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1   |   INTRODUCTION

The human auditory system is remarkably sensitive in per-
ceiving repeating patterns in acoustic input (for a recent 
review, see Chait, 2020). In fact, the sensitivity to complex 
acoustic patterns in rapid tone sequences has been found 
to be comparable with that of an ideal observer, and does 

not even require attention (Barascud et al., 2016). Efficient 
perception and memory of spectrotemporal dynamics 
(i.e., changes in the frequency spectrum over time) play 
an essential role to understand and successfully interact 
with the environment because auditory information, by its 
very nature, only carries meaning as a sequence unfold-
ing in time (Chait, 2020; Maravall et al., 2018). Especially 
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Abstract
It is remarkable that human listeners can perceive periodicity in noise, as the 
isochronous repetition of a particular noise segment is not accompanied by sali-
ent physical cues in the acoustic signal. Previous research suggested that listeners 
rely on short temporally local and idiosyncratic features to perceptually segment 
periodic noise sequences. The present study sought to test this assumption by 
disentangling consistency of perceptual segmentation within and between listen-
ers. Presented periodic noise sequences either consisted of seamless repetitions 
of a 500-ms segment or of repetitions of a 200-ms segment that were interleaved 
with 300-ms portions of random noise. Both within- and between-subject consist-
ency was stronger for interleaved (compared with seamless) periodic sequences. 
The increased consistency likely resulted from reduced temporal jitter of poten-
tial features used for perceptual segmentation when the recurring segment was 
shorter and occurred interleaved with random noise. These results support the 
notion that perceptual segmentation of periodic noise relies on subtle temporally 
local features. However, the finding that some specific noise sequences were seg-
mented more consistently across listeners than others challenges the assump-
tion that the features are necessarily idiosyncratic. Instead, in some specific noise 
samples, a preference for certain spectral features is shared between individuals.
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(spectro-) temporal regularities act as a particularly useful 
cue during auditory scene analysis, enabling identification 
and segregation of sound sources, the temporal segmenta-
tion of a continuous signal, prediction of future events and 
detection of changes in the environment, thereby facilitat-
ing higher-level cognitive processes and planning of adap-
tive behavioral reactions (Bendixen, 2014; Bregman, 1990; 
Nelken et al., 2014; Winkler et al., 2009).

The present study focuses on how periodic recurrences 
of complex acoustic patterns embedded in a continuous 
sound signal enable temporal segmentation of the sound 
stream. In particular, we are interested in within-listener 
and between-listener consistency of temporal segmenta-
tion of random auditory waveforms (i.e., noise). For this 
type of stimulus material, temporal segmentation needs 
to be mainly guided by the memory-based detection of re-
currences of spectrotemporal patterns because the sound 
signal itself does not contain a limited number of salient 
features, but a multitude of only subtle acoustic cues that 
could be used for bottom-up driven segmentation.

1.1  |  Periodicity detection in 
acoustic noise

Remarkably, recurring patterns can even be detected in 
acoustic material that is otherwise largely unstructured, 
such as white noise. Physically speaking, white noise is 
a random signal generated from a series of uncorrelated 
samples, which results in a flat power spectrum. It is per-
ceived as a homogeneous sound texture devoid of out-
standing characteristic features (such as pitch or envelope 
modulations) that would make it easy to distinguish dif-
ferent specific noise tokens or detect repetitions of a spe-
cific segment within a noise sequence (Kaernbach, 2004). 
Listeners were found to be able to behaviorally recognize 
periodicity in noise without prior training (Guttman & 
Julesz, 1963) and tap consistently to the perceived struc-
ture in periodic noise across presentations of the same 
noise sequence (Kaernbach,  1992, 1993; Limbert & 
Patterson,  1982). However, several studies observed dif-
ferences in tapping consistency between different subjects 
and between different noise samples (Kaernbach,  1992, 
1993; Limbert & Patterson, 1982). The authors attributed 
these differences to the virtually infinite number of percep-
tual features within a noise sample that may become sali-
ent after periodically repeated exposure and are perceived 
as “clanks” or “rasping” (Kaernbach, 1992, 1993; Limbert 
& Patterson,  1982). Although it has been proposed that 
representations of complex acoustic input generally rely 
on statistical sound information that is averaged over time 
(thereby reducing required storage capacity and temporal 
detail), repeated presentation might enable the retention 

of temporally local details that would not be retained when 
hearing the stimulus only once (McDermott et al., 2013).

Detection of periodicity in noise sequences is also re-
flected in characteristic electrophysiological responses. In 
the first studies, naïve listeners were presented with (inter-
leaved) periodic noise sequences, that is, short noise seg-
ments recurring isochronously, alternated with portions of 
random noise between the repetitions. They found an early 
frontocentral negativity that was time-locked to the onset 
of the repeating segment, and its magnitude was positively 
correlated with participants' performance in detecting dis-
ruptions in the periodicity (Kaernbach et al., 1998). Notably, 
the onset of the repeating noise segment elicited a negativity 
irrespective of whether or not listeners attended to the au-
ditory stimulation (Berti et al., 2000). It was associated with 
automatic memory-related processes, tuning the auditory 
system to enhance its perceptual sensitivity to subtle features 
in the recurring noise segment (Kaernbach et al., 1998).

1.2  |  Perceptual learning of periodic 
white noise

The ability to detect temporal regularities and make use 
of them to structure incoming auditory information de-
pends on memory representations for repeating acoustic 
patterns.

Although the recognition memory is generally deemed 
to be inferior in the auditory compared with the visual do-
main (Cohen et al.,  2009), there is compelling evidence 
that the human brain is exceptionally capable of rapidly 
forming robust short- and longer-term memories for var-
ious types of random auditory patterns, such as tone pip 
sequences (Bianco et al., 2020), temporal patterns of clicks 
(Kang et al.,  2017), and white noise (Agus et al.,  2010). 
It has been argued that listeners build up these repre-
sentations during perceptual learning, which refers to 
experience-dependent changes in the perceptual ability 
to effectively extract and use information from sensory 
input through repeated exposure (Gibson,  1969; Gilbert 
et al., 2001).

Several studies have shown the formation of robust 
auditory memories for (seamless) periodic noise (Agus 
et al.,  2010; Agus & Pressnitzer,  2013; Viswanathan 
et al., 2016). In a periodicity detection task, hit rate gradu-
ally increased for periodic noises that were, unbeknownst 
to the participants, repeated over the course of the ex-
periment, indicating that listeners learned these noises 
through repeated exposure (Agus et al., 2010). Apart from 
happening implicitly and automatically, learning occurred 
fast and memory representations were characterized as 
resilient to interference from task-irrelevant noises, ro-
bust against temporal and spectral transformations, and 
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long-lasting (Agus et al., 2010; Viswanathan et al., 2016). 
Interestingly, noise samples differed in terms of learn-
ing success, such that some of them were learned almost 
perfectly, while others were not learned at all. These dif-
ferences could not be attributed to systematic variation 
neither between listeners nor between specific noise sam-
ples. Therefore, the authors suggested that perceptual 
learning relies on short temporally local features, which 
are (at least partly) idiosyncratic, that is, specific to listen-
ers and noise samples (Agus et al., 2010).

The observed increase in perceptual sensitivity was 
proposed to be achieved via resetting the phase of ongo-
ing low-frequency neural oscillations to these features 
(Luo et al., 2013), thereby aligning sensitivity fluctuations 
to time windows when critical events are most likely to 
occur (Henry & Obleser, 2012). Concretely, inter-trial phase 
coherence (ITPC) of low-frequency oscillations (2–8  Hz) 
became gradually stronger for periodic noises that were pre-
sented repeatedly over the course of the experiment (Luo 
et al.,  2013). Notably, different noise patterns elicited dis-
tinguishable neural phase patterns (Luo et al., 2013). This 
finding later found support from an fMRI study that demon-
strated distinguishable activation patterns in planum tem-
porale and hippocampus for previously implicitly learned 
noise-like patterns (Kumar et al.,  2014). ITPC in the fre-
quency of the stimulation was also enhanced for regularly 
repeating patterns in sequences of short tones and narrow-
band noises (Herrmann & Johnsrude, 2018). Together, these 
results point toward a synchronization of neural oscillations 
to the temporal rhythm of the auditory stimulation, which 
in turn directs peaks of dynamically fluctuating attention to 
relevant time windows (Henry & Herrmann,  2014). Such 
an increase in ITPC co-occurred with an increase in magni-
tude of the sustained activity, which emerges rapidly after 
the onset of a regularity in auditory stimulation (Herrmann 
& Johnsrude, 2018) and is associated with enhanced sensi-
tivity to stimulus features (Barascud et al., 2016; Southwell 
et al., 2017; Southwell & Chait, 2018).

