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Narratives of Genetic Selfhood**
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Summary: This essay considers the mid-twentieth century adoption of
genetic explanations for three biological phenomena: nutritional adapta-
tion, antibiotic resistance, and antibody production. This occurred at the
same time as the hardening of the neo-Darwinian Synthesis in evolutio-
nary theory. I argue that these concurrent changes reflect an ascendant
narrative of genetic selfhood, which prioritized random hereditary
variation and selection through competition, and marginalized physiolo-
gical or environmental adaptation. This narrative was further reinforced
by the Central Dogma of molecular biology and fit well with liberal
political thought, with its focus on the autonomous individual. However,
bringing biological findings into line with this narrative required modify-
ing the notion of the gene to account for various kinds of non-
Mendelian inheritance. Hans-Jörg Rheinberger’s reflections on narrative
and experiment are valuable in thinking about the friction between the
postwar ideal of genetic selfhood and actual observations of how
organisms adapt in response to the environment.

Keywords: adaptation, antibody, antibiotic resistance, genetic selfhood,
immunology, microbiology, narrative, selection, Synthesis, Hans-Jörg
Rheinberger

Between the 1930s and the 1960s, genes—or their mutations—emerged as the
explanation for many biological phenomena, including nutritional adaptation,
antibody formation, and the origins of antibiotic resistance. In each of these
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examples, genetic selection or induction vanquished an alternative “instructive”
or adaptationist explanation, one that emphasized the ability of living
organisms to change in direct response to their environment, sometimes in a
lasting way.1 This was also the period when the so-called neo-Darwinian
Synthesis was consolidated.2 As Stephen Jay Gould has argued, the emerging
Synthesis of the 1930s still had room for neo-Lamarckian heredity as well as
evolutionary change through genetic drift. By the 1950s, the Synthesis
hardened to exclude any form of non-Mendelian inheritance and any
evolutionary mechanism besides natural selection. Genetic variation always
emerged randomly, and that provided the only basis for natural selection of the
most fit organisms.3

The identification of DNA as the hereditary material—as well as the
elucidation of the relationship of RNA to protein synthesis—reinforced this
hardened evolutionary view at a molecular level. Nucleic acid was genotype;
protein was phenotype. As David Depew and Bruce Weber nicely put it, “The
picket-fence of Weismann’s barrier, on which the genetic theory of natural
selection was based, was suddenly transformed into the Berlin wall of the
central dogma of molecular biology: Information in biological systems flows
unidirectionally from nucleic acid to protein.”4 This metaphor of information has
been a fruitful way to understand the historical consequences of molecular
genetics for biology more broadly, in conjunction with a view of DNA as the
master molecule.5

Without contesting the informational turn of biology in the 1950s and
1960s, I am interested in drawing out how shifts in microbiology, immuno-
logy, and evolutionary thinking reconfigured understanding of the organism’s
essential self and its relation to its environment. (Notably, work on DNA was
not the driver of the shifts I discuss in these fields.) The very definition of
“adaptation” became restricted (especially for microbes), so that physiological
acclimatization was excluded in favor of genetic change via natural selection.6
The genome was viewed as the essential and impermeable core of even the
single-celled organism. Often the rise of genetic determinism and the
hardening Darwinian synthesis are understood in terms of what was explicitly
rejected, namely Lamarckianism (and, implicitly, Lysenkoism).7 But one could
cast the trend as producing a narrative about biological selfhood, rather than
simply avoiding disreputable explanations.8 This account presupposed (1) the
biological individual as inherently competitive, (2) heredity as impervious and
1 Creager 2007. My historical account of research on nutritional adaptation and antibiotic
resistance offered in this essay draws on material presented in much more detail in this 2007
article.

