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1. SUPPLEMENTARY METHODS14

1.1. The contribution matrix15

1.1.1. Contribution matrix for vaccinated populations16

Consider a generalized compartmental susceptible-infected-removed model that also tracks
vaccinated individuals and breakthrough infections. We assume that the population can be sorted
into " ∈ N+ groups and that a single individual can be in any of + ∈ N+ vaccination states. The
ordinary differential equations describing the evolution of an epidemic in this model are given as
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Here, (Γ
8

represents the compartment counting susceptibles in population group 1 ≤ 8 ≤ " of size17

#8 that have vaccination status 1 ≤ Γ ≤ + (analogously, �Γ
8

represent the respective (breakthrough)18

infections, and 'Γ
8

the respective removed individuals).19

We will assume in the following that the epidemic is contained well enough such that the
fraction of infected individuals in population group 8 is always much lower than the respective re-
maining susceptibles in this group, which means that we can linearize the equations above around
the disease-free state. We further argue that outbreaks will quickly push the prevalence into the
eigenvector corresponding to the largest eigenvalue of the system’s Jacobian. The disease-free
state is, for each population group 8, given as

Λ∑
Γ=1

(̃Γ8 = #8

�̃Γ8 = '̃
Γ
8 = 0, ∀Γ.

For simplicity, we will assume that Γ = 1 refers to unvaccinated individuals and Γ > 1 refers to20

vaccinated individuals. For example if we consider+ = 2 in an otherwise homogeneous population,21

and assume that 60% of a population of size # = 107 are vaccinated, we have the disease-free state22

(̃Γ=1 = 4×106, (̃Γ=2 = 6×106 and �̃Γ = '̃Γ = 0.23

We want to derive the contributions vaccinated individuals make to the effective reproduction24

number of this system in the regime of small outbreaks. To this end, we use the next-generation-25

matrix framework1,2. Note that we are only interested in contributions to the reproduction number,26

which remains unchanged by the introduction of latent compartments which we can therefore27

safely ignore without invalidating our results.28

The system’s next generation matrix is derived as follows. Consider the transmission matrix of29

small domain30

)ΓΛ8 9 = UΓΛ8 9 (̃
Γ
8 #
−1
9

and the transition matrix of small domain31

ΣΓΛ8 9 = V
Γ
8 X8 9XΓΛ
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with Kronecker’s symbol

X8 9 =

{
1 if 8 = 9 ,
0 otherwise.

Note that both of these matrices are actually tensors of size " ×" ×+ ×+ and capture the repro-32

duction dynamics caused by infecteds of group 9 and vaccination status Λ towards susceptibles of33

group 8 and of vaccination status Γ.34

Now, the next generation matrix    is given as35

   = )))Σ−1.

Since Σ is diagonal, we can write down    explicitly, namely as36

 ΓΛ8 9 =
UΓΛ
8 9
(̃Γ
8

VΛ
9
# 9

.

The reproduction number of this system is given as the spectral radius of the next generation matrix37

R = d(   ).
Around the disease-free equilibrium, the system can be linearized. Consider a vector HHH whose38

elements HΓ
8

contains the number of newly infecteds in population group 8 and vaccination status39

Γ. The per-generation growth of these infecteds will effectively follow40

HHH(6 +1) =    HHH(6),
which means the incidence HHH will quickly approach a state that points in the direction of the41

eigenvector ĤHH corresponding to the largest eigenvalue R. Let’s normalize this eigenvector such42

that43
+∑
Γ=1

"∑
8=1

ĤΓ8 = 1.

With44

   ĤHH = R ĤHH,
this implies45
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From this equation, we can read off the contribution matrix

�ΓΛ8 9 =  
ΓΛ
8 9 Ĥ

Λ
9 (S1)

=
UΓΛ
8 9
(̃Γ
8

VΛ
9
# 9

× ĤΛ9 ,

which contains the contributions to R made by infected individuals of group 9 and vaccination46

status Λ towards susceptibles of group 8 and vaccination status Γ in the regime of small outbreaks.47

To obtain average population-wide contributions of vaccinated and unvaccinated individuals, we48

can simply sum over the contributions of all population groups to find49

�ΓΛ =

"∑
8=1

"∑
9=1
�ΓΛ8 9 . (S2)
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1.1.2. Constructing the next generation matrix in presence of vaccination50

