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Although retinal organization is remarkably conserved, morphological

anomalies can be found to di�erent extents and varieties across animal

species with each presenting unique characteristics and patterns of displaced

and misplaced neurons. One of the most widely used non-human primates

in research, the common marmoset (Callithrix jaccus) could potentially also

be of interest for visual research, but is unfortunately not well characterized

in this regard. Therefore, the aim of our study was to provide a first time

description of structural retinal layering including morphological di�erences

and distinctive features in this species. Retinas from animals (n = 26) of both

sexes and di�erent ages were immunostained with cell specific antibodies to

label a variety of bipolar, amacrine and ganglion cells. Misplaced ganglion cells

with somata in the outermost part of the inner nuclear layer and rod bipolar

cells with axon terminals projecting into the outer plexiform layer instead

of the inner plexiform layer independent of age or sex of the animals were

the most obvious findings, whereas misplaced amacrine cells and misplaced

cone bipolar axon terminals occurred to a lesser extent. With this first time

description of developmental retinal errors over a wide age range, we provide

a basic characterization of the retinal system of the common marmosets,

which can be taken into account for future studies in this and other animal

species. The finding of misplaced ganglion cells and misplaced bipolar cell

axon terminals was not reported before and displays an anatomic variation

worthwhile for future analyzes of their physiological and functional impact.

KEYWORDS

primate retina, misplaced ganglion cell, misplaced bipolar cell, glycinergic amacrine

cell, starburst amacrine cell

Introduction

Despite enormous differences in cell numbers and cell types between species (Baden

et al., 2020; Grünert and Martin, 2020; Shekhar and Sanes, 2021), the basic organization

of the retina is remarkably conserved among vertebrates. The major cell classes are

arranged in three nuclear layers separated by two synaptic layers. The outer nuclear
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layer (ONL) is occupied by rod and cone photoreceptor nuclei,

the inner nuclear layer (INL) contains horizontal, bipolar and

amacrine cells as well as Müller glia cells. The innermost layer,

the ganglion cell layer (GCL), contains the retinal ganglion

cells (RGCs) whose axons send the visual information to higher

visual centers through the optic nerve. Between these three

nuclear layers, the two synaptic layers can be found: in the

outer plexiform layer (OPL), photoreceptors contact bipolar

cells (BCs) and horizontal cells (HCs). In the inner plexiform

layer (IPL), BC axon terminals synapse onto amacrine cells

(ACs) and RGCs. ACs are presynaptic to BCs, other ACs and

RGCs, and receive input from BCs and other ACs, and RGCs are

primarily postsynaptic to ACs and BCs (Dowling, 1987). Each

coarse cell class (BCs, ACs, RGCs) can be further subdivided

into morphologically and functionally distinct cell types that

usually form repeating mosaics across the surface of the retina

with varying degrees of overlap between neighbors of the

same type.

Regardless of this conserved organization, examples of

neuronal somata that do not conform to the usual placement

described above can be found in all three nuclear layers.

These somata have been referred to as displaced cells. An

important distinction is whether displaced cells are located

outside of the usual nuclear layer but otherwise form a

uniform mosaic (i.e., displaced cells that are “intentionally-

displaced”) or whether a small proportion of cells of a

given cell type is mislocated to a different nuclear layer

perhaps due to developmental errors (displaced cells that are

truly “misplaced”) (see Vaney, 1990). Misplaced cells often

also contain a wiring anomaly in which axons or dendrites

stratify in an unusual synaptic layer. The characterization of

displaced cells (both intentionally-displaced and misplaced),

especially in the context of inter-species comparisons, is of

high importance to accurately assess evolutionary adaptations

of retinal circuitry. There are numerous examples of displaced

retinal cells that are thought to be intentionally-displaced

described in a variety of species. Displaced BCs with somata

in the ONL are common in turtle (Tauchi, 1990) and tiger

salamander retina (Maple et al., 2005), and interestingly,

all color-opponent BCs recorded in turtle retina have been

displaced cell types (Ammermüller et al., 1995; Haverkamp

et al., 1999). Large displaced RGCs with somata in the proximal

INL were first described in the bird retina (Dogiel, 1895).