Finally, Andrillon et al.  (2015) observed a notable dif-
ference between different types of periodic noise, further 
supporting the claim that perceptual segmentation of 
noise sequences indeed relies on temporally local features 
that are idiosyncratic in nature (Andrillon et al.,  2015). 
Specifically, this study contrasted interleaved periodic 
noise, which consisted of three identical noise segments 
that were repeated with portions of random noise between 
them, with seamless periodic noise, in which repeating seg-
ments were seamlessly concatenated (labeled “compact” 
and “diffuse” condition by the authors). These two types of 
periodicity differ with regard to the length of the repeating 
noise segment, that is, the time window that listeners could 
subjectively perceive as repetition onset. This time window 
is considerably larger in the seamless compared with the 

interleaved sequences. Moreover, only in the interleaved 
condition an unfamiliar random noise portion preceded 
the onset of the repeating segment in every cycle, whereas 
the seamless presentation allowed that essentially any time 
point within the segment could be perceived as the begin-
ning of the repetition. Perceptual learning was evident in 
both conditions as reflected in an increase in behavioral 
performance and a stronger inter-trial phase coherence of 
low-frequency oscillations (0.5–5 Hz). However, a centrally 
distributed negativity to the onset of the repeating noise 
segment (i.e., cycle onset) was only observable in the in-
terleaved, but not in the seamless condition. The authors 
suggested that the event-related responses relative to cycle 
onset are leveled out on average in the seamless condition 
due to phase-shifts between subjects who rely on different 
idiosyncratic features that are temporally distributed over 
the whole cycle (Andrillon et al., 2015).

1.3  |  The present study

The present study sought to disentangle the consist-
ency of perceptual segmentation in periodic noise at the 
within- and the between-subject level, which were con-
founded in the analysis of group-level averages as done in 
previous studies. So far, it remains elusive whether one 
individual would always perceptually segment a specific, 
yet unfamiliar stimulus in the same way across multiple 
presentations, and whether different individuals would 
perceptually segment the same stimulus in the same 
way. This separation might advance the understanding 
of neural processes and mechanisms underlying per-
ceptual segmentation and implicit learning of auditory 
material that does not contain outstanding acoustic land-
marks that could serve as a marker for segmentation.

If listeners indeed rely on subtle idiosyncratic fea-
tures to perceptually segment periodic noise sequences, 
as suggested by previous research (Agus et al.,  2010; 
Andrillon et al.,  2015), this should be reflected in the 
following pattern of results: As one person would al-
ways perceive the same time point within the repeated 
noise pattern (at which the chosen feature occurs) as 
cycle onset, this should result in a high temporal consis-
tency across presentations of the same periodic noise se-
quence within one individual. Conversely, the subjective 
repetition onset might be shifted in time between listen-
ers because each of them uses a different subtle feature 
as a cue for segmentation of the sequence, leading to a 
low temporal consistency between subjects. To test these 
assumptions, we conducted an EEG and a behavioral 
tapping experiment with the same participants. In both 
our experiments, subjects were presented with the same 
seamless and interleaved periodic noise sequences as 
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well as random control sequences. During the EEG ex-
periment, participants performed a periodicity detection 
task. In the subsequent behavioral tapping experiment, 
they were asked to tap in synchrony with the perceived 
rhythm in the auditory stimulus. In addition to the 
event-related potential (ERP) analysis, aiming at repli-
cating earlier findings (Andrillon et al., 2015), we took 
a step further by separately analyzing within-subject 
ITPC of the oscillatory activity (at the frequency of the 
periodicity in the stimulation) across presentations of 
the same stimulus and inter-subject phase coherence 
(ISPC). Electrophysiological data were complemented 
with behavioral markers of coherence in tapping.

2   |   METHOD

The study consisted of an EEG experiment and a subse-
quent behavioral tapping experiment, which were com-
pleted by the same participants within one session. All 
experimental procedures were in accordance with the 
Declaration of Helsinki.

2.1  |  Participants

A total of 24 healthy participants (20 of them female, four 
male) took part in the study. They were between 18 and 
42 years oldi (M = 23.71 years, SD = 6.17 years) and three of 
them were left-handed, the remaining 21 right-handed (as 
assessed with the short form of the Edinburgh Handedness 
Inventory; Oldfield,  1971). All of them reported normal 
hearing, normal or corrected-to-normal vision and no his-
tory of any neurological or psychiatric disorder. They re-
ceived either course credits or monetary compensation (8 € 
per hour) for their participation. All participants (except 
one) were naïve regarding the purpose of the study and 
gave written informed consent before the testing started.

2.2  |  EEG experiment

2.2.1  |  Stimuli

Gaussian white noise sequences were created using Matlab 
(version R2019b; The MathWorks Inc.) to serve as auditory 
stimuli (example stimuli can be found here: https://osf.io/

fh4w2/​?view_only=a6495​7ced2​d44bf​abb6f​00a54​3bd655d). 
The sequences were manipulated in terms of their pe-
riodicity; that is, they were either seamless, interleaved, or 
random. Sequence structure is schematically illustrated in 
Figure 2. Seamless (periodic) sequences consisted of seam-
lessly concatenated repetitions of a 500 ms noise segment, 
which is referred to as one cycle. In interleaved (periodic) 
sequences, a 200 ms noise segment, that is, the first 200 ms 
of the 500 ms segment used in the corresponding seamless 
sequence, was repeated every 500 ms and the remaining 
300 ms of each cycle were filled with random noise (created 
anew for each cycle). Random sequences did not contain 
any temporal regularity or repetition of a noise segment. 
Seamless and interleaved sequences comprised 10 full cy-
cles and random sequences were matched in duration. 
Four different, randomly generated 500 ms noise tokens 
(henceforth called noise patterns) were used to create seam-
less and corresponding interleaved sequences, respectively. 
Accordingly, four random noise sequences with a duration 
of 5000 ms were generated. To temporally separate sequence 
onset and periodicity onset, a (newly generated) random 
noise portion, varying in length between 50 and 450 ms, was 
appended to the beginning of the sequence in each trial, 
resulting in total sequence durations between 5050 and 
5450 ms. Note that periodicity onset refers to the onset of 
the first presentation of a noise pattern, but the periodicity is 
only detectable from the onset of the first pattern repetition 
(i.e., second pattern presentation), called effective periodic-
ity onset in the following.

2.2.2  |  Procedure

During the experiment, participants were seated at a table 
inside an acoustically and electrically shielded cabin. 
Auditory stimuli were delivered binaurally via head-
phones (Sennheiser HD-25-1, Sennheiser GmbH & Co. 
KG) at a sound pressure level (SPL) of approximately 65 
decibels (dB) SPL. Stimulus presentation was controlled 
using the Psychophysics Toolbox extension (PTB-3; 
Brainard,  1997; Kleiner et al.,  2007) in Matlab (version 
R2016a; The MathWorks Inc.) and participants' behav-
ioral responses were captured with a response time box 
(Suzhou Litong Electronic Co.).