In this section we want to introduce some quantities that clarify the construction of the infection51

rate matrix UUU, the next generation matrix    , and how to simplify the approach.52

Let’s begin with the base case, i. e. the absence of working vaccines in which + = 1 (we only53

have one vaccination status which is “unvaccinated”). We further introduce U 9 as the vector quan-54

tifying population group-specific infection rates because viral shedding could be, for instance,55

age-specific, as well as the contact matrix W8 9 that contains the “typical” number of contacts a56

randomly chosen individual of group 9 has towards individuals of group 8. This implies57

U8 9 = W8 9U 9

and58

 8 9 = W8 9U 9
#8

# 9

1
V 9
,

i. e.59

   = diag(###) · WWW ·diag(###)−1 ·diag(UUU) ·diag(VVV)−1.

Here, V−1
9

quantifies the average duration of the infectious period of an individual of group 9 .60

Now, let’s assume that we do not know the explicit viral shedding rate (or infectiousness), but61

that we can make reasonable assumptions about their relative size (e.g. “individuals of group 9 are62

twice as infectious as individuals of group 8” which would imply U 9/U8 = 2), such that63

U 9 = U00 9

with 000 being a vector that contains these relative values. Likewise, we can scale the relative64

duration of the average infectious periods with65

V 9 = V01 9 .

What we usually do have estimates for is the basic reproduction number, which we find as

R0 = d(   )

= U0V0d
(
diag(###) · WWW ·diag(###)−1 ·diag(000) ·diag(111)−1

)
= U0V0d

(
WWW ·diag(000) ·diag(111)−1

)
= U0V0d0

with66

d0 = d
(
WWW ·diag(000) ·diag(111)−1

)
.

Above, we used the fact that diagonal operators commute and that the spectrum of matrices re-67

mains unchanged under base transformations. With this result we can gauge U0 as68

U0 = R0V0d
−1
0 .

Now, we introduce vaccines. Let’s assume that vaccinated individuals of vaccination status Λ69

in population group 9 have status-dependent transmissibility reduction of70

0 ≤ AΛ9 ≤ 1
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when they suffer from a breakthrough infection. In the following we will assume that Λ = 171

corresponds to unvaccinated individuals such that AΛ=1
9

= 0. Likewise, we introduce a susceptibility72

reduction for individuals of population group 8 and vaccination status Γ of73

0 ≤ BΓ8 ≤ 1

where, again, we assume that BΓ=1
8

= 0. We therefore define as the infection rate matrix74

UΓΛ8 9 =
R0V0
d0

W8 9 (1− BΓ8 ) (1− AΛ9 )0 9

such that the next generation matrix is given as75

 ΓΛ8 9 =
R0
d0
W8 9 (1− BΓ8 ) (1− AΛ9 )

(̃Γ
8
0 9

# 91
Λ
9

.

With (1Λ
9
)−1 we acknowledge that the average infectious period can differ for vaccinated individ-76

uals. This result is independent of exact values for infection rates U0 and average infectious period77

V−1
0 .78

We can further encapsulate restrictions imposed on (un)vaccinated individuals by making the79

“basic” reproduction number depend on vaccination status of infectious individuals such that80

 ΓΛ8 9 =
RΛ0
d0
W8 9 (1− BΓ8 ) (1− AΛ9 )

(̃Γ
8
0 9

# 91
Λ
9

.

Regarding mixing behavior, we can introduce an unvaccinated-vaccinated mixing matrix that mim-
ics social segregation of vaccinated and unvaccinated individuals. For simplicity, we will assume
that this mixing matrix is independent of the size of the respective subpopulations and given as

` =

©«
1 < < . . . <

< 1 1 . . . 1
< 1 1 . . . 1
...
...
...
. . .

...

< 1 1 . . . 1

ª®®®®®¬
with 0 < < ≤ 1. Then, the next-generation matrix is given as81

 ΓΛ8 9 =
RΛ0
d0
W8 9`

ΓΛ(1− BΓ8 ) (1− AΛ9 )
(̃Γ
8
0 9

# 91
Λ
9

. (S3)

Hence, the parameter < controls the amount of mixing between unvaccinated and vaccinated in-82

dividuals with < = 1 yielding homogeneous mixing and < < 1 implying less mixing between83

unvaccinated and vaccinated states.84

Note that if any Bunvacc
8

≠ 1 or Aunvacc
8

≠ 1, d0 has to be computed as

d0 = d
(
diag(1− BBB0) · WWW ·diag(000) ·diag(1110)−1 ·diag(1− AAA0)