These cells exclusively project to the accessory optic nuclei

and are responsible for the optokinetic nystagmus in birds,

reptiles and amphibians (for review, see Simpson, 1984).

In mammals, however, the function of displaced RGCs is

unknown. Typically, only about 1 to 2% of the total ganglion

cell population is displaced to the INL, but studies of soma

diameter and cell morphology suggest that displaced RGCs

represent several distinct cell types in mammals and most

of them resemble their counterparts in the GCL (Coleman

et al., 1987; Buhl and Dann, 1988; Pang and Wu, 2011).

An exception are some of the melanopsin-expressing RGCs,

which mediate non-image forming visual processes. In human

retina, about half of the melanopsin-expressing RGCs (or

80% of the M1 cells) are displaced (Nasir-Ahmad et al.,

2019), whereas in rodent retina only 5 to 10% of the

cells are displaced (Karnas et al., 2013; Nadal-Nicolás et al.,

2014).

ACs are the most diverse cell class in the retina (Shekhar

and Sanes, 2021), and vary widely in morphology and function

(MacNeil and Masland, 1998; Diamond, 2017). Most ACs

express either GABA or glycine, along with acetylcholine or

other neuropeptides, and the main division into GABAergic and

glycinergic cells is often correlated with dendritic field size (for

review, see Vaney, 1990). Glycinergic ACs are small-field cells,

and their dendrites are primarily involved in local interactions

between the different sublayers of the IPL. GABAergic ACs are

wide-field cells providing lateral interactions across the IPL, and

their cell bodies are often displaced toward the GCL (Perry

and Walker, 1980; Brandon, 1985; Kao and Sterling, 2006).

Some ACs, such as the starburst ACs (SACs) occur as mirror-

symmetrical populations of regular and displaced cells and form

two functional mosaics. OFF SACs have their cell bodies in

the INL and stratify in the outer IPL; ON SACs have their cell

bodies in the GCL and their dendrites are restricted to the inner

IPL (Vaney et al., 1981). The ON SACs are therefore a clear

example of a displaced cell type that is otherwise normally-

placed. The same holds true for the glypho-immunoreactive

ACs previously described in the macaque retina (Majumdar

et al., 2008). Other ACs, such as dopaminergic ACs in the

ferret retina form a single retinal mosaic, of which 27% of the

cells are located in the GCL, the rest in the INL (Eglen et al.,

2003). Similar numbers have been reported for a population

of secretagogin-positive ACs in the common marmoset retina,

where 24–38% of the cells were localized in the GCL (Weltzien

et al., 2015). However, ACs with very low numbers in the

GCL have been described rather as misplaced than displaced

cells, e.g., Wright and Vaney (1999) described an AC type

with 98% of its somata in the INL and 2% displaced to the

GCL. These displaced cells seem to be misplaced from the

regular array of somata in the INL, but their dendrites stratify

into the same layers within the IPL where the regular placed

cells stratify.

In the mouse retina, 17 types of displaced ACs have

been described (Pérez De Sevilla Müller et al., 2007),

and displaced ACs make up 59% of the neurons in the

GCL (Jeon et al., 1998), although these numbers do not

distinguish intentionally-displaced from misplaced cells.

Truly misplaced ACs have been reported in the outermost

part of the INL with dendrites stratifying into the OPL;

these cells are much less common than intentionally-

displaced ACs and probably result from migration errors

(Kang et al., 2004; Lee et al., 2006). Misplaced horizontal

cells have been reported in different mammalian species
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(Silveira et al., 1989; Peichl and González-Soriano, 1994).