Before the actual experiment started and after re-
ceiving written instructions, subjects had the chance to 
familiarize themselves with the different types of noise se-
quences. These were introduced to them as having either a 
strong rhythm (seamless), a weak rhythm (interleaved), or 
no rhythm at all (random), with each of those sequence 
types occurring at equal probability. An example sequence 
was provided for each type of periodicity and participants 
could listen to the respective example as often as they 

 iAlthough in the preregistration 40 years was defined as the maximum 
age for participants, we decided to include data of one subject who was 
42 years old to reach our target sample size and finish data collection 
before the EEG laboratories were closed due to the COVID-19 
pandemic.

https://osf.io/fh4w2/?view_only=a64957ced2d44bfabb6f00a543bd655d
https://osf.io/fh4w2/?view_only=a64957ced2d44bfabb6f00a543bd655d
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wanted. During the subsequent experimental blocks, their 
task was to decide whether a sequence contained any 
rhythm or not, irrespective of the strength of the rhythm 
they perceived. They gave responses by pressing either the 
left or right button on a response time box with their left 
or right index finger, respectively. Response sides were as-
signed beforehand and remained the same throughout the 
whole experiment for one participant, but were counter-
balanced across participants. Feedback, that is, percent-
age of correct responses, was provided at the end of each 
block.

Each trial started with a fixation cross, which re-
mained on the screen during the presentation of the 
auditory sequence, concurrently with the sound onset. 
After the end of the sequence, the response options of the 
periodicity detection task (“rhythm” and “no rhythm”; 
in German “Rhythmus” and “Kein Rhythmus”) were 
shown on the screen until the subject pressed a button or 
the fixed response interval of 1500 ms expired. To avoid 
the emergence of a temporal regularity across consecu-
tive sequences, the duration of the silent inter-trial in-
terval, that is, the time between the end of the response 
period (1500 ms after sequence offset) and the onset of 
the next sequence, was jittered between 1150 and 1850 ms 
(in steps of 100 ms).

Trials were arranged in 15 blocks that consisted of 
24 trials each. The whole EEG experiment had a dura-
tion of about 50 min, excluding breaks, which could be 
taken between blocks as required. Within each block, 
each of the four noise patterns (or four specific random 
sequences) was presented twice in each of the three peri-
odicity conditions, respectively. Trial order was individu-
ally randomized, following the restriction that the same 
periodicity condition must not occur in more than two 
trials in a row.

2.2.3  |  EEG data acquisition

EEG was recorded continuously from 32 active Ag/AgCl 
electrodes mounted in an elastic cap according to the ex-
tended 10–20 system with the following electrode posi-
tions: FP1, FP2, AF3, AF4, Fz, F3, F4, F7, F8, FC1, FC2, 
FC5, FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5, CP6, Pz, 
P3, P4, P7, P8, PO3, PO4, Oz, O1, and O2. Additionally, 
signals were recorded from left and right mastoids  
(M1, M2), and four electrodes were placed on the outer 
canthus of each eye and above and below the right eye 
to capture horizontal and vertical eye movements. One 
electrode placed on the tip of the nose served for later 
offline referencing. During preparation, we made sure 
that all electrode offsets were kept below 30 μV. An 
online low-pass filter was applied during recording, 

eliminating frequencies above 102.4  Hz. Signals (refer-
enced to the CMS-DRL ground) were amplified with a 
BioSemi ActiveTwo amplifier (BioSemi B.V.) and digi-
tized with a sampling rate of 512 Hz.

2.2.4  |  Data analysis and statistical inference

Behavioral data
Behavioral data were processed in Matlab (version 
R2019b; The MathWorks Inc.), and statistical analyses 
were conducted in RStudio (version 3.6.1; RStudio Inc.). 
Performance in the periodicity detection task was evalu-
ated within the framework of signal detection theory, 
which is commonly applied to quantify response accuracy 
in perceptual categorization tasks (MacMillan,  2001). 
Trials in which the sequence contained a periodicity and 
participants correctly indicated that they heard a rhythm 
were defined as hits, while trials in which the sequence 
did not contain a periodicity, but participants erroneously 
indicated that they heard a rhythm were counted as false 
alarms. Hit and false alarm rates were used to compute 
the sensitivity index d′ (applying the so-called log-linear 
transformation; Hautus & Lee, 2006) separately for each 
of the four specific noise patterns in seamless and inter-
leaved condition, respectively. To statistically compare 
periodicity detection performance between seamless and 
interleaved sequences while taking into account poten-
tial effects of different specific noise patterns, a two-way 
repeated-measures ANOVA with the two-level factor 
Condition (seamless, interleaved) and the four-level fac-
tor Pattern (pattern 1–4) was computed on the d′ values 
using the package “ez” (Lawrence,  2016) in RStudio. 
Greenhouse–Geisser correction was applied to correct for 
non-sphericity (as indicated by a significant Mauchly's test 
with p < .05). A significant interaction between the two 
factors was resolved by splitting up the factorial model 
by Condition and computing separate one-way ANOVAs 
with the factor Pattern in both periodicity conditions.

EEG data
EEG data were processed offline in Matlab (version 
R2019b), using the EEGLAB toolbox (version 2019.0; 
Delorme & Makeig,  2004) for pre-processing and ERP 
analysis and the FieldTrip toolbox (Oostenveld et al., 2011) 
for subsequent cluster-based permutation tests of ERPs. 
All further statistical analyses were again conducted in 
RStudio. In a first step, ERPs were analyzed at the group 
level, including averaging both within and between sub-
jects, with the primary aim to replicate earlier findings with 
regard to periodicity-related ERPs (Andrillon et al., 2015; 
Hodapp & Grimm, 2021; Kaernbach et al., 1998). However, 
we subsequently took a step further to extend previous 
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findings by calculating phase coherence to additionally 
analyze consistency of brain responses separately at the 
within- and between-subject level.

Pre-processing.  At first, data were referenced to the 
reference channel located on the tip of the nose and noisy 
channels were excluded if their signal variance exceeded 
an absolute z-score of 3.0. Data of the remaining channels 
were high-pass and low-pass filtered with Kaiser-
windowed sinc finite impulse response (FIR) filters at 
0.2 Hz (transition bandwidth: 0.4 Hz, maximum passband 
deviation: 0.001, filter order: 4638) and 35 Hz (transition 
bandwidth: 5  Hz, maximum passband deviation: 0.001, 
filter order: 372). The filtered continuous data were then 
cut into epochs that ranged from 100 ms before to 6000 ms 
after sequence onset, that is, approximately 500 ms 
after sequence offset. Following this, an independent 
component analysis (ICA) was used to clean the data 
from physiological and technical artifacts. To improve 
the signal-to-noise ratio for decomposition, ICA was 
computed on a copy of the data that had been filtered 
with a 1  Hz high-pass filter (transition bandwidth: 
0.5 Hz, maximum passband deviation: 0.001, filter order: 
3710) and the same 35 Hz low-pass filter and epoched as 
described above. Epochs whose maximal peak-to-peak 
difference exceeded 750 μV were excluded from the ICA 
decomposition and the data were down-sampled to 128 Hz 
to shorten computation time. Subsequently, ICA weights, 
obtained with an infomax algorithm implemented in 
EEGLAB's runica function, were transferred to the EEG 
data set pre-processed with the final parameters and 
independent components were classified using the IC 
Label plugin for EEGLAB (Pion-Tonachini et al.,  2019). 
Artefactual components classified as eye blinks, muscle 
activity, cardiac activity, line noise or channel noise were 
removed. Finally, previously identified and excluded 
noisy channels were spherically spline interpolated (using 
the sphspline plugin for EEGLAB, authored by Andreas 
Widmann; https://github.com/widma​nn/sphsp​line).

Event-related potential analysis.  For the analysis of 
periodicity-related ERPs within single cycles, shorter 
epochs were extracted that ranged from −100 to 500 ms 
relative to cycle onset (or corresponding time points in 
random noise sequences). The first and the last cycle of 
each sequence were excluded to minimize the influence of 
sequence onset and offset effects, which resulted in eight 
remaining cycles per sequence. Epochs were baseline-
corrected to the 100 ms interval before cycle onset and 
all epochs in which amplitudes exceeded a 150 μV peak-
to-peak difference were discarded from further analysis. 
The remaining epochs were re-referenced to the algebraic 

mean of the two mastoid electrodes (M1, M2) and 
averaged separately for each periodicity condition, first 
split by the specific noise patterns (with an average of 
236 ± 8 [M ± SD] epochs included per noise pattern and 
periodicity condition within each subject) and then pooled 
across them. Finally, grand averages across participants 
were computed from the within-subject averages (using 
the grandaverage plugin for EEGLAB, authored by 
Andreas Widmann; https://github.com/widma​nn/grand​
average), again once separately for each noise pattern and 
once pooled across noise patterns within one periodicity 
condition.