2 I will use the term “Synthesis” despite Joe Cain’s well-reasoned objections developed in Cain
2009.

3 Gould 1983.
4 Depew and Weber 1995, on 354.
5 Kay 2000.
6 Creager 2007.
7 Monod 1997; Jacob 1973; Sapp 1987.
8 Selfhood has been a prominent theme in the history of immunology: Tauber 1991; Tauber 1994.
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deterministic, and (3) selection as the only motor of lasting change to
organisms. Insofar as microbes provided key model systems for understanding
genotype and phenotype in molecular terms, single-celled prokaryotes were
seen as valuable proxies for complex eukaryotes, as made clear by Monod’s
reference to the “well-known axiom that anything found to be true of E. coli
must also be true of Elephants.”9 For biological fields that dealt specifically
with embryological development, host-pathogen interactions, physiology, and
learning, the resulting genetic self was both orthodox and insufficient to
explain many phenomena.10

In Spalt und Fuge, Hans-Jörg Rheinberger explores several ways in which
phenomenology can illuminate the connections between experimental know-
ledge and broader historical trends. He examines the role of narrative in
experimentation, the relationship of macrohistory to “microhistory,” and what
is lacking in both Jean-François Lyotard’s notion of master narratives and
Georges Canguilhem’s “scientific ideology.”11 As Rheinberger explains about
ideology,

[T]his is a level that is not particularly illuminating from the perspective of scientific
research—at least as long as one remains convinced that scientific exploration, together
with a few other activities such as the arts, ultimately possesses an irresistibly subversive
power. In the end, being subversive means nothing other than to possess the capability of
resisting such totalizations.12

He goes on to suggest that narratives are necessarily concrete and indetermina-
te, like the process of experimentation itself.

Here I offer a somewhat different way of considering narrative as a unit of
scientific explanation.13 In the cases I examine, the commitment to genetic
explanation, especially notable in the US, guided research into alignment with
Cold War values extolling the autonomous individual.14 I return to Canguil-
hem, who defines “scientific ideology” in this way:

By it I mean a discourse that parallels the development of a science and that, under the
pressure of pragmatic needs, makes statements that go beyond what has actually been
proved by research. In relation to science itself it is both presumptuous and misplaced.
Presumptuous because it believes that the end has been reached when research in fact
stands at the beginning. Misplaced because when the achievements of science actually do

9 Monod and Jacob 1961, on 396.
10 There is a strong literature on developmental biology: Gilbert 1991; Keller 1996; Keller 2002.
11 Rheinberger 2021. Elsewhere Rheinberger (2013) has considered how Canguilhem’s “scientific

ideology” might be used to describe Mendelian genetics and molecular biology; see Löwy, this
issue.

12 Ibid., on 219. The translation is from the English version of the book in production at
University of Chicago Press.

13 On narratives in science I am inspired by Mary Morgan and Norton Wise: Morgan 2008;
Morgan and Wise 2017.

14 In this essay I will use “individual” and “self” as synonymous, favoring the latter due to its
significance in immunology. For a more nuanced understanding of biological individuality, see
Lidgard and Nyhart 2017.
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come, they are not in the areas where the ideology thought they would be, nor are they
achieved in the manner predicted by ideology.15

Genetic selfhood would seem to fit well with his notion of scientific ideology,
being both grounded in material observation and consonant with the ideology,
here that of liberalism and anti-Communism, and more specifically anti-
Lysenkoism. Yet Canguilhem also opens up a space for mismatch between
cultural expectation and biological research. The cases I explore reveal
interesting countercurrents in the attempts to reconcile experimental results
with a genetic narrative. The picture of the self as defined by its genes included,
at the level of biological detail, striking exceptions and concessions, even as the
DNA double helix became its icon.16

1. Enzyme Adaptation and Antibiotic Resistance

As Michel Morange has shown, what came to be termed enzyme adaptation
was first observed by Émile Duclaux in a section of the second volume of his
massive Traité de microbiologie.17 In two different fungal species, Aspergillus
glaucus and Penicillium glaucum, certain digestive enzymes were only produced
(and, in these microbes, secreted) when the nutritional substances they broke
down were present. He referred to this phenomenon as “accoutumance.”18