In macaque, 3–5% of the H2 cells were misplaced into

the GCL with dendrites stratifying mainly in the IPL

but also a few ascending into the OPL (Wässle et al.,

2000).

Because all the mentioned animal species display special

morphological features, there are also certain characteristics to

be expected in the common marmoset (Callithrix jacchus), a

short-lived non-human primate with increasing importance in

a variety of research fields (Tardif et al., 2011; Solomon and

Rosa, 2014; Park and Silva, 2019). The aim of this study was

therefore to quantify displaced cells recently identified during

an aging study on the common marmoset retina (Haverkamp

et al., 2022) with a focus on misplaced cells arising from

putative developmental errors. We used cell specific antibodies

to label several types of bipolar and amacrine cells, and the

entire population of ganglion cells, and describe here for

the first time in a vertebrate retina misplaced ganglion cells

with somata in the outermost part of the INL and misplaced

bipolar cell axon terminals projecting into the OPL instead of

the IPL.

Materials and methods

Tissue collection and preparation

Retinal marmoset tissue used in this study was obtained

from 26 common marmosets (15 males, 11 females, 2–15

years old). The animals were sacrificed within a broad aging

study at the German Primate Center in Göttingen (Mietsch

et al., 2020). All procedures were approved by the local

animal welfare committee and by the Lower Saxony State

Office for Consumer Protection and Food Safety (reference

number 33.19-42502-04-17/2496). Housing conditions were

in accordance with the law for animal experiments issued

by the German government (Tierschutzgesetz) and complied

with the European Union guidelines on the welfare of non-

human primates used in Research and the European Union

(EU directive 2010/63/EU). The animals were anesthetized

intramuscularly with a combination of ketamine (50 mg/kg,

Ketamin 10%, WDT), xylazine (10 mg/kg, Xylariem 2%,

Ecuphar) and atropine (i.p.,1 mg/kg, Atropinsulfat, Dr. Franz

Koehler Chemie GmbH) and killed by an overdose of

pentobarbital (150–200 mg/kg) intraperitoneal. The eyes were

enucleated, the right eye was immersion fixed in 4 %

paraformaldehyde (PFA) for 60min, and the left eye was

used for physiological experiments unrelated to this study.

Following fixation, the eyes were stored at 4◦C in PBS

and 0.02% sodium azide. For immunohistochemistry, the

retinas were dissected from the eyecup and retinal pieces

of defined eccentricities were used as a whole mount or

sectioned vertically (60µm) with a vibratome (Leica VT

1200 S).

The retinal mouse tissue shown in Figure 6G came from

a transgenic mouse line we used for a bipolar cell study

several years ago (Wässle et al., 2009). The mouse line (genetic

background C57BL/6J) expressed GFP under the gustducin

promoter (GUS8.4GFP; Huang et al., 2003).

Immunohistochemistry

Immunohistochemical analyses were performed on flat-

mounted and sectioned tissue with the primary antibodies listed

in Table 1. We used antibodies against RBPMS to label all

RGCs (Rodriguez et al., 2014), against acetylcholine (ChAT)

to label cholinergic ACs, against tyrosine hydroxylase (TH)

to label dopaminergic ACs, against secretagogin (SCGN) to

label SCGN+ ACs, and against neuronal nitric oxide synthase

(bNOS) to label NOS+ ACs (Weltzien et al., 2015). Antibodies

against GlyT1 were used to label glycinergic ACs (Pow and

Hendrickson, 1999), antibodies against protein kinase Cα

(PKCα) and CD15 to label specific types of BCs (Chan et al.,

2001), and antibodies against Ctbp2 to label ribbon synapses in

photoreceptor and BC terminals in marmoset retina (Jusuf et al.,

2006).

Antibodies were diluted in PBS, pH7.4, containing 0.5–1%

Triton X-100 and 0.02% sodium azide. Immunohistochemical

labeling was performed using the indirect fluorescence method.