Differences in amplitude between periodicity condi-
tions were analyzed statistically at the level of averages 
across the four noise patterns. Non-parametric cluster-
based permutation tests were used to identify clusters of 
significant amplitude differences between conditions that 
pointed into the same direction in temporally and spatially 
adjacent samples (Maris, 2012; Maris & Oostenveld, 2007). 
In total, three cluster-based permutation tests (with an 
alpha level and cluster alpha of 0.05, respectively, using a 
Monte Carlo approximation involving 1000 permutations 
to estimate cluster-level significance probability) were 
performed for pairwise comparisons between the three 
periodicity conditions in a time window that covered the 
entire cycle (0–500 ms relative to cycle onset). Three non-
overlapping time windows of equal length (100 ms) were 
defined after visually inspecting the results of the pair-
wise cluster-based permutation tests, the first one ranging 
from 0 to 100 ms, the second one from 100 to 200 ms and 
the third one from 250 to 350 ms relative to cycle onset. 
For each of these time windows, mean amplitudes were 
extracted at electrode Fz for each periodicity condition, 
in line with the frontocentral distribution of the cur-
rent ERP topographies as well as with earlier reports of 
periodicity-related ERPs in noise (Andrillon et al.,  2015; 
Berti et al.,  2000; Kaernbach et al.,  1998). Mean ampli-
tudes were compared between the conditions by means 
of a two-way repeated measures ANOVA with the three-
level factors Condition (seamless, interleaved, random) 
and Time Window (0–100, 100–200, 250–350 ms). Where 
applicable, correction for non-sphericity was used as de-
scribed above. A significant interaction between the two 
factors was resolved by splitting up the factorial model by 
Time Window and computing separate one-way ANOVAs 
with the factor Condition for each time window, followed 
by pairwise paired sample t-tests between the periodicity 
conditions whenever the main effect of Condition reached 
significance in a follow-up ANOVA. To account for mul-
tiple comparisons, p-values of these post-hoc t-tests were 
adjusted based on the false discovery rate (FDR; Benjamini 
& Hochberg, 1995).

https://github.com/widmann/sphspline
https://github.com/widmann/grandaverage
https://github.com/widmann/grandaverage
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Phase coherence analysis.  When looking at grand 
average ERPs at the group level only, temporal consistency 
of brain responses within and between participants are 
confounded and cannot be disentangled. Therefore, we 
additionally analyzed phase coherence of oscillatory 
EEG activity evoked by the periodicity in the presented 
noise sequences separately at the within- and at the 
between-subject level. To this end, ITPC across trials 
within each participant and ISPC across participants 
within trials were computed in two parallel analyses as 
described below.

For analyses in the frequency domain, epochs were ex-
tracted that ranged from effective periodicity onset to peri-
odicity offset, that is, 500–5000 ms relative to the onset of 
the first noise pattern presentation. Exactly 26 artifact-free 
epochs were included for each subject, for each periodicity 
condition, and for each noise pattern, which were then de-
meaned and multiplied with a Hanning window to reduce 
1/f noise. Fast Fourier transforms (FFTs) were computed 
at the single-trial level to extract phase information. In 
two parallel analyses, ITPC within each subject and ISPC 
between subjects were estimated from the resulting phase 
angles.ii

ITPC at the frequency f was computed for each subject 
(separately for each channel, each periodicity condition 
and each noise pattern) using the following formula:

 where Ntr is the number of trials (i.e., 26) and ϕk is the phase 
angle of the oscillatory signal (in radians) in the current trial.

Analogously, ISPC at the frequency f was computed 
for each trial (separately for each channel, each periodic-
ity condition and each noise pattern) using the following 
formula:

 where Nsubj is the number of subjects (i.e., 24) and ϕk is the 
phase angle of the oscillatory signal (in radians) in the cur-
rent subject.

Subsequently, ITPC and ISPC maps were averaged 
across the different noise patterns within each periodic-
ity condition to improve signal-to-noise ratio. ITPC and 
ISPC coefficients were extracted at the frequency of in-
terest (2  Hz) at electrode Fz. To eliminate potential dif-
ferences between conditions in the overall level of phase 
coherence across frequencies, ITPC and ISPC coefficients 
were referenced to the average of two neighboring refer-
ence frequencies (chosen symmetrically at the edges of 
the peak around 2 Hz, i.e., 1.66 and 2.44 Hz). Independent 
one-way repeated measures ANOVAs with the three-level 
factor Condition (seamless, interleaved, random) were 
computed for ITPC and ISPC coefficients, respectively. 
A significant main effect of Condition was followed up 
by pairwise paired-sample t-tests between the three pe-
riodicity conditions. Where applicable, correction for 
non-sphericity was used, and multiple comparisons were 
accounted for as described above.

2.3  |  Tapping experiment

2.3.1  |  Stimuli

Seamless and interleaved noise sequences were gener-
ated following the same procedure as described above 
and based on the very same four specific noise tokens. 
However, sequences consisted of 30 (instead of 10) full cy-
cles with a total duration of 15 s after an initial portion of 
random noise that varied in length between 50 and 450 ms. 
Fifteen exemplars (with an individual random noise por-
tion in the beginning) were created for each of the four 
noise patterns in seamless and interleaved condition, re-
spectively. Additionally, control sequences (of the same 
duration as seamless and interleaved sequences) that 
contain temporally regular physical changes in a random 
noise signal were created by increasing a 1  ms segment 
of noise in intensity by approximately 12 dB every 500 ms. 
These short intensity increases are usually perceived as 
a clicking sound in the noise. This control condition was 
used to obtain an estimate of how precisely participants 
can synchronize their tapping with the auditory input if 
there is an obvious acoustic cue in the stimulus. Twenty-
four exemplars of control sequences were created, each of 
them with an individual random noise portion of varying 
duration (between 50 and 450 ms) inserted before the first 
click.

2.3.2  |  Procedure

Following the EEG experiment, after a short break of ap-
proximately 15 minutes participants were again seated 

 ii This procedure deviates from our preregistration. We decided to 
deviate from our original analysis plan in order to streamline our 
analyses in the main manuscript. Nevertheless, we also carried out all 
analyses as pregistered and report the results in detail here: https://osf.
io/gcfrt/​?view_only=424a4​da5f6​12461​f980e​8e1cb​ad81612. Taken 
together, both analysis approaches yielded a virtually identical pattern 
of results and lead to the same conclusions.

(1)ITPC(f ) =
1

Ntr

Ntr
∑

k=1

ei�
k(f ,t),

(2)ISPC(f ) =
1

Nsubj

Nsubj
∑

k=1

ei�
k(f ,t),

https://osf.io/gcfrt/?view_only=424a4da5f612461f980e8e1cbad81612
https://osf.io/gcfrt/?view_only=424a4da5f612461f980e8e1cbad81612
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at a table inside an acoustically and electrically shielded 
cabin. The experimental settings with regard to auditory 
stimulus presentation were the same as for Experiment 
1. Participants' taps were captured using a custom-made 
device consisting of a force sensing resistor (FSR406; 
Interlink Electronics) attached to an acrylic sheet with 
foam rubber padding and connected to a microcontroller 
(Teensy 3.2; PJRC). When subjects tapped on the pad 
and the measured force increase exceeded a reasonable 
threshold, the microcontroller sent a trigger correspond-
ing to tap onset, which was captured by the Psychophysics 
Toolbox with a sampling rate of 1000 Hz.

Participants were asked to deliberately pay attention to 
the rhythm in the presented noise sequences and focus on 
a characteristic feature in the sound that reoccurs period-
ically. As soon as they had identified such a recurring fea-
ture in the noise, they should tap, as synchronously with 
the perceived rhythm as possible, with the index finger 
of their dominant hand on the tapping pad placed on the 
table in front of them. They were instructed to start tap-
ping after a few seconds in every trial, even if the rhythm 
was only very subtle, and to continue tapping until the 
end of the sequence. Before the start of the actual exper-
imental trials, subjects could familiarize themselves with 
the task during a short block of five exemplary periodic 
sequences (three seamless, followed by two interleaved 
sequences).