Duclaux’s student Frédéric Diénert further studied this nutritional responsive-
ness in a PhD dissertation on galactose fermentation in yeast (S. cerevisiae).19
He found that yeast grown in glucose could not immediately ferment galactose,
but if cells were transferred to a galactose-containing medium that also had a
nitrogen source, they could acquire the ability to grown on galactose. Diénert
attributed this to an enzyme, galactozymase, which was either activated by the
presence of galactose or synthesized de novo. In addition, he showed that cell’s
fermentation of different sugars was coordinated. Media containing other
disaccharides such as melibiose and lactose, which contain galactose, also
exhibited galactozymase activity, whereas the availability of glucose would slow
fermentation of galactose. Most importantly, such acclimatization could occur
without the multiplication of cells. In the context of French neo-Lamarcki-
anism, this physiological change was not in contrast to selection, but could be
a mechanism for evolutionary adaptation.20

As Soňa Strbáňová has observed, during the first third of the twentieth
century biochemists and microbiologists in several European countries worked
on this phenomenon of nutritional adaptation via enzyme formation, some

15 Canguilhem 1988, on 57–58.
16 Nelkin and Lindee 1995. De Chadarevian (this issue) makes a similar argument.
17 Morange 2010.
18 Duclaux 1900, chapter 27.
19 Loison 2013, on 170.
20 Loison 2013.
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providing additional examples, others questioning the observations.21 The issue
of how the cell responded physiologically was entangled with that of variation
between cells in a culture, even as the meaning of variation for bacteria, which
might not possess Mendelian genes, was also unclear.22 Moreover, the
identification of various enzymes, starting with Buchner’s zymase, led to
questions about whether each enzyme was produced independently, or whether
adaptation involved the adjustment of a preexisting enzyme to a new substrate.
Lastly, the language around this kind of change in response to (often
nutritional) environment was not uniform, although adaptation became the
most common term in English. Henning Karström’s widely cited review,
“Enzymatische Adaptation bei Mikroorganismen,” not only introduced the
phrase “enzyme adaptation,” but also distinguished “constitutive enzymes,”
which are formed irrespective of conditions, from “adaptive enzymes,” which
are formed in response to specific nutrients or other environmental cues.23 Yet
the term “training” was also commonly used to describe such a physiological
response, in ways that blurred the line between enzyme adaptation and
(genetic) variation, because the stability of new trait often correlated with
amount of the time under these conditions, sometimes becoming a permanent
feature of a bacterial culture.24

In 1932, John Yudkin (who was working with Marjory Stephenson at
Cambridge, England) drew a distinction between “training” and “adaptation”:
training, in his view, involved “obtaining a bacterial strain which carries out a
reaction which it was previously incapable of doing, by growing it for a large
number of sub-cultures in a medium containing the new substrate.”25 This
becomes a new property of that strain, a heritable variation. Adaptive enzymes,
by contrast, are formed in response to the chemical environment, and “with
the removal of the stimulus, the character is lost by the descendants of the
organism.”26 Thus an adaptation is an “uninheritable acquired character.”27

Training involved natural selection; adaptation (in his sense) did not.28 At the
same time, Yudkin’s view of training allowed for exposure to a substrate to
induce a mutation. In this respect, the generation of genetic variation was not
blind to the environment, i. e., not necessarily random.29

Salvador Luria and Max Delbrück’s “fluctuation test,” published in 1943,
was aimed at testing whether “training” could generate mutations or whether
they represented truly random variation.30 Luria realized (by way of analogy to

21 Strbáňová 1997, on 263.
22 See Beadle 1945.
23 Karström 1937.
24 Burnet and Fenner 1949, on 93.
25 Yudkin 1932, on 1860.
26 Ibid.
27 Ibid., on 1870.
28 Yudkin 1938, on 94.
29 On the enduring idea of induced mutation among biologists (most notably John Cairns), see

Keller 1992.
30 Luria and Delbrück 1943.
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a slot machine, according to his autobiography) that a fluctuation in the
number of bacteria with phage resistance would indicate that the change was
due to a random mutation.31 They presented two hypotheses which their
experiment would differentiate: (1) “mutation”: exposure to phage selects for
bacteria which possess a random variation of resistance; (2) “acquired
hereditary immunity”: exposure to phage elicits immunity in bacteria, which is
then inherited in their descendants. While they did not use the term induced
mutation, hypothesis 2 accords to some degree with Yudkin’s training.
Hypothesis 1, as they made clear, had already been proposed by Frank
Macfarlane Burnet.32

