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Theoretical derivation 
The theoretical derivation in the main text is based on a Lagrangian coordinate system in Dp-
space, which is more intuitive. Here the Dp-space means the space where Dp is the scale of 
distance and particle sizes can be represented as points. The growth of particles can be 
considered as the movement in Dp space. In Lagrangian coordinates, the change in size of each 5 
individual particle is tracked. A more rigorous expression can also be performed using a Eulerian 
coordinate system in Dp space (in which the number concentration of aerosols in a specific Dp 
bin is tracked). The general dynamic equation for aerosol number concentration  
in the accumulation mode is, 
 10 

  (S1) 

where the second, third and fourth terms represent the impact of emission, growth, and 
deposition processes. The growth rate of bins in the accumulation mode is related to the particle 
diameter, thus GR(Dp) is used. Further, the deposition rate is also related to the particle diameter 
and Dep(Dp) is used to represent the deposition rate of Dp.  15 
 
For size bins without emission, Remis = 0, and Eq. (S1) could be simplified as 

  (S2) 

Based on the steady-state approximation, n(Dp) does not vary much with time. Thus, 

  (S3) 20 

Combining Eq. (S2) and Eq. (S3), we obtain, 

  (S4) 

Therefore, 

  (S5) 

To get the analytical equation, we assume Dep and GR follow a power-law dependence of Dp, 25 
Dep~Dpa, GR~Dpb, 

  (S6) 

The Dp distribution with different relationships between a and b is shown in Fig. S1. The 
derivation in the main text (Eq. 5) can be considered as a special case when a=0 and b=0. Our 
field observation results (Fig. 2) confirm that ln(n(Dp)) and Dc are in a linear relationship and 30 
indicate that a~b in Eq. S6. Eq. 5 may look similar to those derived for total aerosols in the 
pioneering works by Junge33 and Willeke & Whitby34, but in fact they are different in both 
equation format and physical mechanism. We find that the size distributions of BC-containing 
particles follow an exponential law, while they derived a power law and multimodal distribution 
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for total particle. This difference can be also seen if we present our results with different x axes 
(see Fig. S2). 
 
In addition to the dependency of GR and Dep on Dp, the variations of GR and Dep as a function 
of time should also be considered. The lifetime of BC aerosols is 3-10 days. Therefore, long-term 5 
variations of GR and Dep, such as seasonal variations, do not affect the assumption of steady-
state, and our theoretical framework is applicable. The suitability of this theory under the 
influence of short-term periodical variations of GR and Dep (most importantly the diurnal 
variation) is discussed here.  
 10 
GR and Dep are assumed to have a periodical variation with cycling time of τ, that is, 
 

  (S7) 

  (S8) 

 15 
Hence, Eq. 2 and Eq. 4 can be represented as Eq. S9 and Eq. S10, respectively. 
 

  (S9) 

  (S10) 

It can be observed that Eq. S9 and Eq. S10 have similar formats as Eq. 2 and Eq. 4, only with 20 
and  instead of GR and Dep, and τ instead of t. 

 
Therefore, the assumption of constant GR and Dep (independent of time) is applicable to periods 
that are integer multiples of τ or periods much longer than τ. This assumption cannot be used to 
describe BC mixing states during some fast and non-periodic meteorological condition changes 25 
(e.g., a passage of cold front and precipitation). When discussing the mixing state of BC, 
multiday statistics are often adopted to represent its average condition, in which case the above 
derivation can be used. Moreover, the steady-state assumption is also applicable for us to 
determine the overall mixing state of BC on a large scale, which is one of our major targets in 
this study. 30 
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Fig. S1. 
Theoretical relationship between ln(n(Dp)) and the diameter of BC-containing particles (Dp) 
under three conditions. The blue line represents the case demonstrated in the main text. 
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Fig. S2. 
Black carbon (BC) size distributions using different coordinates from field measurements. 
(A-C) BC size distribution using a logarithmic scale on the y-axis and linear scale on the x-axis; 
(D-F) BC size distribution using a logarithmic scale on both x -axis and y-axis. 5 
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Fig. S3. 
Change of mass absorption cross-section (MAC) of black carbon (BC) with coating 
thickness (ΔDp). Blue dots represent the calculated MAC based on core-shell Mie theory with 
the linear fit shown as the red line. 5 
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Fig. S4. 
Black carbon (BC) absorption coefficient (Cabs) of different BC core size (Dc) calculated 
using equivalent diameter of BC-containing particles (equivalent Dp) and Dp distributions. 
The red line represents the calculated cabs using the equivalent Dp. The blue line stands for the 5 
calculated cabs using the integrated Dp from the Dp distribution. 
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Table S1. 
Observation periods and site types for the single particle soot photometers (SP2) measurements 
 