Cryostat and vibratome sections were incubated overnight in

the primary antibodies, followed by incubation (1 h) in the

secondary antibodies, which were conjugated to Alexa TM 488

(Invitrogen), Cy3 (Dianova), Cy5 or Alexa TM 647. In double

labeling experiments, sections were incubated in a mixture

of primary antibodies, followed by a mixture of secondary

antibodies. Whole mounts were incubated for 2–4 d in the

primary and for 2 h in the secondary antibody solution. The

number of animals used for the different experiments and

immunostainings is given in Table 2. We did not recognize any

differences between sexes or ages.

Image acquisition and analysis

Following immunolabeling, retinal tissue samples were

mounted in Aqua-Poly/Mount and imaged using confocal

microscopy (Leica TCS SP8). Samples were scanned with HC PL

APO 20x/0.70 or HC PL APO 40×/1.3 oil immersion objectives.

Voxel size was adjusted with respect to the experimental

question. For cell counting, we used the Cell Counter plugin of

Image J. Unless stated otherwise, projections of confocal stacks

are shown. Images were adjusted in brightness and contrast and

occasionally filtered for presentation purposes.

Frontiers inNeuroanatomy 03 frontiersin.org

https://doi.org/10.3389/fnana.2022.1000693
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org


Haverkamp et al. 10.3389/fnana.2022.1000693

TABLE 1 Primary antibodies used in this study.

Antibody Antigen Host Dilution Source, cat#, RRID

CD15 U-937 histiocytic cell line, purified from tissue

culture supernatant or ascites by affinity

chromatography

Mouse 1:100 BD Pharmingen, 559045,

RRID:AB_397181

ChAT Purified human placental choline

acetyltransferase enzyme

Goat 1:200 Millipore, AB144P,

RRID:AB_2079751

Ctbp2 Mouse C-terminal binding protein 2, aa

361–445

Mouse 1:5,000 BD Transduction, 612044,

RRID:AB_399431

GlyT1 Aa 614–633 from cloned rat GlyT1 Goat 1:5,000 Millipore, AB1770,

RRID:AB_90893

bNOS Synthetic peptide corresponding to amino

acids 251–270 of nitric oxide synthase from rat

brain

Rabbit 1:5,000 Sigma, N7155,

RRID: AB_26079

PKCα Protein kinase C, regulatory subunit α; peptide

sequence: KVNPQFVHPILQSAV

Rabbit 1:5,000 Sigma, P4334,

RRID:AB_477345

RBPMS KLH-conjugated peptide corresponding to a

sequence from the N-terminal region of

human RNA binding protein with multiple

splicing (RBPMS)

Guinea pig 1:500 Millipore, ABN1376,

RRID:AB_2687403

SCGN Recombinant peptide, corresponding to 276

amino acids of human secretagogin fused to

His-tag

Sheep 1:200 BioVendor, RD184120100

RRID:AB_2034060

TH Recombinant protein corresponding to aa 65

to 255 from human tyrosine hydroxylase

Guinea pig 1:1,000 SySy, 213004,

RRID:AB_1279449

aa, amino acids.

TABLE 2 Number of animals used for immunostaining (age and sex in

brackets).

RBPMS ChaT GlyT1 PKCα

5

(2f, 8m, 9f,

11m, 15f)

10

(2m, 2f, 4f, 6f, 8m, 8f,

9f, 11m, 12m, 14f)

5

(4m, 9m, 9f,

11m, 13m)

17

(2m, 4m, 4m, 5m,

7m, 8m, 8f, 9m, 9f,

11m, 12m, 12m,

12m, 13m, 14f,

14f, 15f)

CD15 bNOS SCGN TH

5

(2m, 8m, 12f,

13m, 14w)

4

(2f, 4m, 9m, 11m)

4

(2f, 4m, 9m,

11m)

4

(2f, 4m, 9m, 11m)

Ages given in years; m, male; f, female.