As it turned out, their experiment showed that fluctuations in the number
of variants resistant to bacteriophage among otherwise identical cultures were
significantly greater than would be expected from the acquired immunity
hypothesis. (According to Luria’s analogy, this was a “jackpot” effect; the origin
of immunity was a matter of chance.) Luria and Delbrück’s finding was seen as
providing an empirical basis for bacterial genetics, showing that microbes
display the same kind of random variation that characterizes Mendelian
organisms, and demonstrating that inheritance in bacteria was not Lamar-
ckian.33

At Cold Spring Harbor Laboratory, while doing war-related work on
penicillin, Milislav Demerec extended Luria and Delbrück’s fluctuation
experiment to study the emergence of antibiotic resistance. Drawing an analogy
between resistance to phage and resistance to drugs, Demerec exposed cultures
of Staphylococcus aureus to penicillin and analyzed the statistical frequency of
appearance of resistance. Echoing Luria and Delbrück, Demerec asserted,

Two alternate mechanisms can be visualized as responsible for the origin of bacteria
resistant to certain concentrations of penicillin: (1) Resistance is an acquired characteristic,
which develops through interaction between bacteria and penicillin when the two are in
contact with each other. (2) Resistance is an inherited characteristic, which originates
through mutation and whose origin is independent of penicillin treatment; resistant
mutations occur at random, in a small fraction of a population, and, since a certain
concentration of penicillin eliminates all non-resistant individuals, the resistant ones are
selected out from the population by the treatment.34

The observed distribution of resistant colonies supported the second
interpretation, of mutation and selection. Additionally, Demerec showed that
resistance was transmitted as a permanent inherited trait through twenty
transfers of culture in non-penicillin-containing broth. At the same time, he
did see evidence for resistance developing in a gradual, step-wise fashion, which
advocates of training saw as evidence for acquired immunity. Opposing this
view, Demerec suggested that resistance was a complex genetic character that
might involve multiple mutations.35 After the war, the fluctuation test was

31 Luria 1984, on 75–77.
32 Burnet 1925; Burnet 1929; Sankaran 2021.
33 Summers 1991; Keller 1992.
34 Demerec 1945b, on 19.
35 Demerec 1945a.
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extended to other bacterial strains and their antibiotics, providing further
evidence for the genetic origin of antibiotic resistance.36

These findings were not lost on evolutionary biologists. Theodosius
Dobzhansky included a section on “Mutation and Selection in Micro-
organisms” to his 1951 edition of Genetics and the Origin of Species. He argued
that the interpretation of “changes in bacterial strains” had long had “a
Lamarckian flavor, as implied by the words ‘dissociation,’ ‘adaptation,’
‘training,’ etc., used in this connection.”37 This distasteful association had,
however, been disposed of by the “brilliant analysis by Luria and Delbrück”
and by Demerec’s demonstration that resistance could involve multiple
mutations.38 As Dobzhansky concluded, “[t]his accounts for the gradual
adaptation of bacterial strains to unusual environments, which was known in
bacteriology for a rather long time but was misinterpreted in a Lamarckian
fashion.”39

As is well known, enzyme “adaptation” was reconceptualized and formally
renamed enzyme “induction” by a group of microbiologists associated with the
Pasteur Institute.40 Over the 1950s and early 1960s, Jacques Monod and
François Jacob drew analogies between induction of β-galactosidase and the
phenomenon of lysogeny to develop their operon model of gene expression.41
This model gave a place for environmental cues while attributing the
organism’s capacity to respond to changing conditions strictly to its genes.42

