 1 20
HY = |28, 23,0+ (S, —— — = T -+ =
2 GMz{ £73% +< ‘”( 63 63y)+ ‘ < 21+63”>)x
4 4
+ ((—gl - 47[) Sf - gﬂ'Zgé)x?,/z
(s 1061 +4043 +@ 2\ i 3931 +7813 n 1025 , 2
\"84 Tsa VT ea” ©\756 " 318" 252"
2 [, (1 1
‘I—W SK(Z —+ K+) —+ Sfo(zé —K_+ 5K+) + Zf _55,(_ + §K+ —2v— K+I/
Y (ool L L B o
T3 T T T T
481 43 43 48 34
+Sf25(—§5+ﬁl€_—i51€+ 51/—7K_l/+ﬁ51<+1/)
5 43 43 172 89 25 68 34
yaf_2 22 _* e o7 fd 20 2T 2
* b’< R TR L R TR T R S VL YL ))x
+ w(S2(4 4 2k, ) + S;Zp(46 — 2k_ + 26k, ) + X2(—=6k_ + Kk, —4dv — 2K+1/))x3/2}
x7/? 32 2 527 1
+W |:S; (? - §K‘+ - 2/14,) + S%Zf (;5 — gK_ —§5K+ -+ 3/1_ - 36&4,)
20 112 2
+ 5,22 <? —36k_ + 3k, +36_ =31, — ERE L 6ﬂ+1/>
5 5 20 11 1
+ 33 <—§K_ + §5K+ +A_—86l,——06v —i-?K_IJ - §5K+1/ -3 v+ 6/1+y>} , (4.4a)
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. ix 86 79 139 i .
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63 8797
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31\/ 15x5/2 [ @
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+Z§<35—7K_+75K+—3251/4—71('_1/—75]('_,_1/4—125U2—28K_U2+65K+I/2>>x:|, (4.4¢)
. 2¢/5x3/2 13 73 31
A, =—"" _|S,+% 5+<S (——+—u>+2 5(——+5u>>x+ S,(—i+4 27) + Z,8(=3i + 27))x3/?
; MGMZ[f o (s (=B B) yxs( -2 (S,(=i + 27) + 2,0 )

(g (4890 15413419 L\ o (19241 808 16153 5\
\1320" 792 V"8 Y “°\ 3960 ~ 55 ° " 3960 ©

+9\8/.\/(;;M4 {S < l—g&c —I—zmr 31/_49‘.’(+1/>+Sf2f<_§5_zk_+;5k+_g5l/+14.5’(_1/_‘9‘.5K+I/>
+22<—§—%5K —l—il('+—|—31/+§5l€ V—3K+U+Zl/ +2K+I/2):|
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As stated in Sec. III G 4, we do not derive the &,y because
the PN-MPM formalism does not allow computing the
memory terms to consistent orders. However, other methods
were used in the literature to compute these nonoscillatory
modes and their spin contribution are displayed to the 2PN
order in Appendix A of Ref. [107].

For planar motions, the modes for negative m are related to
those for positive m through h, _,(¢) = (—1)"""h},,
(¢ + ) which translates for the amplitude to H, _, =

(=1)?H3,, where the star notation refers to the complex
conjugate. The modes displayed above are in agreement with
the literature, and notably with the modes derived for a test
particle around a Kerr black hole [79,108].

B. Effective-one-body factorized modes

Conveniently for EOB waveform models, we write the
PN-expanded waveform given by Egs. (4.2)-(4.4) in a
factorized, resummed form as [77-80]

(N.e ;
p )Tfmelémft’mv

nt,, h (4.5)
where €, is the parity of £ +m: ¢, =0if —1—1\1/11 1)s even,
and €, = 1 if £+ m is odd. The first term Kt om “ is the
leadmg (Newtonian) order waveform, which is known for
any (¢, m) [90,91], and its explicit expression is given in,
e.g., Eq. (3) of Ref. [79]. Note that the convention for the
definition of the waveform modes differs by a global minus
sign between this paperN%nd Ref. [79]. However this
difference only affects h,, ”", while the other factors in
Eq. (4.5) are not altered.

The (dimensionless) effective source term S’eff is given
by either the effective energy E 4 or the orbital angular
momentum p,, both expressed as functions of v=

(Mw)'/? = /x, such that*
. —Eef;l(”), ¢ + m even
Seff = P,/,( ,) > (46)
UM_M N lxﬂ +m Odd

where y = m;m,/M is the reduced mass, and E is related
to the total energy E via the EOB energy map E =
M \/ 1+ 2v(Ey/p —1). This source term is motivated
by the Regge-Wheeler-Zerilli equation [109,110], whose
source depends on the stress-energy tensor for a test body
in a Schwarzschild background.