Each trial, starting with sound onset, had a maximum 
duration of 15.45 s, corresponding to the maximum length 
of any auditory sequence. However, most of the trials were 
shorter as sound presentation stopped and the trial was 
aborted as soon as the participant had tapped 10 times. To 
avoid the emergence of a temporal regularity across con-
secutive sequences, the duration of the silent inter-trial 
interval was jittered between 1650 and 2350 ms (in steps 
of 100 ms).

Trials were arranged in six blocks that consisted of 24 
trial each. The total duration of the tapping experiment 
was about half an hour, excluding breaks, which could be 
taken between blocks as required. All 24 control sequences 
containing regular physical changes were presented in the 
last block. Within each of the first five blocks, each of the 
four noise patterns was presented three times in each of 
the two periodicity conditions. Trial order was individu-
ally randomized, following the restriction that the same 
periodicity condition must not occur in more than three 
trials in a row.

2.3.3  |  Data analysis and statistical inference

Data processing was again done in Matlab (version R2019b) 
and statistical analyses were conducted in RStudio.

Tapping data were analyzed in terms of two mea-
sures: tapping rate and tapping phase. While inter-tap 
intervals, that is, the time elapsing between the onsets of 
two consecutive taps, as a measure of tapping rate only 
reflects how strictly the (2-Hz) rhythm is kept, tapping 
phase (relative to cycle onset) additionally provides in-
formation about how consistently participants tap at a 
similar time point within the cycle across trials. For both 
analyses, all trials in which participants tapped less than 
10 times were discarded. On average, less than one trial 
was excluded per noise pattern in seamless and inter-
leaved condition and in the control condition for each 
subject.

Tapping rate
Mean and standard deviation of the intervals between 
two consecutive taps were computed for each partici-
pant, separately for each of the four noise patterns in 
seamless and interleaved condition and for the con-
trol (click) condition. To reduce the influence of single 
outliers within a sequence of temporally regular taps, 
implausible inter-tap intervals below 100 ms or above 
1000 ms were excluded. Standard deviation of the inter-
tap intervals was compared statistically between perio-
dicity conditions, reflecting the amount of variability 
in the tapping rhythm. Concretely, a small standard 
deviation indicates that the rhythm is kept consistently 
without much variation in the inter-tap interval dura-
tion (within and between trials) and a larger standard 
deviation points toward rather inconsistent tapping 
with varying inter-tap interval duration. A repeated 
measures ANOVA with the three-level factor Condition 
(seamless, interleaved, click) was computed with the 
standard deviations of the inter-tap intervals, using 
averages across all four noise patterns in seamless and 
interleaved condition, respectively. A significant main 
effect of Condition was followed up by pairwise paired-
sample t tests between the three periodicity conditions. 
To shed light on whether specific noise patterns dif-
ferentially influence tapping rate in seamless and in-
terleaved sequences, an additional two-way repeated 
measures ANOVA with the two-level factor Condition 
(seamless, interleaved) and the four-level factor Pattern 
(pattern 1–4) was computed. A significant interaction 
between the two factors was resolved by splitting up the 
factorial model by Condition and computing separate 
one-way ANOVAs with the factor Pattern for seamless 
and interleaved condition. Where applicable, correction 
for non-sphericity was used as described above.

Tapping phase
As a measure of tapping asynchrony, we calculated the 
phase for each of the 10 tap times within a sequence 
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relative to a 2-Hz signal (aligned to the rhythm of stimu-
lus cycle onsets), constrained to the range −250 to 250 ms 
(corresponding to −pi to pi). Mean preferred phase angles 
were computed across the 10 taps within a trial. Tapping 
phase coherence (tapPC) across trials was estimated for 
each participant, separately for each of the four noise pat-
terns in seamless and interleaved condition and for the 
control (click) condition, using the following formula:

 where Ntr is the number of trials and ϕk is the mean phase 
angle of the taps (in radians) in the current trial.

Tapping phase coherence was statistically compared 
between the three periodicity conditions and between dif-
ferent specific noise patterns in seamless and interleaved 
conditions by means of analogous statistical procedures as 
used for the analysis of inter-tap intervals.

In previous literature, tapping asynchrony was often 
measured as the time difference between response and stim-
ulus (Aschersleben, 2002; Repp, 2005; Repp & Su, 2013). As 
the assignment of individual taps to a specific feature in 
the stimulation is not trivial in the absence of an objective 
time point that constitutes the beat in our periodic noise 
sequences, we instead used tapping phase to approximate 
tapping asynchrony (as described above). Nevertheless, 
in line with our preregistration, we also analyzed tapping 
asynchrony following the established approach and report 
the results here: https://osf.io/gcfrt/​?view_only=424a4​
da5f6​12461​f980e​8e1cb​ad81612. As expected, both ap-
proaches yield a very similar pattern of results.

2.4  |  Brain-behavior correlations

After analyzing EEG data and tapping data separately, 
they were combined into one analysis. Brain-behavior 
correlations were computed to evaluate the relationship 
between brain responses and behavioral responses to peri-
odicity in noise sequences and, in particular, their consist-
ency. Specifically, it should be tested whether participants 
whose brain activity is more coherently phase-locked to 
the periodicity in the stimulation also tend to tap more 
synchronously across trials by correlating phase coher-
ence of brain responses with phase coherence of tapping 
to the same periodic noise sequence. Pearson correlations 
were computed (in RStudio) between individual ITPC co-
efficients and tapping phase coherence coefficients, both 
averaged across the four specific noise patterns (after 
Shapiro–Wilk normality tests had shown that all values 
were normally distributed; all W's > 0.93 and uncorrected 

p's > .155). The two correlation coefficients were then sta-
tistically tested against zero and p-values were adjusted 
for multiple comparisons (based on the FDR as above). 
Finally, the coefficients were z-transformed to compare 
them statistically with each other.

3   |   RESULTS

3.1  |  EEG experiment

3.1.1  |  Behavioral data: periodicity detection 
performance

In general, participants were able to successfully detect 
periodicity in noise sequences and (on average) performed 
above chance for all four noise patterns in both periodic 
conditions. However, sensitivity in the periodicity detection 
differed systematically between conditions and noise pat-
terns (see Figure 1). Participants were overall more sensi-
tive in detecting periodicity in seamless than in interleaved 
sequences (main effect of Condition: F[1, 23]  =  70.57, 
p < .001, partial η2 = 0.75). When resolving the Condition 
x Pattern interaction (F[3, 69]  =  13.25, p < .001, partial 
η2  =  0.37), performance was found to differ significantly 
between noise patterns only in the interleaved condition 
(main effect of Pattern: F[3, 69] =  16.63, p < .001, partial 
η2 = 0.42) with pattern 3 standing out from the others and 
reaching the performance level of the seamless condition. 
Conversely, performance was equally near-perfect for all 
noise patterns in the seamless condition (main effect of 
Pattern: F[3, 69] = 1.42, p = .253, partial η2 = 0.06).

3.1.2  |  Event-related responses to periodicity 
in noise

As shown in Figure  2, event-related responses to the 
noise sequences were clearly modulated by the perio-
dicity of the sequences. A negative potential emerged 
after periodicity onset, remained relatively sustained 
between 500 and 2000 ms before gradually decreas-
ing toward the end of the sequence (which along with 
an offset response). The onset of the sustained period 
corresponds to the effective periodicity onset, that 
is, the onset of the first noise pattern repetition. Note 
that the typical sound onset response is leveled out be-
cause sound onset is jittered due to the varying length 
of the initial random portion before periodicity onset. 
During the sustained period, the negativity was nota-
bly stronger in both seamless and interleaved compared 
with the random condition, and particularly strong in 
response to seamless sequences. Importantly, on top of 

(3)tapPC =
1

Ntr

Ntr
∑

k=1

ei�
k
,

https://osf.io/gcfrt/?view_only=424a4da5f612461f980e8e1cbad81612
https://osf.io/gcfrt/?view_only=424a4da5f612461f980e8e1cbad81612
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the sustained response, a 2-Hz oscillatory modulation 
was observed in the interleaved condition, correspond-
ing to the periodicity frequency of the stimulation.