2. Acquired Immunity in Vertebrates

Adaptive immunity in higher organisms threw up similar problems as that in
microbes: how was the acquisition of immunity, a response to the organism’s
conditions, related to heredity and evolution? It had long been recognized that
exposure of a vertebrate to a pathogen or toxin could confer subsequent
protection. This is one of the most striking examples of how multicellular
organisms acquire a persistent biological trait in response to their environment.
In 1890, Emil von Behring and Shibasaburo Kitasatō showed that a guinea pig
injected with a sublethal dose of diphtheria toxin produced antitoxic serum
that could be transferred to another guinea pig and bestow protection from
that toxin.43 In 1891 Paul Ehrlich introduced the term Antikörper to refer to
certain antitoxins; this word, or its English equivalent antibody, soon came to

36 Oakberg and Luria 1947; Demerec 1948.
37 Dobzhansky 1951, on 87.
38 Ibid., on 87 and 89.
39 Ibid., on 89–90.
40 Cohn et al. 1953.
41 Jacob and Monod 1961; Loison and Morange 2017.
42 The physiological nature of the operon model, and of work with microbes at the Pasteur

Institute, has been connected by some historians to the legacy of Claude Bernard: Burian and
Gayon 1991.

43 Behring and Kitasato 1890; Silverstein 1989, on 49.

Angela N. H. Creager

Ber. Wissenschaftsgesch. 45 (2022): 468 – 486474

Wiley VCH Montag, 05.09.2022

2203 / 255190 [S. 474/486] 1



denote these blood-born (humoral) agents of protection.44 How were they
produced, and why did they continue to be produced, even after the initiating
antigen was no longer present?

Ehrlich demonstrated that these protective factors possessed chemical
properties and that their affinity for an antigen was highly specific and
quantifiable.45 His view of antibody-antigen interactions rested on a notion of
chemical specificity, the diagrams in his 1900 Croonian Lecture depicting
antibodies as latching tightly onto structurally complementary protrusions
from a cell (which could also be released and bound to antibodies in the
milieu).46 In the hands of other chemists such as Karl Landsteiner and Felix
Haurowitz, immunology was among the earliest of biomedicine’s experimental
cultures to shift from in vivo to in vitro work, using Rheinberger’s apt terms.47
Agglutination tests and titration series were key tools for identifying the
presence of antibodies. Michael Heidelberger and Forrest E. Kendall provided
evidence that antibodies were globulins (i. e., proteins), soon confirmed by
Felix Haurowitz and Friedrich Breinl.48 In the early 1930s, several researchers
—including Haurowitz and Breinl—proposed that an antigenic determinant
was carried in the body to the site of protein synthesis, where it provided a
template for the antibody formation.49

Chemists were favorably inclined toward this template theory, but it also
had some biological support. Landsteiner had shown that animals could
produce antibodies against thousands of different substances, including
synthetic chemicals. If the immune system “learned” to produce an antibody
by encountering it, this would explain how the body could produce an
antibody to an entirely foreign (even xenobiotic) substance. In addition,
advances in protein chemistry were bringing antibodies into better view. When
Arne Tiselius developed his electrophoresis apparatus in the 1930s, his
demonstration of the power of the technique was the separation of horse blood
serum into several discrete protein constituents: albumin, and α, β, γ, and δ
globulins.50 Subsequently, Tiselius and Elvin Kabat showed that the γ (gamma)
globulin in rabbit serum contained antibodies.51

In 1936 Linus Pauling gave a seminar at the Rockefeller Institute for
Medical Research and visited Landsteiner’s laboratory there. Landsteiner drew
Pauling’s attention to the specificity of antibodies, asking how serological
reactions could be explained by chemical bonds. Interested in the problem,
Pauling read Landsteiner’s book, The Specificity of Serological Reactions, as well

44 Lindenmann 1984.
45 Ehrlich 1897.
46 This was indebted to the lock-and-key metaphor for enzyme-substrate binding. See Mertens

2019.
47 Rheinberger 2021, chapter 7.
48 Heidelberger and Kendall 1929; Breinl and Haurowitz 1930.
49 Silverstein 1989, on 68–69; Breinl and Haurowitz 1930; Topley 1930; Mudd 1932; Alexander