Results

During screening/characterization of the common

marmoset’s retinal system in a larger animal cohort of different

ages and both sexes, we encountered various unusual cell

patterns, which are described in more detail below. Misplaced

ganglion cells and starburst amacrine cells in the outer INL as

well as misplaced bipolar cell axon terminals in the OPL were

the most striking findings.

Misplaced ganglion cells and starburst
amacrine cells in the outer INL

While estimating the density of RGCs in several adult and

aged marmosets (Haverkamp et al., 2022), we realized that

displaced RGCs in the inner INL were highly concentrated in the

central retina and that even some of them were displaced to the

outer INL. The vibratome section in Figure 1A, immunolabeled

for a general RGC marker (RBPMS) and ChAT, highlights two

outer INL displaced RGCs (arrows) and a putative misplaced

starburst amacrine cell (SAC, arrowhead). SACs usually appear

as mirror symmetrical populations with OFF SACs stratifying in

the outer IPL and ON SACs stratifying in the inner IPL. RGCs in

the GCL form one row of somata at 2mm, 2–3 at 1mm and up

to five rows close to the foveal slope (Figure 1B). Accordingly,

many displaced RGCs with somata in the inner INL appear

close to the foveal slope and the number decreases significantly

already between 1 and 2mm of eccentricity.
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FIGURE 1

Displaced retinal ganglion cells in the central marmoset retina. Vertical vibratome section of an 11-year-old male double labeled with antibodies

against RBPMS (magenta) and ChAT (green). (A) Confocal image of the central retina at about 0.8mm inferior. Arrows mark displaced magenta

RGCs; the arrowhead shows a misplaced SAC. (B) Same section at lower magnification showing the retina from 2.2mm inferior to the foveal

slope. Scale bar 50µm for (A) and 200µm for (B).

Displaced RGCs near the inner INL boarder were highly

concentrated in the central retina of all whole mounts we

analyzed (n = 5); however, the numbers between individuals

varied widely (Figure 2, white dots). The numbers varied from

500 cells to more than 3,000 estimated cells in the central 12

mm2 of five retinas (Table 3). The same held true for displaced

RGCs in the outer INL: the numbers ranged from zero or just

two cells to more than 100 cells per central retina. The large

variability between animals suggests that displaced RGCs do not

comprise an intentionally-displaced subpopulation but rather

are misplaced cells (except for the M1 cells; see introduction).

However, due to the high density of RGCs in the central 12 mm2

of the GCL (about 700,000 RGCs, see Masri et al., 2019), only 0.1

to 0.5% of the RGCs are misplaced in the INL.

We stained one retinal piece with RBPMS and antibodies

against the transcription factor special AT-rich binding protein

1 (Satb1), a protein expressed by some wide-field RGCs in

marmoset retina (Nasir-Ahmad et al., 2022). Interestingly, 61 of

the 1,270 inner INL displaced RGCs were Satb1 positive (4.8%;

cyan dots in Figure 2E); however, none of the 11 outer INL

displaced RGCs was Satb1 positive.

Next, we focused on GABAergic ACs and used

common markers (TH, NOS, SCGN, ChAT) to label several

subpopulations. However, only a few cholinergic cells (with

starburst-like morphology) appeared truly misplaced to the

outer INL (Figure 3); all other labeled cells (TH, NOS, SCGN)

appeared normal, including displaced NOS+ and SCGN+ ACs

in the GCL (not shown). We found examples of misplaced

ChAT+ starburst-like ACs in 10 animals (Table 2), mainly in the

peripheral retina. The somata were located in the outermost part

of the INL (layer 1 in Figure 3), with their dendrites extending

toward the outer plexiform layer (see also Figure 1A), indicative

of a wiring error. The cells appeared much simpler in terms of

numbers of branches and branch points compared to ON ChAT

cells injected with DiI in marmoset retina (Chandra et al., 2019)

and probably comparable to human OFF SACs that appear to

have a simpler dendritic branching pattern than ON SACs (Kolb

et al., 1992).

