Extensible Software for Research

Principles and an Example in julia

Center for Lifespan Psychology, Max Planck Institute for Human Development Maximilian Ernst

= Why should you care?

= How do you get there?

A day in the life of ...

a research software developer

A day in the life of ...

a research software developer
research software engineers - research software developers - applied users

A day in the life of ...

a research software developer
research software engineers - research software developers - applied users

= work with a specific type of model
= linear regression, deep learning, ...

A day in the life of ...

a research software developer
research software engineers - research software developers - applied users

= work with a specific type of model
= linear regression, deep learning, ...

= have an idea

A day in the life of ...

a research software developer
research software engineers - research software developers - applied users

= work with a specific type of model
= linear regression, deep learning, ...

= have an idea

= testit

A day in the life of ...

a research software developer
research software engineers - research software developers - applied users

= work with a specific type of model
= linear regression, deep learning, ...

= have anidea
= testit

= make it available to applied researchers

Now we need software

= totest — prototype

= to make it available — deploy

Now we need software

= totest — prototype

== to make it available — deploy

What's the fastest way to get there?

Now we need software

= totest — prototype

== to make it available — deploy

What's the fastest way to get there?

They are already using existing software.

Now we need software

= totest — prototype

= to make it available — deploy

What's the fastest way to get there?
They are already using existing software.

It would be nice if they could extend existing software!

= understand 1000s of lines of code

= understand 1000s of lines of code

= make changes, possibly breaking stuff

= understand 1000s of lines of code

= make changes, possibly breaking stuff

= get maintainers to adopt their changes

= understand 1000s of lines of code
= make changes, possibly breaking stuff

= get maintainers to adopt their changes

These hurdles are often too high!

A day in the life of ...

Ayear in the life of ...

= to test: minimal reimplementation

= waste of time

= not well tested

= harder to reproduce
= slow

Ayear in the life of ...

= to test: minimal reimplementation

= waste of time

= not well tested

= harder to reproduce
= slow

= to deploy: put code on github
> bad user interface, no documentation
* missing features
= incompatible to existing software

My Experience

= fromR — julia

= care about extensibility
= developer documentation

= assume that code is read

Software Design

You need to be able to add new features...

= without understanding existing code
= without changing existing code

= syntactical requirements need to be clear

An example: time on a clock

= ranges from0 — 11 : 59
= 11+6=5
= 3-6=6

= for simplicity: 5.5 =5 : 30

An example: time on a clock

= ranges from0 — 11 : 59

= 1146=5

= 3-6=6

= for simplicity: 5.5 =5 : 30

disclaimer: | won't show the best way to implement this in julia,
but the most instructive way that we can do in a few minutes!

Everything has a type

a=1.0
typeof(a) # Floaté64

b = "hello”
typeof(b) # String

Multiple dispatch

6.6%7.9

methods (*)

364 methods for generic function ”*”:
...
[56] *(x::Number, A::LinearAlgebra.UpperTriangular)
in LinearAlgebra at /usr/share/julia/stdlib/v1.7/
LinearAlgebra/src/triangular. jl:859

...
[350] =(z::Complex, x::Real) in Base at complex.jl:334

@which 6.6%7.9

*x(x::Float64, y::Float64) in Base at float.jl:405
@which 6x7

x(x::T, y::T) where T<:Union{..., Int64, ...}

in Base at int.jl1:88

You can define your own types...

struct ClockTime
time
end

my_time = ClockTime(5.0)
my_time.time # 5.0

import Base: +, *

function +(x::ClockTime, y::ClockTime)
return ClockTime((x.time + y.time) % 12)
end

function =(x::Real, y::ClockTime)
return ClockTime((x * y.time) % 12)
end

my_time = ClockTime(11.2)
your_time = ClockTime(5.3)

our_time = my_time + your_time # ClockTime(4.5)
7«my_time # ClockTime(6.39...)

Sparse matrices of clocktimes

a = zeros(20, 20)

a[3,9] =1
a[6,9] = sqrt(2)
a[19,1] = =
a[4,5] = e

b = reshape(fill(ClockTime(0.0), 400), 20, 20)

b[1,1] = ClockTime(5.0)
b[1,2] = ClockTime(11.75)
b[6,9] = ClockTime(1.4)

b[16,4] = ClockTime(7.8)

* (ab)y =Yy anby

Sparse matrices of clocktimes

using SparseArrays

a_sparse = sparse(a)

b_sparse = sparse(b)

ERROR: MethodError:

no method matching zero(::ClockTime)
import Base: zero

zero(x::ClockTime) = ClockTime(zero(x.time))

b_sparse = sparse(b)

Sparse matrices of clocktimes

using BenchmarkTools

@benchmark a_sparsexb_sparse

BenchmarkTools.Trial: 10000 samples with 183 evaluations.
Range (min .. max): 571.831 ns .. 21.539 s

Time (median): 635.415 ns

Time (mean = ¢g): 821.828 ns = 932.458 ns

Memory estimate: 2.31 KiB

@benchmark a*b

BenchmarkTools.Trial: 6840 samples with 1 evaluation.
Range (min .. max): 611.887 ps .. 3.603 ms

Time (median): 686.239 s

Time (mean % o): 727.364 ps * 221.404 ps
Memory estimate: 678.25 KiB

= functions (in the SparseArrays package) are composed of
other functions

= if | can provide the appropriate methods for my type, their
code also works for me

= they can give me a list of methods, and | do not need to
understand or modify their code

Why julia? - the bottom line

Because functions can implement very abstract behaviour, this
mode of extensibility is widely applicable:

= there can be packages that work with flowers, spaceships
or loss functions

= that depends on the scent, speed or gradient

= If | can add a new type and write the appropriate methods,
it will work for me!

Thanks!