1932.
50 Tiselius 1937; Tiselius 1940, on 49.
51 Tiselius and Kabat 1938.
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as other publications on immunochemistry.52 He began working on how new
ideas of protein structure and hydrogen bonding might be used to revise the
template theory of antibody formation. He attributed the high degree of
specificity of an antibody to the folding of its polypeptide chain, which he
argued was preformed, but not folded, before its direct contact with antigen.53
Pauling’s own published evidence for this theory could never be replicated.54
However, over the 1940s and 1950s, different (gamma) antibodies were shown
to have very similar compositions of amino acids, which supported Pauling’s
view that the antigen did not change the polypeptide sequence but rather its
three-dimensional structure.55

However, as Frank Macfarlane Burnet observed, some biological observa-
tions did not square with the template theory.56 First, specific antibodies were
produced long after the instigating antigen was present. Second was the booster
effect, or the fact that the secondary response to an antigen involved a greater
antibody response than the first encounter. Neither of these could be explained
through the chemical model, though Burnet agreed with proponents of the
template model that the presence of an antigen (and, more specifically, its
hapten portion) was essential for antibody to be formed. He and Frank Fenner
offered a more biologically-oriented version of the template model, drawing on
the behavior of so-called adaptive enzymes to explain antibody formation.57
Burnet suggested that adaptive enzymes, unable to break down completely
foreign substances, might generate antigens that, in turn, stimulate production
of an antibody by the enzyme—a similar kind of adaptation to this new
environmental cue. Immunity, on this view, was not due to changes in nuclear
genes, but to enzyme reactions in the cytoplasm, which could be sustained
because adaptive enzymes were regarded as entities that could replicate
themselves outside the nucleus (plasmagenes) (Figure 1).58 Strikingly, Burnet
had used the term “training” to describe immunological reactions in the 1941
edition of this same book.59

It was in response to Burnet’s adaptive template model that Nils Jerne
proposed in 1955 a “natural-selection theory of antibody formation.” Jerne
proposed that the antigen, once introduced into the organism, was neither a
template nor an “enzyme modifier,” but rather “a selective carrier of
spontaneously circulating antibody to a system of cells which can reproduce
this antibody.”60 Key here was that some of the antibody with a particular
specificity is already present in the body, but binding to the complementary
antigen triggers formation of more of the same antibody, through assimilation

52 Pauling 1970.
53 Pauling 1940.
54 Deichmann 2021.
55 Haurowitz 1957.
56 Burnet and Fenner 1949, on 83.
57 Ibid., on 93.
58 Ibid., on 95.
59 Burnet 1941, on 46 and 63; Löwy 1991, on 61.
60 Jerne 1955, on 849.
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into phagocytes and transfer to other immune cells. As for the increase in
antibody formed after exposure, Jerne said this could be due to “autocatalytic
replication of the specific globulin molecules and to a multiplication of the
cells.”61 Jerne’s model relied on “a spontaneous production of random
specificities [in antibodies]” either early in development or continuously.62
David Talmage and (independently) Burnet subsequently modified Jerne’s
model so that selection operated not at the level of the antibody, but at the
level of the antibody-producing cell. It was Burnet who christened this sort of
somatic cellular change “clonal,” resulting in the term clonal selection theory.63

As Michel Morange has observed, Jerne’s selective model did not rely on
DNA or genetic information though it suggested possible involvement of RNA
(already known to be involved in protein synthesis from the work of Jean
Brachet).64 There had been contributions from geneticists in the 1940s that
argued for interactions between genes and antibodies, quite distinct from
Jerne’s ideas. In separate papers published back-to-back in PNAS, Alfred
Sturtevant and Sterling Emerson suggested that antibodies might cause specific
mutations in genes structurally resembling their antigens. Sturtevant picked up
on Landsteiner’s earlier observations that antigens both (1) induced the

Figure 1. Burnet and Fenner 1949, on 94.