)
where B0

8
= Bunvacc

8
, A0
8
= Aunvacc

8
and 10

8
= 1unvacc

8
. Once  ΛΓ

8 9
has been constructed, we compute its85

spectral radius and corresponding normalized eigenvector ĤΓ
9

and both the full (Eq. (S1)) and the86

reduced contribution matrix Eq. (S2).87
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1.1.3. Explicit derivation of the contribution matrix in a homogeneous population88

We devise a simplified susceptible-infected-removed model3, where both (unvaccinated) sus-89

ceptible (() and vaccinated (+) individuals can be infected by the unvaccinated (�) and vaccinated90

infectious (. ) population. Both recover to either unvaccinated recovered, ('), or vaccinated re-91

covered (-).92

For simplicity, we assume full immunity after recovery, which means that the duration of
immunity is much longer than the time scale at which new outbreaks occur. Each variable re-
flects the relative frequency of the respective individuals in a population of size # , implying that
(+ �+'++ +. +- = 1. Accounting for potentially different infection rates U. and U� of vaccinated
and unvaccinated, susceptibles are depleted in a well-mixed system as

3(

3C
= −(U� � +U.. )(. (S4)

Additionally, we denote the total prevalence as I = � +. . In addition, not explicitly discriminating
vaccinated and unvaccinated infected individuals yields

3(

3C
= −U(I( = −VR̃(I( = −VR(I. (S5)

Here, R̃( = U(/V is the basic reproduction number that represents the typical number of offspring
per typical infectious individual in a fully susceptible population and V is a generalized recovery
rate. In addition, R( is the effective reproduction number that represents the number of offspring
per typical individual in the remaining susceptible population, i.e., R( = R̃((. Combining Eq. (S4)
and Eq. (S5) then yields a closed formula for R( as

R( =
(U� � +U.. )(

VI (S6)

Note, that an analogous derivation can be done for the share of vaccinated individuals + , which93

yields a basic reproduction number R+ such that the total effective reproduction number reads94

R = R( +R+ .95

The main goal of pandemic control is to decrease R, e.g., by vaccination campaigns. Assuming96

a vaccine efficacy of 0 ≤ B ≤ 1 against infection and a vaccine uptake 0 ≤ E ≤ 1 homogeneously97

distributed over the whole population, the total number of unvaccinated individuals at risk of98

infection is given as ( = 1− E and the total number of vaccinated individuals at risk of infection is99

given as + = E(1− B), such that ( ++ = 1− EB.100

For low prevalence, i.e., I � 1, an infectious individual will infect vaccinated and unvaccinated
proportionally, such that the probability for a randomly chosen infected to have come from the
unvaccinated susceptible population reads ?� = (1− E)/(1− EB). Likewise, the probability for a
randomly chosen infected to originate from the vaccinated population reads ?. = E(1− B)/(1−EB).
We can therefore explicitly disentangle the total infectious population I into its two contributions

� =
1− E
1− EBI and . =

E(1− B)
1− EB I. (S7)

One principle question of this study is how infectious the vaccinated population will be towards
the unvaccinated population if their respective base transmissibilities are reduced by targeted non-
pharmaceutical interventions (NPIs). Hence, we set U. = UE (1− A). Here, A represents the reduc-
tion of transmissibility per contact that arises from vaccination and UE represents the base trans-
missibility of vaccinated individuals under targeted NPIs (e.g. contact reductions). In contrast,
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unvaccinated individuals will transmit pathogens with a transmission rate U� = UD, with UD rep-
resenting a reduced base transmissibility caused by NPIs that target the unvaccinated population.
Plugging these assumptions as well as Eq. (S7) into Eq. (S6) yields

R( =
[UD (1− E)I +UE (1− A)E(1− B)I](1− E)

VI(1− EB)

=
1− E
1− EB [RD (1− E) +REE(1− A) (1− B)] .