Zooming into single cycles, periodicity-related ERPs 
were elicited time-locked to the onset of a periodically 
recurring noise pattern, which resulted in the cyclic ERP 
activity over the course of the sequence (see Figure 3). 
On average across noise patterns, a frontocentral nega-
tivity emerged between 100 and 300 ms relative to cycle 
onset in the seamless condition, peaking at approxi-
mately 200 ms. In the interleaved condition, a broadly 
distributed and frontocentrally pronounced negativ-
ity occurred somewhat later between 150 and 400 ms, 
with a peak at approximately 300 ms after cycle onset, 
but was clearly stronger than in the seamless condition. 
Additionally, this prominent negativity was preceded by 
an earlier positivity within the first 100 ms after cycle 
onset. In contrast to both periodic conditions, no sys-
tematic negative or positive deflections were evoked rel-
ative to corresponding time points in random sequences. 
Statistical evaluation of mean ERP amplitudes revealed 
that the differences in ERP amplitude between period-
icity conditions changed systematically over the course 
of the cycle (Condition × Time Window interaction: F[4, 
92] = 54.88, p < .001, partial η2 = 0.70). ERP amplitude 
effects will be described for each of the three time win-
dows in turn:

In the first time window, covering the first 100 ms after 
cycle onset, an early positivity was evoked in response 

to cycle onset only for interleaved, but not for seamless 
and random sequences (main effect of Condition: F[2, 
46] = 10.02, p < .001, partial η2 = 0.30). Concretely, am-
plitudes differed significantly between interleaved and 
random (t[23]  =  3.81, adjusted p  =  .002, d  =  0.78) as 
well as between interleaved and seamless (t[23] = 3.75, 
adjusted p =  .002, d = 0.77), but not between seamless 
and random condition (t[23] = −1.50, adjusted p = .146, 
d = 0.31).

In the second time window, ranging from 100 to 200 ms 
relative to cycle onset, a negativity emerged in both seam-
less and interleaved compared with the random condition 
(F[2, 46] = 12.37, p < .001, partial η2 = 0.35). Although am-
plitudes did not differ significantly between the two peri-
odic conditions (t[23] = 1.59, adjusted p = .127, d = 0.32), 
they did so between seamless and random (t[23] = −5.28, 
adjusted p < .001, d  =  1.08) and between interleaved 
and random condition (t[23] = −3.50, adjusted p = .003, 
d = 0.71).

Finally, in the third time window, ranging from 250 to 
350 ms after cycle onset, the negative deflection, evoked in 
both periodic conditions compared with the random con-
dition, was remarkably stronger in the interleaved than 
in the seamless condition. Concretely, amplitudes were 
found to differ significantly between seamless and ran-
dom(t[23] = −2.59, adjusted p = .016, d = 0.53), interleaved 
and random (t[23]  =  −9.40, adjusted p < .001, d  =  1.92) 
and interleaved and seamless condition (t[23]  =  −8.13, 
adjusted p < .001, d = 1.66).

F I G U R E  1   (a) Illustration of the 
stimulus design. Seamless and interleaved 
periodic sequences were created from 
four specific noise patterns, and four 
random sequences were created with the 
same length. (b) Left panel: Schematic 
illustration of the periodicity detection 
task. Right panel: Behavioral periodicity 
detection performance as measured by 
the mean sensitivity index d′ for each 
noise pattern in seamless and interleaved 
condition, respectively. Error bars indicate 
±1 standard error of means (SEM).

(a)

(b)
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F I G U R E  2   Event-related responses relative to periodicity onset (at 0 ms) at electrode Fz for the three periodicity conditions. Note that 
periodicity onset refers to the first presentation of a noise pattern that is repeated periodically throughout the sequence and the sound onset 
is jittered between −450 ms and −50 ms. For visualization purposes, data were high-pass filtered with a lower cut-off of 0.05 Hz (transition 
bandwidth: 0.1 Hz, maximum passband deviation: 0.001, filter order: 18546) and referenced to the average of all channels. Trials in which 
the peak-to-peak amplitude difference exceeded 300 μV were discarded and no baseline was used. Shaded areas indicate ±1 SEM. Horizontal 
bars under the ERP curves indicate a significant difference in amplitude between the respective conditions as revealed by pairwise cluster-
based permutation tests (using the same parameters as described above for the level of single cycles). The structure of the noise sequences 
for each periodicity condition is illustrated schematically below the ERP plot.
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Interestingly, while a prominent negativity, preceded 
by an early positivity, was elicited very consistently for 
all four noise patterns in the interleaved condition, there 
were notable differences between noise patterns in the 
seamless condition. A negativity was apparent only for 
two out of four patterns (pattern 1 and pattern 3), whereas 
there was no obvious (positive or negative) deflection at 
any time point within the cycle for the other two patterns.

3.1.3  |  Oscillatory brain activity at the 
periodicity frequency

At the within-subject level, ITPC showed a clear peak 
around 2  Hz, corresponding to the frequency of the 

periodicity in the stimulation, in the interleaved condition 
and a somewhat smaller peak in the seamless condition, 
whereas no such peak was observable in the random con-
dition (see Figure 4, Panel a). The statistical evaluation re-
vealed that ITPC differed significantly between conditions 
(F[2, 46] = 22.48, p < .001, partial η2 = 0.50). Specifically, 
ITPC was significantly stronger in the interleaved com-
pared with both seamless (t[23] = 4.21, adjusted p = .001, 
d  =  0.86) and random condition (t[23]  =  5.62, adjusted 
p < .001, d = 1.15). Moreover, it was significantly stronger 
in the seamless than in the random condition (t[23] = 3.36, 
adjusted p = .003, d = 0.69). A peak in phase coherence at 
2 Hz was observable for each specific noise pattern in both 
periodic conditions. Taken together, at the within-subject 
level, both seamless and interleaved noise sequences 

F I G U R E  3   Results of the event-related potential analysis. (a) Noise pattern-wise event-related responses relative to cycle onset (at 0 ms) 
for the three periodicity conditions. (b) Averaged event-related responses across noise patterns relative to cycle onset (at 0 ms). (c) Mean 
amplitudes for the three periodicity conditions in the three relevant time windows. (d) Topographies of difference potentials (periodic minus 
random) in each of the three time windows for seamless and interleaved condition, respectively. Shaded areas in the ERP plots and error 
bars in the bar plots indicate ±1 SEM.
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induced substantial phase coherence of oscillatory activity 
at the periodicity frequency that was particularly strong 
for interleaved sequences.

At the between-subject level, ISPC showed a clear peak 
around 2 Hz in the interleaved condition, whereas there 
was only a smaller peak in the seamless condition and no 
peak in the random condition (see Figure 4, Panel b). The 
statistical evaluation revealed that ISPC differed signifi-
cantly between conditions (F[2, 50] = 43.76, p < .001, par-
tial η2 = 0.64). Specifically, ISPC was significantly stronger 
in the interleaved compared both seamless (t[25] = 5.84, 
adjusted p < .001, d  =  1.15) and random condition 
(t[25] = 9.35, adjusted p < .001, d = 1.83). Moreover, it was 
significantly stronger in the seamless than in the random 
condition (t[25]  =  2.99, adjusted p  =  .006, d  =  0.59). A 
peak in phase coherence at 2 Hz was observable for each 
specific noise pattern in the interleaved condition. In the 
seamless condition, however, a clear peak at 2  Hz was 
only elicited by two (pattern 1 and pattern 3), but not by 
the remaining two patterns, resulting in the small 2-Hz 
peak on average across noise patterns. Taken together, at 
the between-subject level, interleaved sequences induced 
substantial phase coherence of oscillatory activity at the 
periodicity frequency, whereas this was only the case for 
specific noise patterns in the seamless condition.