Site Observation period Type Reference 
Nanjing, China 1/2/2020‒28/2/2020 

1/4/2020‒30/4/2020 
1/12/2021‒
31/12/2021 

Suburban This study 

Lulang, China 1/4/2021‒25/5/2021 Background in the Tibetan 
Plateau 

This study 

Maqu, China 26/6/2021‒8/7/2021 Rural in the Tibetan Plateau This study 
Shaoguan, China 4/12/2020‒

10/12/2020 
Rural This study 

Beijing, China 13/11/2014‒
3/12/2014 

Urban Zhang et al., 2018 3 

Sacramento, USA 14/6/2010‒15/6/2010 Urban with biomass burning 
influence 

Zaveri et al., 2012 4 

Tokyo, Japan 2/8/2012‒8/8/2012 Urban Moteki et al, 2014 5 
Amazon Tall 
Tower 
Observatory 
(ATTO), Brazil 

23/10/2019‒
31/10/2019 

Biomass burning  
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Table S2. 
The ratio between the aerosol absorption coefficients before and after removal of coating (Eabs) of black carbon (BC) 
from field observations. 
 

Longitude 
Latitude Location Wavelength 

(nm) 
Sampling 
duration Eabs References 

43.66°N 
79.39°W 

Toronto 
Canada 760 2006.12- 

2007.1 1.21 [1.02-1.43]# Knox et al., 
2009 6 

38.64°N 
121.35°W 

Sacramento, 
USA 

405 2010.6.17-
2010.6.29 

1.13±0.01 Cappa et al., 2012 
7 532 1.06±0.006 

40.02°N 
105.27°W 

Boulder 
USA 

404 
2010.9 

1.5 Lack et al., 
2012 8 532 1.3 

51.05°N 
0.12°W 

London 
UK 

405 
2012.2 

1.3 Liu et al., 
2015 9 781 1.4 

37.50°N 
137.40°E 

Noto 
Peninsula, 

Japan 

405 
2013.4.17- 
2013.5.14 

0.99 [0.87-1.06]* 
Ueda et al., 

2016 10 532 1.06 [0.93-1.20]* 

781 1.23 [1.10-1.35]* 

32.06°N 
118.70°E 

Nanjing, 
China. 

405 
2014.8.16- 
2014.8.28 

1.41±0.39 
Ma et al., 
2020 11 532 1.42±0.40 

781 1.35±0.38 

36.81°N 
119.78°W 

Fresno, 
USA 

405 
2014.12.25- 
2015.1.12 

1.37±0.22 
Cappa et al., 2019 

12 532 1.22±0.15 

870 1.10±0.13 

34.10°N 
117.49°W 

Fontana 
USA 

405 2015.7.3- 
2015.7.15 

1.10±0.27 Cappa et al., 2019 
12 532 1.07±0.22 

Measured Eabs using thermodenuder (TD) method was listed in above table. TD method removes coating 5 
material by heating the sample in a TD, then defined Eabs with E!"# = 𝑏$%&;$(%)*+,/𝑏$%&;-., where 𝑏!"#;/0 is 
corrected for particle losses. 
#Eabs in Knox et al., 2009 4 was obtained from MACunheated/MACheated. The range represents the Eabs of aerosol 
with different age category. 
*Eabs range was the 25th-75th percentile. 10 
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Table S3. 
Densities and refractive indices for shortwave radiation of the species in the CESM-CAM6 and WRF-Chem 
simulations. 
  

Species Density (g cm-3) 
(CESM-CAM6) 

Density (g cm-3) 
(WRF-Chem) 

Refractive index 
(CESM-CAM6) 

Refractive index 
(WRF-Chem) 

Black carbon 1.7 1.8 1.95 + 0.79i 1.85 + 0.71i 

Organic matter 1.0 1.0 1.53 + 0.0057i 1.45 + 0i 

Dust 2.6 2.6 1.56 + 0.0019i 1.55 + 0.003i 

Sulfate 1.77 1.8 1.43 + 0i 1.45 + 0i 

Nitrate 1.77 1.8 1.5 + 0i 1.45 + 0i 

Ammonia 1.77 1.8 1.5 + 0i 1.45 + 0i 
 5 
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