
Extensible Software for Research
Principles and an Example in julia

Maximilian ErnstCenter for Lifespan Psychology, Max Planck Institute for Human Development

Contents

Why should you care?

How do you get there?

A day in the life of …
a research software developer

work with a specific type of model

linear regression, deep learning, …

have an idea

test it

make it available to applied researchers

A day in the life of …
a research software developer
research software engineers - research software developers - applied users

work with a specific type of model

linear regression, deep learning, …

have an idea

test it

make it available to applied researchers

A day in the life of …
a research software developer
research software engineers - research software developers - applied users

work with a specific type of model
linear regression, deep learning, …

have an idea

test it

make it available to applied researchers

A day in the life of …
a research software developer
research software engineers - research software developers - applied users

work with a specific type of model
linear regression, deep learning, …

have an idea

test it

make it available to applied researchers

A day in the life of …
a research software developer
research software engineers - research software developers - applied users

work with a specific type of model
linear regression, deep learning, …

have an idea

test it

make it available to applied researchers

A day in the life of …
a research software developer
research software engineers - research software developers - applied users

work with a specific type of model
linear regression, deep learning, …

have an idea

test it

make it available to applied researchers

Nowwe need software

to test → prototype

to make it available → deploy

What’s the fastest way to get there?

They are already using existing software.

It would be nice if they could extend existing software!

Nowwe need software

to test → prototype

to make it available → deploy

What’s the fastest way to get there?

They are already using existing software.

It would be nice if they could extend existing software!

Nowwe need software

to test → prototype

to make it available → deploy

What’s the fastest way to get there?

They are already using existing software.

It would be nice if they could extend existing software!

Nowwe need software

to test → prototype

to make it available → deploy

What’s the fastest way to get there?

They are already using existing software.

It would be nice if they could extend existing software!

But …

understand 1000s of lines of code

make changes, possibly breaking stuff

get maintainers to adopt their changes

But …

understand 1000s of lines of code

make changes, possibly breaking stuff

get maintainers to adopt their changes

But …

understand 1000s of lines of code

make changes, possibly breaking stuff

get maintainers to adopt their changes

But …

understand 1000s of lines of code

make changes, possibly breaking stuff

get maintainers to adopt their changes

But …

understand 1000s of lines of code

make changes, possibly breaking stuff

get maintainers to adopt their changes

These hurdles are often too high!

A day in the life of …

to test: minimal reimplementation
waste of time
not well tested
harder to reproduce
slow

to deploy: put code on github
bad user interface, no documentation
missing features
incompatible to existing software

A year in the life of …

to test: minimal reimplementation
waste of time
not well tested
harder to reproduce
slow

to deploy: put code on github
bad user interface, no documentation
missing features
incompatible to existing software

A year in the life of …

to test: minimal reimplementation
waste of time
not well tested
harder to reproduce
slow

to deploy: put code on github
bad user interface, no documentation
missing features
incompatible to existing software

My Experience

from R →

Culture

care about extensibility

developer documentation

assume that code is read

Software Design

You need to be able to add new features...

without understanding existing code

without changing existing code

syntactical requirements need to be clear

An example: time on a clock

ranges from 0− 11 : 59

11 + 6 = 5

3 · 6 = 6

for simplicity: 5.5 = 5 : 30

disclaimer: I won’t show the best way to implement this in julia,
but the most instructive way that we can do in a few minutes!

An example: time on a clock

ranges from 0− 11 : 59

11 + 6 = 5

3 · 6 = 6

for simplicity: 5.5 = 5 : 30

disclaimer: I won’t show the best way to implement this in julia,
but the most instructive way that we can do in a few minutes!

Everything has a type

a = 1.0
typeof(a) # Float64

b = ”hello”
typeof(b) # String

Multiple dispatch

6.6∗7.9

methods(∗)
364 methods for generic function ”∗”:
...
[56] ∗(x::Number, A::LinearAlgebra.UpperTriangular)
in LinearAlgebra at /usr/share/julia/stdlib/v1.7/
LinearAlgebra/src/triangular.jl:859
...
[350] ∗(z::Complex, x::Real) in Base at complex.jl:334

@which 6.6∗7.9
∗(x::Float64, y::Float64) in Base at float.jl:405
@which 6∗7
∗(x::T, y::T) where T<:Union{..., Int64, ...}
in Base at int.jl:88

You can define your own types…

struct ClockTime
time

end

my_time = ClockTime(5.0)
my_time.time # 5.0

…andmethods:

import Base: +, ∗

function +(x::ClockTime, y::ClockTime)
return ClockTime((x.time + y.time) % 12)

end

function ∗(x::Real, y::ClockTime)
return ClockTime((x ∗ y.time) % 12)

end

my_time = ClockTime(11.2)
your_time = ClockTime(5.3)

our_time = my_time + your_time # ClockTime(4.5)
7∗my_time # ClockTime(6.39...)

Sparsematrices of clocktimes

a = zeros(20, 20)
a[3,9] = 1
a[6,9] = sqrt(2)
a[19,1] = π
a[4,5] = ℯ

b = reshape(fill(ClockTime(0.0), 400), 20, 20)
b[1,1] = ClockTime(5.0)
b[1,2] = ClockTime(11.75)
b[6,9] = ClockTime(1.4)
b[16,4] = ClockTime(7.8)

(ab)ij =
∑n

k=1 aikbkj

Sparsematrices of clocktimes

using SparseArrays

a_sparse = sparse(a)

b_sparse = sparse(b)
ERROR: MethodError:
no method matching zero(::ClockTime)

import Base: zero

zero(x::ClockTime) = ClockTime(zero(x.time))

b_sparse = sparse(b)

Sparsematrices of clocktimes

using BenchmarkTools

@benchmark a_sparse∗b_sparse

BenchmarkTools.Trial: 10000 samples with 183 evaluations.
Range (min … max): 571.831 ns … 21.539 μs
Time (median): 635.415 ns
Time (mean ± σ): 821.828 ns ± 932.458 ns
Memory estimate: 2.31 KiB

@benchmark a∗b

BenchmarkTools.Trial: 6840 samples with 1 evaluation.
Range (min … max): 611.887 μs … 3.603 ms
Time (median): 686.239 μs
Time (mean ± σ): 727.364 μs ± 221.404 μs
Memory estimate: 678.25 KiB

Recap

functions (in the SparseArrays package) are composed of
other functions

if I can provide the appropriate methods for my type, their
code also works for me

they can give me a list of methods, and I do not need to
understand or modify their code

Why julia? - the bottom line

Because functions can implement very abstract behaviour, this
mode of extensibility is widely applicable:

there can be packages that work with flowers, spaceships
or loss functions

that depends on the scent, speed or gradient

If I can add a new type and write the appropriate methods,
it will work for me!

Thanks!