Misplaced glycinergic amacrine cells in
the outer INL or OPL

AII ACs are the best-characterized glycinergic ACs in the

mammalian retina (for review see Wässle et al., 1995). They

present a distinctive type of narrow-field bistratified AC and are

crucial interneurons of the rod pathway (Kolb and Famiglietti,

1974). Misplaced AII ACs have so far only been described

in the mouse retina (Park et al., 2004; Lee et al., 2006). To

our knowledge, there are no reports about other misplaced

glycinergic ACs (mGlyACs); recently, however, a new type of

interneuron has been described in mouse and primate retina.

The so-called Campana cells share some features with BCs,

such as receiving input from photoreceptors and relaying
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FIGURE 2

Displaced RGCs in the central retina of five individuals. (A)

female 15 years old, (B) male, 8 years, (C) male, 11 years, (D)

female, 2 years, (E) female, 9 years. Flat-mount pieces in (A–D)

were labeled with RBPMS, in (E) double labeled with RBPMS and

Satb1. White dots mark the position of inner INL displaced

RGCs; magenta dots mark outer INL displaced RGCs and cyan

dots in (E) mark Satb1+ RGCs. F, fovea; od, optic disc. Scale bar

for (A–E) 2mm.

visual signals to RGCs, but also share some features with AII

ACs, such as their dendritic morphology in the IPL and the

expression of GlyT1 (Young et al., 2021). By reproducing their

results with our marmoset tissue (n = 5, Table 2), we not only

saw glycinergic ACs with ascending dendrites into the OPL

(Figure 4A, arrowheads), but also readily found mGlyACs with

somata in the OPL (Figures 4B,F) or outer INL (Figure 4D).

We imaged several mGlyACs in midperipheral and

peripheral retina and recognized different morphological

types. Two examples are shown in Figures 4C–F. Some

appeared like misplaced AII cells (Figure 4C); others were more

asymmetrical and had larger dendritic trees (Figures 4B,E)

and two were very small and “knotty” like (not shown,

Mariani, 1990).

Misplaced bipolar cell axon terminals are
quite common in marmoset retina

During our search for sprouting rod bipolar cells (RBCs)

into the ONL (Haverkamp et al., 2022), we were surprised to

find RBCs with axon terminals (ATs) projecting into the OPL

TABLE 3 Number of displaced RGCs in central marmoset retina.

Quantified

area

Inner INL

displaced

RGCs

Outer INL

displaced

RGCs

A: Female, 15y 12 mm2 1,368 0

B: Male, 8y 12 mm2 514 2

C: Male, 11y 6 mm2 1,635 57

*12 mm2
∼3,270 ∼114

D: Female, 2y 12 mm2 1,807 15

E: Female, 9y 6 mm2 1,270 11

*12 mm2
∼2,540 ∼22

Animal ages are displayed in years (Y).

*calculated numbers based on counted numbers for 6 mm2 .

instead of the IPL in all retinas we stained for PKCα, a rod

bipolar cell marker (n = 17, Table 2). We often saw brightly

labeled ATs in the focal plane of PKCα-labeled somata in the

INL and their dendrites reaching into the OPL (Figure 5A),

with a missing terminal in the “original” position in the IPL

(Figure 5B). Double labeling with Ctbp2 showed that ribbon

synapses are also expressed in the misplaced ATs (small arrows

in Figures 5C–H), as they usually are in the normal placed ATs

in the IPL (see Figure 4 in Neumann and Haverkamp, 2013).

Wewondered if we would also find cone bipolar cells (CBCs)

with misplaced ATs in the marmoset retina. Therefore, we used

CD15 as a marker for flat midget and DB6 BCs (Figure 6A)

and labeled retinal whole mount pieces (n = 5, Table 2) with

CD15 and Ctbp2. Intense screening revealed a few examples of

misplaced DB6 and FMBATs in the outer retina (Figures 6B–D).