The factor T, resums the infinite number of “leading
logarithms” entering the tail effects [111-113], and is
given by

“In this section, we use units in which ¢ = G =1 to simplify
the notation.

r —2ik) ;.2
(2 +1-2ik) ok p2ikIn(
r(#+1)

2mawr)
b

Tfm = (47)

where T'(...) is the Euler gamma function, k= mokE, o is
the orbital frequency, and the constant 7, takes the value
2M/+/e to give agreement with waveforms computed in
the test-body limit [79].

The remaining part of the factorized modes is expressed
as an amplitude f,,, and a phase §,,,, which are computed
such that the expansion of i, agrees with the PN-expanded
modes in Eq. (4.2). To improve the agreement with
numerical-relativity waveforms, f,,, is further resummed
as [79,80] fsm = (psm)¢ to reduce the magnitude of the
1PN nonspinning coefficient, which grows linearly with .
For spinning binaries, the nonspinning and spin contribu-
tions are separated for the odd m modes, such that

f { p?m, m even (438)
e (PNSY + 5, modd '

where pfm is the nonspinning part of p,,,, while f ?m is the
spin part of f,,,.

To simplify the expressions for the factorized modes, and
to be consistent with the notation used in the literature, we
introduce the dimensionless symmetric and antisymmetric
spin parameters

1 S, + 6%,
== _ 2T 0% 4.9
Xs 2()(1 +12) WGM? (4.9a)
1 88, + (1—2)%,
= — — e ) 4-9b
5 1= x2) 5O (4.9)

and define the following combinations of the spin-
multipole constants and spins:

fs =5l - )+ Ak~ D). (4.10)
fo= 5l = 1) =Bl -], (100
s E%mul )44 =1 (4.100)
=5l ~ D -A -] (4100

which equal zero for black holes.
For the (2, 2) mode, we obtain
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(4.11b)

where we only write the nonspinning part to the order needed for the 3.5PN spin contributions. The energy E in &, i

replaced by the Hamiltonian in EOB waveform models.
For the (2,1) mode, we obtain
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In the odd m modes, the functions f,,, and 6,,, depend on
1/6, which diverges for equal masses. However, since the
leading order of these modes is proportional to &, the PN-
expanded modes do not diverge. Thus, in EOB models, one
needs to treat the equal-mass limit separately, as discussed
in Appendix A of Ref. [87].

We note that the O(v%¢%1?) terms in the (2,1) mode
disagree with those used in the SEOBNRv4HM model [87].5
Those terms were used in SEOBNRv4HM based on unpub-
lished results by one of the authors of this paper. However,
we checked that the SS contributions to the (2,1) mode
should be given by Eq. (4.12).

Interestingly, we also find a discrepancy with literature
[80,114] in the NS part of J,;, which was required to derive
the spin terms in the factorized waveform. The difference is
in the radiation reaction term O(vv°) which, in these
papers, has a coefficient —493/42. After investigation,
we found out that this value came from a wrong expression
for the (2,1) mode in Ref. [92], which was later corrected in
an erratum, but the factorized mode was never corrected.
The coefficient —493/42 should read —25/2 as we see in
Eq. (4.12c¢).

Explicit expressions for the other modes are given in
Appendix B. We also provide all expressions as a
Mathematica file in the Supplemental Material [89].

V. SUMMARY

We computed the spin contributions to the spherical-
harmonics modes of the GW polarizations to the 3.5PN
order, for nonprecessing spins in quasicircular orbits. We
used the PN-MPM formalism to tackle the computation of
the radiative multipole moments, which were required to
a higher multipolar order than what was known in the
literature. We also derived the spin contributions to the
hereditary tail terms, as well as other nonlinear interactions
between the moments.

Our results include all spin terms, i.e., all SO, SS and
SSS terms to that order. We wrote the waveform modes
in two forms: in the conventional PN-expanded form, as
well as a factorized form convenient for the EOB approach.
The factorized modes we obtained are in agreement with
Refs. [79,87] except for the three terms O(1%y??) in
the (2,1) mode used in SEOBNRv4HM. As stated in
Ref. [87], these terms came from private communications
and are now corrected. We also corrected a NS term in the
quantity 0,;.

The results derived in this paper can be useful in
improving analytical waveform models. Interestingly,

>The difference, for black holes, is given by

165 , 8Tyuzs 165 ,
& (112 Mtse s Tk

(4.13)

S, (this paper) S,(SEOBNRvAHM) _
f21 _le

preliminary implementation of some of our results in an
EOB waveform model showed a good improvement when
compared to numerical relativity [115].

Future work will focus on relaxing the nonprecessing
approximation as well as the quasicircular-orbits condition,
which is important to improve waveform models for
eccentric orbits and precessing spins.
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APPENDIX A: SOURCE DENSITIES

The explicit expressions of the spin part of source
densities are given by

4
c7,/—g
1 2 ia,,a
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where v3 = viok.
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APPENDIX B: EXPLICIT QUANTITIES OF THE FACTORIZED MODES

In this Appendix, we write the explicit expressions for the factorized modes (see Sec. IV B). The (2,2) mode is given by
Eq. (4.11), the (2,1) mode by Eq. (4.12), while the other subdominant modes read
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