R can thus be decomposed into the respective contributions by vaccinated and unvaccinated indi-
viduals such that

R�→( =
(1− E)2
1− EB RD

R.→( =
E(1− E) (1− B) (1− A)

1− EB RE

Analogously, we find the contributions of vaccinated and unvaccinated individuals towards the
infection of vaccinated individuals as

R�→+ =
E(1− E) (1− B)

1− EB RD

R.→+ =
E2(1− B)2(1− A)

1− EB RE

Plugging all four contributions together yields the total effective reproduction number

R = R�→( +R.→( +R�→+ +R.→+
= (1− E)RD + E(1− B) (1− A)RE . (S8)

The contribution matrix is given as

��� =

(
R�→( R.→(
R�→+ R.→+

)
. (S9)

1.1.4. Operational definition based on a two-dimensional example101

Consider " coupled populations, individuals of which produce new individuals in each of these102

populations. A next generation matrix  8 9 of shape " ×" contains the average offspring a single103

9 individual produces in population 8.104

For instance, the matrix

   =

(
1 1
2 3

)
(S10)

describes a system of two populations, let’s call them � and � with indices 8� = 0 and 8� = 1. In one105

generation (i. e. during its lifetime), a single � individual produces, on average,  00 = 1 individuals106

in population � and  10 = 2 individuals in population �. A single � individual produces, on107

average,  11 = 3 individuals in population � and  01 = 1 individuals in population �.108
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Let the vector HHH(6) of length " = 2 contain the number of �- and �-individuals, respectively,
at generation 6. The per-generation dynamics follow

HHH(6 +1) =    HHH(6).

After a few generations, the system state HHH approaches the eigenvector of    that corresponds to its
largest eigenvalue (spectral radius). We can compute the relative size of populations � and � as

ĤHH =

(
�

�

)
=

(
0.27
0.73

)
.

Now, we want to define the so-called “contribution matrix” which quantifies the absolute contri-109

butions of each population to the reproduction of each respective population when the exponential110

growth (or decay) has approached the eigenstate.111

Operationally, one can define the contribution matrix as follows. During a time of growth
(decay), we track newborn individuals of both populations � and � for a few generations. Let’s
call the set of these individuals I. For each individual 8 ∈ I, we track the count of its offspring in
the respective populations � and �. Let’s define as

�(8) =
{

1 if 8 belonged to �,
0 otherwise

and

�(8) =
{

1 if 8 belonged to �,
0 otherwise

functions that give information about the populations individuals 8 ∈ I belonged to. Hence, I� =112

{8 : 8 ∈ I ∧ �(8) = 1} and I� = {8 : 8 ∈ I ∧�(8) = 1} are the respective subsets of I that contain �113

and � individuals, respectively.114

We further define as f? (8) the number of ?-offspring that individual 8 produced during its
lifetime. Then we can define the offspring matrix

%%% =
∑
8∈I

(
f� (8)�(8) f� (8)�(8)
f� (8)�(8) f� (8)�(8)

)
whose entries %8 9 quantify how much 8-offspring has been produced by 9-individuals during the
measurement period. Given the definitions of the sets above, we can also write %%% as

%%% =

(∑
8∈��f� (8)

∑
8∈�� f� (8)∑

8∈��f� (8)
∑
8∈�� f� (8)

)
.

The relative contribution matrix is then defined as

�̃�� =
%∑

8∈I
(
f� (8) +f� (8)

) .
Each entry �̃8 9 contains the 9-produced number of 8-offspring relative to the total number of off-115

spring in the system during the measurement period.116
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The average number of offspring per any individual is given as

R = 1
|I |

∑
8∈I

(
f� (8) +f� (8)

)
.

This number is also called the “basic reproduction number” because it quantifies the average num-
ber of offspring per “typical” infectious individual. So in order to find the absolute contributions
of 9-induced 8-offspring to the reproduction number we define the contribution matrix

��� = R�̃��,

which evaluates to

��� =
1
|I |

(∑
8∈��f� (8)

∑
8∈�� f� (8)∑

8∈��f� (8)
∑
8∈�� f� (8)

)
.

We can also define the next generation matrix operationally. First, be reminded that I� and I�
are the respective subsets of I that contain � and � individuals, respectively. Then

ĤHH =
1
|I |

(
|I� |
|I� |

)
describes the state of the system in terms of newly generated individuals. To find    we want to
obtain the average number of 8-offspring per active 9 individual, i. e.

   =

(
1
|I� |

∑
8∈��f� (8)

1
|I� |

∑
8∈�� f� (8)

1
|I� |

∑
8∈��f� (8)

1
|I� |

∑
8∈�� f� (8)

)
.