3.2  |  Tapping experiment

3.2.1  |  Tapping rate

At the level of averages across noise patterns, periodicity 
conditions differed significantly in terms of the standard 
deviation of inter-tap intervals (main effect of Condition: 
F[2, 46] = 11.34, p < .001, partial η2 = 0.33; see Figure 5, 
Panel a). Concretely, the variation in inter-tap interval 
duration was significantly larger in the interleaved condi-
tion compared with both seamless (t[23] = 4.24, adjusted 
p = .001, d = 0.87) and click condition (t[23] = 2.99, ad-
justed p = .010, d = 0.61), while it did not differ between 
seamless and click condition (t[23]  =  −1.45, adjusted 
p = .162, d = 0.30). Results of the analysis comparing the 
specific noise patterns in seamless and interleaved condi-
tion again suggested larger variation in inter-tap intervals 
in the interleaved compared with the seamless condition 
(main effect of Condition: F[1, 23] = 17.97, p < .001, partial 
η2 = 0.44) that was independent of specific noise patterns 

(main effect of Pattern: F(3, 69) = 2.64, p =  .056, partial 
η2 = 0.10; Condition × Pattern interaction: F(3, 69) = 1.47, 
p =  .239, partial η2 = 0.06). These findings indicate that 
participants kept the 2-Hz rhythm less consistently when 
tapping to interleaved sequences compared with seam-
less sequences (where they tapped as consistently as they 
did to sequences containing regular physical cues in the 
signal).

3.2.2  |  Tapping phase

At the level of averages across noise patterns, tapping 
phase coherence differed significantly between periodic-
ity conditions (main effect of Condition: F[2, 46] = 40.42, 
p < .001, partial η2  =  0.64; see Figure  5, Panel b). 
Specifically, participants' tapping was more coherent in 
the click condition than in both seamless (t[23] = −8.04, 
adjusted p < .001, d  =  1.64) and interleaved condition 
(t[23] = −8.05, adjusted p < .001, d = 1.64). No significant 
difference was found between seamless and interleaved 
condition (t[23] = 1.08, adjusted p = 0.290, d = 0.22). The 
analysis comparing the specific noise patterns in seamless 
and interleaved condition again found no significant dif-
ference between the two periodic conditions (main effect 
of Condition: F[1, 23] = 1.16, p = .293, partial η2 = 0.05) 
and, furthermore, suggested that specific noise patterns 
did not systematically influence tapping phase coherence 
(main effect of Pattern: F(3, 69) = 1.34, p =  .268, partial 
η2 = 0.06; Condition × Pattern interaction: F(3, 69) = 1.52, 
p =  .217, partial η2 = 0.06). These findings indicate that 
subjects tapped less coherently to a subtle periodicity in 
noise sequences than they did to temporally regular physi-
cal changes (clicks) in the auditory stimulus across trials, 
while their tapping was similarly coherent for both types 
of periodicity.

3.3  |  Correlation of EEG 
responses and behavior

Phase coherence of brain responses and of tapping showed 
no particular association in either periodic condition 
(seamless: r  =  −0.082; interleaved: r  =  0.120). Pearson 
correlation coefficients fell short of statistical significance 
in both seamless (t[22] = −0.38, adjusted p > .999) and in-
terleaved condition (t[22] = 0.57, adjusted p > .999), and 

F I G U R E  4   Results of the phase coherence analysis. (a) Extracted coefficients over frequencies at electrode Fz for each noise pattern 
separately (a1), averaged coefficients across noise patterns (a2) and mean coefficients at 2 Hz (a3) of within-subject inter-trial phase 
coherence. (b) Extracted coefficients over frequencies at electrode Fz for each noise pattern separately (b1), averaged coefficients across 
noise patterns (b2) and mean coefficients at 2 Hz (b3) of between-subject inter-subject phase coherence. Shaded areas in the ITPC and ISPC 
plots and error bars in the bar plots indicate ±1 SEM.
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the two coefficients did not significantly differ from each 
other (z = −0.66, p = .512).

4   |   DISCUSSION

The aim of the present combined EEG and behavioral 
tapping study was to shed light on the consistency of per-
ceptual segmentation of unstructured auditory material 
within and between listeners. To this end, participants 
were presented with seamless and interleaved periodic 
noise sequences. Both types of sequences contained rep-
etitions of a specific noise segment, but differed with 
regard to the length of the repeating noise segment and 
with regard to the fine-structure of the sequence (i.e., 
whether or not a portion of random noise was inserted 
between the pattern repetitions). Specifically, the time 
window that listeners could subjectively perceive as 
repetition onset was shorter and followed a portion 
of unfamiliar random noise in interleaved in contrast 
to seamless sequences. The analysis of phase coher-
ence that was carried out separately at the within- and 

between-subject level allowed us to disentangle consist-
ency within and across individuals.

4.1  |  Periodicity perception in noise

We found that listeners did perceive the periodicity in 
both seamless and interleaved sequences. This was re-
flected at the behavioral level in an above-chance pe-
riodicity detection performance and a highly consistent 
tapping rate. At the electrophysiological level, we ob-
served a sustained response relative to (effective) pe-
riodicity onset that showed increased amplitudes for 
periodic (compared with random) noise sequences, and 
characteristic evoked responses relative to the repeat-
ing pattern onsets within the periodic sequences. The 
pattern of differences between seamless and interleaved 
sequences suggests that these behavioral and electro-
physiological markers reflect two different aspects of 
periodicity perception: While periodicity detection per-
formance, stability of the tapping rhythm and magni-
tude of the sustained response all seem to point toward 

F I G U R E  5   Behavioral tapping performance. (a) Standard deviations of the inter-tap intervals as a measure of tapping rate consistency 
averaged across noise patterns (a1) and for each noise pattern separately (a2). (b) Mean tapping phase coherence averaged across noise 
patterns (b1) and for each noise pattern separately (b2). Error bars indicate ±1 SEM.
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a stronger percept of periodicity in seamless sequences, 
more prominent evoked responses relative to pattern on-
sets and stronger phase coherence within and between 
listeners indicated more consistent temporal anchoring 
in the interleaved condition.

Although well above chance in both conditions, per-
ceptual sensitivity in the periodicity detection task was 
considerably decreased in interleaved compared with 
seamless sequences. This is in line with previous reports, 
which, for instance, showed that listeners detect recurring 
noise patterns more readily the longer they are in duration 
(for durations increasing from 200 to 500 ms; Rajendran 
et al., 2016). Furthermore, the tapping rate reflected that 
periodicity was perceived less clearly in interleaved than 
in seamless sequences. While decreased for interleaved 
sequences, the consistency of the tapping rhythm was 
similar for seamless sequences and control sequences that 
contained a clear physical cue in the signal.

At the neural level, an increase in sustained response 
emerged after effective periodicity onset and appeared 
to be modulated by the type of periodicity of a se-
quence. Previous studies had reported such an increase 
in sustained activity for tone pip sequences (Barascud 
et al.,  2016), noise-like acoustic patterns (Herrmann & 
Johnsrude, 2018), and periodic noise (Keceli et al., 2012) 
with a similar latency (i.e., around half a cycle after ef-
fective regularity onset). Functionally, the sustained re-
sponse was associated with the automatic detection of 
regularities in acoustic sequences (Barascud et al., 2016; 
Herrmann & Johnsrude, 2018; Keceli et al., 2012).

When zooming into single cycles, periodicity-related 
ERPs, which were the focus of our study, were elicited 
time-locked to the onset of the periodically recurring noise 
pattern. Over the course of a sequence, this resulted in a 
pattern of cyclic ERP activity. A prominent frontocentral 
negativity was elicited between 150 and 400 ms (relative to 
cycle onset) in the interleaved condition and preceded by 
an earlier frontal positivity. Several earlier studies reported 
periodicity-related negative deflections at a similar latency, 
sometimes preceded by an early positivity, while partici-
pants listened to interleaved noise sequences (Andrillon 
et al., 2015; Berti et al., 2000; Kaernbach et al., 1998) or tone 
pip sequences (Hodapp & Grimm, 2021). Consistent with 
previous findings, the frontocentral topography is sugges-
tive of an origin in auditory cortex (Andrillon et al., 2015; 
Berti et al., 2000; Kaernbach et al., 1998). In the seamless 
condition, the negativity was weaker and occurred about 
50 ms earlier without a preceding positivity, which may 
point toward a broader negativity with a reduced ampli-
tude as a result of time jitter (within or between listeners, 
or both). Note that the presence or absence of the early 
positivity is difficult to interpret due to baseline shifts 
between conditions and may actually reflect part of the 