61 Ibid., on 850.
62 Ibid.
63 Talmage 1957; Burnet 1957.
64 Morange 2014b.
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formation of antibodies and (2) bound specifically to antibodies. If genes were
structurally similar to antigens, he reasoned, these could be related via
mutation. The “natural selection” models of Jerne, Burnet and Talmage went
in a different direction, thinking of the antibody-antigen reaction not in terms
of mutation, but rather selective protein synthesis. Talmage specifically cited
Cohn et al.’s renaming of adaptive enzymes to “inducible enzymes” in
proposing his cellular selection theory.65 This put gene expression at the heart
of the antibody formation. Burnet’s modification emphasized the key role of
natural selection in the proliferation of some antibodies over others: “Each
such clone will have some individual characteristic and in a special sense will be
subject to an evolutionary process of selective survival within the internal
environment of the body.”66 Joshua Lederberg then rendered the clonal
selection model in terms of DNA.67

3. Ironies of (Molecular) Genetic Selfhood

Evelyn Fox Keller has analyzed elegantly how the role of genes, especially in
development, changed from one of “action” to “activation.”68 When Monod
and Jacob introduced their 1961 operon model to explain protein synthesis in
E. coli, they immediately suggested that selective regulation of genes could also
explain cellular differentiation in higher organisms.69 While their general
framework remained fundamental to molecular genetics, the mechanisms
involved in gene expression were found to be more and more complex,
involving a wide a variety of enhancers and transcriptional factors. In the
genomic and post-genomic era, the turn to investigating phenotypes in terms
of regulatory networks has further complicated what it means to attribute a
trait to genes. Biologists have discovered that mutations in genes involved in
differentiation often have a dramatic impact on embryological phenotype,
calling into question the assumption that evolution works by “small” adaptive
variations.70

In immunology, the acceptance of clonal selection theory created a new
problem for biologists. If every specific antibody was produced by one gene,
how could the genome containing all of them be so small? The “Generation of
Diversity”—or “GOD”—problem became a major arena in which molecular
biologists were able to demonstrate the power of their techniques to answer
immunological questions. As Scott Podolsky and Alfred Tauber have shown in
magnificent detail, over the course of the 1960s and 1970s, biologists including
David Talmage, Philip Leder, Leroy Hood, Susumu Tonegawa and many
others uncovered the complex recombinatorial diversification through which

65 Cohn et al. 1953; Talmage 1957, on 244.
66 Burnet 1957, on 67.
67 Lederberg 1959; Morange 2014b.
68 Keller 1994; Keller 1995.
69 Jacob and Monod 1961; Monod and Jacob 1961; Morange 1996.
70 Morange 2014a.
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three hundred or so germline genes can produce somatic cell lines that
synthesize billions of different antibodies. Individuals do not inherit the
specific antibody-producing genes from their parents, but rather generate them
during embryological development.71 This provides a radically different picture
of what heredity means compared to Mendelian transmission of germline
genes. The solution of the GOD problem was a triumph for molecular biology,
and yet the further attempt to pin down selfhood to a genetic signature (the
major histocompatibility complex) proved elusive. Rather, as network theorists
in immunology have argued, the immune “self” is produced dynamically in
response to events within the organism and through ongoing encounters with
its environment.72 As immunological “memory” suggests, the system is a
product of the organism’s history, not only its genes.

The success of the mutational explanation of antibiotic resistance resulted
in a similar irony. Consider the discovery of “multiple resistance,” or the
simultaneous emergence of resistance in a single bacterial species (as observed
in an infected patient) against several antibiotics.73 How could a mutation in
one bacterial gene confer resistance to many antibiotics, each having different
mechanism of action? Tsutomu Watanabe and his collaborators solved this
puzzle by determining that resistance was not arising via a mutation on the
bacterial chromosome but acquired via cytoplasmic plasmids called R factors.74
These R factors could carry genes for resistance to many antibiotics and seemed
able to promote their own dissemination in bacterial populations. The
vindication of a genetic view of drug resistance necessitated recasting the gene
to include extrachromosomal hereditary units carried on viruses and plasmids.
In fact, the transmission of such plasmids between bacteria leads to inheritance
of acquired characteristics, in this case bits of cytoplasmic DNA.