We then see that

   ·diag( ĤHH) =
(

1
|I |

∑
8∈��f� (8)

1
|I |

∑
8∈�� f� (8)

1
|I |

∑
8∈��f� (8)

1
|I |

∑
8∈�� f� (8)

)
(S11)

=
1
|I |

(∑
8∈��f� (8)

∑
8∈�� f� (8)∑

8∈��f� (8)
∑
8∈�� f� (8)

)
(S12)

so
   ·diag( ĤHH) = ���.

Note that the difference between    and ��� is subtle but important: While  8 9 contains the average117

number of 8-offspring by a single 9-individual, �8 9 quantifies the average number of 9-caused 8-118

offspring per individual, i. e. makes the important distinction to consider the relative amount of119

9-individuals in I.120

For our toy model, we can therefore easily quantify the contribution matrix by computing the121

eigenvector of the next generation matrix and plugging it into the equation above,122

��� =

(
0.27 0.73
0.54 2.20

)
.

Here we see that by far the largest contribution to the reproduction number is by � individuals that123

produce other � individuals.124
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Note that this does not necessarily mean that, if we wanted to stifle growth altogether to induce
decay, it would be enough to hinder �-individuals from reproducing. Let’s say that we some-
how manage to stop �-individuals from reproducing altogether, such that only �-individuals can
produce offspring (either � or �). This means that the next generation matrix is modified as

   ∗ =

(
1 0
2 0

)
(S13)

which means that the contribution matrix changes to

���∗ =

(
1/3 0
2/3 0

)
(S14)

with R = 1. So the population will stay constant over time. Note that the respective absolute125

contributions by population � in ���∗ are now of greater value than those in ���.126

1.2. Parameters and scenarios127

We report here the matrices and vectors used in the analyses in the main text, constructed based128

on the values and estimates reported in the Methods section.129

1.2.1. Population and contact data130

As described in the Methods section, we consider " = 4 subpopulations of size

### =

©«
9,137,232
5,339,517
46,495,023
20,275,029

ª®®®¬ ,
with the contact matrix

WWW =

©«
2.8394495 0.5205262 3.235192 0.6269835
0.8907488 4.4044118 4.745159 0.4811966
0.6357820 0.5449370 6.430791 1.0125184
0.2825591 0.1267252 2.321924 2.1267606

ª®®®¬ ,
as constructed using the socialmixr software package4 based on the POLYMOD (2005) data5.131

1.2.2. Base epidemiological parameters132

As argued in the Methods section, we assume that children and adolescents have lower viral
shedding rates if infected and set

000 =

©«
0.63
0.81
1.00
1.00

ª®®®¬ .
10



Regarding relative recovery rates, we assume that the infectious period of breakthrough infections
is, on average, only 2/3 as long as the infectious period of unvaccinated infecteds, such that

111 =

©«
1 1.5
1 1.5
1 1.5
1 1.5

ª®®®¬ ,
In consistence with the average fraction of fully vaccinated individuals, we define the disease-free
state as

(̃(( =

©«
#1 0

(1−0.401)#2 0.401×#2
(1−0.724)#3 0.724×#3
(1−0.851)#4 0.851×#4

ª®®®¬ .
We also assume homogeneous mixing between vaccinated and unvaccinated

`̀̀ =

(
1 1
1 1

)
,

a homogeneous vaccine-induced transmissibility reduction of

AAA =

©«
0 0.1
0 0.1
0 0.1
0 0.1

ª®®®¬ ,
and equal base transmissibility RD = RE.133

1.2.3. Scenario “low efficacy”134

Regarding the age-dependent susceptibility reduction we set

BBB =

©«
0.28 0.64
0.28 0.64
0.00 0.50
0.00 0.40

ª®®®¬ .
Note that here, a reduced base susceptibility was assumed for children and adolescents (1−0.28 =135

1− B = 72% of the value of adults). Setting a vaccine efficacy of 50% therefore amounts to a total136

susceptibility reduction that is 1− (1− 0.28) × (1− 0.60) = 0.64 (in relation to full susceptibility137

associated with adults).138

1.2.4. Scenario “medium efficacy”139

Regarding the age-dependent susceptibility reduction we set

BBB =

©«
0.28 0.712
0.28 0.712
0.00 0.600
0.00 0.500

ª®®®¬ .
11



Note that here, a reduced base susceptibility was assumed for children and adolescents (1−0.28 =140