synchronized response to the periodicity rather than an 
independent ERP component that is only evoked in the 
interleaved condition. Andrillon et al. (2015) did not find 
any periodicity-related ERPs for seamless noise sequences 
(“diffuse condition” in their terminology). They argued 
that the ERPs in this condition were leveled out as a con-
sequence of time jitter between listeners because each lis-
tener relied on a different idiosyncratic feature to segment 
the sequence (Andrillon et al.,  2015). It is important to 
note that in the current study not all four specific noise 
patterns elicited ERPs relative to cycle onset in the seam-
less condition. This finding is in line with the results of 
earlier studies, which showed that specific noise patterns 
differ with regard to how well periodicity is detected by 
listeners (Agus et al., 2010; Kaernbach, 1993). Although 
group-level ERPs do not allow to draw clear conclusions 
with respect to variation within and between subjects, the 
fact that some noise patterns (mainly pattern 3; pattern 
1 to a lesser extent) did evoke a periodicity-related nega-
tivity suggests a substantial consistency both within and 
across participants at least for these patterns. They may 
contain characteristic features that were used for per-
ceptual segmentation across listeners. Yet, even for these 
patterns the amplitude of the periodicity-related negativ-
ity was reduced in the seamless compared with the inter-
leaved condition. To shed light on whether this difference 
could be solely explained by temporal variability between, 
but not within participants, as put forward previously 
(Andrillon et al.,  2015), we compared phase coherence 
of oscillatory activity separately at the within- and at the 
between-subject level.

4.2  |  Within- and between-subject 
consistency of perceptual segmentation in 
periodic noise

Periodic (compared with random) sequences induced 
consistency of perceptual segmentation both at the 
within- and the between-subject level. This was reflected 
behaviourally in the tapping phase coherence and neu-
rally in the phase coherence of oscillatory brain activity 
at the frequency of the periodicity in the stimulation. 
Critically, the consistency of neural markers for percep-
tual segmentation appeared to be stronger for interleaved 
compared with seamless sequences both within and be-
tween listeners.

The increase of within-subject ITPC of the oscillatory 
activity at the frequency of the stimulation for periodic 
sequences is in keeping with earlier reports of increased 
phase coherence of low-frequency neural oscillations 
for periodic compared with random noise (Andrillon 
et al., 2015; Luo et al., 2013). Increased phase coherence of 
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oscillatory activity at the stimulation frequency was previ-
ously shown for noise-like acoustic patterns (Herrmann & 
Johnsrude, 2018). Thus, brain responses seemed to align 
with the rhythmic recurrence of a particular acoustic fea-
ture within a periodic noise sequence. However, contrary 
to our expectations, ITPC was weaker in the seamless 
compared with the interleaved condition, which suggested 
that an individual may not consistently use the same fea-
ture to segment a seamless sequence across presentations 
of the same sequence. This finding may partly be ex-
plained by the different length of the repeating segment in 
seamless and interleaved sequences. The increased length 
of the repeating segment in the seamless condition, along 
with the distribution of potential features over a longer 
period of time, can result in decreased consistency across 
trials, which in turn leads to diminished ERP amplitudes 
on average (see above). Moreover, the difference in con-
sistency might also result from the fact that only in the 
interleaved condition the onsets of the repeating segment 
are preceded by a portion of novel random noise in every 
cycle. Further research may disentangle these two aspects 
by manipulating the length of the repeating segment and 
the fine structure of the noise sequence independently.

Unlike the EEG data, the behavioral data did not show 
a difference in within-subject coherence between seam-
less and interleaved sequences. Tapping phase coher-
ence did not differ significantly between the two periodic 
conditions, indicating that participants tapped similarly 
coherently to both types of sequences. This discrepancy 
between neural and behavioral data may be explained by 
the different nature of the measures: The tapping phase 
coherence as a behavioral measure is coarser and might 
be subject to confounding effects beyond the consistency 
of perceptual segmentation. For instance, effects of being 
more consistent in perceptual segmentation but also less 
confident due to the weaker percept of periodicity in the 
interleaved condition could counteract and eventually 
cancel out at the behavioral level. However, it is import-
ant to note that (behavioral) consistency was significantly 
reduced for both seamless and interleaved sequences in 
comparison with control sequences that contained phys-
ical cues for segmentation. This suggests that perceptual 
segmentation of periodic noise sequences goes along with 
some variability from trial to trial within one listener and 
that the amount of variability may be modulated by the 
type of periodicity. Nevertheless, the fact that there is a 
substantial consistency across trials indicates that par-
ticipants did not just motorically learn to tap in a 2-Hz 
rhythm, but in fact aligned their tapping with acoustic 
features in the stimulus.

We did not find a significant correlation between ITPC 
and tapping phase coherence in either periodic condition. 
Potential reasons for the lack of a significant relationship 

may lie in confounding effects, in particular on the behav-
ioral measure, that may also account for the lack of a sta-
tistically significant difference in tapping phase coherence 
between the two periodic conditions (see above). It may be 
plausible to assume that many more factors than the con-
sistency of perceptual segmentation alone affect tapping 
behavior along various processing steps from periodic-
ity perception to motor planning. More generally, brain-
behavior correlations (or the absence thereof) should be 
interpreted with caution in samples in the size of ours, as 
they may lack statistical power to reliably detect (small) 
correlations between neural and behavioral measures.

As expected, between-subject ISPC was increased in 
the interleaved compared with the seamless condition. 
This difference in consistency between the two types of 
periodic sequences may again be explained by the length 
of the repeating segment and the fine-structure of the 
sequences. As outlined above for the within-subject con-
sistency and in accordance with the argumentation by 
Andrillon et al. (2015), the shorter duration of the repeat-
ing segment that always followed a portion of unfamil-
iar random noise may have reduced the temporal jitter 
and increased consistency of perceptual segmentation 
between individuals. Albeit to a lesser extent, seamless 
sequences also induced consistency between listeners. 
However, we again observed differences between spe-
cific noise patterns for seamless sequences. Specifically, 
two of the four patterns appeared to drive the effect in 
this condition. This finding suggests that, at least for 
some noise patterns, listeners use subtle features that 
are shared between individuals to perceptually segment 
the noise sequence. Although the difference between in-
terleaved and seamless sequences supports the idea that 
participants rely on short, temporally local features, the 
increased ISPC for single patterns in the seamless condi-
tion indicates that these features may not necessarily be 
idiosyncratic. Which critical spectrotemporal properties 
might be preferentially used for consistent perceptual 
segmentation (within and between individuals) remains 
an outstanding question for future investigation.

5   |   CONCLUSIONS

The present study aimed to advance the understanding 
of mechanisms that underlie perceptual segmentation 
of unstructured and unfamiliar auditory input. To the 
best of our knowledge, this was the first study to system-
atically analyze consistency of perceptual segmentation 
separately within and between individuals. This ap-
proach allowed us to disentangle variation at these two 
levels, which were usually confounded in the group-level 
averages analyzed in previous studies. In short, although 
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seamless sequences induced a stronger percept of pe-
riodicity, interleaved sequences were associated with a 
stronger consistency of perceptual segmentation both 
within and between listeners. While earlier studies had 
assumed that the difference between seamless and in-
terleaved noise with regard to periodicity-related brain 
responses at the group level can be merely explained 
by differences in between-subject variability, here we 
showed that also differences in within-subject (inter-trial) 
variability play a role. Thus, the amount of temporal jitter 
was increased not only between, but also within listen-
ers for seamless relative to interleaved sequences, which 
may overall point toward a less consistent use of exactly 
one characteristic feature per noise pattern than claimed 
previously. In particular for seamless sequences, consist-
ency between participants depended on the specific noise 
pattern, such that some sequences were segmented more 
consistently than others. These results are in line with 
the assumption that listeners rely on subtle local features 
that are learned through repeated exposure to percep-
tually segment periodic noise sequences. However, dif-
ferences between specific noise patterns with regard to 
between-subject consistency challenge the assumption 
that those features are necessarily idiosyncratic in na-
ture. Instead, the present findings rather suggest that a 
preference for certain spectral features (which remain to 
be specified by future research) might be shared between 
individuals.
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