We also found a few examples of PKCα-labeled misplaced DB4

ATs, which are clearly distinguishable from RBCATs (Figure 6F)

and normally stratify in sublamina 3 of the IPL (Figure 6E)

(Boycott and Wässle, 1991; Chan et al., 2001). Although we did

not quantify, it was evident that the number of misplaced RBC

ATs was much higher than the number of misplaced CBC ATs,

at least the sub-types we stained. The number of misplaced RBC

ATs ranged from almost 50 to more than 500 per retina. The half

retina shown in Figure 6H had a higher concentration on the

nasal side.

Finally, we also show an example of a misplaced AT

(Figure 6G) from a retinal whole mount of a transgenic mouse

line (GUS8.4GFP) previously used to quantify BC types in the

mouse retina (Wässle et al., 2009), in which Type 7 BCs and their

axons terminating in sublamina 4 of the IPL are prominently

labeled (Huang et al., 2003).

Discussion

As the interest in the common marmoset is continuously

increasing, especially in the area of neurobiological
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FIGURE 3

Misplaced cholinergic amacrine cells in the marmoset retina. Examples of misplaced cholinergic ACs in peripheral retina of a 5 year-old female

(A,B), and 9 year-old female (C). Z-projections of confocal image stacks are shown in the upper panel, the corresponding xy-projections in the

lower panel. Misplaced cells are marked with arrows. Layer 1, somata of the misplaced cells in the outer part of the INL; layer 2, somata of the

cholinergic cells in the inner INL (OFF SACs); layer 3, labeled somata in the GCL (ON SACs). Scale in (B) 50µm for (A–C).

FIGURE 4

Misplaced glycinergic amacrine cells in the marmoset retina. Vibratome sections or whole mount pieces were immunolabeled with GlyT1

(green) and Ctbp2 [magenta in (A,F)] or PKCα [magenta in (D)], and counterstained with DAPI [blue in (B)]. (A) Central vibratome section with two

glycinergic cells sending dendrites into the OPL. (B) Far peripheral vibratome section with a misplaced glycinergic AC (mGlyAC) within the OPL.

(C–F) Two examples of mGlyACs with their cell bodies in the outer INL next to PKCα-labeled RBC bodies (C,D) and in the OPL in between

Ctbp2-labeled ribbon synapses of photoreceptor terminals (E,F), respectively. Z-projections of confocal image stacks are shown in (C,E),

confocal images of single sections in (D,F). Scale bar in (E) 50µm for (A–F).

research (Solomon and Rosa, 2014), and since the

introduction of genetically modified animals will broaden

the use of this small non-human primate even further

(Park and Silva, 2019), a comprehensive overview of

the retina as well as an understanding of this species’

morphological variations is necessary. Utilizing a sparse

labeling approach, Masri et al. (2019) reported on the

variability of ganglion cell morphology in a limited

number of marmoset retinas and identified over 17

RGC types, a diversity comparable to other primate

retinas (Shekhar and Sanes, 2021), and morphology

and stratification resembling RGCs in macaque (Dacey,

2004). Weltzien et al. (2015) reported on cell densities

in the common marmoset retina, but the analyses
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FIGURE 5

Misplaced rod bipolar axon terminal projecting into the OPL. Confocal image stack of a marmoset retina immunolabeled with antibodies against

PKCα (green) and Ctbp2 (magenta). (A) Confocal plane at the border of the outer INL to OPL with a misplaced RBC axon terminal (AT) in the

middle of the image (circled) surrounded by several other RBC somata and their dendrites projecting into the OPL (upper right). The soma

corresponding to the misplaced AT is highlighted (asterisk). (B) Same RBCs as in (A) with the focus onto their ATs deep in the IPL. The “original”

position of the misplaced AT is empty. The misplaced AT is shown in higher magnification in three subsequent confocal planes in (C,D) (first

plane), (E,F) (second plane), and (G,H) (third plane). (C,E,G) show the PKCα and the Ctpb2 labeling; (D,F,H) show Ctbp2 labeling alone. The small

arrows point to Ctbp2 puncta within the misplaced AT. Scale bars in (A) for (A,B) and in (H) for (C–H) = 20 µm.

were performed just in the INL in a limited number

of animals. Thus, although providing a comprehensive

overview over RGC populations and interneuron densities,

unfortunately no morphological variations were reported in

these studies.