1− B = 72% of the value of adults). Setting a vaccine efficacy of 60% therefore amounts to a total141

susceptibility reduction that is 1− (1−0.28) × (1−0.60) = 0.712 (in relation to full susceptibility142

associated with adults).143

1.2.5. Scenario “high efficacy”144

Regarding the age-dependent susceptibility reduction we set

BBB =

©«
0.28 0.9424
0.28 0.9424
0.00 0.7200
0.00 0.7200

ª®®®¬ .
Note that here, a reduced base susceptibility was assumed for children and adolescents (1−0.28 =145

1− B = 72% of the value of adults). Setting a vaccine efficacy of 92% therefore amounts to a total146

susceptibility reduction that is 1− (1−0.28) × (1−0.92) = 0.9424 (in relation to full susceptibility147

associated with adults).148

1.3. Analyses149

1.3.1. Systematically decreasing vaccine efficacy150

We use Eq. (S3) and assume an age-independent susceptibility reduction 0 ≤ f ≤ 1, such that

BBB =

©«
0.28 1− (1−0.28) × (1−f)
0.28 1− (1−0.28) × (1−f)
0.00 f

0.00 f

ª®®®¬ . (S15)

In an “optimistic” scenario, AAA and 111 remain constant as defined above. In a “pessimistic“ scenario,
we assume that AAA and 111 are reduced proportionally to f with

111 =

©«
1 f/2+1
1 f/2+1
1 f/2+1
1 f/2+1

ª®®®¬ , (S16)

and

AAA =

©«
0 0.1f
0 0.1f
0 0.1f
0 0.1f

ª®®®¬ . (S17)
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1.3.2. Decreasing the transmissibility of unvaccinated and unvaccinated with targeted NPIs151

In order to obtain Fig. 3a in the main text, we use the “low efficacy”, “medium efficacy”,152

and “high efficacy” scenario parameters and gauge the initial base transmissibilities as RD0 = R
E
0,153

such that the spectral radius of  ΛΓ
8 9

is equal to R = 1.2. Then, we linearly scale RD from ZD =154

1−RD/RD0 = 0 to ZD = 1−RD/RD0 = 1/2, numerically finding the value ZE = 1−RE/RE0 at which the155

spectral radius becomes R = 1.156

The resulting isoclines marking R = 1 are linear functions. In the homogeneous cases, we can
use Eq. (S8) to find the parametric equation

� = (1− E) (1− ZD) + E(1− B) (1− A) (1− ZE)

where � is a constant. We rewrite the equation above as

�̃ = (1− E)ZD + E(1− B) (1− A)ZE,

giving

ZE = �̃
′− 1− E
E(1− B) (1− A) ZD

which determines the isoclines. The linear function that runs perpendicular to this function has
slope

j =
E(1− B) (1− A)

1− E
and is the “fastest” way to reach any isocline in the plane from any point in the plane.157

1.3.3. Assuming children are as susceptible and infectious as adults158

Here, we assume

000 =

©«
1
1
1
1

ª®®®¬ ,
as well as

BBB =

©«
0.00 0.60
0.00 0.60
0.00 0.60
0.00 0.50

ª®®®¬
for the “medium efficacy” and

BBB =

©«
0.00 0.92
0.00 0.92
0.00 0.72
0.00 0.72

ª®®®¬
for the “high efficacy” scenario, respectively. The results are presented in Supplementary Table 1159

and Supplementary Table 2.160
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1.3.4. Decreasing mixing between vaccinated and unvaccinated161

One may assume that the intention to vaccinate follows the rules of social contagion, such that
it is likely that vaccinated and unvaccinated individuals meet each other less often than they meet
individuals with whom they share their respective vaccination status. We can simulate such a
hypothetical scenario using Eq. (S3) with

`̀̀ =

(
1 <

< 1

)
.

We find that decreasing mixing (decreasing < from < = 1 to lower values 0 ≤ < < 1) between162

vaccinated and unvaccinated individuals decreases R, but increases the relative contributions un-163

vaccinated individuals make towards it (see Fig. 3b in the main text).164

1.3.5. Assuming lower vaccine efficacy for the elderly165

We base the following scenario on the “medium efficacy” scenario and additionally assume that
the elderly have lower protection against infection by setting