In contemporary research, such as on epigenetics and the microbiome, most
biologists continue to qualify genetic selfhood without calling that edifice into
question.75 Meanwhile, the fuzzy interface between self and environment
remains comparatively underexplored. In representing DNA damage and
repair, for instance, free radicals generated by normal metabolism and
polymerase errors in DNA replication are depicted alongside industrial
chemicals and natural carcinogens (such as sunlight) as equally part of the
gene’s destructive environment (Figure 2). A historian of biology might note
that Claude Bernard’s differentiation of milieu intérieur from milieu extérieur is
sorely missed.76

71 Podolsky and Tauber 1997, on 92. A recent study offers estimates the number of antibodies that
humans can produce to be as high as one quintillion. Briney et al. 2019.

72 Varela et al. 1988; Podolsky and Tauber 1997, chapter 9.
73 Akiba et al. 1960.
74 Watanabe 1963.
75 Some do question the assumptions of genetic individuality, proposing instead that living

organisms are inherently symbiotic, i. e., holobionts: Gilbert et al. 2012. On epigenetics, see
Morange 2020, chapter 26.

76 Bernard 1878; Holmes 1986.
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Commentators have pointed to problems with the scientific conception of
the self, above all in immunology, where it is so central.77 Richard Lewontin
has observed that the notion of the biological individual is moored in a broader
ideological framework, one that is now deeply embedded in the assumptions of
life scientists.

The historical development of a modern mechanistic biology had depended critically on a
successful separation of the internal from the external. […] Environments set the
problems. Organisms whose inner nature allow them to solve the problems successfully
survive and leave offspring. The others fail. The nature of the organism itself is a
consequence of internal forces that are independent of the external world, that is, at
random with respect to the problems created by the environment. The individual organism
is then the locus of connection between the internal and external. It is called into being by
the internal and disposed of by the external. It has, in this way, no separate existence, but
is simply the nexus of autonomous internal and external forces. We then have the curious
irony that although Darwinism is a theory of individual survival and reproduction, of
individual adaptation, the organism as organism plays no role at all. […] So, the critical
role of the individual is threatened and contradicted by its placement at the boundary
between autonomous internal and external forces. The contradiction is a very deep one,
for if there is no boundary between the internal and the external, if they flow continuously
into each other as the premodern natural philosophers thought, then how do we locate the

Figure 2. “Equilibrium between DNA damage and DNA repair. Above the screen are listed
exogenous and endogenous sources of DNA damage. Below the screen are the small number of
DNA alterations that escape DNA repair and result in mutagenesis.” Diagram and caption
reproduced from Wogan et al. 2004.

77 Burnet 1969; Anderson and Mackay 2014; Cohen 2017.
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individual at all? “Self,” by its own nature, demands the definition of its dialectical partner,
“other.”78

The notion of genetic selfhood would seem especially susceptible to Lewontin’s
critique: what is the genetic individual’s other? In the experimental examples I
have presented, attention to the dynamic interaction of the organism with its
environment, which was initially the object of study, was sidelined by
explanations that highlight the variation, expression, and selection of genes.
The picture of genetic selfhood that emerged was one in which an organism’s
ability to respond to the environment had to arise randomly in its hereditary
material, even though for higher organisms, components such as the immune
system and nervous system are clearly generated not directly by genes but also
through encounters with the environment—as well as within the self.

The postwar explanations for enzyme adaptation, antibiotic resistance, and
antibody production were ultimately vindications of both molecular biology
and the Synthesis. The atomistic and competitive view of the genetic individual
that emerged fit well with Cold War political liberalism and (as others have
noted) gave no evolutionary standing to symbiosis, cooperation, and other
forms of biological collectivism.79 And, to be sure, the technologies of genetics
have proven exceedingly useful in research, medicine, and the production of
biocapital.80 As Rheinberger observes, the usual notion of ideology—which
would seem to be operative here, both conceptually and economically—gives
so much causality to politics that it barely leaves any room for the subversive
effects of scientific exploration (or the arts).81 Yet the cases discussed here also
show how experimentation at times interfered with the dominant narrative.
Researchers in immunology and antibiotic resistance had to revise the notion
of the gene to fit with their findings, loosening the grip of Mendelian
inheritance. The “genetic self” resides in this space between expectation and
experiment, an ideological script qualified and sometimes undermined by the
complexities of organismal life, even as it is treated as settled.
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