Overall, we did not observe a clear indication of an

intentionally-displaced population of RGCs such as the large-

displaced RGCs in the bird retina. Given the inter-animal

variability we observed, we therefore consider the numerous

displaced RGCs preferentially located near the fovea to be

misplaced somata and perhaps a reflection of packing density

constraints. A similar concentration of displaced RGCs near the

visual streak has been documented in the ground squirrel retina

(Xiao et al., 2021). We confirmed the intentionally-displaced

population of ON SACs, but noted misplaced starburst-like ACs

in the outer INL in several retinas with a very unusual extension

of their dendrites into the OPL. We are not aware of a report of

such misplaced SACs in other vertebrate species except for the

mouse retina (Kang et al., 2004).

The misplaced cells we did find ranged from rare

occurrences of GABAergic ACs and cone BCs to apparently

more common instances of glycinergic ACs and RBCs.

Ultimately, the functional significance of misplaced cells,

if any, can only be determined by mapping the synaptic

connections they form in the retina. This will likely

require volumetric electron microscopy data of sufficient

spatial extent to capture potentially rare misplaced cells.

Many misplaced somata will presumably form typical

synaptic connections as long as their axons or dendrites

stratify in the typical plexiform layers. Of particular future

interest will be examining the synaptic connectivity of

misplaced cells with obvious abnormal axonal/dendritic

morphologies such as those we observed for several AC and

BC types.

In conclusion, we report here for the first time on

species-specific/unique cell patterns and distributions of various

misplaced and displaced cell populations in the common

marmoset’s retina. This characterization will not only broaden
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FIGURE 6

Misplaced bipolar cell axon terminals in marmoset and mouse retina. Confocal images of marmoset retina (A–F) and mouse retina from a

transgenic line (G) immunolabeled for CD15 (A–D), PKCα (E,F), or GFP (G). (A) Vertical vibratome section with two CD15+ BC types. The flat

midget bipolar (FMB) stratifies in the OFF layer of the IPL and the DB6 in the deep ON layer. (B) Example of a DB6 cell with its misplaced AT in the

OPL in a whole mount preparation of a 2-year-old male. Soma with dendrites and misplaced AT are encircled. (C,D) Examples of two FMBs with

misplaced ATs in the same retina as in (B). (E) Vertical vibratome section with two PKCα-labeled BC types. Both cell types stratify in the ON layer,

the DB4 in S3 of the IPL and the RBC in S4/5. (F) Confocal image of several misplaced RBC ATs and one misplaced DB4 AT from the peripheral

nasal retina of a 13-year-old male. (G) Three consecutive confocal planes of an image stack with GFP-expressing type 7 mouse BCs at the level

of the outer INL and OPL. One BC has a misplaced AT projecting into the OPL (circled), soma and dendrites appear at the same plane in their

normal position. (H) Half retina of the 13-year-old marmoset shown in (F). Green asterisks mark the position of all misplaced ATs (n = 349) found

in this whole mount preparation. INL, inner nuclear layer; GCL, ganglion cell layer; OPL, outer plexiform layer; F, fovea; od, optic disc; T,

temporal; N, nasal. Scale bars, 20µm in (A–G), 2mm in (H).
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the knowledge about an increasingly popular non-human

primate but will also serve as basic/reference values for future

investigations into the visual system of this animal species.
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