BBB =

©«
0.00 0.60
0.00 0.60
0.00 0.60
0.00 0.40

ª®®®¬ ,

AAA =

©«
0.00 0.10
0.00 0.10
0.00 0.10
0.00 0.08

ª®®®¬ ,
and

111 =

©«
1 1.5
1 1.5
1 1.5
1 1.4

ª®®®¬ ,
effectively reducing all relevant quantities regarding vaccine efficacies in the elderly by 20% (rela-166

tive to the base value), i.e. setting f = 0.8 in the respective last rows of Eqs. (S15)-(S17) and f = 1167

in the remaining rows. The results are shown in Supplementary Table 3. Comparing these results168

with those obtained in the “medium efficacy” scenario (Table 3 in the main text) shows that this169

medium efficacy does not change the original results substantially.170

1.3.6. Increasing vaccine uptake171

We use the “medium efficacy” scenario and replace the disease-free state with

(̃(( =

©«
#1 0

(1−0.9)#2 0.9×#2
(1−0.9)#3 0.9×#3
(1−0.9)#4 0.9×#4

ª®®®¬ .
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The absolute contributions that are shown in Fig. 3c of the main text are reported in Supplementary172

Tables 4,5.173

1.3.7. Scenario “very low efficacy”174

Additionally, we test how this result would change if the effective transmission reduction A′175

decreases to A′ = 20% for the elderly and adults, keeping A′ = 40% for adolescents, who have not176

been eligible to receive a vaccine until shortly before October 2021. We obtain Supplementary177

Table 6.178

In this case, all entries in the contribution matrix are relatively balanced, with the unvaccinated179

still contributing more to the total dynamics than the vaccinated. The largest single entry in the180

contribution matrix is still given by unvaccinated infecting other unvaccinated.181

SUPPLEMENTARY REFERENCES182

[1] Diekmann, O., Heesterbeek, J. A. P. & Roberts, M. G. The construction of next-generation matrices183

for compartmental epidemic models. Journal of the Royal Society, Interface 7, 873–885 (2010). URL184

https://doi.org/10.1098/rsif.2009.0386.185

[2] Diekmann, O., Heesterbeek, J. & Metz, J. On the definition and the computation of the basic reproduc-186

tion ratio '0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical187

Biology 28 (1990). URL https://doi.org/10.1007/BF00178324.188

[3] Keeling, M. J. & Rohani, P. Modeling infectious diseases in humans and animals (Princeton University189

Press, 2011). URL https://doi.org/10.2307/j.ctvcm4gk0.190

[4] Funk, S. sbfnk/socialmixr (2020). Software. URL https://github.com/sbfnk/socialmixr.191

[5] Mossong, J. et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases.192

PLoS Medicine 5, e74 (2008). URL https://doi.org/10.1371/journal.pmed.0050074.193

15



←(u)nvaccinated ←(v)accinated

u← 50.0% 13.2%
v← 26.3% 10.5%
total 76.3% 23.7%

Supplementary Table 1. Contribution to R from infections between vaccinated and unvaccinated groups for
the “medium efficacy” scenario, considering that children and adolescents are both as susceptible and as
infectious as adults.
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←(u)nvaccinated ←(v)accinated

u← 64.3% 9.8%
v← 20.6% 5.3%
total 84.9% 15.1%

Supplementary Table 2. Same as Supplementary Table 1 for lower vaccine efficacy.
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←(u)nvaccinated ←(v)accinated

u← 36.8% 17.4%
v← 28.6% 17.2%
total 65.4% 34.6%

Supplementary Table 3. Contribution to R from infections between vaccinated and unvaccinated groups
for the medium efficacy scenario, additionally assuming that the elderly have lower protection than initially
assumed.
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←(u)nvaccinated ←(v)accinated

u← 0.458 0.208
v← 0.342 0.192
total 0.8 0.4

Supplementary Table 4. Absolute contributions to R from infections between vaccinated and unvaccinated
groups for the “medium efficacy” scenario.
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←(u)nvaccinated ←(v)accinated

u← 0.158 0.145
v← 0.215 0.345
total 0.373 0.49

Supplementary Table 5. Absolute contributions to R from infections between vaccinated and unvaccinated
groups for the “medium efficacy” scenario, considering that vaccine uptake is 90% for adolescents, adults,
and the elderly, amounting to a total vaccine uptake of 80%.
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←(u)nvaccinated ←(v)accinated

u← 27.8% 21.4%
v← 26.1% 24.7%
total 53.9% 46.1%

Supplementary Table 6. Relative contributions to R from infections between vaccinated and unvaccinated
groups for the “very low efficacy” scenario, additionally assuming that the average effective transmission
reduction for adults and elderly is A ′ = 20%.
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